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Using a recently introduced method [Phys. Rev. Lett. 123, 231104 (2019)], which splits the con-
servative dynamics of gravitationally interacting binary systems into a non-local-in-time part and a
local-in-time one, we compute the local part of the dynamics at the sixth post-Newtonian (6PN) ac-
curacy. Our strategy combines several theoretical formalisms: post-Newtonian, post-Minkowskian,
multipolar-post-Minkowskian, effective-field-theory, gravitational self-force, effective one-body, and
Delaunay averaging. The full functional structure of the local 6PN Hamiltonian (which involves
151 numerical coefficients) is derived, but contains four undetermined numerical coefficients. Our
6PN-accurate results are complete at orders G* and G*, and the derived O(G?) scattering angle
agrees, within our 6PN accuracy, with the computation of [Phys. Rev. Lett. 122, no. 20, 201603
(2019)]. All our results are expressed in several different gauge-invariant ways. We highlight, and
make a crucial use of, several aspects of the hidden simplicity of the mass-ratio dependence of the

two-body dynamics.

I. INTRODUCTION

A new method for analytically computing the con-
servative dynamics of gravitationally interacting bi-
nary systems has been recently introduced [1]. This
method draws its efficiency from combining in a spe-
cific way results coming from several different theoreti-
cal formalisms: post-Newtonian (PN), post-Minkowskian
(PM), multipolar-post-Minkowskian (MPM), effective-
field-theory (EFT), gravitational self-force (SF), effec-
tive one-body (EOB), and Delaunay averaging. We have
recently applied this method to the derivation of the
fifth post-Newtonian (5PN), and fifth-and-a-half post-
Newtonian (5.5PN) dynamics [2]. Here, we extend the
application of this method to the sixth post-Newtonian
(6PN) level.

Let us recall the main idea and the various comple-
mentary steps of our strategy. As the main purpose of
the present paper is to present our new, 6PN-level re-
sults, we will be as brief as possible in guiding the reader
through the results presented below. For more details
and references, see Refs. |1, [2].

The main idea of our strategy is to decompose, from
the start, the the total reduced! two-body conservative
action (Siot) in two separate pieces: a nonlocal-in-time
part (Snhonloc,t) and a local-in-time part (Sioc,r). This
decomposition is done at some given PN accuracy, say

1 The reduced two-body action is defined as the two-worldline ac-
tion obtained by integrating out the mediating field from the
original particle-plus-field action. It was introduced in electro-
magnetism by Schwarzschild, Tetrode and Fokker (see Ref. [3]
for references and further developments). Its generalization to
the gravitational two-body interaction was introduced in the PN
context in Ref. |4], and in the PM context in Ref.|5].

nPN, and yields (when n > 4) an action of the form

<nPN <nPN
fot [T1(51), 22(52)] = Siol

+Sn§o?111)oli,f[‘r1 (81)5 x2 (52)] .

[21(51), T2(82)]
(1.1)

Here each action piece is a time-symmetric functional of
the worldlines of the two bodies, say z1(s1) and x2(s2).
The meaning of the additional subscript f (which stands
for “flexibility factor”) will be discussed below.

The fact that the PN-approximated dynamics of a
gravitationally interacting system must include, starting
at the 4PN level, a nonlocal-in-time part was discovered
in Ref. [6] by using the PN-matched [6-10] multipolar-
post-Minkowskian (MPM) formalism |11]. The descrip-
tion of the 4PN-level nonlocal-in-time (henceforth abbre-
viated as “nonlocal”) dynamics by an action was initiated
in Ref. [12] (later refined in Ref. [13]) within the EFT ap-
proach to the dynamics [14] of binary systems and their
coupling to radiation |15, [16]. However, the nonlocal ac-
tion considered in Refs. |12, [13] is a Schwinger-Keldysh-
type, in-in, action, with doubled fields, that is not ap-
propriate to the Tetrode-Fokker-type approach we are
using. The corresponding appropriate time-symmetric
4PN-level nonlocal action was first written down in Ref.
[17]). See Refs. [18-21] for later discussions of this 4PN
nonlocal action.

The extension of the nonlocal action to the 5PN level
was obtained in Refs. [22, 23], with extension to the
5.5PN level in the latter reference. The derivation of
these nonlocal actions in Refs. [17, 23] was obtained
by combining information from the MPM formalism,
with special properties of the 1PN-accurate interaction
of a gravitationally system with an external tidal field
[24, 125]. Here, we need the extension of the nonlocal
part of the action to the 6PN level. As emphasized in
Refs. [26, [27], the EFT approach [14-16, 28] is useful
in this respect and gives a guide for writing the nonlocal
part of the action beyond the leading order. We are, how-
ever, confused by the meaning of some of the equations
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presented in Refs. [26, 127] because they seem to refer
to non conservative systems that should be treated by
a doubled-field Schwinger-Keldysh-type, while we are in-
terested in the Tetrode-Fokker-type time-symmetric ac-
tion for conservative systems. There is also a lack of
explicit proof (beyond the 5PN level, which was explic-
itly treated in Ref. [23], see also the Appendix A of Ref.
[27]) that the multipole moments to be used in the tail-
transported nonlocal action are the same as the “canoni-
cal” (or “algorithmic”) moments, My, Sr,, parametrizing
the fully nonlinear multipolar structure of gravitationally
radiating systems in the MPM formalism [11]. In addi-
tion, a consistent 6PN-level evaluation of the nonlocal
action requires (as will be made clear below) that the
multipole moments, My, Sp, parametrizing the exterior
MPM gravitational field be expressed as functionals of
the source variables. The MPM formalism succeeded in
doing this task, and its appropriate results will be used
below. Recent work |27] provides some partial checks of
this circle of ideas at the level of the logarithmic terms
associated with nonlocal correlations?, in the restricted
case of circular motions. Our work here will provide fur-
ther checks concerning elliptic motions.

II. NONLOCAL ACTION AT THE 6PN ORDER

The starting point for our method is to have in hand
an explicit expression for the nonlocal part of the action,
Shonloc,f- At the 6PN accuracy, the nonlocal action can
be linearly decomposed into its 4 + 5 + 6PN piece, and
its 5.5PN piece

<6PN
9= —

4+5+6PN 5.5PN
nonloc,f ™ +5

nonloc,f nonloc *

(2.1)

The 5.5PN piece (which is independent of the flexibility
factor f) has already been treated in Ref. [2] and will not
be further discussed here. In view of the work recalled
above, the 4 + 5 4+ 6PN piece reads

nonloc,f nonloc,f

SR o) sl = = [ BTN G, 22)
with

nonloc,f

G*M ar’ i
H4+5+6PN(t) = c3 Pf2r{2(t)/c/ |t _ t/| ‘Fsgl\; (t’ tl) :
(2.3)

Here, M denotes the total ADM conserved mass-energy
of the binary system,

iy (t) = F(E)rls(t), (2.4)

2 The fact that nonlocal interactions generate logarithmic terms
was pointed out in Refs. |29, 130].

is a flexed version of the radial distance between the two
bodies (r%,(t) denoting the harmonic-coordinate distance
and f(¢) being a function of the instantaneous state of the
system), while ]-";gliNt (t,t') is the time-split version of the
fractionally 2PN-accurate gravitational-wave energy flux
(absorbed and) emitted by the (conservative) system. It
can be decomposed as

i G spli i
FER@E) = < |EP )+t (1)

+774Ff£1}g(t,t’)} : (2.5)
with
Ol 1
FPM (1) = 2105 1) (1),
FP () = ol Il (t) + 200 (015 (1),
li 1 6 5
FE),Jts(t’t/) = 9072I¢§b1d(t)1¢§bld(t/)
1
g a1 (2.6)
where n = 1/c¢ and the superscript in parenthesis de-

notes repeated time-derivatives. The multipole moments
I, Jr denote here the values of the canonical moments
My, Sp parametrizing (in a minimal, gauge-fixed way)
the exterior field (and therefore the relevant coupling be-
tween the system and a long-wavelength external radi-
ation field) when they are reexpressed as explicit func-
tionals of the instantaneous state of the binary system.
We employ here the notation used? in the early works on
the PN-matched MPM formalism [7, I&, 32] in which the
source-related values of the algorithmic multipole mo-
ments, My, = Iy [source], S; = Ji[source], were obtained
with 1PN fractional accuracy. The latter accuracy suf-
fices for the contribution involving Flsfhjz (t,t') (and a for-

tiori szhjt3 (t,t')). However, for the first contribution in-

volving szlit(t,t’ ) we need the 2PN-accurate value of
the quadrupole moment expressed in terms of the ma-
terial source 33, [34]. We need also to use the explicit
form of the 2PN-accurate dynamics of a binary system
in harmonic coordinates |35, 136], and its relation [37] to
the 2PN-accurate Hamiltonian in Arnowitt-Deser-Misner
coordinates [38].
The nonlocal Hamiltonian can be further decomposed
into
H4+5+6PN(t) — H§+5+6PN + Af hH(f),

nonloc,f onloc,h

(2.7)

where, replacing M = £ where H is the Hamiltonian*,

3 In more recent developments [31] the notation Iy, J, refers to
slightly different source-related moments, with a difference start-
ing at order c% which is, anyway, not relevant to the present
work.

4 At the present level, we can use the 2PN-accurate Hamiltonian.



and introducing an intermediate length scale s,

G2 s 1i
HAZON0) = S5ty [ FR )
G’H _..i t
T g (9 oy

and

2
H
AFPH () = + “ =

SOt In (f(2) -

The corresponding local Hamiltonians are defined so that

(2.9)

Htot = Hloc,h + Hnonloc,h = Hloc,f + Hnonloc,f . (210)
In view of Eq. (2.7), we have
Higen = Hioep + ATPH (1), (2.11)

where it should be noted that Af="H(¢) is (like f(¢)) a
local function of the dynamical variables.

Depending on the various sections of this paper, we
shall work either with the “h-route” nonlocal Hamilto-

nian Hﬁ:n‘r’l:cﬁﬁN, or the flexed “f-route” local Hamilto-

nian Hﬁ)’gi%PN As discussed in [2], the use of a suitable

flexibility factor f(t) within our strategy allows one to
cleanly separate the determination of the local Hamilto-
nian Hiec ¢ from the nonlocal physics. The present paper
will focus on the explicit computation of the f-route lo-
cal Hamiltonian Hoc ¢ (under the sole assumption that
f(t) = O(v)). We leave to a separate work a full study of
the complementary nonlocal Hamiltonian Hyonloc,f, and
the determination of the flexibility factor f(t).

III. COMPUTING THE DELAUNAY AVERAGE
OF THE NONLOCAL-IN-TIME H-ROUTE
HAMILTONIAN

The first stage of our strategy consists of computing
the Delaunay average of the nonlocal h-route Hamilto-
nian Hponloc,h, Eq. (ZF). This computation is con-
veniently separated into several successive steps: (1)
computing the 2PN-accurate multipole moments enter-
ing F5RU(¢,'); (2) using a generic 2PN quasi-Keplerian
parametrization of the motion; (3) computing the quasi-
Keplerian parameters in harmonic coordinates; (4) com-
puting the quasi-Keplerian parameters in EOB coordi-
nates; (5) evaluating the multipole moments along the
orbit; and finally, (6) computing the Delaunay-average
of the h-route nonlocal Hamiltonian in harmonic coordi-
nates.

In this section, we shall use as (rescaled) energy and
angular momentum variables

H— Mcd J
el j=—

E
poo GMp

(3.1)

Beware that we shall also use other rescaled energy vari-
ables in other sections.

A. The 2PN-accurate multipole moments in
harmonic coordinates
In this subsection, z* and v* = dd—”f denote the
harmonic-coordinate relative center-of-mass position and
velocity of a two-body system. One also uses the short-
hand notation L; = eijkxjvk. Using the standard nota-
tion for the symmetric and tracefree part of a tensor T,
Tijk...y, and for the tensor product of two or more vectors

TiTjTk - . . = Tijk..., the following results hold
3 2
Liijky = Ligk — 395 Ti0jk)
1, 2
TV = TV~ F 06V — ¢ (V- X)0G52k
1 2
v = v Th — g0 — 2 (V- X)0G0k)
6 3
T(ijhy = Tijht — o 2815k + 357 015 0k1)
1 2
Lazjey = Lazje) — 520G L)
3
Lizjny = LaTjuy — ;5025(1'ij501), (3.2)
where 22 = x - x = z'z%, v -x = v'a’, etc., and where

parentheses denote symmetrization (with weight one).

The mass quadrupole moment, I;; at the 2PN accu-
racy [33, 134], the mass octupole moment I;j;, and mass
hexadecapole moment, I;;x; at the 1PN accuracy [7] ,
the spin quadrupole moment, J;;, and the spin octupole
moment, J;jx, at the 1PN accuracy [8, 132], have the fol-
lowing expressions [39]

I’Lj = H[Cll'<”> + CQU(U + 031' (i ] ]
Liji = M[Bl%k + Bai5vn) + Baz(ivimy]

Lijr = p(1 = 3v)xgi5m)
Jij = p[D1Lgajy + DaLgvp],
Jijk = (1*31/) (i jk); (3.3)

where the various parameters C7,Cs,... etc. are listed

in Table [l

B. Generic 2PN quasi-Keplerian parametrization
of elliptic motion (valid in all coordinates)

The 2PN quasi-Keplerian parametrization [40-42] of
elliptic motion, in polar coordinates, (r, ¢), is the follow-
ing

r = a.(1 —e,cosu),
¢ = n(t—tp)=u—esinu+ fysinV+ g(V —u),
¢ = % =V + fgsin2V + g4 sin3V, (3.4)
where
1
V(u) = 2arctan l e tan 21 . (3.5)
176(;5 2



TABLE I: Parameters entering the multipolar moments used in the 2PN flux.

Ch 1+n2[29(1731/)027%(5781/)%} .
o [0 (280 - iy — 200) 4 S (3 — 0+ 309
0 (S0s — Soiv +}%‘ilﬁ)f¥f2 (=755 + 76v — 750 ”)] ) o
¢, (=) ot [0 (200 T e, Do AV e (B 1t st (5 - B0 200)))
s Pt {d e B 0 (A T 2y S (s )
B VIZ I {1 [S5 (5= gv) +0 (5 + )]}
Bs VI —4u(1 - 2v) n?ri
B3 —V1—4v(1 — 2v) p?r?
D, VIZT {14 (S (-2 - 20) 40 (-5 + 50)])
Do \/1—47/7’7“( 258—1—54V)772

Here a, is the semi-major axis of the orbit, e, e,, ey
are three kinds of eccentricities, K is the periastron ad-
vance and n = 2% is the circular frequency of the radial
motion. This representation is valid (at 2PN) in any
(usual) coordinate systems: harmonic, ADM, or EOB.
The gauge-invariant quantities K and n are numerically
the same in all coordinates, while the quasi-Keplerian
elements a,, e, e,,e4 depend on the coordinate system.
We will distinguish them by decorating them with an
extra label; for example e? for the harmonic coordinate
expression, ef for the EOB coordinate expression, etc.
To ease the notation, we will omit the extra label spec-
ification when it is clear from the context what are the
coordinates used. Most of the time we will (as in our
previous works) use rescaled versions of many physical
quantities. Notably, we use a dimensionless radial dis-
tance r = 7P /(GMn?) and a dimensionless radial pe-
riod T = TPYWs /(GMn?).

We recall that

/ 2
1—e¢

v’ = ——,
() 1—egcosu
\/1— €5 sinu
sinV = ————,
1—egcosu
cosV = w (36)

1—egcosu

for example, the following explicit

,/1—635 sinu

1—egcosu

These relations imply,
expression for £(u)

u—egsinu + fi +g:(V—u)
sinw

1— g)u — egsi Jl—e2——
( ge)u — egsinu + fi e¢1—e¢cosu

1 (=7+v) 5

(,

1+e4
176¢

+ 2g;arctan (3.7)

u
‘aIl by ;
2

or, equivalently, replacing v in terms of V', the explicit
expression for (V)

¢ = 2(1— g¢)arctan — % anK
1—|—€¢ 2
sinV
— /[l —e2 ——" "
“ e¢1+e¢cosV
+ ftsinVJrgtV. (38)

C. 2PN expressions of the orbital parameters in

harmonic coordinates

To get gauge-invariant expressions for the Keplerian
elements one needs to relate them to the conserved 2PN-
accurate energy and angular momentum [43]. We made
use of explicit (3PN-accurate) results in the literature |39,
42]. [Note that, at the 3PN level, one needs to transform
away some harmonic-gauge-related logarithms.]

We list in Table [[I] the 2PN-accurate expressions of
the harmonic-coordinate orbital parameters, as functions
of the conserved energy and angular momentum of the
system, as defined in Eq. (&I). We use the shorthand
notation

ek(E,j) =1+ 2Ej4? (3.9)

It is also useful to have the inverse expressions, i.e.,

and j expressed in terms of a, and e;:

4

32+ 56v)] 7n

+ [1/2+71/25

"2,  8a2 K

(1—e¢?) | 16a3’



TABLE II: 2PN expressions of the harmonic-coordinates orbital parameters, as functions of the conserved energy and angular

momentum of the system, Eq. (B1]).

n (—2E)/? |1+ > 2152 (—2F) + ot (2B <555 + 300 + 1102 + \/%j (=5 + zy))J

ar o {1 2B+ S 14+ (0 1]}

e? &+ C2B 28 4 8y — (—2E)2(—17 + )] + E2EX [4(3 + 180 + 50%) — (—2E);2(112 — 47v + 161%)
— ey (4 Tv) = 24V 2E5(=5 + 2v) + %(75 + 2y)] n*

e &+ 255 [3 (3 - v) (—2B) + =5 o

(2B [2(30+74V+1/2)—(807451/+41/2)(—2E)j2 = (- 4+7y)]

e ek + 2B (£ - 1v) (-2B) - & | »’
o2 — . = .

7% [—416 + 91v + 1502 — 2(—2E) (=20 + 17v + 9°) + (—2E)?j* (160 — 31v + 3v2)] *
ft 77(72198)2 3;“ v(=15+v)n*
gt 37(‘2’9) (=5 + 2v) *
fo n“N (1+191/731/)
9o —U43—12€—11V( 14 3v)
K 1+ =0 +ZI_|:3(J2E)( 5+2V)+J (7721/)]

. 2\1/2 (1—-v) N
J = ar(lfeg)jL [(3+V)(16t)/ - (1— )1/2] Var
1 12 15 1(6v+1v2+3) 1(-15+6v) 1(-7T+12v4+v%)] n*
~(=5— =2 = = - (3.1
+ {2( (1= ) g G SR S s e
from which one gets (we defined the usual periastron advance parameter k = K — 1)
. (—%+%V)772+ 47 2503, 3(=5+2v)  3(—4+Tv)| 7t
e 2 s 8778 2/1—¢f  201—¢€f) | al/*’
E — 3 77_2 847+ 125 T9_77
(I-€f)a (I—ef)  (1-ef)?
3\ n? 29 5 1 4 )\ nt
o= 1 4—cv | — 2 -5 |
S O Pl G T +<2 )i
2
n (96v —240)  3v(v—27) (bv+9)(3v — 32
= 14+ (4—)— 4 (= _ -
ce et[ =) T+< 32(1— 7)1/ 32 32(1— &2 ag :
ev(—15+v) 4,
ft = - o) n,
8a2+\/1 —e;
3(=5+2v) 4
9 = ———5/——="1 >
2a2,/1 — e?
e(—1—19v + 312
f¢ - _ t( > 5 )774,
8a2(1 —e3)
Sv(—1+ 3v
95 =~ (3.11)

T 32a2(1— 22"
D. 2PN quasi-Keplerian orbital parameters in
EOB coordinates

The 2PN-accurate quasi-Keplerian representation
B3) is also valid in EOB coordinates. As we shall need

to transform the harmonic-coordinate 2PN expressions
of the orbital parameters into their EOB counterparts, it
is very useful to express both as functions of the con-
served energy and angular momentum of the system.



The relations a,(E,j) and e.(E,j) in EOB coordinates

are easﬂy obtained by evaluating the reduced energy

_J
Mp

at the periastron (r = a,(1 —e;), u=0, p, = O) and the
apoastron (r = a,(1 +e,), u = 7, p, = 0). The result-
ing expressions are listed in Table [Tl below. From these
relations one finds in particular

2 4 2 _ 5 _
eter{l?)n 7 <2(9€T 5—v)

a 22\ (1-¢)

E=H=HM , and angular momentum j = =

es (3.12)

E. Evaluating the multipole moments along the
orbit

Let us turn to the definition (Z.8) of the 2PN split-
flux. The various multipole moments are functions of
r(t) and ¢(t) and their derivatives up to the fifth order.
In order to compute the Delaunay average of the nonlocal
Hamiltonian (Z3]) it is convenient to work with the “mean
anomaly”, i.e., the angular variable ¢, with respect to
which all scalar functions are periodic with period 27.
[Note that d¢/dt = n =cst.] Therefore, we first compute
the multipole moments as functions of v and u’, and then
replace u = u({, et,v), v’ = (¢, es,v). Finally, we will
take the partie finie in ¢’ and the average over £.

We need to invert the 2PN-accurate generalized Kepler
equation

C=u—essinu+ fesinV 4+ g(V —u),

where V' = V(u;et,ar). At 1PN (i.e., when neglecting
fi = O(n*) = g;) this inversion is well known, because
Eq. (BI3) then reduces to the usual Kepler equation.
Namely,

(3.13)

N
u=1~0+ Z cPN(e) sin(nl) + O(n*), (3.14)
n=1
with the notation
2
clPN(e;) = =BesselJ(n, ney) . (3.15)
n

Evidently, the exact inversion of Kepler’s equation ne-
cessitates to take the upper limit N = oo, but all our
computations are done with a finite upper limit N, cho-
sen large enough to end up with the required accuracy
on the eccentricity expansion of the redshift z;.

The inversion of Eq. (BI3) at 2PN is obtained first by
expressing ft, g; and V as functions of e; and a,-, and then
by looking for an O(n*)-modified relation of the type

u€+§:<nwet+ ¢Mq,08m@@.(&M)

Substituting Eq. (8.16]) into Eq. (813)), and expanding in
series of e, one straightforwardly obtains the expressions
listed in Table[IV] where terms only up to e;® (included)
are shown. The 2PN coefficients ¢y, (e¢; ) depend at most
quadratically on v, and are even (respectively odd) poly-
nomials in e;, when n is even (respectively odd).

As a preparation for using the Delaunay-averaging
technique, it is useful to express the motion in terms of
the two independent angles entering the action-angle de-
scription of equatorial motion: the angle ¢ measuring the
periodicity in the radial motion, and the angle g measur-
ing the mean periastron precession. These two angles are
canonically conjugated to two corresponding action vari-
ables, traditionally denoted as L and G. [Modulo some
rescalings, the link between the Delaunay action variables
L,G and the usual action variables is L = I3 = I, + I
and G = I,.] The radial motion is entirely expressed in
terms of the sole angle ¢, while one must separate in the
azimuthal motion (given, on shell, by ¢(¢) = K{+ W (£),
where K = 1 + k) the contributions coming from ¢ and
from g (which is equal to k¢ on shell):

ol g) =L+g+W(). (3.17)
Here, W(?) is a periodic function of ¢, say
W) = Z [ (et,v) + - P@)(et, V)
k=
I p e in (k¢
b (e, v)| sin(kf)
N
= (3.18)

Z ck(et, v, ar,m)sin(kl) .
k=1
The structure of the angular motion is then of the form

N
(b([,g) :[‘i‘g+ch(etayaa’r’n)81n(l{;€)’ (319)

k=1

where we recall that one must consider the angle g (mean
periastron argument) as an independent angular variable.
On-shell we have (remembering the notation K = 1+ k)

Eonshell — €0+nt,

onshell — k¢ — go + knt. (3.20)

One then computes

eid)(l,g) _ eiéeigeiW(é) , efiqb(l,g) —il 7zgesz(l)
(3. 21)

with

N
W0 — 1 4 e Z d(l L 2 Z ds (2) ekt 4
k=—N k=—N

(3.22)

expanded in series of e;. The Cartesian coordinates of
the relative (equatorial) motion are then expressed as
the following doubly-periodic functions of £ and g:

1 . _
z(l,g) = §rh(£)(ez¢(419) GO



TABLE III: 2PN expressions of the EOB-coordinates orbital parameters, as functions of the conserved energy and angular

momentum of the system, Eq. (B1]).

128

4 = .
ar| m3my + TN — B BA = v) + Ej* (1 +v7)]

3
2eNn exr

iV —2E N

2 i 9 =
er| e+ 508+ 7B - 7)] - gl

fe]0
gt 6(5—2v)E> n
j\2/72E_
f _en(bv—1) 4
) S

9e| 0

K| 1+ &2+ 5 [2538 (<5 4+ 20) + (7 — 20)|

e | ex + LEM 4 FPEAT +v)] + LE {eN(QV—5) 6 _ E%"

5 7n\3/2 2154V [ _of 4 (—2E)? 2 192 [
n | (—2F) 1+ n = ( 2E)+?’]—<555+30V+11V +\/E( 5+2V)>J

J

(2 — 1020 — 607) + Z82 (190 + 90) + 5E(v — 3) + 2 (v — 4)

J

B [(12 420 — T9) B3 56 — (50 — 52) %5 — 80(v — 5)Ej2 + 32(4 — v)]
es| en + 32—5[712 +j2E(v — 15)] + 8—”% [(v* +90v — 415)°E® — 4(107v — 30)j* E* — 40(13v — 15)5°E — 16(9v — 13)]

TABLE IV: The expressions of the various ¢;(e:;v) entering Eq. (16)).

+ (1290347 174 V2 _ 158029) 9
1966080 1966080 98304 t
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128 512 512
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. 15 75 3 2 2 11,2 55 4 139 115 3 2 6 9 2 4913 1127 8
pa(ersv) | (fov — B+ 15v°) ef + (—ggv” + ) el + (357 — r + 3567°) €8 + (—meoV” + Fa0Y — Was) €

6
349 2 12595 , 3475 10
+ (7 276450 Y — 9216 T 6144 V) €t

. 17,2, 49, 95\ .3 2273 745 _ 231 2\ 5 2613 , 2253 |, 2220 2\ 7 209349 , 19533 _ 3539 2\ 9
ds(er;v) (64V t 5V~ % ) er + (1024” + 256 ~ 1024V )et + (40960V To24 T doo60 Y )et + (327680 16384 327680 Y )et
. 712 975 , 35 N4, (120 2 | 955 , 49 )\ 6 387 2 2827 _ 6107 )\ .8 23495 | 741, 8639 2\ _10
pa(er;v) (192” 6r T 64”) er + ( 320Y T 18 T 16 V) e + (2560” 768 7680 V) e + ( 32256 T 8967 ~ 241020 Y )et
. 1167 523 2 5049\ 5 542539 501952 , 44521\ 7 , (_ 2439751 _ 16009117 473695 2\ _9
¢s(et;v) (5120” + 1024V 256 ) e + (1228801/ 73728 V" T 3072 )et + ( 344064 6ss12s0 ¥ T 1376256 ) t
. 1645 |, 899 .2 65 6 117137 6451 _ 198512\ .8 , (_ 20475, _ 397035 , 100713 2\ .10
de(ersv) | (=67 + Tore” 256 V) e + ( 17920 Y T 256 — Tro20V )et + ( 2096 28672 1 1433007 )et
. 844747 | 723943 | 355081 2\ 7 56824273 _ 6902693 2 | 270188581 9
¢7(er;v) ( 860160 502 T 368640 " )et + ( 1376256 3932160 Y T 27525120 )et
. 55697 47259 2 271981\ .8 | (_ 3959051 2 , 273379 50476225 \ 10
ps(et;v) ( 26880V 1 35820V 6144 )i Jr( tas1520 Y T Teas2 ¥+ Traiaa ) e
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9(€t; 9175040 27525120 1376256 ) €t
59782109 _ 7804319 5719087 . 2\ 10
p10(er; v) (_ 7raidd 1200240 Y T 2300430V )et

1 i —i
y(l,g) = Zrh(f)(e“z’“’g)—e d’“’g)). (3.23)

Finally, one computes all the on-shell time derivatives en-
tering the definition of the multipole moments by using,
in view of Eqs. B20), d¢/dt = n and dg/dt = kn =
O(n*) + O(n*).

F. Computing the Delaunay-average of the
nonlocal Hamiltonian in harmonic coordinates

We are now ready to sketch the computation of
the Delaunay-average of the h-route nonlocal Hamilto-
nian, i.e., the average of the action-angle Hamiltonian

HAHPN(L G4, g) over the two angles £, g:
dl dg
T = § S RN LG ). (320

We recall that

GQH dr spli
FAH5HOPN () 7%;}{’28/6 / m].-leNt(t,t +7)

nonloc,h

2 ) h
oG HapN ZQPN}';ghl\f(t,t) In (”12“)) (3.25)

S
with
HQPN _ 1+I/E772 — 17L772+L(771/)774+O(776) .
M2 2ah 8(ay)?
(3.26)

One must, in principle, express the nonlocal integrand
entering Eq. (320 in terms of two quadruplets of De-
launay variables, (L, G, ¢, g) and (L', G', ¢, ¢'), where the
first quadruplet refers to the state of the system at time
t while the second refers to the state at the shifted time
t' = t+7. [The Delaunay variables (L, G, ¢, g) are action-
angle variables for the main part of the Hamiltonian, to
which Hﬁ:ﬁjﬁEN is added as a first-order perturbation.
In practice, it suffices to use the 2PN-accurate Hamilto-
nian.] This yields an integrand which can be expressed
as a multi-Fourier series of the general form

]:split(L7 G7 67 g; le G/a Elv g/) =
S Chmpr eI ) (50

p,m,p’,m’



where the relative integers p, m,p’,m’ are summed from
—00 to 400, and where the coefficients Cj, 1, p/,ms are
functions of (L, G, L', G").

As shown in Ref. [17], one can first use a nonlocal
shift of the phase-space variables to replace the second
quadruplet by its on-shell value in terms of (L,G,¢,g)
and of the time shift 7. In other words, we can insert in

Eq. (3.27)

(L',G" 0 g")— (L,G, t+n(L,G)T, g+k(L,G)n(L,G)T),
(3.28)
where we used the simple equations of motion of the De-
launay variables (L, G, ¢, g).
After this replacement the crucial nonlocal 7 integral
in Eq. (32Z8) can be explicitly evaluated by using the
basic formula (where « denotes Euler’s constant)

todr o
szs/c/ —T|e’(p k)T

o |
2se”

c

—21In (|(p’ +m'k)n| ) . (3.29)
Using the latter formula for evaluating the 7 in-
tegral in Eq. B2Z8) yields a result which is
a function of (L,G,¢,g). Adding the local term
2%};?}; (t,t)In (@), we can finally evaluate the
double average over the two angular variables ¢ and g.

For conceptual clarity, we have assumed here that we
were using the (2PN-accurate) Delaunay action variables
L, G as arguments in the double-Fourier expansion of the
nonlocal integrand (B.27). However, in practice, it suf-
fices to use the Keplerian elements a” and e} entering
the 2PN-accurate quasi-Keplerian representation ([34]) of
the elliptic motion. At the end of the day, the method
presented above leads to an explicit expression for the
Delaunay-averaged h-route nonlocal Hamiltonian of the
form

<Hr}1lonloc,h> = <H§;1EijC?EN> = Fh(a’h 6?) (330)
with
2
Fhalef) = s [APN(ef) + BPN(e}) na)]

—

ay)
2

a;)®

2

|

[A5PN (ef) + B5PN(ef) In af]

—~

A6PN(ef) + BGPN(e?) In af}] .

—~

(3.31)

The coefficients entering this decomposition are indepen-
dent of the intermediate scale s, and are obtained as ex-
pansions in powers of ef that we have computed up to
the order O((el)19) included. The values of the 4PN and
5PN coefficients have been given in Ref. |2]. We list the
6PN coefficients AN (el), BSPN(el), in Table [Vl [We
use here G = 1 = ¢, and we recall that a? has been
adimensionalized by GM .|

IV. DERIVING THE H-ROUTE NONLOCAL
EOB HAMILTONIAN

An important ingredient of our method is to translate
the h-route nonlocal averaged Hamiltonian computed in
the previous section into a canonically equivalent EOB
Hamiltonian. This is done by parametrizing the corre-
sponding h-route nonlocal EOB Hamiltonian by means
of the usual EOB potentials, in some fixed EOB gauge.
At this stage of our computation, it is most convenient
to use the p, gauge (introduced in Ref. [44]).

Explicitly, we look for a rescaled squared effective EOB
Hamiltonian of the general form (where u = 1/r =

GM [rPPys, p, = pPh= /. py = p§™* /(GMp) = j)
ﬁQ _ A( . 2. 2 . B . 2
ot = Alw;v) (14 pgu” + A(w;v) D(u; v)p;

+Q(u,priv)) (4.1)

with potentials A(u;v), D(u;v) and
Qu,priv) = ppraa(u;v) + pige(u; v)
+ pfqg(u; v)+ p,l_oqlo(u; v)+....(4.2)

— ~

All the potentials A(u;v), D(u;v), Q(u, p.;v) reduce to
their Schwarzschild values when v — 0: A(u;0) = 1—2u,

D(u;0) = 1, @(u,pT;O) = 0, and can be expanded in
powers of v away from the test-mass limit:

= 1-2u+wva”" (u) + v2a” (u) + vAa”’ (u) +...

A(u;v)
D(u;v) = 1+ VJ”I(u) +v2d” (u) + v3d” (u) + ...
ai(wiv) = vaf () + 2] (u) + Vg5 (w) + ...
q6(u;v) = qul(u) + u2q(’3’2 (u) + 1/3qg3 (w)+...

(

1 2 3
gs(w;v) = vgg (u) +v7g5 (u) + 075 (w) +....  (4.3)
Each EOB potential can be decomposed in a local part

and a nonlocal one:

A_Aloc,h+Anonloc,h_Aloc,f+Anonloc,f
- - )
D _ Dloc,h +Dnonloc,h _ Dloc,f 4 Dnonloc,f
- - )
@ — @loc,h 4 @nonloc,h _ @loc,f 4 @nonloc,f . (44)

The nonlocal parts start at 4PN.They can be treated as
first-order perturbations of the local parts, which start
at 2PN (and also at 2PM). We, indeed, recall that the
EOB formalism has the remarkable feature to describe
both the 1PN-accurate dynamics and the 1PM one, by a
Schwarzschild effective metric. This means that all the
local contributions to A — (1 —2u), D — 1 and Q start at
order u? = O(G?) or more (and contain a factor v). [The
main A potential actually starts to deviate from 1 — 2u
by a term 2vu3.] For clarity, we have indicated that the
precise values of both the local and nonlocal EOB poten-
tials will depend on the choice of the flexibility factor f(¢)

used in defining the Pf scale 7’{2 = f(t)rf, entering the



TABLE V: 6PN coefficients of the averaged nonlocal Hamiltonian (with scale 2rf, /c) in harmonic coordinates

Coefficient Expression
6PN, _h 2 | 1238 |, 6578 32 2 | 1173532 , 38266
A (e) =8+ 5= + 555 V"’(?V t 5835 T 63 V)'Y
3125212 35362 622648 2 2673 2 20889
+ ( 2835 o5 VT Toss )ln( )+ (_ 7oVt — 243 + )ln(S)
252377 | 34409 75104 2 577921 260872 | 2815 2 8467217 2 |, 39588209 8908616
Jr[ 315 90 135 + (5% oa5 . T 73 )’VJF( 55 VT Tom 945 )1n(2)
837621 , | 2071089 | 3052323 2 9765625 _ 9765625 9765625 2 hy2
+ ( 140 560 T 560 )ln(3) + ( ootz — 1512 Y T T1oos )ln(5)} (et)
13092020, _ 1114139 _ 52844503 2 35023 2 |, 1693451 1047607
+[ 648 +( A eV T 315
335370381 1392676751 2 |, 55700171 929042703 18495459 2 | 989253
Jr( 260 VT “ gm0 Yt T ox )1n(2)+ (7 soo0 YT 160 Yt 120 )1n(3)
904206875 ,, _ 25390625 _ 166015625 2 hyd
+ (%5 64 756 ) 1n(5)] (er)
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10080 30240 13608 1890 2 20
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00453059395 108307050625 2578115234375 2
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96889010407 96889010407 . 2 |, 96889010407 h\6
+ ( 1oad16 Yt T sooaa + 6406 )1n(7)] (er)
40216186627 107831692469 _ 739210720 2 3745525 2 | A77783529 _ 81947429
+ [ 161280 725760 sa6 VT ( 32 Y"1t " 1o0s0 960 v)y
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4 [ QTOTAOGO2IT | 405149913757, _ 60978084333 2y (182458353 2 _ 617936773, | 52105469
201600 537600 1612800 640 1920 280
+ (— 29T5543085069843 2 | 300764760469259 ), _ 40023535385969 ) |y ()
000 181
1205498090071641 910396452443931 | 240491992467807 2
+ (- 5ese00 v + P ess000 T Fesoon ) In(3)
4 (9[20427834531%5 , _ 114839474800375 | 2227079123046875 v2) In(5)
222053472 111476736 222953472
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B> (er') i 63 sess. + (Tom 6 210 V) (e)” + (—252v 250 VT ~ 630 )(et)
154063 .2 | 33870 4585927\ [ h\6 81947429 477783529 3745525 2\ (.h)\8
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3840 1280 560 t

nonlocal action (2.3). The h-route is defined by choos-
ing the default value f = 1, while the (tuned) f-route is
defined by choosing a value f = 1 + vO(n?) determined
in the way explained at 5PN in Ref. [2]. As a conse-
quence the difference between the h and f values of any
quantity starts at 5PN and at the second-self-force (2SF)
order, i.e., the order O(v?) in ﬁfﬁ« This corresponds to
the order O(v?) in the usual Hamiltonian. Indeed, the
universal EOB energy map says that the usual center-of-

mass Hamiltonian of the system, H = Mc? +... is given
by
H=MA\/1+2v(Heg — 1), (4.5)

where one should note the factor v in front of ﬁeﬁ‘.
To simplify the notation, we shall denote the nonlocal
part of the squared effective EOB Hamiltonian as

4+5+6PN

~

)

It is related to the corresponding (h-route or f-route) non-
local Hamiltonian via

S = { (4.6)

nonloc,h,f ’

4+4+54+6PN __

h,f 772
nonloc,h,f ™ QHHeffé H

(4.7)

The prefactor on the right-hand side of Eq. (&) is given
(at the 2PN accuracy) by

H]\f _ M(ly+u(u+1) 2
2H Hog 2 4day
v(-v+32-1) 4 s)
S e 4.
6z " +0(°)), (4.8)

where af denotes the EOB-coordinate semi-major axis.
With this notation, the squared effective EOB Hamil-
tonian reads

ﬁgff = ﬁgﬂ,loc,h,f + 5h’fﬁe2ffv (4.9)
where
ﬁgﬁ',loc,h,f Aloehif[] 4 glochf plochf 2
2 4 Qloehif] (4.10)
and
6h’fﬁ§ﬂ = [1+2(1 —2u)p? —|—p§)u2]5h"fz4
+(1 = 2u)?p?s™ID
+(1 - 2u)6™Q. (4.11)

At the 4+5+6PN accuracy, the expressions for the non-
local EOB potentials read

0A =

nonloc 5+anonloc 6+ar710nlocu7,



5D — Jnonloc 4+Jnonloc 5+Jnonloc 6

nonloc, 3 nonloc, 4

50 = ph(gigniocy? 4 guonlocy, +qnonloc 5)
+ (qgémloc,u?+qgonlocu3+qnonloc 4)
4 pr(qgfnlocu+q§§nlocu2+qn§)nloc 3)
+ PO + g+ i), (412)

etc., where each coefficient will be decomposed in “con-
stant”, and “logarithmically running” parts according to
the scheme: a2o"o¢ = g21¢ 4 g2M1°% In(y), ete. To ease the
notation, we have suppressed on each nonlocal quantity
the extra label h or f specifying whether this is computed
by the h-route or the f-route. A term o qnonlocuq belongs
to the n-PN approximation with n = p+q— 1 Note that,
contrary to the local EOB potentials that must start at
order u? at least, the nonlocal ones, being obtained by
matching a nonlocal action by means of a nearzone ec-
centricity (or p,) expansion, include, at high orders in p,
powers of u that are smaller than 2.

Having clarified the meaning of the nonlocal parts of
the EOB potentials, we can now determine the values of

the h-route nonlocal EOB potentials, atonloch Jﬁ‘f’“loc’h,

Sgﬁ;oc’h that are gauge-equivalent to the h-route nonlo-

cal Hamiltonian computed in the previous section. These
values are determined by writing the equality between the
corresponding Delaunay-averaged perturbed Hamiltoni-
ans, namely

<Heob > —_ <Hh

nonloc,h nonloc,h> )

(4.13)

where the left-hand side is the Delaunay average of the
EOB-parametrized Hamiltonian

pM d_fﬁh

—— SMHZ | 4.14
2HH. g 21 27 ff ( )

<Heob > —

nonloc,h

and where the right-hand side is the function F"(a”, el
computed in the previous section, see Eq. (B30). The
equality Eq. (£I3) expresses the requirement that the
EOB nonlocal dynamics is canonically equivalent to the
original nonlocal dynamics, described by Eq. ([23)
(see Ref. [23]). The computations needed to evaluate
<H§ggloc n) are similar to the computations described
above (Wlth the simplifying feature that one only works
with an Hamiltonian given as a function of the instanta-
neous state of the system). One uses the EOB version
of the 2PN-accurate quasi-Keplerian representation of el-
liptic motions, as decribed in the previous section.

Finally, the identification Eq. (@I3) uniquely deter-
mines, from the knowledge of the function F”(al*,el),
Eq. (IB:S:I]) all the coefficients parametrizing the nonlo-
cal EOB potentials Eq. ([@I2). We give the resulting
values in Table [VIl up to the eight power of p,. Indeed,
we will not need in the following the coefficient g1 (u;v)
of p°

10

V. COMPUTING THE 1SF TIME-AVERAGED
REDSHIFT TO EIGHTH ORDER IN
ECCENTRICITY AND DERIVING ITS EOB
COUNTERPART

The second pillar of our method is to combine the
information extracted from the analytical knowledge of
the nonlocal part of the dynamics with a knowledge ob-
tained from self-force calculations, which gives informa-
tion about the total, local plus nonlocal, near-zone dy-
namics, at the first order in mass ratio ¢ = z—; beyond
the test-mass limit. Indeed, Refs. [4547] have found
a relation between the mi-dependence of the Hamilto-
nian of a two-body system, and the (regularized) redshift
[48, 49] 21 = dsi/dt of particle 1 in the gravitational
field created by the two particles. We have developed
efficient tools in previous work [50, [51] for tapping in-
formation by such self-force computations. The current
limitation of this technique (for non-spinning bodies) is
not the PN accuracy (which can be pushed to extremely
high levels |52, [53]) but rather the order of expansion
in the eccentricity of the considered elliptic motion of a
small mass m; around a large mass mo. Here, we have
extended our previous results [1, 2, [54, 155] by comput-
ing the first-order-self-force (1SF) correction to the time-
averaged redshift (z1) = (dsy/dt) [49] of body 1 to the
eighth order in eccentricity and through the 9.5PN ac-
curacy. Obtaining the eight order in eccentricity is, by
itself, a major technical endeavour, and is crucial to al-
low us to inform the terms ~ gg(u; v)p} in the total EOB
effective Hamiltonian, and thereby to reach the 6PN ap-
proximation.

The gauge-invariant 1SF observable we are using is de-
fined as follows. One initially considers the averaged
redshift (z1) as a function of the two adimensionalized
fArequencies of an elliptic motion: SA)T = Gms ), and
Qp = GmoQy and of the mass ratio ¢ = mq/mg. The
1SF expansion of the latter function yields:

<Z1>(QT’ Qp, q) = <Z1>(QTa Qo 0) +q 6z (QT’ Q¢) + O((qQ))’

5.1
where the ¢ = 0 term is the test-mass (Schwarzschild) re-
sult. The 1SF redshift is the function 6z (Q,, Q4), which
can be alternatively expressed as a function of the un-
perturbed (Schwarzschild-backgound) semi-latus rectum
pPYs = Gmy p and eccentricity e. Denoting u = %, the
function 6z (u, e) is obtained as an expansion in powers
of e, say

0z1(u,e) = 5zf0 (u)+6252f2 (u)+.. .+6852f8 (u)+0(e'),
(5.2)
where each coefficient 62¢”" (u) is computed as a PN ex-
pansion (i.e., an expansion in powers of u) up to some
order.
At the 4PN approximation, the functions §2¢ (u) have
been determined up to the order O(e?°) in Refs. [55, 56]
Higher-PN order computations of the functions 5,21 (u)

and 62¢" (u) were done in Refs. [54,55] through the 9.5PN
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TABLE VI: h-route nonlocal EOB coefficients.

nlc 206740 12664 _ 4617 5044
Ay ( 567 (2) + =53 - In(3) — o5 'Y) v
1139672 10132 | 10449 101272 2
+ (7 s In(2) + 555 + —7 - In(3) + 57 7 v
112 1214624 4860 3
. + (12 4 32y + 121621 1ny(2) — 4860 1n(3)) 13
nl,log 2522 50636 . 2 3
a; eVt EEvT 16v°
nl,c 6381680 2043541 | 1765881 64096 9765625
dg ( s n(2) + S5 + a0 n(3) 15 7Vt To56s 1n(5)) v
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Jr( Tso - In(2) — = In(3) + o5 + oo — ln(5)) v
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+ (_ 535 n(2) — 55 + S () + o+ =5 ln(3)) v,
nl,log 32048 151376 ,2 | 1472 3
dG1 5 YT Tios + 57
nlc 70925884 13212013 _ 3873663 8787109375 617716
45 ( 55 In(2) + <5575 16 In(3) 5716 n(5) 315 7) v
92560887 12619052648 1437979 | 632344 7755859375 2
+( a0 - n(3) — sese In(2) — =G + S+ s 1n(5)) v
177316 |, 11263031264 16544 4091796875 2908467 3
+(_ 35 T 2835 In(2) + =577 — 556 — In(5) + =55 ]n(3))y
nl,log 308858 316172 2 |, 8272 3
45 315 YT 515 + v
nl,c 211076833264 137711989 _ 9678652821 447248 153776136875
Q64 (7 s In(2) — 5gss e — Thee - nB) + HEE o+ S35 m(5)
96889010407
+~ 116640 1n(7)) v
44592947739 2411178384736 126070663 _ 26848 796015515625
+ ( 500~ In(3) + 12525 In(2) 4725 175 316 In(5)
96889010407 2
- 19440 1n(7)) v
40513708 _ 109566260523 1424826953125 96889010407 2368
+ (_ 4725 5600 In(3) + 54432 In(5) + =555 In(7) + =5=7
431564554688 3
. 8505 1n(2)) v
nl,log 223624 13424 2 | 1184 3
q6411 1575 Y 175 t+=5 v
nl,c 5106312336176 17515638027261 _ 63886617280625 _ 20247366220639
ds3 ( 35721 In(2) + 313600 In(3) Tot6061 — 1n(5) 933120 In(7)
- 709195549)
132300
177055674739808 43719724468071 366449151015625 26506549233199
+ (7 297675 In(2) — 156800 In(3) + 1524096 In(5) + 155520 In(7)
1746203 2
~~ 0 v
57604236136064 10467583300341 73366198046875 7709596970957
+ ( 99225 In(2) + 39200 In(3) — 381024 In(5) — 38880 In(7)
— Lsasez) ;3
21
A o

order (i.e., up to u%5), while the term 62¢ (u) was com-
puted to the same accuracy in our recent 5PN-level works
[1,12]. For the present 6PN-level work, we needed to ex-

tend this determination to the function dz¢° (u). Our
result for this function (up to the 9.5PN order) reads:
52%8 (u) = Csu® + Cyu' + (CS 4 C Inu)u®

+ (C§ + C Inw)ub + 013/2u13/2

+ (CS + CI Inw)u” + 015/2u15/2

+ (CS+CM Inu + Cé“Q In? u)u® + 017/2u17/2

+ (CS+ C& Inu + C’gl,n2 In? u)u®

+ (Cly)2 +Cin9/2 Inu)u'?’?
+ Oy (u'?),

where the coefficients C; are listed in Table [VIIl

The gauge-invariant information contained in the 1SF-
accurate (first order in mass ratio) function 6z¢° can then
be converted (by extending the results of Ref. |47]) into
the corresponding O(v) contribution to the EOB poten-

(5.3)

tial gs(u; v) parametrizing the term gg(u; v)p® € Q(u, py).
More precisely, writing as above

qs(u;v) = z/qg”1 (u) + 1/2q§2 (u) + l/gqg”3 (u)+..., (5.4)

the 1SF result 6z (u), Bq. (53), leads to the determi-

nation of the O(v) coefficient ¢f "(u) to a reduced (frac-
tional) 5.5PN accuracy. [In view of Eq. ([#I2), such an
accuracy corresponds to an absolute 8.5PN accuracy of
the Hamiltonian, which is more than enough for reach-
ing our aimed 6PN accuracy.] We find the following u°-5

accurate value for gf " (w):

1

¢ (u) = Biu+ Bou® + Bspu®/?

+ B3u® + By jpu’/?

+ (BS + B nu)u* + Bg/2U9/2

+ (B + BY lnu)u® + (Bf, 5 + Bl jp nuju'/?
+ O (u®), (5.5)

where the various coefficients are listed in Table [VIII

VI. DETERMINING THE LOCAL PART OF
THE EOB POTENTIALS AT ORDER !

The next step of our strategy is to derive the local part
of the EOB Hamiltonian by subtracting the nonlocal part
of the EOB potentials (obtained in Sec. [[V)) from their
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TABLE VII: List of the various coefficients entering the self-force based expression of 5z§8 (u).

15
Cs 51

3001 287 2
Ca 384 4096

c 4597 _ 162109375 11332791 55 15967961 474715 _2
Cs 96 5304 1n(5) so n(3) + Fv + 5o In(2) — Igges ™
o 55

5 12

c 9863051 |, 96889010407 64481546637 5977 16605499789 1466047 2 | 4761539921875
Cs — 30320 + —amazes — (7) — igess - n(3) — 5357 — 5010 10(2) + Sg6608 ™ + 3006576 In(5)
ol 5977

6 480

7527343
013/2 + 45152
o 18761241007 _ 12511111253459 75643996671875 53971661
7 870912 1202055 1 (7) sa95173— 1n(5) 15360
13950859695883 32462513613 368710657 4 |, 205074667027 2
+ 408240 In(2) + =550 In(3) — S35 ™ + “Tisaace0s
ol 53971661

7 90720
C 107115666451

15/2 162570240

c 6488211537 45307496529 111806640625 111806640625 10769592586
Cs =500 v In(3) = =550 In(2) In(3) + 12006 n(5)y + 15006 n(5) In(2) — 535~ 7 In(2)

1919773074129997 | 111806640625 2 | 1922666600157935849
+ 0050038600~ T — amos — I(5)” + 14014218240 In(7)

6488211537 2, 223632 _ 555027930119 2 5263490413 396348077586606421 4261220414023638519
—=%sm0 - n(3)" + =527 — s 1n(2)" — “i55600 - 1571724000 In(2) - 35323904000 In(3)
2926 (3 | 2572003425668796875 |, () | 472342810483 ;4 _ 8312662059601 ;2

3 103004504064 805306368 1529848320

In 5263490413 |, 22363 111806640625 5384796293 6488211537
C% , sora00 -~ T a5 7+ —oai02— In(5) 525 1n(2) 53100 1n(3)

In 22363
o +5%0

76704522232619

017/2 + 5088550400
ce 0273501051462508777 _ 7041196288536323 4 _ 534085235154726901 2 _ 6382001 .2 4 148431462989177 |\ )2 | T6287 -(3)

9 3814050240000 687194767360 2536715059200 198450 5

445208365512387 2 3307792499609375 2 8816899947037 2 297870709952219425357
+ 10035200 In(3)” — 32514048 In(5)” — 663552 In(7)% — 273277255680 In(7)

242210572992492481181 344698525788968065625 863597247149654361801 8816899947037
+ 143026884000 In(2) + 360515764224 In(5) 1607237632000 In(3) sairre v n(7)

8816899947037 40278774263897 445208365512387 1075881868211907

sarrre - n(2) In(7) + 99225 7In(2) + sor7e00 v In(3) + 5017600 In(2) In(3)
3307792499609375 42671896046383 3307792499609375
16257024 In(5)7 + =7 6365000 16257024 In(5) In(2)

In 42653978392783 8816899947037 6382001 40278774263897 445208365512387 3307792499609375
Cy +"3io272000 663552 In(7) — =555 + 198450 In(2) + 10035200 In(3) — 32514048 In(5)
Cln2 6382001

9 1400

c 3162423854803 3345263881047 1900712890625 5131372911332653 44111568271901365400513
Clojz 95256000 "V ~si000 ™ In(3) + Tazm6 7 In(5) 55356000 7 In(2) 154661262852096000

29555363129 .3
2721600

In 3162423854803

Cla/2 + 750512000

complete local-plus-nonlocal parts (obtained in Sec. [V]
from self-force computations). As the self-force compu-
tation is only accurate to linear order in v, we thereby
determine the local part of the EOB potentials only at
the first order in v. The nonlocal part we computed was
of the h-type (and was determined exactly in v). How-
ever, recalling that we will always consider flexibility fac-
tors of the type f = 1 + O(v), the h-route and f-route

(4+45+4+6PN,loc,f =

2275 , 4287\ (41 , 221\ ) o [/ 1026301
2275 o 4237\ (4l 5 221\ N
512 7 60 32" 6 Y 1575

versions of both the nonlocal and the local Hamiltonians
only differ at the second self-force order, i.e., by terms
of order O(v?) in the physical Hamiltonians, Honloc,h, f
Hioe n s, corresponding to terms of order O(v?) in the

~

corresponding squared effective Hamiltonians, H, 625.

The values of the local EOB potentials at 4+5+6PN,
obtained from our results so far, can be written as:

246367
3072 "

T 62144 ¢ T 1769472 "
[(1679 23761

9 1536

[( 2800873

d44546PN loc,t =

608698367 , 1469618167 | 7
— 1/—|—a71f u

907200

12 1054 -
7'('2) v+ (260+ —37T2> 1/2:| 'LL4 + (33 05 v 63707yﬂ-2 +dé,])c> u5

16 175 512

{(229504763 )

08304 " ' 262144

135909 , 99741733409> —(u)] 6
— dﬁ,f u’,

6350400
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TABLE VIII: List of the various coefficients entering the self-force based expression of gs(u).

Bl 727713246375 1n(5) + 652;361 1n(3) + 21622992 1n(2) _ 3?’;’;2
13841287201 393786545409 16175693888 875090984375 5790381
Bs mroso (7)) — S ges00 — n(3) — 55 In(2) + =g In(5) + *55
B + 5994461
5/2 12700800
29247366220639 63886617280625 5196312336176 17515638027261 2843819611
Bs - 933120 In(7) — Totcoos - n(5) + 35721 In(2) + 313600 In(3) — 5355060
B + 12986592749
7/2 22759833600
25659132742 2458476234653610278
BZ 606375 - 1719073125 111(2)
+83592377500 ln(5) 1n(2) + 835923;500 11,1(5),y _ 212410282450924 1n(2) h’l(g)
4080804948 3558749575168 806339890542506373 581245383137875
— % yIn(3) - saros v n(2) — 1379840000 In(3) + 1824768 In(5)
946254728855647813 417968750 2 2040402474 2 60734915396608 2
+ 1642291200 In(7) + 5 n(5)” — se o In(3)" — 196125 In(2)
_ 303760055, 2 _ 68634427305713
1 112180219050646837 1 1 7791275572807050804 2040402474 417968750
Bj +GoesT5 55125 In(2) — se— In(3) + 57— In(5)
B +341391869291507
9/2 18435465216000
4856666007821 6818519203656774203 156250000000000
Bs T 6306300 + 556215660 In(2) + 729729 In(10)
4 46171 4 46171 11551 42622
__ 675 680869065g 875 ln(5) 1n(2) _ 675 680869065g 875 11,1(5),y + 55 1533772309006 7 ln(2) 1n(3)
+4960?§23222526771n(3) + 50875332;)2786;589248’Yh’l(2) _ 1259?2;%35291 ln(2) 1n(7) _ 1259?3;;35291 ’Yh’l(?)
400332056150861177697 1508174661184072060625 6373038655368769648873
+ 1757916160000 111(3) + 1025216704512 111(5) - 1067489280000 111(7)
1259557135291 2 675460646171875 2 496094995065267 2 9330506645499392 2
- 25020 In(7)” — 1778112 In(5)” + 2744000 In(3)” + 3472875 In(2)
_ 740234446559 ,_2 + 82809381657923339131
1 4815766616660070678821 25437%)'%)95%%%%91%8291000 1259557135291 496094995065267 675460646171875
Bsg — 12612600 T 3472875 In(2) — 25920 In(7) + 2744000 In(3) — 1778112 In(5)
c 18492868322811 20550060546875 627504931547331563
11/2 ——Tooreo0 T In(3) + saosr T n(5) — 3333960000~ ™ 1n(2)
+ 1587378124097ﬂ_ + 37938867020822625604207 _ 14835309571 3
3333960000 v 240584186658816000 95256000
Bln + 1587378124097
11/2 6667920000
93031 , 1580641 @)
= (20v + (V)) ud + — w2+ v+ u?
q4,44+54+6PN,loc,f ( q43 1536 3150 Qyq,5
[ /81030481 3492647551 )
+ - vty | v’
L 65536 423360 '
9 123
46,4+5+6PN loc,f = (gV + qg?) u? + <1—0V + q((;g?f> u’
L[ omssa 11883\ o))
— T — v U
|\ 7327680 294000 Tors |
7447
q8,5+6PN,loc,f = (Z82(V)U2 + (_WV + qég)) Usv
q10,6PN Joc,f = qro,2(V)u’. (6.1)
Here, the first coefficients in each line (except in the v, i.e.,
last two lines) belong to the 4PN level, and are equivalent
to restﬂ;cs obtained in Ref. [23]. The explicit values of qig) C(v) = o'y + oW - with ¢ = o2y o
174
and g4, are: (6.3)
The second coefficients in each line (and the first on the
) _ _g3,2 4 104° penultimate line) belong to the 5PN level, and were de-
Qaz- = v Vo termined in our recent work [1], modulo two unknown
qég) - _2_71,2 + 6.3 (6.2) coefficients at order v2. They read
3 . .
(v) _ v 2 3
As exemplified by these coefficients, we introduced here g f = ag V- + A7,
the general notation C™) to denote all the contributions i) — 3t " 1069 7 205 22,3
to any v-dependent coefficient C(v) that are nonlinear in 5f 7 7 3 16 ’



w _ [ 2075 31633 , 40— 615 5\ 4
q44f_( 5t )0 )
a5 = _6_;1/2 +1160° — 140", (6.4)
where as 5 and d are the only two numerical coeffi-

cients left undetermmed at 5PN by our method.

Finally, the values of the 6PN-level coefficients are de-
termined at the linear-in-v level by our self-force compu-
tation and can be written as

_ (2800873 , 608698367 ,

ardoct (V) = ( 262144 " 1769472
1469618167\ ()
~ 907200 > .1

Tonoes(v) 220504763 , 135909 ,
B loc,01%) = 98304 262144 "
- 99741733409) e

6350400 6.f7
/81030481 , 3492647551 @)
Q45,loc,f(V) = ( 65536 - 193360 ) Qy5,f >
[ 9733841 , 112218283 )
@6t toc.£(V) = ( 327680 © 294000 ) oa.1 >
483,10c,f(V) = 77546407 +q§§)f (6.5)

At this stage, we have no information about the
nonlinear-in-v coefficients a({}, dé”}, qig)f, qéz)f, and

qég)f Let us, however, anticipate on the results of the

following section, where we will show how to determine
the four v-nonlinear coefficients Jél:}, qflg)f, qéz)f, qé3)f,

in terms of only two free numerical parameters, namely

d6 , and q45 - In addition, we will find that ag ) is at
most cubic in v. Our final results will then read:

a(f} = a? v +a$ B,
W) w9 45089 44489 2 22 2\ 3
dG,f = dﬁ Ve + (T— 1536 d5 —15@6 14
—480",
() _ P2 474899 36677 2 14 5
Qis,p = a5V +< 516 T 1152 " d5
. 7375 n 14357T2 A
6 32 ’
) _ (21996581 1563977T2 2
fory = 21000 1280
n 6977 29665 22Y) 8
6 256 )"
(- 3640 n yﬁz A
3 8 ’
w _ 963 2 117 i
sy = ~ g To — 1470 + 180° . (6.6)
In these results, the two coeflicients af and CZEZ come

from the 5PN level, while the new undetermined 6PN-

14

level numerical coefficients are a?Z, a?d, JEZ, and q4”52.
[The origin of these undetermined coefficients will be dis-
cussed below.]

The coefficient qi9,2(v) of piou? cannot be extracted
from our O(e®) self-force results, but it can be derived
from the exact knowledge of the 2PM (O(G?)) EOB
Hamiltonian [57], as will be shown below. Its value is

11 11 2
——v— =1 —01/3 - §1/4 +60° .

21 7 7 3 (6.7)

qio,2(v) =
Note the remarkable fact that the 4+5+6PN-accurate lo-
cal O(v) EOB Hamiltonian is logarithm free. Not only
all the Inu terms present in the nonlocal EOB poten-
tials have disappeared (as expected because they have
been known for a long time to be linked to the time
nonlocality), but even the various numerical logarithms
In2,In3,..., as well as Euler’s constant « have all disap-
peared. Only rational numbers, and 72 ~ ((2) enter the
O(v) local Hamiltonian. In addition, the fractional pow-
ers of u have also disappeared because they only come
from the nonlocal 5.5PN action. For convenience, all
these expressions are summarized in Table [X]

Note finally that, contrary to the nonlocal EOB poten-
tials shown above, there are no contributions to the lo-
cal EOB potentials featuring powers of u strictly smaller
than 2. This follows from the fact that the PM expansion
of the exact potential Q starts at order G? [57]. Contri-
butions to @ involving powers u™ with n < 2 can only
enter the nonlocal part of the Hamiltonian, where they
come from having expanded the nonlocal Hamiltonian as
a formally infinite series of powers of p2 [23].

VII. USING THE MASS-RATIO DEPENDENCE

OF THE SCATTERING ANGLE TO DETERMINE

MOST OF THE v"2? STRUCTURE OF THE 6PN
f-ROUTE LOCAL HAMILTONIAN

Up to this stage, our method has only determined (be-
sides the full nonlocal part of the Hamiltonian) the linear-
in-v part of the local Hamiltonian. The next stage of our
method is to use the special v-dependence of the scat-
tering angle pointed out in Ref. [58] to determine most
of the nonlinear dependence on v of the local Hamilto-
nian. [See [59] for a generalization of this approach to
the dynamics of spinning bodies.] This is done by going
through several steps.

A. Going from the p,-gauge to the energy-gauge

As a first step, it is convenient to transform the above
pr-gauge form of the local EOB effective Hamiltonian,
(&I0), to its (H-type) energy-gauge version, defined by
writing

~

Hgﬂl?gc,f(u’pﬁj; V) = Hg + (1 2U)QIIE‘IC;’0C,f(u’ HS; V) )

(7.1)



where Hg denotes the (rescaled) Schwarzschild Hamilto-
nian, i.e., the square root of

and where

Qe 1 (u, Hs;v) = v’ gl (Hs; v) + vl (Hs; v)

+utqipe” (Hs; v) + ugind” (Hs: v)
+u6qgaléc’f(H5; v)+ u7q%léc’f(H5; V). (7.3)
We have added a label “H” on @Eﬁoc,f and its u-

expansion coefficients, as a reminder that we use here
the H-version of the energy gauge, by contrast to its E-
version [58]. This means that Q¥ is directly written as
a function of the phase-space variable ¢, p, via the argu-
ment Hg(u,pr,j). In the E-version of the energy-gauge
@ is written as a function of u and the effective energy

X

Eepr:

Q%Cl;oc,f(ua Eei; V) = UQQQEEG (Eefrsv) + UB‘]??EG (Eeft; V)

+utqElo N (Euv) + uP gl (Eams v)

loc,f /& loc,f/ &
+u6qé§EéC7 (595; V) + U7Q£E(O;C’ (5eff§ v).

(7.4)
The difference between the two sequences of expan-
sion coefficients only start at the u* oc G* level,
so that the first two functions® coincide with each
other: @ (v;v) = G (i), @ne(Viv) = @G (r;v)-
We henceforth denote them simply as gapg(v;v) and
gsec(v;v). [See below for the link between the higher-
order coefficients.] We did not put any extra label “loc,
f” on the first two coeficients because the effect of the
flexibility coefficient f only starts at the G* level.

The energy-dependent coefficient qulgC’f(v;u) be-
longs to the n-PM approximation because u" =
(GM/(rP™sc2))™ is proportional to G™. The 2PM co-
efficient gopc(7y;v) is known exactly. It has been first
obtained in Ref. [57], and then confirmed in Refs. [60-
62]. The 3PM coefficient gspc(vy;v) has so far only be
derived (as a closed-form function of v and v) in Refs.
[61, 62]. Tts 5PN expansion was confirmed in Ref. [1],
and its 6PN expansion was recently confirmed in Refs.
[2,163,164]. We will give below the details of our derivation

of the 6PN-accurate value of gsgc(7y; ). The higher PM-

order coefficients ¢" (v; 1) are currently only known

in their PN-expanded versions, say

Hlocf, N _
Gope” (V) = dpe(V) + Gc()(¥? — 1)

+ quee()(® —1)°+.... (75)

5 When ~ is used, as here, to denote the argument of qulgC’f, it

is understood as a mathematical argument, to be later replaced
by HS(prryj)~
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We recall that the properties of the EOB formalism are
such that the full potential Q(u, 7v; v) vanishes in the test-
mass limit v — 0, so that each PN expansion coefficient
@'z (v) must be ~ v+ v? + ... when v — 0.

The PN expansions of all the energy-gauge coefficients

Hloc,f . .

Gope (7) are determined from the corresponding p,-
gauge coefficients entering the Hamiltonian (notably the
6PN-level ones a(7y), J(GV), qflg), qéz) and qég)) by com-
puting the canonical transformation connecting the two

gauges. The structure of this canonical transformation is

g(r,pr) = (rpr) [92PN + 93PN + gaPN + g5PN + g6PN]
(7.6)
where the factor r p,- would describe an identity transfor-
mation, and where the leading-order term is at the 2PN
(and 2PM) level , and reads

3 4V

— 24
92PN = 277 2

(7.7)

The 2PN (gopn) and 3PN (gspn) terms were derived in
Ref. [57]; the 4PN one (gs4pn) was derived in Appendix
A of Ref. [65]; and the 5PN one (gspn) was derived in
our recent work |2]. We have extended the determina-
tion of the canonical transformation g(r,p,) to the 6PN
level. This is done by using the method of undetermined
coefficients. The looked-for ggpn is parametrized as

g6PN = %2 {w;fpi + wj—gjg + w3ph + % + %pg
+ wﬁfp? + w;§2p2 + wffp? + wﬁfp?
4 6
+ ’LU:;] wf?] } 7 (7.8)
with unknown coefficients wq,...,wi5. The values of

these coefficients are then determined by imposing that
the two (effective, squared) Hamiltonians (&) (with
A = Ajocs, etc.) and (1) are equivalent (at the 6PN
accuracy) through this canonical transformation.

The explicit expressions of the 6PN coefficients
wy ... w5 will be displayed later, in their final form, in
Table[[X] after we determine, using our strategy, all pos-
sible unknowns.

B. Computing the f-route local scattering angle

The next step in the determination of many of the
non-linear-in-v coefficients in the local EOB Hamiltonian
proceeds through the computation of the corresponding
scattering angle, x'°>f. This is most efficiently done in
the energy-gauge.

Several procedures (discussed in Refs. [57, 58]) can be
used to compute the expansion of x'°%f(y, j) in powers
of % x G, at a fixed value of the EOB effective energy



TABLE IX: Final form of the coefficients wy ..
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. w15 parametrizing the 6PN canonical transformation, Eq. (7).

w 236879, 6753 2 _ 197 3 _ 4965 4 _ 1417 5
1 80640 1792 320 256 128
33 99 45 3 105 4 | 189 5
w2 “5i3Y sz T 1es¥ T seY t 256
w _ 2123, 21232 " 965,3 965 4 | 5795
3 10752 3584 896 15367 T 2567 ) ) )
1483514111 _2 _ 228466894127 45303 4 10486361 L gv® _ 132333 2 10 v 2
Wa ( 9437184 190512000 ~ T 1048576 Jv+ ( 81000 T 1546 Tosso T 12“6 60 45 20 q45> v
500837 2 , 213103 5 3, 3 4,21 5
Jr(* 61440 + a0 20d5 74a6 )V tav Y
w _ 284849 9951 2 8820 3 _ 5595 4 _ 463 5
5 80640 1792 2240 256 128
11 33 2 3 _7,4 63,5
We 20V ~ 20V — —3v vtV
869 26072 L1853 39,4 | TlL,5
wr 1792V T T792Y T Taa8 556V T a8V
48669205 _2 781859 808667 - 781085 119531 _ 7416252\ .3 117029 |, 7175 2\ . 4 , 7535
ws ( 12582912 17640 )VJr( 20160 + 29152 )V + (%550 29152 )V +( 1152 T 1536 7 )V + v
w 138127, 14067 2 1423 3 _ 7199 4 _ 1527 5
9 26880 1792 320 256 128
77 2312 1053 245 4 | a4l 5
wio| —356Y T 256Y T 64 356V T 18V
574206619 200657371 158015363 | 9227423 2\ 2 491849 _ 1750235 329935 |, 169332\, 4 |, 6875
w11 ( 125829120 "' 3528000 )l/+ ( 1008000 1 “dois20 )V + ( 2850 98304 )V Jr( 2301 t 3o T )V + 18V
4561111909 |, 15680782981 2680283 2 |, 134682217 |, 4 12\ 2 1559441 T 3831013, 2\ 3
w12 ( 5392000 T 110100480 ) v+ ( 172032 © T “17e4000 T §Q45) vt + 1320 15 5ds + 184320 " ) 4
400 _ 205 2) 4 _ 33,5
+ ( 72 3847 ) ik
2031118237 |, 5643368761 2 416103 _2 | 4901243 2 231013 V2 | 6924112\ 3
w13 ( 7056000 T 110100480 " Jv+ ( 57344 T T Te6000 T 70 Q45) e+ ( 1440 d + 61440 ™ )V
1343 205.2\,4 9.5
+ ( 1287T ) 14
9733841 2868989 2745397 | 156397 2\ . 2 48821 148325 _2) 3 16513 |, 1435 2\ 4 , 747 5
W14 ( 8388608 1 235200 )V+ (_ 67200 T 32768 T )V +( 960 32768 " )V + (_ 768 T 10247 )V + 128V
w _A4651,, 71T >\ 2073 1425 4 4335
15 80640 1792V 3207 256 128

v = .. One uses the fact that, given any (local) Hamil-
tonian, the corresponding scattering angle of hyperboli-
clike motions is given by the integral (v = 1/r) [66]

/umax
0

where Umax = Umax(Y,J) = 1/rmin corresponds to the
distance of closest approach of the two bodies, and where
the radial momentum p, = p.(u;~,j) is obtained from
writing the energy conservation at a given angular mo-
mentum. When using the H-version of the energy gauge,
Eq. () directly defines the squared effective Hamilto-

nian, Hgfgcﬁf(u,pr,j; v), as a function of p,, j and u. To

0

(x(1,) +7) = i), (1)

N | =

obtain p, as a function of v = é\eﬁ‘ one should then itera-
tively solve for p, (in a PM expanded way, i.e., using the
scaling u — Gu and j — G~1j) the energy conservatlon

law
v = gesz = HeQHE,lGoc,f(uaprvj;V)
= H§+ (1 = 2u)Qfffocs(u, Hsiv),  (7.10)
where Hg(u,pr,j) was defined in Eq. (T2), and

@Eﬁoci(u, Hg;v) in Eq. (Z3). The computation of the

function pT(geff, j) is simpler when using the E-version of
the energy gauge, i.e., Eq. (). Indeed, in that case
the EOB mass-shell condition reads

-~

2

B 1-— 2 2u2+Q%'(l}oc,f(ua Seff; V) = Oa

(7.11)

—f 1+ (1-2u)p2+

which is a linear equation in p%(é\eﬁ‘, j,u) whose exact
solution reads (denoting again v = &)

— (1= 20) (14 770 + QB s, 0))
(1 —2u)? '

p2(v, j,u) =

(7.12)
In both cases, one expands p.(7,j,u), as it appears in
Eq.([79), in powers of u — Gu, say

pr =p0 + GpM + G*pP + ..., (7.13)
whose first two terms read
P =V —1+9% - %2, (7.14)
and
1 2 2 2

/,1+,Y 7] ’U,Q

All the integrals that appear in the PM expansion of
Eq.([79) are elementary and are evaluated (following [40])
by using Hadamard’s partie finie.

The scattering angle is then obtained as a PM expan-
sion of the form

1 loc,f : Xl?c f(’% )
Y GO 197 B S N S LA 7.16
5X (755 v) > I (7.16)
n>1
Here, each n-PM-order expansion coefficient y1°%f(v;v)

is determlned from the value of the corresponding

n-PM-order energy-gauge coefficient qulgc’f(’y;z/), or



qfécéc’f(’y; v), together with the values of the lower PM-

order coefficients.
Denoting, for brevity,

Axn(7) = Xn(7) = X5 (),

the scattering-angle coefficients obtained from the FE-
version Q%(l}oc,f(u”y;y) corrected of the energy gauge

(7.17)

(which is simpler to implement in view of the explicit
expression (T12)) read

e
AXﬂV)iﬁ*zﬂﬂV%
272 —1
Axs(7) = ———a:(7) — V72 — 1a5(7),
¥4 -1

Axa(y) = m [iqz(vf - %(—1 +57%)q2(7)

17

15 15 5\ &
+( TR )q(v)

17325 A 4725 , 525
T 956 | " 798 ) 2—56} a2(7)
(- ) gy
N ( 1575 i 5322572_ g) A7)
+( 5245 A 2322572_2) £
+< 72 4—+f—27) a5 (7)
H(omom ) Ew. @

3 2 3 2
*g(*l +37%)gs(v) — §Q4 MO =1)] . The first three equations above (for xa, x3, x4) agree
(292 — 1) with the corresponding ones in Ref. [58].
S Gl A4 2 _
Axs() = /21 @)+ {2 1gs(7) While the E-version of the energy-gauge is more simply
2 (6072 — 5 + 6495 — 12074 connected to the scattering angle, the H-version is more
_z20 5 73 5 il ] 72 (7) simply connected to the usual p,-gauge EOB Hamilto-
3 (v = 1)¥ nian. This is why we use the H-version in practice, as
2(874 +1—87?) indicated in Eq. (TH). Let us therefore complete the
- /2 — 1 43(7) above E-type scattering-angle results by the transforma-
e 71 VAT tion between the E-type coefficients, qféf}c’f(v;u), and
B )i s ¥ (v) the H-type ones, qulng('y;y). We recall that the first
) 33 /2 two, g2 and g3, are the same. To write the link between
_4(7 —-1) & (y) the higher-order ones, it is convenient to provisionally
3 > ’ use as common argument for these functions z = 72.
I 3 45 225 , 9 By writing that Eqgs. (ZI0) and (ZII]) define the same
Axe(7) = 75@(7) + <@ + 64 | >q2('y) mass-shell constraint one finds (where, for uniformity,
45 15 we have left the labels E or H on ¢f’ = ¢if = ¢2 and
57— 5 ) () g5 = a5 = q3):
16" 16
dg¥ (x
@) = aF@) + ) 2
dg§ (z) dgf (v)
() = (F (@)~ 20 (o) 2 1 P (o) + B gE (),
1 d%¢§ () def (x) ) dgy’ (x)
a'(@0) = ;= @+ @) (=) + (@) - 205 (@)
dq¥ () dq¥ ()
Ha () 205 @) B o) 4 gf (100D
x dx
@qF () 1 d*aF () def () \*
@) = (2FP + o @af @) D + B2 4 () - 1a ) (122
dgf (z) dgy’ (x) dgf (v)
|25 G (1) g () — 205 (@) | 2 o (g () — 205 ()
dgF (x dgF
(g ) — 268 (@) B B () 4 B ()5 ) (7.19)

dx



which can also be written in the reverse direction:

i) = 2D ) o),
) = DLt 4ot ) - 1,
H H()\ 2
o) = gl @)+ () i) -
dgg! (z)

T e (@) — 205" (2) + g6 (),

~' (@) (—a5' () + 245" (2))
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o' (2) + a5’ (),

(S}

s

O
I

(z
gy (x)
d2

+[2m a

4l o) - ol (o) + 24l ()| 2

Haf! () + 248 () 20

C. Using the mass-ratio dependence of the f-route
local scattering angle

Applying the scattering-angle results derived in the
previous subsection to our PN-expanded parametriza-
tion of the H-type energy-gauge coeflicients, Eq. (ZH),
yields explicit, PN-expanded (6PN-accurate) expressions
for the scattering angle. [These can also be obtained by
directly evaluating the integral (Z9) in a PN-expanded
way|. Let us only give here one specific example:

1 2 32 —8v

loct _ _+ 4 2 Q& OV 4

° 5]720 pion - Poo 7
1168 41

+ {320+ (T + = 3 2> v+ 24v }poon(3

5069 227059
4 2
+[60+(144 135 )

( 87, 7342) e 401/3] S

+

. 1792 1460479 | 111049
525 960 )"
4026 40817 , 4 o2
2
+< 15 640 @ 157 )V
11108 | 451
+ < 08 2) 1/3 + 56V4:| pionlo
L[908, 498343703
2304 " 604300
L (2827607 316337T2 2
1152 768
205 , 253361\ , 212879 , 63
16 " 96 384 64
4
—2¢3pg — 443p — gngG} pron'? (7.21)

+(—as' (z) + 243" ()

H T 2
dqzix()(qf(z) — 2t (2)) + %dTQ()[qf(SCHQ
% Z( g (2)? + (¢} (x) - 4q§’<x>>(dq3x($))
dgy' (z)

P 6 x +q§q(z). (7.20)

Here, we used as energy variable the EOB asymptotic
momentum poo, defined as

P2 =72 —1. (7.22)
This quantity naturally appears in the PM-expanded
mass-shell condition, see Eq. (ZI4), and is also a con-
venient PN-expansion parameter p2, — n2p2 . We recall
that the qﬁEG’s appearing in Eq. ([ZZI) are the coeffi-
cients of the expansion in powers of p2 of the H-type
qres f(v;v) coefficients, see Eq. (Z3).

Having in hands the expressions of the x> (poo; v)’s
(which we shall indifferently denote as XIOC f(y;v)), let
us now consider the following energy-rescaled versions of
these coefficients

loc, f(

Xt (yiv) = [y )" e (), (7.23)
where
H
hviv) =14 2v(y—1) = ek (7.24)

Ref. [58] has shown that the total (local plus nonlocal)
scattering angle satisfied the following condition:

—1
Ot 0 (y; 1) = Pdvn(y) . with d,, = {HT} . (7.25)

Here, and below, the notation P}/(v) denotes a generic
polynomial of degree < k, with 7- (or, equivalently, pso-)
dependent coefficients.

In Ref. |2] we pointed out the simplification brought in
the determination of the local Hamiltonian by choosing

a flexibility factor f(t) in the definition of the Pf scale

rf, = f(t)rh, such that the condition Ct° separately ap-

plies to the nonlocal contribution x“"“loc f(v;v), and to
the local one x!°%f(y;v). [We recall that x%*(vy;v) =

oo (y;v) 4 ynonleet(4: 1)) because the nonlocal part



can be treated as a first-order perturbation.] We showed
there that it was always possible to construct such a flexi-
bility factor f = 1+0(%) at the 1PN fractional accuracy.
We will show in a separate work that this holds also at
the 2PN fractional accuracy, of relevance to the present
study. This choice of such a tuned f allows us to separate
the determination of the f-route local Hamiltonian, from
the discussion of the corresponding nonlocal contribution
to the scattering angle, x2orlocf(v; v).

n

We shall then enforce the condition (with d,, = [251])

C’}LOC,f . %’lnocvf(ry,y) = P;/n (V) N
i.e.,

CIoot s 9 (1) = g (7)+ et (V4 + o, (V)P

(7.27)
This condition yields strong constraints on the v-
dependence of the various coefficients in the local Hamil-
tonians (in any gauge), and allows one to determine most
of the coefficients entering the (usual) local Hamiltonian
H% (1, p,, j).

Applying the condition C1°%f forn = 2,...,7, we could
determine the nonlinear v-dependence of the coefficients
entering the 6PN-accurate p,.-gauge effective Hamilto-
nian H 2 loc.g» €xcept for the following four numerical co-
efficients

a?Z,a?d, JZZ, and q4”; . (7.28)
We recall that, at the 5PN level, we could determine the
nonlinear v-dependence of the EOB potentials except for
two numerical coefficients: agz, and ng. We list in Table
[X] the knowledge of the coefficients parametrizing the f-
route local EOB potentials. We note that among the
52 coefficients entering the 5+6PN local EOB potentials
our method allowed to determine 46. To complete the
previous information we also list in Tables XTI, XII| the
parameters entering the H-type and E-type energy-gauge
(squared) effective Hamiltonian for n > 3 and n > 4,
respectively. [We recall that ¢ = ¢ ]

The situation is even more impressive if one considers
the usual Hamiltonian, expressed in terms of the effective
one by Eq. (5], as a function of u, p,, and p? = p? +

2,2
Jou,

Frloc,f.6PN _ Céil)(y)kapgltﬁfkfl-

SRS USRS,
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Indeed, the v-dependence of this 6PN-level Hamiltonian
(see Table [XTIII)) contains 151 (or 147, if we consider that
four coefficients start at O(r?)) numerical coefficients,
and our method determines 151 — 4 = 147 (or 147 — 4 =
143) of them. The v-dependent coefficients Céil)(y) =
>on CQ(ilLV" are listed in Table [XITIl

VIII. VALUES OF THE 6PN-ACCURATE f-

ROUTE LOCAL SCATTERING ANGLE AT PM
ORDERS G2, G*, G° AND G°¢

Having determined most of the coefficients parametriz-
ing the f-route local Hamiltonian we can write down the
(PN-expanded) values of the corresponding successive n-
PM contributions, x,, to the scattering angle. The re-
sults are more compactly expressed when writing them in
terms of the difference between the energy-rescaled angle
([C23) and the corresponding test-mass (Schwarzschild
value).

Let us first recall that the ezact values of the
Schwarzschild scattering angle coeflicients are

1
X?Chw(poo) = _+2pooa
Poo
e 3 15
XM (poc) = W<§+—p§o> ,
1 4 64
Schw 3
o) =~ —— + 24pe + —pl,
X3 (Poo) 3p§.’o+poo+ Poo + 5P
105 315 3465
Schw _ -vY o Y2 4
X1 (Poo) = ﬂ( g T g P —1281?00),
1 2 32
Schw _
) = g g e
1792
+64op§O+Tp§;o,
1155 45045 135135
Schw _ 2 4
Xo " (Poo) = ﬂ( s+ g1 Poo 128 Poo
255255
512 P )
1 8 16 320
Schw
) = ——— b 2T A480p.,
T pee) = i g T g, P
86016 49152
+14336p°, + P pro .
5 7
(8.1)

We then find that the differences Y1°f — x5h% (recalling

(7.29)  the definition Eq. (Z23) read
|
7T_1 (52120c . chhw) _ 0,
1 47 313 749 7519 211469
—1 (~oc _ Schw) _ _ o 4l 4 9ld g 3 (4) 5 g 10,7 12 9
v (XE - xEMY) S " 13" P g P~ 33gP% ~ 130" Poo t Tg1ag0" P
15 557 123 4601 33601

-1_—1 (Slocf Schw) _ _ 9 4 _u9b 2e9 2 6,2 _ 2 8,4
v (X4 X4 ) 4”+< 16+2567r>77p°°+< 96 163847r> o0



TABLE X: List of the f-route EOB potentials in p,-gauge.
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Jloc,f
d5

Jloc,f
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loc,f

loc,f

44

loc,f
Qa5

loc,f
d62
loc,f
63
loc,f
d6s”
loc,f
dg2
loc,f
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loc,f
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16 _ 213573661 7T2) + (11263 2 260)
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229504763 2+ 135909, 4

98304 262144 6350400

20v — 8312 + 1002
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3150 1536 Jv+ (7 3 j 512 ) (640 - ) v
81030481 2 _ 3492647551 V2 o 14 36677 2
65536 423360 ) vVt qasvt d5 t T T

— 140%

79733841 2 112218283) + (156397 2 21996581) 24 (6977
327680 294000 1280 21000 6
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50V ==V ToV —1470* + 180
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29665 2
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He)v

TABLE XI: List of the p2 -expansion coefficients of the u-coefficients in the H-type energy-gauge (squared) effective Hamiltonian

for n > 3, see Egs. (Z3) and (ZH).
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TABLE XII: List of the p%-expansion coefficients (similarly to Eq. (ZH)) of the E-type energy gauge (squared) effective

Hamiltonian, Eq. ([4), for n > 4.

0
44E.EG

F )01

QiE,EG (@ _ 363164041 71'2) v+ (_% + 1623ﬂ,2) V2 4 13 3

deso| (R ) (T ) 4 (gt )
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ng,EG ( 269194147 24 4;1)287)V+ (260457T2 2;;17)V +2 3

QéE,EG (1525542006091 _ 2291)2%7”2) v+ ( 29501 + 32407468703 % 41 du ) L2 +( 1275663 2y 6499 ) 3 %y‘l

Gp.pc (— *5at000- + donoteao ™) v + (ngl; — ALZOT | SIS0 2) 2 4 (-~ B 2 4 2050 )0
+(Fer - SR v+ Y

ng,EG ( 62;(3)3 n 51401234603 2) v+ ( v 50?)3 4 357152307 - 1J§2> V2 4 (% _ 26847 ﬂ,z) 3 1_81V4

dheso| (MBS - SRS 1)y s (RE' I 4 ot fof + SRR 4 1)
+( 93603732509 2+ 183665033 B 9 du B g% )1/ + (205 2 4297673) 4 1_21/5

Hoso| (B T L D )y (4 B B S0+ e - B )
Fof e )t (e )

4 - 184881 , 1219303 , 16844006729 15827493497\ 5 -
+( 35715 7 T80 T T 720160 C1 T 21168000 42336000 ) o0
< 15 2 15 -» 61855 , 2321185 2 4625 20420849> 10 4
+ | —zvag — zvdi — Z1s v— oo
32 32 32768 16384 192 6720
n (_§ Jl’ 5 ci"z 4911465305 2 11437991V 3 ﬁuagz B quf{é
64 64 25165824 8960 64 64
2363865y772 679545 - 1343882527) 12 6
65536 16777216 10160640 oo
~ 227 3 60377 339 41 1 6
v1 (xlfc’f —x?ChW) = — io n? + (g - ?1/) 1%.0 + (_W T 7y2) ;770
3313 a2 221 2 158129 152237341 123 ,\ g
( 192 28 112 © " 20160 4 " )”p“’
<3738894537r2 Sl 4 e - S50 el ady’
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480 201600 >
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_%”q‘ﬁ - %TVQ : 65069264017T4) PP (8.2)
[
These results for the scattering angle provide a lot of Ref. |67]) that the nonlocal dynamics starts contributing

new information that offers gauge-invariant checks for fu-
ture independent computations of the dynamics of binary
systems.

In particular, using the fact (explicitly proven in

to the scattering angle only at O(G*), so that y{°' = x¢,
our result above for Y’ actually describes the total 3PM-
level scattering angle. The corresponding explicit 6PN-
accurate expression of the unrescaled, and unsubtracted



TABLE XIII: Coefficients entering the 6PN real EOB Hamiltonian (.29]).
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Coefficient Powers Value
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3PM-level scattering angle (which is equivalent to the +0(pl). (8.3)

simpler rescaled, subtracted result above) reads

1 4
= — (24— 8)pes
X3 3poo+ Oo+( v)p
64
+<—36V+81/)
+ (—I/ + 3407 81/3) P2
ol 3 4 7
+ —1/+— 2 _320° +8v Pso
1447 93 , 27 2\ o
- 430t -8
+(040 TRERRTIARE  E

This result is in agreement with the corresponding 6PN-
level term in the PN expansion of the 3PM-level recent
result of [61,162]. It has also been recently obtained in
Refs. 63, 164].

Let us emphasize that our results also provide a com-
plete, 6PN-accurate value for the 4PM-level scattering
angle x4 = ¥ + 1o We will discuss separately
the 6PN—accurate nonlocal contribution x°™°“f. Let us,
for completeness, exhibit the unrescaled, unsubtracted

value of \°“f. It reads
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ﬂ.—leoc,f _ % _ §V
: 8 4
R EICI R CINEC IR S A I
e 2 " 256 g | P
L [3465 (83601 , 19507 (4827 369 ,\ , 225 ;]
| 128 16384 192 64 512 32 o0
L[ 1045583 , 93031 ,\ (1937 904809 L\ [ 2895 1845 ,\ o 525 ]
L 33600 32768 16 32768 32 2048 64 Poo
[ /3879719 29201523 , 4843207 469191 ,\ , 444975 , 15875\ 4
+ + ™ |v+ — T | vt + i v
L\ 313600 = 33554432 89600 131072 131072 128
104755 4305 .\ , 4725 .] 4 0
o0 2O 2= . 4
< 1024 mm6”>y 512 7| P+ Opec) (84)
[
Finally, concerning our results above for the 5PM, 6PM ) of x; [68]
and 7TPM local scattering angles, if we transcribe them in
terms of the unrescaled coefficients, X?C’f, xgoc’f, x17°C’f, 5(y) = 272 —1 9.3)

they contain (in spite of the presence of undetermined
parameters at the O(v?) level) a lot of new informa-
tion, both for the linear-in-v contributions, and for many
terms involving higher powers of v.

IX. RADIAL ACTION AND ITS HIDDEN
STRUCTURE

In Ref. [2] we pointed out the existence of a hidden
simplicity in the mass-ratio-dependence of the (rescaled)

radial action
jgprdr,

when it is Aexpressed in terms of the EOB effective en-
ergy v = Eog (or equivalently po,) and of the rescaled
angular momentum j J/(GMu).  We work here
with dimensionless scaled variables I, = IPYs/(GMp),
pr =P/, v =P /GM.

This hidden simplicity consists in noting the remark-
ably simple v-dependence of the coefficients I, (y;v) en-
tering the following way of writing the 6PN-accurate ex-
pression for I,.:

1

LWJ%=%

(9.1)

| . Iig I3(v;v
Ioof(y, 5) = —j+ 15 () + h(]) 3(’53)3)
LBsy) | L(ny)
(hj)® (hj)7
Iy(v;v)  Tii(y;v)
Bl o (9.2)

First, the second term Iy(7) in this expression is inde-
pendent of v and equal to the analytic continuation (in

Vot

and, second, and most importantly, after having factored
out the same power of % as the power of %, the numerator

Iont1(7y;v) is a polynomial in v of degree n:

n k
12n+1(’y; V) = Iésn—i-l(,)/) + Z Ié/n-‘,-l(’}/)yk . (94)
k=1

The latter polynomial structure was not pointed out in
previous discussions [40, |68] of the radial action. Several
conditions are needed to reveal it: the use of the effective
EOB energy £ as energy variable, and a PN-complete
account of each coefficient Io,, 41 (é\eﬁ‘; v). We note in this
respect that Eq. (3.10) of Ref. [40] used the specific bind-
ing energy (H — Mc?)/u as energy variable, and that Eq.
(4.29) of Ref. [68] is a PN-incomplete 2PM truncation of
I,., which does not satisfy the simple rule (@.4]).

As pointed out (and proven) in our previous work [2],
the ¥ terms (corresponding to the v — 0 limit) in Eq.
(@4 can be exactly computed (for all values of n) be-
cause they correspond (like the term 15 (7)) to the test-
mass dynamics, described by a Schwarzschild metric of
mass M = mq + ms. The exact values of the most 6PN-
relevant ©°, Schwarzschildlike, terms read

3 15
() = —Z+ZV2,

35 315 1155
IS — Y 2rv.2 SoYY A4

231 9009 , 45045 , 51051

IS _ _ 2 4 6
5(7) 256 " 256 | 256 | ' 256 !

32175 546975 , 10392525
IS — o 2 4
() = o3~ 1096 7 8192

| 14549535 ;47805615

1096 16384



g 323323 33948915 , 260275015 ,
Ig(y) = — -
65536 65536 32768
1301375075 6 5019589575 ¢
32768 65536
3234846615
65536

(9.5)

Let us only cite the v — 1 value of the last Schwarzschild-
like coefficient entering Eq. (@.2) (which suffices at the
6PN accuracy)

=00 1007 ). (96)

The most useful consequence of the expression (@.2]) for
the radial action is that it condenses the irreducible (post-
test-mass) information about the 6PN local dynamics in
a rather small number of coefficients, namely the fifteen
energy-dependent coefficients IQVsH(v), with 1 <k <n
and 1 < n < 5. Our 6PN-accurate computation yields
these coefficients in the form of a PN expansion, i.e., an
expansion in powers of p2. = 4% — 1. [Note that the so-
defined quantity p2, is negative for bound states.] We
found, for example,

1 5 4, 557
v _ 2.4 =2 9O9f 2 .6
5 (7) 2"l +(1287T 24);90077
4601 33601 ,\ , «
( 144 +24576”) >
3978707 93031 5\ 4 g
201600  49152" ) V="l
0733841 , 5058313\ & 15
(9.7
(167772167T 940800)p - (01)

The other v-dependent contributions can be read off Ta-
ble XIV], which lists the PN expansions of the full coeffi-

. k
clents IQnJrl(/y; V) = I§n+1(7) + ZZ:l Ié/n+1(7)yk'
We recall that the periastron-advance parameter is de-
rived from the radial action as follows [40]:

[}
K=1 = — = —0;1, i) . .
+h=oo 95 L-(7,7) (9-8)

Inserting the expression ([@.2)) in the latter formula yields

Is Is(vy;

1(7) 43 3(731/)

hj2 h3]4
Is(v;y) +7I7(7gV)
h5 56 T8
Iy(v;v) Lii(vy;v)
h9j10 h11j12 ’

k(v,3) =

+ 5

9

+

+11

(9.9)

where the various coefficients I,,(7, v) are listed in Table
XTIVl

Recently, Ref. [68] pointed out that the periastron
precession ®(vy,7) — 2w = 2wk(y,j) could (under some
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conditions) be identified with a suitably defined analytic
continuation of x(v,7)+x(v, —j). The v-structure of the
formula (@.9)) is then seen to be a consequence of the rule,
Egs. (C28), (TZ17), found in Ref. [58], about the polyno-
mial v-structure of the energy-rescaled scattering angle
h" = xn(v,v). We then tried to replace the imposition
of the constraint (C27)) by the imposition of the poly-
nomiality constraint (@) directly to the radial action
[or, equivalently to the periastron precession k(7v, ), Eq.
@9)]. However, imposing the polynomiality constraints
@) or ([@3) is not equivalent, and, in fact, significantly
weaker than imposing the conditions (Z27). Imposing
the conditions (@.4) or (@.9) at the 6PN level leaves un-
determined many more coefficients than imposing (7.27)).
This non equivalence essentially follows from the fact that
Isn41(7;v) is proportional to xant2(7,v) and therefore
misses the v-information contained in the odd scattering-
angle coefficients yan+1(7, V).

Finally, let us recall the well-known fact that the
gauge-invariant relation between energy and angular mo-
mentum along circular orbits can be conveniently ob-
tained by setting I, = 0 in Eq. (@2). The resulting
equation,

s PO) L Bysv)
Ii(viv) | Ir(v;v)
(hj)F

(hj)7
Iy(viv) | Tu(yv)
(hj)® (hj)H

can then be easily perturbatively solved to get either 7=

+

+

(9.10)

as an expansion in powers of p2_, or p2, as an expansion
in powers of j%, say

1 2 1
1-~% = —piozj—2+j—4+(9—2u)j—6
154 41 1

or, equivalently,

loc,fcire 1 9 81 1
()

252 854 16 46

WA DL

128 6 64 &
TR (9.12)

The local contribution to the circular energy then
straightforwardly follows:

Eloc,f,circ(j) _ M\/l + 2V(Eé(;fC7f7CiTC -1). (9.13)

Here, we have simply indicated the 3PN-accurate begin-
ning of these expansions. It is easy to use our results to
derive the 6PN-accurate local circular energy. We leave
to future work the completion of these results to the full
6PN level, obtained by adding the 44+5+6PN nonlocal
contribution.
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TABLE XIV: List of the various coefficients I,(7,v) (expressed in terms of p2, = 7? — 1 < 0) entering the expression (@.2) of
the radial action.
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X. POST-MINKOWSKIAN VIEW OF THE
DETERMINATION OF THE LOCAL DYNAMICS.

At any given PN accuracy, our new method is able
to determine most of the structure of the two-body dy-
namics except for a relatively small number of numerical
coefficients. When working at the 5PN accuracy, only
two numerical coefficients are left undetermined in the
local dynamics, namely ag and df . When working at
the 6PN accuracy, four more numerical coefficients are
left undetermined, namely a?z, G?J,ng, and qZ;. Let us
clarify the basic reason underlying this incompleteness,
in a way which will allow us to anticipate the number
and structure of the higher-order analogs of these un-
determined parameters. This is easily done by working
within a PM-expanded scheme, and by using some of the
structural results of PM gravity discussed in Ref. [58]. It
was found there that the general structure of the PM co-
efficients ¢ (v, v) of the EOB @ potential in the E-type
energy gauge was

E _ Qn,l(W) Qn,n—1(7)
4 (V) = dno(y) + h(%l/) t... hn=1(v, )
Qn k
hk (v (10.1)
with the constraint
n—1
> tni(y) = (10.2)
k=0

The important structural information in the expression
(@) is the fact that the v-dependence of ¢Z(v,v) is
entirely described through the powers of h(v,v) enter-
ing the denominators. All the corresponding numerators
dn.k(y) depend only on the EOB effective energy v = Eut.
The constraint (I0.2)) expresses the fact that

lii%qf(’%y) =0, (103)
i.e., the basic feature of the EOB formalism that the
v — 0 limit of the EOB mass-shell condition reduces to
a geodesic in a Schwarzshild metric of mass M. Let us
also note that the behavior of the coefficients ¢Z(v,v) in
the 42 — 1 limit,

FEloc,f
nECC)}C (’Y? ) =

+ QiE,EG(V)(VQ — 1) +....

ng,EG(V) + q711E,EG(V)(’Y2 -1)
(10.4)

is smooth, i.e., the expansion coefficients, and notably
the first one, ¢0p p(v), are all finite (and O(v)).

As explicitly discussed in the 3PM case, n = 3, in
Ref. [58], there are more constraints on the n energy-
dependent coefficients ¢y, k() which determine some of
them in terms of the lower PM orders. Indeed, let us first
insert the decomposition (I0]) in the expressions (ZI])
relating the PM-expansion coefficients ¢Z(v,v) of the
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EOB potential to the PM-expansion coefficients ., (7, v)
of the scattering angle. This yields explicit expressions
for the x,,(7,v)’s in terms of the ¢Z (v, v)’s. For instance,
at the lowest PM order (n = 2) we have

X2(7.v) = X3 (v) — gfh(%l/)
_Schw m q2,1(7)
0= 5 (o) + 220 10
so that
Ra(r.v) = hxe = h (G () = Sa201)) = Fa2a(3).

(10.6)
Imposing the condition that Y3 is independent of v re-
duces to imposing that the coefficient of h(vy,v) on the
right-hand side vanishes. This yields the constraint

v
X5 () — Z(Jz,o(V) =0

(10.7)
which determines g2 0(y) in terms of x5™(y). The
summed constraint (I0.2) then determines ¢o21(y) =
—q2,0(7). One then recovers the result [66]

wl) = DE™) (1-3) =362 -1 3 (1%28.)

In other words, the 2PM dynamics is entirely determined
by the test-mass scattering angle.
At the 3PM level the three coefficients entering

31(7) | a3207)
h(v,v) — B*(v,v)’

satisfy two constraints. First, the sum constraint (I0.2),
i.€.,

a3(7,v) = g30(7) + (10.9)

a3,0(7) +a31(7) + a3,2(7) =0, (10.10)

and then the condition that Y3(v,v) = h%xs(y,v) be
linear in v. The second Eq. (Z.I])) allows one to express
x3(7,v) in terms of the g3 x(7y)’s. It is easily seen that
inserting the expression (I08) of ¢2(7y,v) in the second
Eq. ([CI8) yields Xx3(v,v) in the form of a polynomial in
h, namely,

~ 2. Schw 272 -1 5
X3(7,v) = X3 (y) — \/ﬁh q2(v,v)
— V7?2 — 1hg( %
2y — 1 3
— h2X§ChW _ /7 5 _ 1) (h2 _ h)

\/—2
— V2= 1(hPg30(7) + hasi(7) + as2(7)) -
(10.11)

As h? = 1+ 2v(y — 1), the condition to be linear in v
(at a fixed value of ) is equivalent (for a polynomial in
h with y-dependent coefficients) to having the structure



co+cah?. This gives one constraint, namely the vanishing
of the coefficient of h'. This constraint determines the
coefficient ¢z 1(7y) to have the value [5§]

(2 =Dy -1
7’ -1

g3,1(7) = g : (10.12)

The two remaining coefficients gs,0(7), g3,2(7y) then sat-
isfy the single sum constraint (I0I0). The conclusion is
that the general solution of the 3PM constraints is a @
potential of the form

%WW)%Mﬂ(HL—Q

Y, v)

+q3,2(7) <m -

where ¢31(7) is determined from ([I0.I2)), and where
gs3,2(7) is, at this stage, left undetermined by the gen-
eral PM-EOB constraints of Ref. [58]. On the other
hand, let us assume that one has somehow determined
(maybe to some limited PN accuracy) the value of the
gauge-invariant 3PM scattering angle, which must have
the structure

1> . (10.13)

X3,2(’Y)
h2(v,v)

Let us now insert in the second Eq. (.I8) the ex-
pressions of x3(y,v) and g3(v,v) as polynomials in 7
(with coefficients depending only on ), i.e., Eqgs. (I0.9)
and (I0.14). As both sides are polynomials in %, we can
identify the coefficients of % on both sides. Indeed, we
are dealing here with expressions depending on v only
through the energy parameter h(y,v). Therefore, two
functions of « and v, which can written as polynomials
in %, can be equal only if all the y-dependent (but cru-
cially v-independent) coefficients of the various powers of

% agree with each other. This yields the simple link:

x3(7,v) = x3,0(7) + (10.14)

x3,2(7) = V72— 1g32(7)- (10.15)

In addition, using the fact that x5™(v) = x3(7,0) +
X3.2(7), we can rewrite Eq. (I0.14) as

mwwx%ww%gw%ﬁ%ﬂ'

This formula shows that the function x32(7)
parametrizes the deviation of xs(vy,v) away from
its test-mass limit lim, o x3(7,7) = x5 (). Let us
again emphasize (following Ref. [58]) that even if one
knows only the linear-in-v (1SF) expansion of the 3PM
scattering angle, Eq. ([I0.I6) shows that this suffices
to fully determine the function xs2(7). Then having
extracted the function ys2(7y) from the 1SF expansion

of xs(v,v), we can compute ¢32(y) from Eq. ([I0.IH),
and thereby obtain the full 3PM dynamics by using Eqgs.

[0.12), @0.I3).

(10.16)
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As our method, when applied at any PN approxima-
tion, determines (in particular) the 1SF expansion of the
local dynamics, we see that it will determine the function
g3,2(7y) with the PN accuracy with which we work. This
is why we could determine the 6PN expansion of g3 2(7),
i.e., of the local 3PM dynamics.

In view of the several independent 6PN-accurate con-
firmations (|63, [64], and the present work) of the value of
X3 (7, V) derived in Refs. [61, [62], we shall assume in the
following that g3 .2(v) is exactly known, namely (using
the notation® of [58])

, (10.17)

with

—B 2
C(y) = 57(1472+25)

4yt — 12742 — -1
4/7—’y3arcsinh r—- .
2 -1 2
(10.18)

This assumption will allow us to simplify the discussion
of the determination of the higher PM-order coefficients.

Let us indeed indicate how the above 2PM and 3PM
results extend at higher PM levels. This will allow us
to clarify the effectiveness (associated with a partial in-
effectiveness) of our method in determining (or leaving
undetermined) the parameters entering the local dynam-
ics.
The structure of the 4PM-level EOB @ potential is

P _ @u1(y) | @207) | as(y)
4 (1) = a0 T30 ¥ 12 y,w) T R0y
(10.19)
with the usual constraint
qa,0(7) + q1,1(7) + qa2(7) +qa3(y) =0.  (10.20)

The third Eq. (ZI8) leads to an expression for y4(v,v)
of the form

3
xa(r,v) = i () - < (0= Dar'(7,v)

+K [q2(77y)aQB(7a V)] ) (1021)

where K|[q2, 3] denotes some known terms, namely

_ 3 2 9 2
= 16Q2(%V) 16(57 1)ga(7,v)

3
8

K[QQ, (J3]

(3% — 1)ga(v,v) (10.22)

6 The coefficients g3,0(7), g3,1(7), g3,2(7) are respectively denoted
A(), B(7); C(7) there, with C(y) = —(v = 1)C().



Inserting the + parametrization ([0IJ) of ¢f (v,v), to-

gether with the above explicit expressions of g2(7, V), and
q3(7v,v) (as polynomials in %), then leads to an expres-
sion for x4(7y, ¥) having also the structure of a polynomial

<1
in 3, say

. Xia()  xiL(v) o xis(y)
X4(75 V) = X4,0(7> + h(’y, V) h2(’7, V) h3(’37, V) )
(10.23)

where the superscript ¢ means that all the coefficients
X4 () are explicit expressions in the ¢, x’s.

The rule found in [58] restricts h3x4(7,v) to be lin-
ear in v. This is equivalent to the following restricted
polynomial structure for x4(vy,v):

xa1(7) | xa3(7)
Xalv,V) = ’ . , 10.24
) =560 T W) (1024)
with the constraint
Xa1(7) + x4,3(7) = X3 (7). (10.25)

For the general reason already explained above, the
equality (for all values of v) between two functions of
~ and v, which can both be written as polynomials in
% with y-dependent (but crucially v-independent) coeffi-
cients, implies the equality of the y-dependent coefficients
of all the various powers of % We therefore conclude that
the coeflicients ¢4 must satisfy the two equations
XZ,O(’Y) =0 ; Xi2(v)=0. (10.26)
In view of Eq. ([[021)), the latter two equations
are respectively linear in g40(7y) and ga2(7), and con-
tain “source terms” provided both by 3" (v) and by
K [q2(7,v), q3(7,v)]. We can then solve the system of

the two equations (I0.26) for g4 (), and gs2(y). This
yields the (unique) solution

qa2(7) = a2(y) +b2(7)g32(7)
qa0(y) = —ai(y) —az(y) — b2(7)g3,2(7) ,(10.27)

where we denoted

9 (572 —1)?
az(y) = gﬁ ;
3y -1
ba(y) = *ﬁ ’
187575 — 2529+* + 9052 — 59
a1(7> - = 16(’}/2 _ 1)2 .

(10.28)

Let us now consider the sum constraint, Eq. ([{0.20).
The latter constraint, together with the solution (I0.27),
yields the following expression for g4 1(7):

qa1(y) = ar(y) —qa3(7) - (10.29)
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In other words, the exact structure of the 4PM () coeffi-
cient is

F0) = a0 (7077 1)

Y, v)

1

+ (as(y) + ba(1)as.2(7)) (m _ 1)

In this expression, gs2(7) can (as far as we know) be
replaced by (I0.I7), so that the only undetermined func-
tion of v is the last coefficient ¢4 3(7y). The latter can
be determined by the knowledge of x4(7,v). Indeed, the
link (I021)) between g4 and y4 implies that the coeffi-
cient xa,3 of # in the %—polynomial expression (T0.24])
of x4 is directly linked to g4 3(7) via

(10.30)

3

Xa3(7) = == (7> = Daas(y).

< (10.31)

In addition, we note that Eq. (I0.24) can be rewritten
as

P il 0) Lo
xa(v,v) = hy.v) +X473(7)(h3('y,1/) h(fy,y))
o) 1y X23(0)
= W) & 1)h3(%1/)' (10:32)

The latter expression clearly shows that the knowledge
of the O(G*) scattering angle y4(7,v) at the linear order
in v (1SF order) suffices to determine the exact function
X4,3(7), and thereby to have the full v dependence of the
scattering angle, as defined by the expression ([0.32).
We have derived above the 4PM scattering angle
X4(v,v) with 6PN accuracy. Using the representation
we can transcribe our results into the following
corresponding 6PN knowledge of the more primitive func-

tion x4,3(7):

15 391 123 ,
X43(7) = W[% + = 2567
N (@ _ @ﬁ) 2
48 16384" ) Pee
372943 217695 ,\
( 5600 65536 ) o0
( 4976527 49220339 2) ;

T1881600 335544327 ) Pee

+0(P%) |, (10.33)

where p2. = 4% — 1. The latter result can then be tran-
scribed in a corresponding 6PN-accurate knowledge of
the function ¢43(), and thereby of the full 4PM Q po-
tential ¢ (v,v), using Eq. (I030). We note in passing



that the result (I0.33) implies for ¢4 3(7) a behavior in
the small py, limit of the form
1
2
a2 =
) P
4597 35569 2
18 6144

( 372943 72565 2> 9
_ 72 ) p2,
15v

2100
Lv | [(T67
4

391 41

( ) = 10 10,
q4,3\7Y) = poo 3 39

123

8192
D3 64

)

29

49220339
12582912

(4976527

2 4 6
T, =) ik + 0%

(10.34)

so that the corresponding contribution to ¢ (v,v), Eq.

([I030), reads

75

|

4033 33601 , 615 2\ o 175 5] ,
205 2 935 4 ——
+ [( 12 4096ﬂ-) +'( 256" ) Y P
L [(es14457 93031 69605 158165 257957 1435 ,\
33600 8192 © )" 192 ' 16384 " 5127 )7
1575 1]
175 }pm
6850063 29201523 1114333 781985 ,\ ,
— — T v+ | — T v
156800 8388608 6720 ' 65536
1038275 , 411425\ 37905 12015 L\ , 3465 5| 4 5
- 2 2290 2500 OL.).
( 08304 " T 1152 ) v ( s T a0 " )V T as Y| e O

This contribution is singular as p., — 0. However, it
is easily checked that the other contributions to ¢f’ (v, v)
in Eq. (I030) cancell this low-velocity singularity and
leave a finite result,

175 41
E — - _ =
4y (7) V) - ( 3 32

in agreement with the result listed in Table XTIl

Let us sketch the extension of these results to the > 5
PM orders. [See Appendix [A] for more technical details.]
Again the basic trick is to express all dynamical functions
as polynomials in + 7> with y-dependent coefficients. This
trick is efficient because the PM-EOB results Eqs. (Z.I8)
involve no explicit v dependence. In turn, this property
follows from the basic fact that the 1PM-accurate EOB
dynamics is v-independent when expressed in terms of
the EOB effective energy v = Eog [66].

The structure of the 5PM @ potential reads

2), (10.36)

2) v— ng + O(p

E _ q5,1(7)
qs (’Ya V) - %,0(7) + h(’)/, l/)
g5,2(77) 5,3(7) Q54( )
; ; 1
12(1,0) T W) T w0 1037
with the usual constraint
45,0(7) +45,1(7) +45,2(7) +a5,3(7) +g5,4(7) = 0. (10.38)

(10.35)

The fourth Eq. (T.I8) leads to a corresponding expression
for x5(7,v) of the form

402 - 1)

3 QE?('Y)“‘K[‘]Q’Q&%L

(10.39)
where the “known” contribution, K{gs, g3, ¢4], which in-
volves previous PM orders, ¢2, g3 and g4, will be found
in Appendix [Al

The rule restricting the v structure of xs5(v,v) [58] is
equivalent to imposing:

X5(7,v) = X5 (7) —

X5.2(7) x5,4(7)
= ’ ’ 10.40
X5 (’75 V) X5,0(7) + h,2 (,}/7 I/) h,4 (,}/7 I/) ’ ( )
with the constraint
X5,0(7) + x5,2(7) + x5.4(7) = X5 (7). (10.41)

Imposing this structure on the expression following from
Eq. (I039) then yields two constraints expressing the
vanishing of the terms % and o hi This yields two
equations of the type

known,

%,1(7)
%,3(7)

known ,

(10.42)

whose explicit form will be found in Appendix [Al



In addition, we have the third equation (I0.38). The
latter equation yields an expression for gs o(7) of the form

45,0(7) = —¢5,2(7) — g5,4(7) + known. (10.43)

At the end of the day, we have a general expression for
g5(7,v) of the form

1
@& (v,v) = known + gs2(7) (m - 1)

+45,4(7) (m - 1) ;

where “known” means here

(10.44)

known = gs.1(7) (% - 1) +s5(7) (% - 1) . (10.45)

with ¢51(7) and g5,3(7) given in Egs. (A3).

The expression (I0.44]) involves only two undetermined
(at this stage) parameters ¢s2(v) and ¢s4(7). As be-
fore (mutatis mutandis), the two remaining parameters
¢s5,2(7) and gs.4(y) would be determined by the knowl-
edge of the two corresponding coefficients in x5(v, V), Eq.
(I040), namely xs5,2(y) and xs5,4(7). Indeed, we have the
two equations

45yt — 3442 + 7

X5,2(7) = SE 1) 3,2(7)
507 = 1) 255()
3(14~% — 5)(—1 + 5v%)?
TTaE-nE
You(1) = —2( —1*254(y),  (10.46)

3

where we recall that the 3PM-level function gso(7) is
known.

However, there is now a difference with what happened
at lower PM orders. Indeed, we can rewrite Eq. ([0.40)
in the form

) = xS (9) + xs2(7) (m - 1)

+x5,4(7) (m — 1) ) (10.47)

or, equivalently,

s5(7,v) = X5 (y)

_ % |:1/('y —1) (X5,4(7) + %Xs,z(’ﬂ)

+ 2y = 1)? (x5.4(7) + x5.2(7))]
(10.48)

In other words, after factoring 1/h* the difference

Xs5(7,v) — x5 (y) has a v structure of the type ~
v + 2. By contrast, we previously had a difference
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Schw
xa(v,v) = S

dependence (from ~ v to ~ v + v2) implies that, at the
5PM level, there appear two independent functions of ~
parametrizing the scattering function, after having taken
into account the general structural information about its
v dependence, while there appeared only one function
of v at the 3PM and 4PM levels. As a consequence, our
method (which completes a linear-in-v self-force informa-
tion by a general v-dependence information) is able to
get complete PN-expanded results at the 3PM and 4PM
levels (up to the PN accuracy it uses). However, at the
5PM (and also 6PM) levels, it can only determine one
combination of the two independent functions of v ap-
pearing at these levels (namely the function parametriz-
ing the coefficient of v among the total ~ v + 12 de-
pendence just mentioned). More specifically, at the 5PM
level, one sees from Eq. ([[0.4]) that, when working at
some given PN accuracy, our method will be able to de-
termine, within this PN accuracy, the PN expansion of
the function x5.4(7y) + %X&;,Q(V), but will leave (partially)
undetermined that of the complementary combination
X5.4(7) + X5.2(7). Using our results, we find

()+1 () 4+ 41 2—1—587 1
- - I e I
X5,4\Y X5,2\7Y pgo 16 3

of the type ~ v. This change of v

2 Poo
10507 , 480263
(_ 576 " T 540 )p“’
( TI5139 30034567> 2
11520 18900 ) 7>
(11603297T2 411639569> ;
161280 1176000 ) P
+ O(L), (10.49)

which is, indeed, fully determined to our 6PN accuracy,
while

8 406 41 ,\ 1
X5,4(7) + X5,2(7) = s + <? o™ ) .
112333 4 o 18487 ,
< 270 ' 15°° 5760”) >

LA, 2 g, 1993193860 5049671 5\
3545 T 15% 1323000 80640 ) Pee
+0(p3,), (10.50)

involves the undetermined parameters CZEZ and qZ; .
When translating this knowledge in terms of the EOB
Q potential (in E-type energy gauge”), this means that
our method is able to determine the function gs 4(vy) +
%q,f,’g(’)/), but leaves partly undetermined the complemen-
tary function gs 4(7v) + ¢5,2(y). Concerning the other co-

7 The relations we gave above then allow one to translate the ¢Z’s
into their H-type correspondants q,I;I .



efficient functions ¢s 1 (), with k& = 0,1, 3, parametriz-
ing g5 (v, V), the generalization of the reasoning explained
above for q4(7,v) shows that they are fully determined
in terms of the lower PM information.

One can check that a similar situation occurs at the
6PM level, where the structure of the scattering angle

reads

Schw

_ X6 1 1
Xo(1,v) = h(v,v) +X6’3(7)(h3(%1/) h(v,v)
1 1
— . 10.51

+X6’5(7)<h5(%1/) h(%V)) o5y

The two independent functions x63(Y), Xe6,5(7)

parametrize a structure ~ h75(v + v?).  Similarly
to Eq. (I048), this can be made manifest by introduc-
ing the following two combinations (with ~-dependent
coefficients) of x¢,3(7) and xe5(7), say

Ros(0) = =407 - D) (Fx0a0) + x05(1))
Xow2(7) = —4(v = 1)* (x6,3(7) + x6,5(7)) , (10.52)
such that Eq. (I0.EI) reads
D) — XEM™(y)  vXew () + X6z (V)
xe(7,v) = W) ) . (10.53)

Again, our method can only determine one combi-
nation (namely X, (7)) of the two functions xg3(7),
x6,5(7). When translating this knowledge in terms of
the EOB @ potential (in energy gauge), this means that
our method will be able to determine only one combi-
nation of the two functions ¢s 3(7),and ¢e5(7y), via the
link of Eqs. (A4). On the other hand, the other coeffi-
cient functions gg x(7), with k = 0,1, 2,4, parametrizing
gs(7,v) are fully determined in terms of lower PM infor-
mation.

At TPM | one finds that there are three independent
functions of 7, namely x7,2(7), x7,4(7) and x7,6(7). They
are linked to their EOB counterparts g7 2(7), ¢7,4(y) and
q7,6(7) (and to lower PM functions) via the relations Eqs.
(A3). The three functions x7,2(v), x7,4(7) and x7,6(7)
parametrize a v dependence of the type ~ (v + 12 +
v3)/hS. More precisely, there are three combinations of

x7.2(7); x7.4(7) and x7,6(7), say

Xro(7) = =20y = 1)(x7,2(7) + 2x7,4(7) + 3x7.6(7)) »
Xr2(7) = —4(7 = 1)2(2x7,.2(7) + 3x7.4(7) + 3x7.6(7)) »
X73(7) = —8(y— D3 (x7.2(7) + x7.4(7) + x7.6(7))

(10.54)
such that

X7(’Ya V) = X?Chw (’Y)—’— 16 ('Y, l/)
(10.55)

The situation is similar at the 8PM level, with three
independent functions of v xs.3(7), xs,5(7) and xs,7(7),

VX7 (7) + VX702 (1) + VX708 (7)
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related to their corresponding EOB functions g¢s (),
gs,5(7) and gs7(y) via the relations Eqs. (AG). The
three functions xs.3(7), xs,5(7) and xs,7(7) parametrize
a~ (v+1v2+12%)/h7 structure for the difference (7, v)—
hxgdlw(’y). And again our method can only determine
one combination of these three functions.

We summarize in a pictorial manner the irreducible
information contained, at each PM level, in the local dy-
namics in Fig. [[I The horizontal axis indicates the suc-
cessive PM orders, while the vertical axis indicates suc-
cessive PN orders, keyed by powers of p? (representing
p% = ~v? — 1 when working in the energy-gauge). This
figure displays the information contained either in the
PM-expansion coefficients x,(v,v) of x, or in the PM-
expansion coefficients ¢Z (v, v) of @E(u,v; v). [We have
explained above the (recursive) one-to-one map between
these two sequences of coefficients.] By irreducible infor-
mation we mean the building blocks that depend only on
v and that parametrize the v-dependence of the coeffi-
cients xn (7, v) or g, E(v,v). For instance, at the PM level
n =3 (or u® in QF(u,~;v)), the 3PM local dynamics is
fully described by Eq. (I0.I4), which we write again for
conceptual clarity,

X3,2(’Y)
h2(y,v)’

i.e., by two independent functions of 7: xso(y) and
x3,2(7). One half of this information comes from the test-
mass limit, v — 0 (namely x3,0(7)+x3,2(7) = X3 (7)),
while the other half is encoded in the 1SF (linear in v)
expansion of y3(v,v). This is clear if one rewrites Eq.

({I0354) in the form of Eq. (I0I6), i.e.,

(v = Dxz2(7)
h2(y,v)

Here we are talking about the PM expansion. When
working within a PN approximation scheme, some of the
functions of v entering as irreducible building blocks are
only known in their PN-expanded forms, i.e., only a lim-
ited number of terms in their expansion in powers of
p? =2 —1is known. For instance, we derived here, by
working at the 6PN approximation, the first five terms of
the function x32(7), in the form of the related function

x3(7,v) = x3,0(7) + (10.56)

xs(7,v) = X5 (7) — 2w (10.57)

-1

6(7) =7 X3,2(’Y) =—(y-— 1)(1372(’}/), (10.58)
namely
—6PN . 9 % 4 69 6
C"™N) = s+ sopl - T
1447 o 10
- —— . 10.
e+ O (10.59)

See Eq. (I0.33) for the analogous result at the 4PM level.

Having in mind this PN-expansion of the vy-dependent
irreducible PM building blocks x5, (), we represent in
Fig. [ each such building block x, x(y) by a vertical



p0:1,2,3,0123
o0 g il p0L 00T 603
P“ . . .o .o 00 el 9800  ee0
6RN
N
plz Y . .e .e ws e *e00  eeCC
b
BRN s
10 » b " i
p . . e .o seC 80 8800 @80
5 LY
AN TN
N LY N\
p‘" . o ) ' [ e 9000  eed0
N ~ b
N N N
\ 5 8
jf-‘ . 'Y Y Y el e 800 8800
\ 5 ~
% . b
. N 5 5
P . . . .o L el #e00  eel0
5 “ N
N % s
N \ ~
j’z . . .o .. e  ow 00 @00
N Y s
N N N
b A \
g & e = e 0 ST s
2 - 4 5 6 7 8

FIG. 1: Schematic representation of the irreducible informa-
tion contained, at each post-Minkowskian level (keyed by a
power of u = GM /), in the local dynamics. Each vertical col-
umn of dots describes the post-Newtonian expansion (keyed
by powers of p2) of an energy-dependent function parametriz-
ing the scattering angle. The various columns at a given
post-Minkowskian level correspond to increasing powers of
the symmetric mass-ratio v. See text for details.

line of filled circles. At the 1PM and 2PM levels there
is only one irreducible building block, and therefore only
one vertical line of dots. Moreover, these building blocks
can be entirely deduced from the test-mass limit, i.e.,
they are encoded in the v — 0 limit (or Schwarzschild
limit) of the scattering angle. At the 3PM level, there
are two independent irreducible functions of 7, repre-
sented as two vertical sequences of filled circles in the
figure. One can think of the left column of dots as being
of order 1 in the SF expansion, and therefore as being
entirely deducible from the Schwarzschild limit. By con-
trast, the right column of dots represents (modulo some
h-dependent prefactor) a 1SF-level information, i.e., it is
encoded in the O(v!) term in the expansion of x3(v,v)
in powers of v. At the 4PM level we have again only
two vertical sequences of dots, say one encoded in the
v — 0 limit, and the other one representing a fresh 1SF
information encoded (modulo some h-dependent factor)
in the O(v!) term in the v-expansion of x4(7,v). [Note
in passing that the v-dependence of the 4PM EOB po-
tential g4(7,v) deduced from y4(7,r) is more involved
than the one of x4(7,v). In particular, the O(v!) term
in g4(7y, v) is partly determined by the O(v!) information
present at the 3PM level, and by fresh O(v!) information
contained in x4(7,v).]

At the 5PM and 6PM levels, we have three indepen-
dent building blocks (see Eqs. ([I048) and (I0353)),
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represented as three vertical columns of dots. Again
the left column can be thought of as being O(+Y) (and
Schwarzschildlike), the middle column as being O(v?!)
and 1SF-determined, while the third column is now
O(v?), i.e., encoded at the 2SF level. The only knowl-
edge we currently have of this 5PM third column is its
lowest PN approximation, i.e., the filled circle located at
u® on the horizontal axis. Indeed, this term ~ v2u’p°
was determined by the computation of the 4PN dynam-
ics. In the p, gauge, it is described by the contribution
+ (5372 — 221) 12 to the coefficient a>" of the u® term
in the EOB radial A(u,v) potential. The 5PN approxi-
mation consists of collecting the terms along the second
slanted line represented in Fig. [[I We see that the slanted
5PN line passes through two of the O(v?) third vertical
columns. In the current implementation of our method,
the third (and higher) vertical columns, corresponding to
O(v=22) (2SF and higher) contributions are left undeter-
mined. We highlight this fact by using empty circles to
represent these columns. This visually explains the origin
of the two coefficients left undetermined by our method
at 5PN. The empty circle in the u® column corresponds

to ng, while the empty circle at the u% location on the
horizontal axis corresponds to aEQ.

At the 7PM and 8PM levels, we have four independent
building blocks parametrizing a ~ v°+ v 4+ 12 +13 struc-
ture (see Eq. (I05H)). When considering the 6PN, upper
slanted line, we now understand clearly why there were
four extra coefficients left undetermined by our method
at 6PN. Namely: one in the u®> O(v?) third vertical col-

umn (q4”,25pffu5); one in the u% O(v?) third vertical column

(d4” p2u®); and two on the u7 location on the horizontal

axis, linked to the third and fourth columns (Z/Qa?2 u” and

1/3(1?3 u’).

Looking at Fig. [II we can also see what information
could give a 7PN-level extension of our method (com-
pleted by a 6.5PN-level purely nonlocal dynamics). It
would: (i) provide a 7PN-level test of the 3PM dynamics
of Refs. |61, 162]; (ii) improve the knowledge of the 4PM
dynamics at the 7PN level; (iii) improve the kowledge
of the O(v!)-encoded local dynamics at the 5PM, 6PM,
7TPM and 8PM levels; but (iv) leave undetermined six
numerical coefficients encoding effects of the type

2 (uPp® 4 ulp* +up? +u®) + A (W p? +u®) . (10.60)

[In the p,-gauge all the powers of p have to be interpreted
as being powers of p,..] Note that the current lack of de-
termination of coefficients entering 12 and v? effects is
not a conceptual limitation of our method. It is rather
a technical limitation of the current development of SF
theory which cannot yet compute any genuine O(v?) ef-
fects. [See, however, [69] for significant progress towards
that goal.] The combination of our method with a 2SF-
level technology would allow one to cover, in principle,
many more dots in the plane of Fig. [1l



XI. CONCLUDING REMARKS

We have extended the application of a new ap-
proach to binary dynamics [I] to the 6PN level. Our
approach has allowed us to derive an almost com-
plete expression for the 6PN-level action, given by the
sum of a 4PN+5PN+5.5PN+6PN nonlocal action, Egs.
@1),@22), @23), and of a local one [ pdq — HliJgi%Pth.
We succeeded in determining the full functional structure

<6PN . : . .
of ngf ¢ (which contains 151 numerical coefficients), ex-

cept for four coefficients: three v3-level coefficients, and
one vt-level one (when counting powers of v in the un-
rescaled Hamiltonian H = Mc? + ...). One of the cru-
cial tools in our derivation of HIES?N has been the com-
putation of the Detweiler-Barack-Sago redshift invariant
along eccentric orbits in a Schwarzschild spacetime, up to
the eight power of the eccentricity and the 9.5-th power
of the inverse semi-latus rectum. This computation alone
has been the most time-consuming element of our work,
and has extended the frontier of analytical gravitational
self-force theory.

We have expressed our final results in five different
gauge-invariant ways: (i) in terms of the PM-expanded
scattering angle (see Eqs. (I6), (ZI8) and discussion
in the text ); (ii) in terms of the PN-expanded radial
action (see Egs. (@2), [@1), with results summarized in
Table [XIV)); (iii) in terms of the p,-gauge effective EOB
Hamiltonian (see Eqgs. ([G.I)-([6.7) as well as the summary
in Table [X)); (iv) in terms of the H-type energy-gauge
effective EOB Hamiltonian (see the defining relation in
Eq. (Z4) and results listed in Table [XI)); and also, (v)
in terms of the irreducible building blocks parametrizing
a general PM dynamics (see Sec. [Xl and notably Egs.
([I033) and ([I0.59)).

Among our new results, let us emphasize: (1) the ob-
tention of the 6PN-accurate O(G?) scattering angle x3
(see notably Eq. (83]), in agreement with the PM com-
putation of Refs. [61,162] (and with the PN computations
of Refs. [63,164]); (2) the obtention (without any unde-
termined parameters) of the 6PN-accurate, 4PM (O(G*))
local scattering angle x'°°" (see notably Eq. (®4)); (3)
the obtention of the linear-in-v contributions to the 6PN-
accurate b5PM, 6PM and 7PM local scattering angles
Xgoc’f, xgoc’f, xl7°C’f (see Egs. ([B2)); (4) the derivation
of the explicit link between the PM-expanded scattering
angle and the PM-expanded EOB @ potential (in energy
gauge) at the 5PM, 6PM and 7PM levels. We leave to
future work the derivation of the nonlocal contributions
to the scattering angle, and the associated explicit deter-
mination of the tuned flexibility factor f(¢) used here to
define the local part of the dynamics.

Finally, in Sec. [X] we have discussed the synergis-
tic interplay between four approaches to binary dynam-
ics: post-Minkowskian, effective-one-body, gravitational
self-force, and post-Newtonian (see Fig. [). Effective-
one-body theory offers an efficient framework for com-
bining gauge-invariant information coming from post-
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Newtonian, post-Minkowskian, and gravitational self-
force results. It has also allowed to discover the hidden
simplicity of binary dynamics through a deeper under-
standing of the mass-ratio dependence of perturbative

results (see, notably Eqgs. (@.2), (@3)) and ([@4), and the
discussion of Sec. [X]).
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Appendix A: Higher post-Minkowskian links
between the scattering angle and the E-type
energy-gauge EOB Q¥ potential.

The terms on the right-hand side of Eq. (I0.37) read

1
Schw _
X5 (’Y) - 5(72 _ 1)5/2(

+ 67207° — 33607* + 6307% — 21), (A1)

1792419 — 5760~°

and

Klgz,93,q4] = qg(V)((jJiTi/L

- [2(13(7)(72 -1l
2 (6475 — 120¢* + 602 — 5)

3 (12 —1)3/2 a2(7)
(8" -8 +1)

—QQ3(V)W

g T (A2)

The explicit form of Eqs. (I0:42) (where the 4PM-level
term g4 3(7) is considered as being known) is

g5,1(7) = %QB,Z(V)JF%(M,B(V)

+;(1116078 — 2019345
16(72 — 1)3
+137 — 232372 + 11603~%)
9(5v* — 1) (4 -1)
353(7) = —— 5 B207) — T wus3(7)-
0= pr #e) T ey et
(A3)

At 6PM, the explicit links between the irreducible
blocks of the scattering angle and the corresponding
building blocks of the QF potential read

15
x6,3(7) = *1—287(*21 +1747% — 3459") g3 2(7)
15
—@w(—lo + 4872 — 709" qa,3(v)
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—;—Zﬂ(f —1)%g6,3(7) —W(q +572)(603307° — 114477~
7117587(79 + 13572 — 6757* + 112579) +65651;4 —127737% 4 669) ,

X65(7) = —2om(r? = 1g05(7) (agy X0 = 5T —9)

At 7TPM, we have the analogous links: +%q372(7)(2574 — 102+ 1)(y* - 1)'/?

6
4 e 1 4 2 2 1 1/2
X7,2('7) — _Q§,2(7)(3472 _ 9)(72 _ 1)1/2 +5Q473('}/)( 707 797 + 9)(7 )

5
2
1 = 4 2 2 1 2 1 1/2
+ ST (4+2685+° — 76927 +5a5.4(1)(997" — 6297 +13)(7" — 1)
7 - 8
S 2 1V5/2
+46267* — 69292 — 27)gs.2(7) Fara(v) (" = )77,
6 8
—a13(1) (347 = 9)(=1+59°)(y* 1)/ x76(7) = —zare(M(* =172 (A5)
2
+EQ5,2(7)(9974 —629° +13)(v* - 1)'/?
8
73q772(7)(72 —1)%/2 The analogous 8PM links read:
945
xs3(7) = T57(7° = D(=1+57")a55(7)
+ 7 ﬁ(ﬁ —1)(47y* = 11)qa3(y) + L(—mowy? +926987" + 889 + 40485+% — 1390807%) | ¢3.2(7)
64 ’ 2048(y2 - 1) ’
35
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105 9 9 9
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35 4 2 2 35 2 3
+ 53377 — 19+ (v = Daes(v) — o m(v” —1)as,3(7)
945
— e (—1+ 57%)%(1857° — 3359~* + 16277* — 85
945, o 9 9 35 9 9
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2835 105
+ mo5 (F1+57)%(7 = Daas(y) + 15 (4777 = 1)(=1457°)(v* = 1)gs,4(7)
35 35
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35
xs,7(7) = —Wa(VQ —1)°gs7(7). (A6)
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