HardwareX 15 (2023) e00461

Contents lists available at ScienceDirect

HardwareX

journal homepage: www.elsevier.com/locate/ohx

Check for

Enerduino-pro: Smart meter led probe using Arduino wisied

Francesco Potorti, Davide La Rosa, Filippo Palumbo *

Consiglio Nazionale delle Ricerche, Istituto di Scienza e Tecnologie dell’Informazione, via Giuseppe Moruzzi, 1, 56125 Pisa, Italy

ARTICLE INFO ABSTRACT

Keywords: Non-intrusive load monitoring of domestic appliances has received steady interest in the last
Arduino twenty years, first because of interest from energy companies interested in usage statistics for
Energy meter power balancing and, more recently, in order to assist users in tuning their habits for reduced
NILM

power consumption. This has increased the need for accurate and economic methods of power
measurement that can be efficiently implemented on cheap and easy-to-install platforms. To this
end, we present a cheap and efficient device based on Arduino to monitor the usage of domestic
appliances in real-time: Enerduino-pro. The design uses low-cost easy-to-assemble open-source
electronic components and consists of four main parts: an Arduino UNO microcontroller, one
photoresistor to measure instantaneous power absorption plus one optional additional one to
measure reactive power, a WiFi shield, and an LED (for debugging purposes only). We describe
the device, complete with open software and hardware specifications, and different use cases
with proof-of-concept solutions.

Reactive power

Specifications table

Hardware name Enerduino-pro

Subject area « Engineering and material science
« Educational tools and open source alternatives to existing infrastructure
« General

Hardware type « Measuring physical properties and in-lab sensors

« Field measurements and sensors
« Electrical engineering and computer science

Open source license GNU General Public License (GPL) v3.0
Cost of hardware <508
Source file repository 10.5281/zenodo.6903052

1. Hardware in context

A household smart meter is an electronic device that records electrical energy consumption in regular intervals and makes that
information available to the provider by means of a network interface. Aside from measuring the total energy consumption for
billing purpose, it has the potential for load monitoring of domestic appliances, a field that has received steady interest in the last
twenty years, both due to the attention by energy companies interested in using statistics for power balancing and, more recently,
in assisting users in tuning their habits for reduced power consumption.

There are many do-it-yourself (DIY) projects and commercial products out there which are meant to produce a real-time
measurement of a household power consumption. Existing solutions often require a common communication infrastructure among
the household appliances and, whereas new appliances could be manufactured with the necessary communication and control

* Corresponding author.
E-mail address: Potorti@isti.cnr.it (F. Potorti).

https://doi.org/10.1016/j.0hx.2023.e00461

Received 25 July 2022; Received in revised form 19 April 2023; Accepted 30 July 2023

Available online 9 August 2023

2468-0672/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.elsevier.com/locate/ohx
http://www.elsevier.com/locate/ohx
http://10.5281/zenodo.6903052
mailto:Potorti@isti.cnr.it
https://doi.org/10.1016/j.ohx.2023.e00461
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ohx.2023.e00461&domain=pdf
https://doi.org/10.1016/j.ohx.2023.e00461
http://creativecommons.org/licenses/by-nc-nd/4.0/

F. Potorti et al. HardwareX 15 (2023) e00461

Table 1
Comparison of existing solutions based on their key features: type of system (commercial or DIY), sensor used (current transformer or blinks reading), accuracy,
reading rate, data display method, open hardware, open software, APIL

Type Sensor Accuracy Reading Data display Open Open Open
rate HwW SW API
TED Commercial CT +2% over 3 A, N/A External Energy N N N
N/A below Control Center
EnergyCloud Commercial Blinks ~1% 15 s Web Portal N N
ECM-1240 Commercial CT/Blinks N/A/~1% 1 Wh Executable N N Y
dashboard
Wattvision Commercial Blinks ~1% 7.5s Web Portal
thediylife DIY CT apparent 2s LCD Screen Y Y
power
Enerduino DIY Blinks ~1% 1 Wh SD card or XBee Y Y Y
module
Enerduino-pro DIY Blinks ~1% 1 Wh Embedded HTTP Y Y Y

server

systems, existing appliances usually do not provide this kind of capability. This aspect leads to the need for a non-intrusive, low
cost and easy-to-install electrical end-use appliance load monitoring system for buildings.

To this end, commercially available off-the-shelf sensors exist on the market, such as The Energy Detective (TED) [1],
EnergyCloud by Blue Line Innovations [2], Brultech ECM-1240 Energy Monitor [3], and Wattvision [4]. These solutions use two
main hardware approaches. The first one is based on current transformers (CTs) clamped around the main incoming wires from the
utility service provider inside the breaker panel. The second one is based on a smart meter front-mounted LED that reads electricity
usage in real-time via optical readers and transmits via a cellular network or on a powerline to a paired receiving device in the
home. These devices typically provide information at a sampling rate of up to 1 Hz and a sensitivity of up to 1 Watt [5].

Following the latter approach, we present an inexpensive hardware solution based on optical sensors applied to the smart meter.
It is called Enerduino-pro [6] and its use has been presented in [7] from a software point of view, as a non-intrusive load monitoring
(NILM) application.

We chose to implement a smart meter LED probe also because using such an inexpensive device makes both the installation and
maintenance easier. The proposed solution is based on an open source and open hardware system, built upon the Arduino platform.
We embrace the open source and hardware principles in order to offer a system easily modifiable to suit the user needs and to
be used as the basis for new products. Many authors and developers in the makers community based their work on the Arduino
platform to perform appliance load monitoring by means of standalone power meter plugs [8,9], wireless sensor networks [10], and
dedicated microcontrollers [11], offering different levels of connectivity [12]. We focused on the non-intrusiveness of the system
developing a single device easy to install and embedding a light web server in order to avoid dedicated software infrastructures to
get real-time information about the energy consumption and the usage of domestic appliances.

In order to better contextualise and compare our solution to the state of the art both in commercial products and in the
maker/scientific community, we analyze different key features provided by the most promising systems in the field. We only consider
systems that can be used with a sensor put at the energy meter, like the ones proposed by thediylife [13] and Enerduino [14] in
the makers community and we exclude multi-sensor systems using a number of radio-equipped plugs.

In Table 1, we list some representative systems and distinguish them by a list of several features, namely: type of system
(commercial or DIY), sensor used (current transformer or blinks reading), accuracy, reading rate, data visualisation, open hardware,
software and APL.

From Table 1 we can observe the following key features of the considered systems with respect to Enerduino-pro:

» The power sensor: The main difference among systems is the sensor used to measure the power. Most systems rely on
measuring the current flowing through the energy meter using a current transformer. This solution is simple and independent
of the specific energy meter model, the only difficulty being to dealing with the live wire running out of the energy meter.
Sampling the current allows one to compute the effective current flowing through the wire and obtain a rough estimate of the
power by multiplying it by 230 V (in Europe). There is a basic flaw to this simple system: it does not account for non-resistive
loads, so in general it overestimates the used power, and the error may be significant for all appliances using some sort of
electric engines such as washing machines, dishwashers, heat pumps (including refrigerators and air conditioners), and all
appliances including a transformer, the main example being microwave ovens. Moreover, small electronic appliances produce
big errors because of their highly non linear current absorption with very high harmonic content. This means that the power
collectively used by all small devices (power adapters, non-incandescent light bulbs and generally all electronic devices) is
significantly overestimated. Add to this that some devices only measure peak current absorption, rather than the effective
current.

To overcome this limitation, some systems sense not only current, but voltage too. However, this requires turning off the
main power and connecting to both the neuter and live wires, so installation becomes slightly more difficult. By sampling

F. Potorti et al. HardwareX 15 (2023) e00461

both voltage and current, it is in principle possible to obtain a very accurate power reading if the phase error of the CT is
known. In practice, an Arduino has two significant limitations: sampling frequency and sampling resolution. At minimum (8 bit)
resolution, an Arduino Uno can get many thousands samples per second, but this requires almost the whole available processing
power. In practice, the systems that we have analyzed read 100-300 samples per second and use maximum resolution (10
bits). The reason for using max resolution and slowing down the sampling rate is that the CT has a usually higher-than-
necessary range (typical ranges are from 50 A to 400 A) meaning that most of the resolution is lost and the quantisation error
is significant. Add the digital-to-analog converter inner error, the CT measurement error, the usually unknown CT phase error
and the error on the voltage transformer, and you easily get few percent errors on the higher part of the scale, typically above
1500 W. What happens on the lower part is unknown and errors easily exceed 10% and more for low power absorption.
Sure, if you are mostly interested in the overall power, accuracy in the low range is not much important. But if you are curious
about how different appliances behave, or what is the effect of removing an appliance or using it in a different way, you will
want a much higher accuracy. Some systems overcome these limitations completely by reading the energy meter LEDs, which
blink every 1 Wh. This means one blink per second at 3600 W absorption, with an excellent accuracy (the same as the energy
counter’s, which is typically below 2%). One downside is that the measurement is slow at low absorption, for example one
blink every 18 s at 200 W, but the excellent accuracy remains the same.

Active and reactive power: Systems reading both voltage and current and systems reading the blink on power meters
equipped with two LEDs can in principle measure both active and reactive power. In practice, we have found no system
other than Enerduino-pro which reads reactive power.

Standard real-time external reading: Enerduino-pro incorporates a minuscule HTTP server which can connect over the
Internet and answer standard Ajax queries, so an external system can be used to get all the raw readings, which can be stored
offline. Other systems provide a limited interface for reading some specific readings, others only speak with a proprietary
server, others only show the current reading on a display.

Reading resolution: Data provided by Enerduino-pro have a resolution of 1 Wh, which is dictated by the rate of the energy
meter’s blinks; this is equivalent to a reading every 15 s at 240 W absorption, or a reading every second at 3600 W. Most
other systems give a reading at a fixed rate, for example every 15 s.

As summarised in Table 1, Enerduino-pro exhibits a unique combination of features that makes it stand out from several points
of view. We consider three: researcher/hacker, maker, and commercial producer.

From the researcher/hacker point of view, Enerduino-pro exploits the high measuring accuracy of an energy meter to produce
highly reliable and detailed data which can be read and stored offline with minimal effort. The possibility of storing both active
and reactive power measurements opens the view on an interesting scenario from the hacker’s point of view. From the scientist’s
point of view, it opens the possibility of storing high-quality, complete data for NILM research.

From the maker’s point of view, Furthermore, even the least experienced maker will appreciate how easy it is to connect the
single, unpolarised sensor used by Enerduino-pro in the simplest case of reading just the active power. Photoresistors are cheap,
widely available and error-proof.

From the commercial producer’s point of view, Enerduino-pro can be turned into a commercial product thanks to its free software
license, ease of installation, and cheap hardware. It can export an open and easily-accessible interface for the sophisticated enthusiast.
Creating a stand for the photoresistor (or photoresistors) is comparatively easy for many flavors of energy meters. A unique feature
is that installation is easy and not critical even if the stand is badly aligned with the LED or subject to strong and variable ambient
light noise.

As a final note, the Arduino UNO hardware platform has been chosen some years ago, but we think it is still relevant both for
historical reasons and because there is not such a big difference between the presented system and more recent ones using updated
hardware.

2. Hardware description

The smart meter developed by Enel is currently deployed in about 32 million households in Italy (Fig. 1(a)). It has also been
chosen by ENDESA, who has deployed it in 13 million households as of 2018, 1 million in Romania and started pilots in Chile,
Brasil, Colombia, Peru, Argentina starting in 2015 [15]. It provides real-time information regarding the active and reactive power
consumption by means of two LEDs blinking one time per Wh and one time per Varh consumed respectively. When there is no
consumption in the active or reactive power for more than twenty minutes, the corresponding LED remains on until the next
activation. Enerduino-pro station gathers this information by means of two photoresistors (Fig. 1(b)).

The two photoresistors are connected to the analog inputs of an Arduino board in order to detect the LEDs blinking (Fig. 2). The
system allows the use of different kinds of photoresistors with resistance ranging from 2 kQ to 20 M in full light and full dark
conditions and response time ranging from 5 ms to 30 ms, depending on the model.

Regarding the connectivity capabilities, the Arduino WiFi shield with an external WiFi antenna was the only way to add WiFi,
back when this code was developed. Unfortunately, the library supporting it and apparently the hardware itself are not reliable.
There are some software tricks in the code to make it more stable, like not writing more than a given number of bytes a time and the
like, which were found by trial and error, as shown in the comments. And only one TCP connection at a time could be used, even
if the library claims to allow for more. The software tricks increased the stability enough for the board to be usable for establishing
an outgoing HTTP connection to read the network clock and for listening to incoming connection on the web server. However, a

F. Potorti et al. HardwareX 15 (2023) e00461

(a) The Enel smart meter. (b) The Enerduino-pro station.

Fig. 1. The proposed solution.

USED FOR DEBUG
AND VALIDATION

gpe mpmap e e e e EXTERNAL
" oicma pwm- : Bl WIFIANTENNA

WIFI
Shield

DISCONNECTED PINS
ACTIVE POWER

L ——

REACTIVE POWER (optional)

PHOTORESISTORS

Fig. 2. Diagram of the electrical connections.

few times a day the WiFi board freezes without any apparent reason. Fortunately, this situation can be detected by software. Once
the web server task starts, it calls a WiFi.begin() to connect to the local WiFi network. Every time the server task loops, it checks
that the board is still connected and, if it has disconnected, resets it. Resetting the WiFi board requires a small hardware trick. In
order to speed up the process and most importantly to retain the last readings which are in the readings ring buffer, the main board
should not be reset, only the WiFi board. But since the reset pins of both boards are connected together, resetting one and not the
other requires, before mounting the shield on the main board, its reset pin to be bent so it does not connect to the main board reset
(see Fig. 2). Instead, it is connected to the X output of the main board, which can then reset it via software.

F. Potorti et al. HardwareX 15 (2023) e00461

Loop
Libraries import S \
and variables : ST :
initialization : Main Task A /Web Server Task h |
i i
: Reset watchdog !
Setup i !
1
! 1
’ 1
Disable watchdog | Toggle onboard :
: LED for heartbeat :
! 1
1 e
Reset WiFi shield [Is Wi tmeout 25 >{ Reset WiFi shield :
: expired? 1
i i
1 L
Set pin modes i Handle sena(ljlnput :
I commands I
1
i i
Check WiFi shield | Perform ADC Reported i
status | sampling |
| separately |
1 1
Start Web Server | Prepare ADC for |
task : the next sensor |
i i
1 1
Enable watchdog : Compute acquired :
| signal correlation |
1
i i
| Has a blink !
1 been detected? |
1
. i
! Build the readi !
! o ° r.e.a ng Discard the |
| and push it in the - |
| acquisition
i queue :
1
AN AN |
|)
N L l______ -
[

Fig. 3. Overview of the main software operations.

The last piece of hardware composing the Enerduino-pro station is the LED used for debugging purposes. It has a typical forward
voltage of 2.0 V and a rated forward current of 20 mA. It simulates the smart meter blinking in order to develop and test smart
home application without a real power consumption.

3. Software description

The Enerduino-pro software was developed with the Arduino IDE [16] and consists of three source files:

« enerduino.h: header file containing constants initialisation, data types and the definition of the support classes
» enerduino.ino: primary source file containing all the sketch logic, including the setup and main loop functions
» yield.patch: patch file containing the modifications needed to allow the used libraries to work with the cooperative scheduler

The code uses the Streaming [17], WiFi [18] and SchedulerARMAVR [19] libraries, the latter being a porting on the AVR
processor of the standard Scheduler library. The overall software logic is shown in Fig. 3. In the setup phase, while the watchdog is
disabled, the WiFi shield is reset, the used pins are set to the correct modes (input for the sensor pins and output for the reset and
LED pins), the WiFi shield is then queried to check the status and eventually the web server task is initialised in the scheduler. The
main loop splits the execution among two tasks, which are very different from a real-time point of view, by means of a cooperative
multitasking scheduler. One is the sensor reading task, which has strict deadlines and relatively long uninterruptible stretches of
code. The other one is the web server task, whose deadlines are much longer and can generally be interrupted very frequently.

Managing two such tasks in the simple main loop of Arduino would have been a nightmare, leading to code both unreadable
and very difficult to debug, with an enormous number of nested states. On the other hand, resorting to a true real-time multitasking
kernel would have meant to give up most of the convenient features of the Arduino development environment. Fortunately, here
comes the Arduino Scheduler library, which implements a trivial but small and efficient cooperative scheduler, and Fabrice Oudert
who ported it on the AVR processor [20]. The general idea is that the sensor task does its important work without interruptions
and, if the next deadline is not too close, it yields (by calling the yield() scheduler function) to the web server task. The web
server task, on the other hand, yields to the scheduler task very frequently and in a transparent way: very few yield() calls are
to be seen in the code, because the great majority is hidden inside the patched core libraries. In fact, the provided yield.patch file

F. Potorti et al. HardwareX 15 (2023) e00461

/Web Server Task h

Is WiFi Begin WiFi
initialized? connection
- NO N
Is WiFi connected? Reset WiFi shield
YES
YES
Initialize Web
Server on port 80
Try to fetch date
and time from

remote server

x|

Is time synchronized? Serve Web Connection h
YES
Is a client connected? (ES Read request
e Is a GET
request?
EC YES
Request == -
"/ajaxReq" Request ==
Set 5s timeout Return buffered Return debug
readings web page
. J
~ J

Fig. 4. Operations of the Web Server task.

simply adds a yield() call inside all the polling loops that are involved into blocking calls, like for example Stream: : timedRead,
analogRead, UARTClass: :flush, HardwareSerial: :write. Validation and tuning of this approach is done through a
series of debug controls that check delayed deadlines, lost readings and such, using a procedure detailed in the “Scheduling policy”
section of the code.

The web server, whose logic is shown in Fig. 4, can answer two requests: ¢ ‘GET /’’ and ¢ ‘GET /ajaxReq’’; it discards
any other request. The first one serves a 1912-bytes page embedded into the source code as a string that displays a dynamically
updated table, only useful for debugging, as the server cannot serve simultaneous requests due to bugs in the WiFi shield library.
The second one is used by an external requester for gathering the readings. The normal request rate is once every 3 to 6 s, which
is enough to keep the 64-entries FIFO reading buffer from overflowing, even accounting for the occasional network problem and
high blinking rates. An interesting aspect concerns the stream operator “<<” used in the code. It is overloaded to manage buffering
on the data sent by the web server to the TCP stream managed by the WiFi shield library. The main purpose of this overload is to
provide buffering, which is necessary for chunked HTTP output. The chunked output allows for greater efficiency on the client side,
but here there is a much more compelling reason: sending a limited and well-known number of bytes at a time to the WiFi library,
which greatly improves stability. Overloading also allows for some more facilities: unsigned long is converted to ASCII decimal with
fixed width; unsigned long long is converted to ASCII hex representation, “endl” is CR LF according to HTTP, and the special const
“clear” flushes the output buffer. The XML returned from the ¢ ‘GET /ajaxReq’’ contains all the readings stored in the buffer
since the last request. Every reading is composed of several elements as reported in Table 2.

Depending on the actual power consumption, the number and type of readings packed in the reply message can vary; to highlight
this difference we reported two samples of server responses: one during low power consumption of 435 W (Fig. 5) and another during
high power consumption of 3 kW (Fig. 6). In the first reply, the second and third blocks contain no readings (no P0/T0 or P1/T1
tags) because the absorbed power is so low that no blinking happens between subsequent Ajax requests. In the second case, all the
blocks report multiple PO/TO power readings: this happens because power absorption is relatively high. In this situation we have

F. Potorti et al. HardwareX 15 (2023) e00461

Table 2
Types and meaning of the possible XML elements returned by the Ajax request, as shown in Figs. 5 and
6.

Tag Description

<ST> First ajax request reading after boot, uptime and debug statistics are reset

<_> Readings block

<P0O> Active power in watt

<TO> Time of active power reading in milliseconds since the Unix epoch

<P1> Reactive power in watt

<T1> Time of reactive power reading in milliseconds since the Unix epoch

<T> Time of reading

<UT> Time in seconds

<Ws> Debug: unused stack of the web server task in bytes

<DC> Debug: number of late readings while sensor task was working

<DY> Debug: number of late readings while sensor task was yielding

<RL> Debug: cumulative sensor readings discarded because the reading ring overflowed

about 3 kW, which means almost one blink per second for the active power LED (AO0). The last block contains also a P1/T1 reading
which is related to the reactive power.

4. Design files

For this paper, all the required source files are available and maintained in the file repository of Zenodo: https://doi.org/10.
5281/zen0d0.6903052.

Design files summary

Design filename File type Open source license Location of the file

Diagram of the electrical connections SVG figure Creative Commons Attribution 4.0 Available with article (Fig. 2)
enerduino.h Header source GPLv3 Source File Repository
enerduino.ino INO source GPLv3 Source File Repository
yield.patch Patch GPLv3 Source File Repository

5. Bill of materials
The costs of the electronic system components listed in Section 2 was calculated considering the price difference between vendors.

Bill of materials summary

Component Qty. Unit cost Total cost Source of materials Material type
Arduino Uno 1 $27.95 $27.95 https://www.sparkfun.com/products/11021 Electronics
Photoresistor 2 $1.60 $3.20 https://www.sparkfun.com/products/9088 Electronics
WiFi Shield 1 $15 $15 https://www.sparkfun.com/products/retired /11287 Electronics
WiFi Antenna 1 $2.95 $2.95 https://www.sparkfun.com/products/15877 Electronics
LED 1 $0.45 $0.45 https://www.sparkfun.com/products/9590 Electronics

6. Build instructions

Building the system is quite an easy task since it requires to perform the few electrical connections shown in Fig. 2. Soldering is
not required. Before plugging the WiFi shield on top of the Arduino Uno board, one should ensure the two pins related to the RESET
signal are disconnected (by simply bending or cutting them) among the two boards. This is necessary to prevent the reset signal sent
to the WiFi shield from resetting also the Arduino board. To connect the electrical components (photoresistors, resistor and LED)
to the board, jumper wires are used, while the external WiFi antenna is connected to the WiFi shield through an U.FL miniature RF
connector. The final assembled system for normal usage (no debug/validation) and before being mounted on the energy meter, is
shown in Fig. 7. The external LED and resistor are required only if the system is used for test or validation. To prepare the code for
the uploading to the Arduino board, one should first apply the patch file by running this command from the arduino base folder:
patch -s -p0 < yield.patch

Next, one should connect the Arduino Uno to the PC with a USB cable, open the source code with the Arduino IDE and under
Tools >Boards select Arduino Uno. Under Tools >Port make sure the correct COM is selected. Set the correct WiFi network SSID in
the code by editing the variable ssid. If the network also requires a password, one can add it in the WiFi.begin() call. The
program can then be uploaded by pressing the corresponding button on the IDE.

During the assembly operations, the only safety concern regards the possibility of short-circuiting the boards due to mistakes in
the pin connections. That might cause damages to the main board or to the shield when the power supply is provided.

https://doi.org/10.5281/zenodo.6903052
https://doi.org/10.5281/zenodo.6903052
https://doi.org/10.5281/zenodo.6903052
https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/9088
https://www.sparkfun.com/products/retired/11287
https://www.sparkfun.com/products/15877
https://www.sparkfun.com/products/9590

F. Potorti et al. HardwareX 15 (2023) e00461

<?xml version='1.0'?>

<>
<ST></ST>
<P0>435</P0>
<TO>0Xx0143E3131D61</TO>
<T>0X0143E3133ECO</T>
<UT>13</UT>
<WS>35</WS>
<DC>36</DC>
<DY>4</DY>
<RL>0</RL>

</ >

<?xml version='1.0'?>

<>
<T>0X0143E3134C2E</T>
<UT>16</UT>
<WS>35</WS>
<DC>36</DC>
<DY>8</DY>
<RL>0</RL>

</ >

<?xml version='1.0'?>

<>
<T>0X0143E31353BF</T>
<UT>18</UT>
<WS>35</WS>
<DC>36</DC>
<DY>8</DY>
<RL>0</RL>

</ >

<?xml version='1.0'?>

<>
<P0>435</P0>
<TO>0Xx0143E3133DBB</T0O>
<T>0X0143E3135FFC</T>
<UT>22</UT>
<WS>19</WS>
<DC>36</DC>
<DY>8</DY>
<RL>0</RL>

</ >

<?xml version='1.0'?>

<>
<T>0Xx0143E3136790</T>
<UT>24</UT>
<WS>19</WS>
<DC>36</DC>
<DY>8</DY>
<RL>0</RL>

</ >

<?xml version='1.0'?>

<>
<T>0X0143E31373EF</T>
<UT>27</UT>
<WS>19</WS>
<DC>36</DC>
<DY>8</DY>
<RL>0</RL>

</ >

Fig. 5. Example of a reply from the web server in a low power consumption (435 W) situation. The tags used in the XML code are described in Table 2.

7. Operation instructions

There are two ways in which the system can be operated: normal or in debug/validation configuration.

In the normal configuration, the system is installed in the proximity of the energy meter and the photoresistors are fixed in front
of the energy meter LEDs by applying a putty-like adhesive (Fig. 1(b)). Once installed, plug the power supply and wait until the
Arduino connects to the WiFi network. When it successfully connects to the network, the onboard LED goes from a slow blinking
pattern (2 s) to a fast blinking pattern (0.5 s). At this point the web server is reachable at the IP address assigned to the Arduino
by the WiFi router and the queries described in Section 3 can be performed from any device connected to the same network.

F. Potorti et al.

<?xml version='1.0'?>

HardwareX 15 (2023) e00461

<TO>0x0143E04A0901</TO>

<> <T>0x0143EOQ4AQFOC</T>
<ST></ST> <UT>25</UT>
<P0>2922</P0O> <WS>19</WS>
<TO>0x0143E049D8E2</T0O> <DC>36</DC>
<P0>2927</P0O> <DY>8</DY>
<TO>0x0143E049DDB2</T0O> <RL>0</RL>
<T>0x0143E049E611</T> </_>
<UT>15</UT> <?xml version='1.0'?>
<WS>19</WS> <>
<DC>36</DC> <P0>2882</P0>
<DY>8</DY> <TO>0x0143EQ4AODDB</T0O>
<RL>0</RL> <P0>2899</P0O>
</_> <TO>0x0143E04A12BC</TO>
<?xml version='1.0'?> <T>0x0143E04A1B4A</T>
<> <UT>28</UT>
<P0>2946</P0> <WS>19</WS>
<TO>0x0143E049E280</T0O> <DC>36</DC>
<P0>2944</P0O> <DY>8</DY>
<TO>0x0143EOQ49E746</T0O> <RL>0</RL>
<P0>2927</P0O> </_>
<TO>0x0143EOQ49ECOD</TO> <?xml version='1.0'?>
<T>0x0143E049F37C</T> <_>
<UT>18</UT> <P1>247</P1>
<WS>19</WS> <T1>0x0143EQ49E346</T1>
<DC>36</DC> <P0>2920</P0O>
<DY>8</DY> <TO>0x0143E04A1796</T0O>
<RL>0</RL> <P0>2915</P0O>
</_> <TO>0x0143E04A1C67</TO>
<?xml version='1.0'?> <T>0x0143E04A22EB</T>
< > <UT>30</UT>
<P0>2910</P0O> <WS>19</WS>
<TO>0x0143E049FODB</TO> <DC>36</DC>
<P0>2915</P0O> <DY>8</DY>
<TO>0x0143E049F5BO</TO> <RL>0</RL>
<T>0x0143E049FB10</T> </_>
<UT>20</UT>
<WS>19</WS>
<DC>36</DC>
<DY>8</DY>
<RL>0</RL>
</_>
<?xml version='1.0'?>
<>
<P0>2908</P0O>
<TO>0x0143EO49FA83</T0O>
<P0>2922</P0O>
<TO>0x0143E049FF59</T0O>
<T>0x0143EO4AQ775</T>
<UT>23</UT>
<WS>19</WS>
<DC>36</DC>
<DY>8</DY>
<RL>0</RL>
</ >
<?xml version='1.0'?>
<>
<P0>2903</P0O>
<TO>0x0143E04A0429</T0O>
<P0>2899</P0O>

Fig. 6. Example of a reply from the web server in a high power consumption (3 kW) situation. The tags used in the XML code are described in Table 2.

In the debug/validation configuration the board is not installed on the energy meter, it is instead connected to a host PC through
a USB cable and the external debug LED is closely pointed towards one of the photoresistors. When the board is connected to a
PC, at startup it detects the presence of a USB serial interface and enters debug mode. In this configuration the external debug LED
blinks every 1.8 s, simulating a power consumption of 2 kW. In debug mode, the serial interface is initialised as well, messages are
occasionally printed on the console and some commands, triggered by pressing a key on the keyboard, are accepted. The commands
are:

F. Potorti et al. HardwareX 15 (2023) e00461

Fig. 7. Fully assembled system ready to be installed on the energy meter.

‘m’ reset readings and statistics

‘r’ go into reading state and proceed to normal loop

‘i’ stop the reading task, do not yield to the serve task

‘© blink the external debug LED for 20 ms, if the debug LED option is active

‘F’ switch the external debug LED on, if the debug LED development option is active
‘d’ print statistics

‘D’ as above, plus print correlator prototypes for all correlators

‘y’ force yield to the server task

‘R’ reset the board, restart from scratch

These commands allow to test different functionalities of the software and simulate several power consumption conditions; for
instance by pressing ‘f” once per second, we can simulate 3600 W of power absorption.

8. Validation and characterisation

The core functionality of Enerduino-pro system is its capability of detecting the blinks of a generic smart meter installed in
private buildings. The blink detection allows us to have a fine-grained information about the overall power consumption of the
building and from it the consumption of specific appliances in use.

8.1. Blink detection

Blink detection passes through three phases. In the first phase, every 2.5 ms, if the power of the signal recorded by the sensor in a
sliding window of 225 ms (equal to 90 periods of 2.5 ms) exceeds a small threshold (10% of the maximum ADC output), covariance
is computed respect to three prototype responses. Each response is a 20 ms rectangular blink passed through a one-pole filter with
time constants of 5, 12 and 30 ms in order to account for different photoresistors found on the market. The three prototypes allow
for a good match of photoresistors having response times in the range from 0 to 50 ms, and a reasonable match for possibly slower
devices.

In the second phase, for each prototype response, if covariance turns out to be positive, then correlation is computed. If correlation
exceeds a threshold of 0.5, then a blink has been detected.

In the third phase, the correlation is tracked and its maximum value is stored. An envelope detector is applied to guard against
cross-interference form the other blinking led. The envelope detector decays with a time constant of 128 blinks.

One key purpose of this project has been to make it very easy to use. In practice, this means mainly two things. First, it should
be easy to assemble, from which the choice of using a photoresistor as a sensor over a photodiode or a photoresistor. Second, it
should be robust in the face of photoresistor positioning.

A photoresistor is cheaper than a photodiode or a phototransistor, even if it can be argued that the price difference pales when
compared with the price of an Arduino board, so this is one reason for preferring a photoresistor, but not the main one. The main
reason is that photoresistors are not polarised, so they can be mounted in either direction: this makes it easier for non-expert makers
and completely removes one reason for bad assembling for anyone.

10

F. Potorti et al.

Response of photoresistor #2 to a 20 ms light impulse
Time constant is ~2.0 ms

HardwareX 15 (2023) e00461

Response of photoresistor #1 to a 20 ms light impulse
Time constant is ~18.0 ms

4r anmwwmnrmrmm‘ | - i
- ’ oY it N\
. 1
i \
3t 1 3r [\l\u 1
p
3 W 3 / .
S,l i >2f - i
L’\'\
g
™

T,
\ -
1 1 1F]

L‘\.
RN
‘\le
e
0 L I I e S| 0 I I 1 L
0 10 20 30 40 0 10 20 30 40
ms ms

(a) Sample photoresistor with response time less than 2 ms. (b) Sample photoresistor with response time of 18 ms.

Fig. 8. Response of two sample resistors perfectly aligned with a LED blinking a 20 ms pulse. Measures are taken with the ADC set to 256-bit resolution and
a resulting rate of about 5 kHz.

A perfect positioning of the light sensors would be to stick them just on front of the LEDs on the energy meter. This would
guarantee that the full light of the led hits the sensor and that ambient light has minimum influence on the reading, an ideal
situation which would require just a threshold reading in software, with a sampling rate twice as fast as the light pulse width. But
the idea was that one could build a simple wooden or plastic L-shaped stand to be put on the top of the energy meter, one leg of
the L on the top and the lower leg carrying two sensors to stand in front of the LEDs. This arrangement would allow for very simple
installation, with nothing sticking to the energy meter. The problem with this arrangement is that ambient light would disturb the
reading. Moreover, if the meter (as it happens in a condominium) is behind a glass door in the building entrance, the ambient light
could significantly and abruptly change whenever people turn on the lights.

To get rid of this problem, a threshold is not enough. One needs something that recognises the shape of the led light pulse: a
rectangle of a given length. Here is where the need for a correlator arises. However, once the shape of the pulse is measured to get
the length of the pulse, it turned out that the speed of the photoresistor is low, sometimes of the same order of magnitude of the
pulse length, depending on the photoresistor.

The data sheets of the PGM series, which are the most common on the market, indicate “response times” in the range of 20 to
40 ms. However, photoresistors are known to exhibit “light history” effects, and data sheets response times are apparently measured
after a long period of darkness [21], so probably the numbers on the data sheets are not the best way to characterise their behavior
when relatively frequent and strong pulses of light hit them.

Tests with photoresistors bought from different distributors showed that they behave like a low-pass one-pole filter with constants
up to 25 ms (see Figs. 8(a) and 8(b)) when reading light pulses. The measurements were taken at 5 kHz sample rate with 8-bit
resolution. The conclusion was that the correlator needs to account for the “smeared” rectangular shape, and be robust in the front
of sensors with different response times. The solution was to implement a rake correlator featuring three correlators with different
time constants set to 5, 12 and 30 ms and to consider a hit whenever one of the three ones gives a hit. At startup, the system
initialises three “prototypes”, that is three wave forms representing a 20 ms rectangular pulse passed through a one-pole low-pass
filter with constant a set to 5, 12 and 30 ms respectively.

The rake correlator uses fixed-point arithmetics. Using floating point is slower and requires more memory due to the floating
point library. While the effort required to write a correlator in fixed-point arithmetic was not negligible, it was necessary to fit inside
the small Arduino Uno memory and for more predictable run time. Figs. 9(a) and 9(b) show the output of a single correlator shifted
back in time to be superimposed over the LED readings with respectively a fast and a slow photoresistor. Note that the ambient
light was set to be intentionally far from ideal, as the max and min illuminations are quite far from the values of about 0 and 4 V
which are visible in Figs. 8(a) and 8(b), whose measurement were taken in ideal conditions. The luminosity pollution however has
little effect on the correlators, as expected. In fact, their output peaks to values greater than 0.9, while the threshold for detecting
a blink is seto to 0.5, meaning that the rake correlator has a very high noise immunity, as intended.

8.2. Use case: Home monitoring of power usage and non-intrusive appliance load monitoring
Home monitoring of the overall power usage was used for a couple years in a pilot site to keep power usage under control, for
curiosity, for avoiding wasting power and for being warned when the current power was exceeding the provider’s limits and power

was going to be cut off, thanks to a beeping sound proportional to the probability of the power going off in the next minute.

11

F. Potorti et al.

fast photoresistor, fast prototype

HardwareX 15 (2023) e00461

slow photoresistor, slow prototype

1 T T T T T T 1 T T T T T T
4
08 0.8
3
0.6 0.6
s k)
2 > >
0.4 0.4
1
0.2 0.2
o 0 0 L
100 200 300 400 500 600 100 200 300 400 500 600
ms ms

(a) Time constants 5 ms (prototype) and 2 ms (pho-
toresistor).

(b) Time constants 12 ms (prototype) and 18 ms (pho-
toresistor).

Fig. 9. Correlator output superimposed over photoresistor’s response in realistic conditions with luminous noise and sloppy LED-photoresistor alignment for two
sample photoresistors and correlator prototypes of matching time constant.

The interface in Fig. 10 looks good on a tablet in the kitchen, when most of the high-power appliances were used (dish washing
machine, electrical oven, microwave oven). The gauge is updated in real time (in practice, every few seconds) and is easy to be
seen from afar. Tapping on it hides the graph and leaves only a big gauge on screen for even easier reading.

The core functionality of monitoring the power usage of building in such a fine-grained scale can be exploited in the more
complex scenario of NILM. Our solution infers the domestic electric consumption from the readings of the smart meter’s LED flashes
and, using a Finite State Machine (FSM), it recognises one common appliances, a microwave oven, used in domestic activities.
Smart meters are currently deployed on national scales, thus constituting an ideal data collection gateway for NILM solutions. The
capability of recognising in real-time the usage of domestic appliances becomes relevant in the more complex scenario of activity
recognition of people in smart environments. Domestic appliances, like ovens, washing machines, or hair dryers, are used in typical
Instrumental Activities of Daily Living (AIDL), like feeding, doing laundry, or personal care. Monitoring these tasks is key in Active
and Healthy Ageing scenarios to determine the level of independence of people, in particular older people living alone. The results
obtained with the proposed system both from a qualitative and quantitative point of view are detailed in [7]. As a proof-of-concept,
we tested the Enerduino-pro system to infer when the electrical microwave oven was on. The graphical interface puts an orange
marker M when the microwave oven is turned on, and a green M when it is turned off. Fig. 11 shows how the electric power
consumption changes when the microwave oven is turned on.

The FSM relies on the behavior of a standard microwave oven which tunes the emitted microwave power by using an on-off
switch with a period of 20 s and a duty cycle variable from about 5% to 100%. The FSM signals when the oven is switched on and
off by detecting a square wave with the said timing characteristics and showing amplitudes of 1500 W active power and 160 VAR
reactive power. The FSM is not flexible: 1500 W, 160 VAR and 20 s are hardwired constants, so while it can detect common
900-1000 W commercial microwaves based on mechanical switches, it is not of general use. In fact, it is intended as a proof of
concept showing that the detailed information provided by Enerduino-pro can in principle be used for NILM purposes, without the
need for the expensive, high-resolution measurements usually associated with NILM [7].

9. Portability

Since the original Arduino WiFi shield has been discontinued, we considered the alternative boards currently available on the
market for a potential porting of our solution. The Arduino Uno WiFi Rev2 and the Arduino Yin Rev2 are the platforms which
look most suitable for a future hardware upgrade of our system. Both of the boards are equipped with an onboard WiFi chipset
which means that no additional shields are required to connect to the network and no shield reset wiring and logic is needed either.
The pinout of both boards are the same as the one used for Enerduino-pro, so the A0 and Al inputs and the A2 output electrical
connections remain unchanged. Regarding the source code, the two main aspects that should be evaluated for a porting concern
the libraries related to the WiFi and web server management and the cooperative scheduler.

The Arduino Uno WiFi Rev2 (currently available for less than $55) is an ATmega4809 8-bit based board with a dedicated
NINA-W102 WiFi module from u-Blox and the ATECC608 crypto chip accelerator enabling SSL and OAuth functionalities. The
ATmega4809 has a completely new architecture with respect to the ATmega328P but thanks to the compatibility layer included in
the core, it is possible to run all the sketches made for the Arduino Uno’s ATmega328P microcontroller on this chip. To handle the
WiFi and the web server operations, a dedicated library called WiFiNINA [22] is available. Although the library is different, the

12

F. Potorti et al. HardwareX 15 (2023) e00461

ENEL (drag zooms, shift-drag pans, double click resets zoom level)
4500

4000
3500
3000

2500

2000

watt / VA

1500

1000

500 me}‘"‘L\wummJ‘J‘““\mw'\r}"’"LmJ’\nNM

0 I 1 11 n in !
29Jan 02:00 04:00 06:00 08:00 10:00 12:00 14:00

i

Choose a log file to plot among these and type its name, without extensions, here: {YYYY—M M-DD

2000 2500

Fig. 10. Web page showing actual power consumption.

eaee M ™
2000
<1500
>
i
=
® 1000
s
L —
500
g | S
0 13:23 13:24 13:25 13:26 13:27 13:28 13:29 13:30

Fig. 11. The detection of the microwave oven turned on and off.

functions provided to the client sketch are the same, making code adaptation unnecessary. Concerning the cooperative multitasking
library that we have used, in principle it should work on this board too since it is advertised to run on both ARM and AVR platforms.
Other more recent libraries might be used as an alternative, such as TaskScheduler [23] or CoopTask [24] but this would inevitably
require to rewrite the parts of the code related to the instantiation and scheduling of the tasks.

The Arduino Ytn Rev2 (currently available for less than $ 60) is an ATmega32U4 8-bit based board with and additional Atheros
AR9331 processor operating at 400 MHz which runs an embedded distribution of Linux called OpenWrt-Yin, based on OpenWrt.
It includes a full installation of Python 2.7 and additional modules can be installed with the opkg package manager. The system
configuration can be modified both through the command line or via a web page. Due to these features, this board is targeted to
satisfy more advanced requirements and computationally intensive applications, thus enabling a full-fledged solution, such as the
one illustrated in Section 8.2, where a web server with detailed power consumption charting and historical database is provided.

13

F. Potorti et al. HardwareX 15 (2023) e00461

Regarding the code, the web server task would be replaced by calls to the Bridge library for the Ytn devices [25], and a web server
would run on the Linux OS, thus providing a self-contained solution.

10. Conclusion

Enerduino-pro is a versatile project addressed to a wide audience, including researchers, advanced hackers, novice makers and
also commercial producers. Its advantages with respect to current solutions include being based on both open-source hardware and
software, providing a low cost solution that is easy to assemble even for those without specialised expertise, being very responsive
and accurate and optionally providing reactive power measurement. The software running on the board includes a compact and
optimised web server able to expose an HTTP endpoint through which a client can read power absorption. Enerduino-pro features a
rake correlator employing three correlators with time constants of 5, 12 and 30 ms to accommodate a wide range of photoresistors
on the market and is able to detect the 20 ms light pulses of smart power meters even in difficult light conditions. Reading the light
pulses provides active and (optionally) reactive power with the accuracy provided by the power meter every 1 Wh (or 1 VAR for
reactive power). While originally designed for the Arduino Wi-Fi shield, which is now out of production, it can be ported to current
hardware and still provide its unique features.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] TED - The Energy Detective, https://www.theenergydetective.com.
[2] EnergyCloud - Blue Line Innovations, https://www.bluelineinnovations.com/.
[3] Brultech - ECM-1240 Energy Monitor, https://www.brultech.com/ecm-1240/.
[4] Wattvision, https://wattvision.readme.io/docs.
[5] M. Baranski, J. Voss, Nonintrusive appliance load monitoring based on an optical sensor, in: IEEE Bologna Power Tech Conference Proceedings, 2003.
[6] Enerduino-pro, http://wnet.isti.cnr.it/software/enerduino-pro/.
[7] P. Barsocchi, E. Ferro, F. Palumbo, F. Potorti, Smart meter led probe for real-time appliance load monitoring, SENSORS (2014) 2014 IEEE.
[8] K. Gomez, R. Riggio, T. Rasheed, D. Miorandi, F. Granelli, Energino: A hardware and software solution for energy consumption monitoring, in: Modeling
and Optimization in Mobile Ad Hoc and Wireless Networks (WiOpt) 2012 10th International Symposium on, IEEE, 2012.
[9] A.H. Shajahan, A. Anand, Data acquisition and control using arduino-android platform: Smart plug, in: Energy Efficient Technologies for Sustainability
(ICEETS) 2013 International Conference on, IEEE, 2013.
[10] M.F.B. Anbya, M. Salehuddin, S. Hadisupadmo, E. Leksono, Wireless sensor network for single phase electricity monitoring system via Zigbee protocol,
in: Control Systems & Industrial Informatics (ICCSII) 2012 IEEE Conference on, 2012.
[11] R. Fransiska, E. Septia, W. Vessabhu, W. Frans, W. Abednego, et al., Electrical power measurement using arduino uno micro controller and labview, in:
Instrumentation Communications Information Technology and Biomedical Engineering (ICICI-BME) 2013 3rd International Conference on, IEEE, 2013.
[12] M. Soliman, T. Abiodun, T. Hamouda, J. Zhou, C.-H. Lung, Smart home: Integrating internet of things with web services and cloud computing, in: Cloud
Computing Technology and Science (CloudCom) 2013 IEEE 5th International Conference on, 2013.
[13] thediylife - Simple Arduino Home Energy Meter, https://www.instructables.com/Simple-Arduino-Home-Energy-Meter/.
[14] Enerduino, http://enerduino.blogspot.com/2012/04/enerduino-20-english.html.
[15] 9th September 2021, Interview by Climate Action to ENEL representative published on https://www.climateaction.org/news/enel-open-meter-reality.
[16] Arduino IDE, https://www.arduino.cc/en/software.
[17] Arduino Streaming Library, https://github.com/janelia-arduino/Streaming.
[18] Arduino WiFi Library, https://github.com/arduino-libraries/WiFi.
[19] Arduino SchedulerARMAVR Library, https://code.google.com/archive/p/arduino-scoop-cooperative-scheduler-arm-avr/downloads.
[20] Fabrice Ouder - Arduino Scheduler library on AVR processors, http://forum.arduino.cc/index.php?topic=142101.0.
[21] LEDnique - Light dependent resistor (LDR), http://lednique.com/opto-isolators-2/light-dependent-resistor-1dr/.
[22] Arduino WiFININA Library, https://www.arduino.cc/reference/en/libraries/wifinina.
[23] Arduino TaskScheduler Library, https://www.arduino.cc/reference/en/libraries/taskscheduler.
[24] Arduino CoopTask Library, https://www.arduino.cc/reference/en/libraries/cooptask.
[25] Arduino Bridge library for Yin devices, https://docs.arduino.cc/retired/archived-libraries/YunBridgeLibrary.

Francesco Potorti (Member, IEEE) has been working in satellite and terrestrial communications with the Information Science and Technologies Institute, National
Research Council, Pisa, Italy, since 1989, where he is a Senior Researcher. He has organised the 2011-2013 EVAAL competitions; defined the EVAAL framework;
organised the IPIN competitions from 2014 to 2017; and chaired the tenth edition of the IPIN conference and the sixth edition of the IPIN Competition in
2019. He has coauthored more than 80 peer-reviewed scientific articles. His current research interests include RSS-based indoor localisation, interoperability,
and evaluation of indoor localisation systems. He is a member of the IPIN Steering Board.

14

https://www.theenergydetective.com
https://www.bluelineinnovations.com/
https://www.brultech.com/ecm-1240/
https://wattvision.readme.io/docs
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb5
http://wnet.isti.cnr.it/software/enerduino-pro/
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb7
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb8
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb8
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb8
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb9
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb9
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb9
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb10
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb10
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb10
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb11
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb11
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb11
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb12
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb12
http://refhub.elsevier.com/S2468-0672(23)00068-8/sb12
https://www.instructables.com/Simple-Arduino-Home-Energy-Meter/
http://enerduino.blogspot.com/2012/04/enerduino-20-english.html
https://www.climateaction.org/news/enel-open-meter-reality
https://www.arduino.cc/en/software
https://github.com/janelia-arduino/Streaming
https://github.com/arduino-libraries/WiFi
https://code.google.com/archive/p/arduino-scoop-cooperative-scheduler-arm-avr/downloads
http://forum.arduino.cc/index.php?topic=142101.0
http://lednique.com/opto-isolators-2/light-dependent-resistor-ldr/
https://www.arduino.cc/reference/en/libraries/wifinina
https://www.arduino.cc/reference/en/libraries/taskscheduler
https://www.arduino.cc/reference/en/libraries/cooptask
https://docs.arduino.cc/retired/archived-libraries/YunBridgeLibrary

F. Potorti et al. HardwareX 15 (2023) e00461

Davide La Rosa received the M.Sc. degree in Computer Science and Networking from the University of Pisa and the Scuola Superiore
Sant’Anna, Pisa in 2012. In 2013 joined the Institute of Information Science and Technologies of the Italian National Research Council,
where he currently works as a technologist. His research interests include pervasive wireless sensor networks, IoT architectures,
distributed platforms for data acquisition and processing.

Filippo Palumbo received the M.Sc. (Hons.) degree in computer science engineering from the Polytechnic University of Bari, Italy,
in 2010, and the Ph.D. degree in computer science from the University of Pisa, Italy, in 2016. He is with the Information Science
and Technologies Institute, National Research Council. He has participated in several EU- and national-funded research actions in the
areas of ambient intelligence. His research interests include the application of Al to wireless sensor networks for intelligent system
design and software development in distributed systems.

15

	Enerduino-pro: Smart meter led probe using Arduino
	Hardware in context
	Hardware description
	Software description
	Design files
	Design files summary
	Bill of materials
	Bill of materials summary
	Build instructions
	Operation instructions
	Validation and characterisation
	Blink detection
	Use case: Home monitoring of power usage and Non-intrusive Appliance Load Monitoring

	Portability
	Conclusion
	Declaration of competing interest
	References

