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Optimal tracking strategies in a turbulent flow
Chiara Calascibetta 1,2✉, Luca Biferale 1,2, Francesco Borra3, Antonio Celani 4 & Massimo Cencini 2,5

Pursuing a drifting target in a turbulent flow is an extremely difficult task whenever the

searcher has limited propulsion and maneuvering capabilities. Even in the case when

the relative distance between pursuer and target stays below the turbulent dissipative scale,

the chaotic nature of the trajectory of the target represents a formidable challenge. Here, we

show how to successfully apply optimal control theory to find navigation strategies that

overcome chaotic dispersion and allow the searcher to reach the target in a minimal time. We

contrast the results of optimal control – which requires perfect observability and full

knowledge of the dynamics of the environment – with heuristic algorithms that are reactive –

relying on local, instantaneous information about the flow. While the latter display worse

performances, optimally controlled pursuers can track the target for times much longer than

the typical inverse Lyapunov exponent and are considerably more robust.
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F inding optimal navigation strategies in a complex fluid
environment is a notoriously difficult problem with appli-
cations ranging from environmental monitoring1–4 to

micro-medicine5–7. A well-explored set of navigation problems is
point-to-point path-planning optimization of flying vehicles such
as airplanes or drones, with the aim of minimizing some func-
tioning cost that may comprise fuel consumption and time of
arrival8–10. These vehicles move in a complex chaotic environ-
ment but can have almost full control on their trajectory as their
speed is typically larger than the fluid velocity. Recently, point-to-
point path-planning optimization has been the focus of intense
research also for microswimmers and active particles. These slow,
microscopic objects tend to be carried away by the flow and need
to appropriately exploit it in order to reach their destination11–16.
In Ref. 17 it has been studied how the optimal path is influenced
by hydrodynamics interactions, while in18,19 the importance of
harnessing vortical structures is highlighted. Ref. 20,21 considers a
predation problem at low Reynolds number, while in22,23 the
optimal navigation of colloidal robots has been investigated.
In24,25 the authors have analyzed geometric approaches for
optimization, while in26,27 multi-objective reinforcement learning
methods have been applied.

Here, we consider a more difficult navigation task, where the
target is not fixed in space but is chaotically advected by the
turbulent flow. The challenge of tracking a Lagrangian target is
increased by the limited speed and manoeuvrability of the pur-
suer. This problem is relevant to many applications, such as
keeping in a pattern formation a swarm of oceanic drifters and
floaters9,28–31; interpreting strategies to catch non-swimming
preys by micro-swimmers in turbulent environment; developing
autonomous self-propelling protocols for mini-robots navigating
in complex bio-flows or for gliders in the atmosphere or
oceans3,32–39. We will consider the case in which the searcher and
target stay at distances smaller than the Kolmogorov length and
thus experience a smooth chaotic flow at all times. As depicted in
Fig. 1a, due to its limited speed the agent must know how to surf
local eddies in ingenious ways, by taking advantage of strong
fluctuations, sometimes generated by vortical structures (Fig. 1
panels b-c), and exploiting the long time correlations typical of
turbulence (Fig. 1d). The final objective of the optimal pursuer is
to catch the chaotic moving target in the shortest possible time or,
if all else fails, to be as close as possible to it at the end of the
allotted time for the pursuit.

The main obstacle in finding the optimal control is that it
depends on the entire spatio-temporal history of the chaotic
system evolution. Analytical solutions can be found only in
simple linear or time invariant flows, limited to the point-to-
point navigation task17,40–43. An interesting way to explore the
problem in a simplified way, would be to remap it into a biased
random walk. Despite the absence of non-Gaussian and
intermittent statistics, this could provide valuable theoretical
insights by allowing to recover analytically the probability of
reaching the target and enabling a priori performance eva-
luation. In this paper, we show how to apply Optimal Control
Theory to discover the best controls for the turbulent tracking
problem and compare them with heuristic reactive strategies.
In particular, since the problem is formally akin to a pursuit
game we use for comparison heuristics like the (i) pure
pursuit44, i.e. always swimming along the line-of-sight of the
target, and (ii) two other heuristic controls obtained by solving
simplified optimality problems over a short time horizon with
the help of some assumptions on the dynamics. We show that
such heuristic strategies, which certainly have the advantage of
not requiring a large amount of information on the system, are
markedly sub-optimal. How to develop effective heuristic
strategies with limited information and computation but whose

performances are closer to optimality remains an outstanding
problem.

Results
Tracking Lagrangian targets. The pursuer—hereafter also called
the agent—and the target are immersed in a turbulent velocity
field ut(x) obtained by direct numerical integration of the Navier-
Stokes equation, sustained by an isotropic and homogeneous
forcing, with Reynolds number at the Taylor scale Reλ≃ 13045,46

(see “Methods” for details). The flow is statistically stationary and
we will consider a single realization of the time-dependent velo-
city field from the initial time 0 until the final time, tf. Each
episode corresponds to a different initial position of the target
and thus a different history of the velocity field along the tra-
jectory of the tracer. Episodes start with the target, Xt, and the
agent, XðaÞt , placed at a distance of the order of the Kolmogorov
scale, jXðaÞ0 � X0j ¼ jR0j ¼ R0 ’ η. The flow transports both the
target, which moves as a passive tracer, and the agent that,
however, can exert some control by swimming, with velocity Ut,
with respect to the medium. While it can freely point in any
direction n̂t , the swimming velocity is constrained to have a
fixed speed, Vs. We chose this speed to be smaller than the
Kolmogorov velocity, uη. Specifically, the results shown below are
for Vs≃ 0.13uη.

Target and agent therefore move according to the dynamics

_Xt ¼ utðXtÞ
_X
ðaÞ
t ¼ utðXðaÞt Þ þ Ut

Ut ¼ V sn̂t ;

8><
>: ð1Þ

where we have assumed that the time scale associated with the
agent to align with the flow is small compared to τη. In other
words, we consider the reorienting torque strong enough such
that the agent reorients instantaneously to the steering protocol.
The episode lasts up to a maximum time tf≃ 50τη, i.e. much
larger then the inverse of the Lagrangian Lyapunov exponent of
the tracer trajectory λ−1 ≃ 7.5τη47, where τη is the Kolmogorov
time. Within this time horizon the agent has to find the optimal
choice of the steering protocol n̂t that allows to capture the target.
The capture event is defined as the moment when the relative
distance becomes smaller than the capture distance Rc= 10−2R0,
which is much smaller than the initial separation. From that time
on, the agent sticks to the target. The speed is set as Vs ≈ λR0 so
that the agent is at the limit of controllability, i.e. the control is
smaller than the typical background velocity between the agent
and target.

As long as the agent and target remain within distances where
the flow is differentiable (i.e. Rt ≤O(10η), where Rt is the agents
distance at the time t and 10η is the order of the correlation scale
of the velocity gradients48,49) the fluid velocity experienced by the
searcher is approximately utðXðaÞt Þ ’ utðXtÞ þ ∇utRt , where∇ ut
is the flow gradient evaluated at the target position. As a result,
the optimization problem depends only on the separation vector
Rt and on the entire history of the velocity gradients along the
trajectory of the searching agent. We will be enforcing this
approximation, which allows us to store Lagrangian trajectories
and their accompanying velocity gradient to create a database
that can be used to compute the optimal control (see “Methods”).

Heuristic control strategies. As a term of comparison, we will
consider several heuristic controls that neither require knowledge
of the future evolution of the trajectory (required for the com-
putation of the optimal control) nor the memory of its past. These
are called reactive strategies as they are purely based on instan-
taneous information about the flow and the pair separation.
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1. Pure Pursuit (PP). The agent only knows in which direction
the target currently is and swims towards it44:

n̂PPt ¼ �R̂t :

2. Surfing Control (SC). The agent has knowledge of the
instantaneous velocity gradient and direction of the
target50,51:

n̂SCt / �½expðτs∇utÞ�>R̂t ;

where τs is a parameter to be chosen empirically. This
control maximizes the displacement of the pursuer towards
the target in a time interval τs, assuming that the gradient
and the direction of the target R̂t are constant over that
time (see “Methods”).

3. Perturbative Optimal Control (PO). The agent has the same
information as in (SC) but the direction in which it swims is

n̂POt / �½expðτp∇utÞ�> expðτp∇utÞR̂t :

As discussed in “Methods”, we obtained this control
strategy by solving perturbatively the optimal control
problem which minimizes the distance from the target
after a time τp, assuming constant gradients (but dynami-
cally evolving separations). The time τp is a free parameter
to be chosen empirically.

Optimal control. How can one define the performance of a
tracking agent? Ideally, the searcher should be able to capture the
moving target in the shortest possible time, and in any event

before a certain time horizon. However, this is not always possible
because of the strong dispersion induced by the underlying tur-
bulent flow. In these situations one could instead settle for the less
ambitious objective of reaching the shortest possible separation at
the end of the allotted time for the search. These requests can be
summarized by the following mathematical expression for the
cost function

J ¼ R2
tf
þ cλR2

c

Z tf

0
dtΘðRt � RcÞ : ð2Þ

The first term of the cost function J is the distance between agent
and target at the final time while the second one, Θ being the
Heaviside function, is the time needed to reach the capture dis-
tance, Rc. If the episode ends with a capture for t < tf the first term
equals R2

c and does not depend on the control so that the task is to
minimize the time for capture. Conversely, if the capture does not
occur before tf the second term is always equal to cλR2

c tf
regardless of the trajectory and the task reduces to minimizing the
final separation Rtf

. The constant c controls the trade-off between
the two contributions and it is chosen to give a strong enough
weight to the capture events.

The theory of Optimal Control (OC) provides the tools to
compute the best control – i.e. the one with minimal cost—by
casting the optimization in the form of Euler-Lagrange equations
that have to be solved both forward and backward in time,
requiring full knowledge of the dynamics of the system (see
“Methods”)40,52,53. If a solution to the extremality conditions
exists and is stable, it provides at each time the optimal direction

Fig. 1 Graphical illustration of the system setup. a A pursuing agent (in red color) with limited maneuverability aims to stay as close as possible or,
possibly, to capture a Lagrangian target (in yellow color) chaotically advected by a turbulent flow. The background is given by a rendering of the turbulent
vorticity intensity at a fixed time during the episode. b Time evolution of the typical dimensionless transverse (∂uz/∂y in black color), and longitudinal (∂uz/
∂z in red color) velocity gradients during the duration of a catching episode. These quantities are related to vorticity and shear stress, respectively. Since
the flow is isotropic the two components above are sufficient to describe the statistical properties of the flow. The normalization factor is given by the
Kolmogorov time-scale of the flow, τη ¼

ffiffiffiffiffiffiffiffi
ν=ϵ

p
, where ν is the fluid viscosity and ϵ the mean energy dissipation. c Probability distribution function (PDF) of

the transverse and longitudinal gradients measured over 2 × 105 trajectories of length T ’ 150τη. d Time correlation functions for the transverse and
longitudinal velocity gradients.
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n̂OCt which implicitly depends on the whole history—past,
present and future – of gradients.

Capture time statistics. We sampled 2 × 105 Lagrangian target
trajectories with the agent starting at a random position distant
R0≃ η from the target. The OC algorithm converges in 81% of the
cases. Among the optimally controlled paths, the target is suc-
cessfully captured in 81% of the cases. With further fine-tuning of
the hyper-parameters involved in the iterative process, one might
still improve the convergence of the algorithm up to probably
100%. Over the same converged set, the percentages of success of
the three heuristic strategies are similar and close to 70%. Our
findings in terms of convergence and performances of the OC
algorithm are robust with respect to different set of parameters,
R0 and Vs, as tested by increasing/decreasing the initial conditions
and changing the velocity amplitude accordingly as, e.g., con-
sidering (10R0→ R0, 10Vs→Vs) or (R0/10→ R0,Vs/10→Vs). A
supremacy of the OC strategies is found when looking at the PDF
of catching times, tc, shown in Fig. 2a. Here, we see that OC
protocols deplete the probability to search for long times, as
shown by comparing the far right tails for tc > tm, with tm≃ 9τη
the mean capture time for the OC. Furthermore, we have
observed that considering the remaining 10% of episodes where
OC captures but the heuristics are unsuccessful, we found that
OC is also able to capture at much longer timescales, even close to
the time horizon. In Fig. 2 we show that the OC protocol provides
an advantage also when comparing the mean catching time
(Fig. 2b) and an improvement (up to × 6) for the rarest events
when compared trajectory-by-trajectory against each of the
heuristic reactive strategies (Fig. 2c). Furthermore, all heuristic
reactive strategies perform similarly, stressing the intimate lim-
itations of strategies based on local-in-time cues.

Final and intermediate distance statistics. When the target
cannot be captured within the allowed time horizon OC is still
optimal with regard to the final distance from the target, as
imposed by the first term in the RHS of (2), and almost optimal

also at intermediate times. The latter is shown in Fig. 3, where the

PDF of the normalized separation, Rt=R
OCð Þ

t , for each of the
heuristic strategies is shown at the time when the corresponding

OC trajectory reaches the separation R
OCð Þ

~t ¼ 10η. Except for a
small set of events, the OC solution is always closer to the target
as shown by the strong asymmetry between left and right tails.

Conditional growth rate and controllability. To understand the
conditions for a successful capture, it is useful to look at the time-
evolution of the typical growth of separations along the trajec-
tories of the target and conditioned on the capacity of the OC
protocol to succeed/fail in the capture (black full circle in Fig. 4).
Conditioning the average growth rate upon capture and non-
capture highlights the degree of controllability of the system.
Asymptotically, the growth rate is the same for all protocols and
given by the Lagrangian Lyapunov exponent λ (dashed straight

Fig. 2 Capture time statistics. a PDF of the capture time for the Optimal Control strategy (red open circles) and for the heuristic strategies, Pure Pursuit
(black full rhombus), Surfing Control (blue full triangles) and Perturbative Optimal control (green full squares). The PDFs are evaluated along the episodes
where all strategies capture. The vertical dashed line represents the time horizon, tf. In the inset we show the same PDF in log-scale. b Box-plot of the
catching time PDF. The box shaded area reports the range 25th–75th percentile, the solid and dashed lines are the median and the mean respectively. Each
whisker contains the remaining 25% of the data, while outliers points are identified for a large value of the capture time. c PDF of the capture time for the
reactive heuristic strategies, normalized with the corresponding capture time for the OC, tc=t

ðOC Þ
c constrained to the episodes where all the heuristic

strategies capture within tf.

Fig. 3 Statistics of final distances. PDF of the logarithm of the distances
reached by all reactive heuristic strategies, R~t=R

ðOC Þ
~t

at the time, ~t,
when the OC trajectories trespass the value 10η. Pure Pursuit (black full
rhombus), Surfing Control (blue full triangles) and Perturbative Optimal
control (green full squares). The statistic refers to the episodes where
OC fails in catching the target.
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line). For a short time, t≲ 10τη, we see that the two sets behave
quite differently. In particular, the unsuccessful episodes are
characterized by a growth rate larger than the average (i.e. > λ)
while the successful ones remain close to the average and even
slightly below at the very early times. In the same figure, we also
show along the unsuccessful episodes the growth of the distance
between the target and the (controlled) agent for the heuristic and
OC protocols. As one can see, the OC (red open circles) out-
performs the reactive strategies at all times, showing that it is not
just making the good moves when the final horizon is
approaching.

Sensitivity to initial conditions. To test the robustness of the
different protocols, we repeated a subset of successful catching
episodes with slightly different initial conditions. For the OC
strategies we kept the same history of the unperturbed steering
protocols, while for the heuristic protocols we allowed to change
the reactive control according to the local environment along the
perturbed trajectory (see Fig. 5a) for a 3d rendering of a typical
numerical experiment comparing OC and PP strategies. Figure 5b
displays the PDF of the final distances reached at catching time of
the OC unperturbed reference episode by the perturbed OC agent
and by the agents following the three heuristic strategies. Results
are shown for a subset of the hardest episodes where the unper-
turbed capture time is much larger than the mean, i.e.

t
OCð Þ

c � 9τη, but still all the unperturbed heuristic trajectories
capture within the time horizon. OC shows superior robustness
against the reactive strategies concerning both the percentage of
perturbed trajectories that succeed to capture the target and the
final distance from the target for those episodes that do not suc-
ceed, as shown by the most pronounced peak at the normalized
capture distance, R/η= 10−2 and by the much shorter right tail
developed by the OC episodes with respect to the three reactive
protocols (red circles). This result is particularly unexpected
because the agents which use heuristic strategies start from per-
turbed positions but do follow the instantaneous correct control.
The performances of the three heuristic strategies would be even
worse if we had used, as for the OC agents, the unperturbed stra-
tegies learned along the unperturbed trajectory. OC protocols
appear to be quite robust, making the target’s trajectory an
attracting set for the controlled dynamics. This is further quantified

in Fig. 5c where we show for OC and PP strategies the finite time
Lyapunov exponent (FTLE) evaluated as a function of the unper-

turbed capture time, γ
t
OC
� �
c

¼ 1=t
OCð Þ

c lnðR
t
OC
� �
c

=R0Þ where

R
tðOCÞc

denotes the distance between the perturbed agent and the

target54–56. While the characteristic Lyapunov exponent quantifies
the average (long term) expansion rate, the FTLE accounts for the
(finite-time) fluctuations of the expansion rate, which are a hall-
mark of intermittent chaotic systems. As a result, the FTLE pro-
vides a more quantitative measure of control performance in

turbulence. In Fig. 5c the FTLE is an increasing function of t
OCð Þ

c ,
confirming that larger catching times are connected to more
chaotic target trajectories. Moreover, FLTE for OC is always

smaller than the one for PP, independently of t
OCð Þ

c , confirming
that OC finds ‘more stable’ trajectories. The findings presented here
illustrate the impact of a perturbation in the initial condition of the
order of Rc (i.e., δR0= Rc= η/100). Anyway, considering other
perturbations and limiting them to ensure the velocity field
between the pair remains smooth, yield qualitatively similar results.

Discussion and outlook
We have shown how optimal control theory can be efficiently
applied to control the dynamics of Lagrangian pairs in turbulent
flows. Through the implementation of an iterative algorithm,
designed for solving the Euler-Lagrange equations arising from
the Pontryagin Minimum Principle40,52,53, we have demonstrated
how to catch a moving target in the shortest possible time or, at
worst, how to limit the effects of chaotic dispersion.

We focused on the relative dynamics of two Lagrangian objects
in 3d turbulence, in the limit where their separation is always
smaller than the flow dissipative scale. Both the moving target
and the agent are carried by the turbulent flow, but the latter is
equipped with some limited propulsion capabilities. Tracking a
particle in turbulence is extremely challenging because of the
exponential rate of separation due to chaos, making it not obvious
a priori that the iterative algorithm converges to an optimal
solution. Indeed, each point of an optimal trajectory depends on
the entire history (past, present, and future) of the control and,
consequently, a high fluctuation of the velocity field at a certain
time may affect the entire trajectory, hindering the identification

Fig. 4 Logarithm of the error growth averaged over the trajectories for all strategies. Pure Pursuit (black full rhombus), Surfing Control (blue full
triangles), Perturbative Optimal control (green full squares) and OC (red open circles) are measured only on the unsuccessful episodes (no capture). The
growth rate of the uncontrolled searcher (the tracer with black full circles) is shown for both capture and no-capture episodes.
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of optimal solutions. Notwithstanding these difficulties, we were
able to obtain a high percentage of convergence for the iterative
algorithm, paving the way for the application of optimal control
theory—so far mostly limited to simple, analytically solvable
problems—to turbulent setups as well.

Converging to the optimal solutions requires perfect observa-
bility and full knowledge of the system dynamics. One may
wonder about the trade-off between hard-to-get but far-sighted
optimal solutions and easy-to-apply reactive protocols as, e.g.,
heuristic controls based only on local and instantaneous infor-
mation of the environment. In this context, we developed a
reactive-control strategy by means of a perturbative approach to
solve the optimal control problem. This strategy, which we
dubbed perturbative optimal control, aims to achieve the best
possible performance when operating within the constraint of a
short-sighted environmental evaluation. Owing to the assumption
of persistent gradient it can be handled analytically. Higher-order
expansions of this perturbative approach can in principle be
applied, leading to other new heuristic strategies. We found that
trading off observability with computational ease inevitably leads
to a high loss in performance: more complex control strategies
than just reactive ones appear to be necessary. To fill the gap
between optimal solutions and heuristic strategies, it would be
interesting to improve the latter by introducing short-term
memory with some analytical approximation or exploiting data-
driven methods.

Remarkably, OC strategies turned out to be highly resilient to
disturbances on the agent starting conditions, which highlights
how the drifting target trajectory becomes an attractor for the
controlled dynamics. Therefore, here the robustness lies in the
fact that the controlled trajectory is able to tame the chaotic
nature typical of the uncontrolled system. A future perspective
would be to investigate how OC and heuristic strategies are
impacted by measurement errors (e.g. on position of the
Lagrangian pair and on the local velocity gradients) that occur
throughout the trajectory, as opposed to errors affecting only the
initialization, exploiting tools from stochastic optimal control
theory57,58.

The results presented in this study were obtained for a specific
set of parameters (Reλ≃ 130, R0≃ η,Vs≃ R0/λ). While the
robustness of the OC algorithm has been tested for different R0
and Vs parameters, the role of different Reλ is still an open pro-
blem. It would be interesting to explore the importance of
adopting optimal navigation strategies when the turbulence
intensity varies. In particular, increasing Reynolds number could
even lead to an improvement in the relative advantage of OC with
respect to heuristic strategies, leveraging on intermittent non-
Gaussian fluctuations. This question is left for future work.

As a possible extension of the present results, with an eye to
applications such as the control of micro-swimmers at small
scales, it could be of interest to include hydrodynamic interac-
tions between particles into the dynamics, as well as to take into

Fig. 5 Robustness under perturbations of the initial conditions. a Example of 100 trajectories obtained by varying the initial conditions of the pursuers.
Target reference trajectory (large yellow circles), unperturbed OC trajectory (red open circles), Pure Pursuit strategy (black full rhombus). Lines show the
perturbed trajectories, starting with an error δR0≃ η/10, the same colors of the unperturbed reference trajectories. b PDF of the distances reached at the
catching time tðOC Þc by each control strategy starting from perturbed initial conditions (Surfing Control is shown with blue full triangles and Perturbative
OC with green full squares). The PDF refers to episodes where OC captures in times larger than the average capture time, i.e., tðOC Þc � tðOC Þm and the
heuristic strategies capture within the time horizon, tf. The error on the initial position is set to δR0= η/100. The two vertical dashed lines from left to right
indicate the capture and the initial distance, respectively. c Finite Time Lyapunov Exponent (FTLE) for OC and the Pure Pursuer perturbed strategies
evaluated as a function of the unperturbed capture time tðOC Þc for the same episodes of (b). The black full rhombus and the red open circles indicate the
mean over all perturbed trajectories, while the shaded areas indicate their standard deviations.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01366-y

6 COMMUNICATIONS PHYSICS |           (2023) 6:256 | https://doi.org/10.1038/s42005-023-01366-y | www.nature.com/commsphys

www.nature.com/commsphys


account the impact of a non negligible reorientation time for the
control variable.

Finally, an outstanding issue is how to extend the search for
moving targets to other situations of interest, for instance when
separations are beyond the Kolmogorov scale and the velocity
differences are not smooth. Even though heuristic, reactive, and
local methods can in principle be employed, gauging their
effectiveness is difficult in absence of the benchmark of the
optimal control solution. In fact, how to apply optimal control
theory in the inertial regime of turbulence remains an open
problem, as iteratively solving the Euler-Lagrange equations
would require either the simulation of a new 3D Eulerian field at
each iteration or the storage of the entire evolution of fields. Both
approaches appear to be computationally out of reach, hence the
call to develop new numerical techniques to accurately solve
large-scale Lagrangian optimization problems.

Methods
Navier-Stokes simulations for Lagrangian tracers. The target
trajectories follow the tracer dynamics

_Xt ¼ utðXtÞ ; ð3Þ
where u is a solution of the Navier-Stokes equations45,46

∂tuþ u � ∇u ¼ �∇pþ νΔuþ F

∇ � u ¼ 0

�
; ð4Þ

for an incompressible fluid of viscosity ν. The flow is driven to a
non-equilibrium statistically steady state by a homogeneous and
isotropic forcing, F, obtained via a second-order Ornstein-
Uhlenbeck process59. For the direct numerical simulations (DNS)
we used a standard pseudo-spectral solver fully dealiased with the
two-third rule. Details on the simulation can be found in60,61.
Parameters of the DNS used in this work are given in Table 1.
The database of Lagrangian trajectories used in this study is
dumped each 15dt≃ τη/10.

Optimal control equations. Using the assumption that the dis-
tance between the agent and the target is always within the scale
of smoothness of the velocity field, i.e. Rt≲ 10η, we can linearize
Eq. (1) obtaining

_Rt ¼ ∇utRt þ Ut ;

Ut ¼ V sn̂t :

(
ð5Þ

Here, the pair separation Rt represents the state variable with a
given initial condition R0 and Ut is the control variable. As dis-
cussed in main text, we aim at solving the following optimization
problem: to find the best control that allows the argent to reach
the capture distance Rc in minimal time tc ≤ tf, where tf is a fixed
time horizon; if the capture is not realized, we require the control
to minimize the final distance, Rtf

, from the target. The above
twofold goal can be formally imposed by requiring that the

control minimize the following performance index

J ¼ R2
tf
þ cλR2

c

Z tf

0
dt f ðRtÞ ; ð6Þ

where λ is the uncontrolled Lyapunov exponent and f is an
appropriate smooth function (see below) that is equal to 1 for
Rt > Rc and 0 for Rt ≤ Rc. The first term in (6) amounts to
requiring minimal distance at time tf, while the second fullfils the
request of minimal time to reach the capture distance. The non-
dimesional parameter c weighs the importance of the two
objectives. Note that if the capture is not reachable, the second
term in the performance index is always a constant, cλR2

c tf and
the problem remains minimize the final distance. Conversely, if
capture is realized the first term is fixed to R2

c . Therefore, to
balance the two terms in such a way to favor the capture we must
choose c > 1/(λtc), e.g. using tc ~ 1− 10τη we can estimate
c ≥ 10− 100. The results shown here correspond to c= 100; while
higher values of c lead to same results, c ~O(1) or even smaller
does not allow to find optimal strategies. Given the unconstrained
performance index (6), by imposing the dynamics (5) and the
non-linear constrain in the control variable, jn̂tj2 ¼ 18t, we are
left with the following constrained optimization problem

~J ¼R2
tf
þ

Z tf

0
dt cλR2

c f ðRtÞþ
�

þϕt � ð∇utRt þ V sn̂t � _RÞ þ μtð1� jn̂tj2Þ
�
;

ð7Þ

where ϕt , μt are the Lagrangian multipliers with the role of co-
state40. Integrating by parts, and requiring the stationarity of ~J
upon variation of control n̂t and state Rt the optimization reduces
to solving the following Euler-Lagrange equations40:

_ϕt ¼ �
∂Ht

∂Rt
; ð8Þ

∂Ht

∂n̂t
¼ 0 ; ð9Þ

Ht ¼ cλR2
c f ðRtÞ þ ϕt � ð∇utRt þ V sn̂tÞ þ μtð1� n̂2

t ÞÞ being the
Hamiltonian function of the constrained minimization problem.
The equation for _ϕt has final condition ϕtf

¼ 2Rtf
, while the

dynamics of the state variable (5) (which, as discussed below, is
actually modified for stopping the dynamics when the capture
distance is reached) has initial condition R0. Notice that Eq. (9)
prescribes the control to be

n̂t ¼
V sϕt

2μt
¼ � ϕt

jϕtj
; ð10Þ

where μt plays the role of normalization factor and where the

minus sign is to impose ∂2Ht

∂n̂2t
>0 as we are performing a mini-

mization. As a result, the attainment of optimality requires to
satisfy a boundary conditions problem. This implies that the
control that is optimal at a certain time is inherently linked to the
past and future evolution of the trajectory, rather than solely
relying on the local flow in the vicinity of the current position of
the agent. In other words the control strategy is not optimal at
each time step but globally. As a consequence, minimizing the
capture time cannot be achieved by a piecewise trajectories
optimization, i.e. considering shorter time horizons. Indeed, from
eq.(6) the boundary conditions would impose the minimization
of the distance at time tf, without taking into account the fact that
to capture the target in the future (e.g., in the next time horizon)
there might have been a more convenient path to follow in the
past.

Table 1 Parameters of the DNS: N resolution in each
dimension; L physical dimension of the 3-periodic box; dt
time step in the DNS integration; ν kinematic viscosity;

ϵ= ν〈∂iuj∂iuj〉; τη ¼
ffiffiffiffiffiffiffiffi
ν=ϵ

p
; η ¼ ðν3=ϵÞ1=4; Reλ= urmsλ/ν,

where λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Etot=Ω

p
is the ‘Taylor-scale’ measured from

the ratio between the mean system energy and enstrophy.

N L dt ν
1024 2π 1.5 × 10−4 8 × 10−4

ϵ τη η Reλ
1.4 ± 0.1 0.023 ± 0.003 0.0042 ± 0.0001 ≃ 130
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In practice, to find the optimal control solution that minimizes
~J , we use the Forward-Backward Sweep Method (FBSM)52. At
first, it requires an initial guess for the control variable n̂t for
0 ≤ t ≤ tf. Then, the problem becomes computationally heavy
since it requires iterative searching with backward (for the
Lagrangian multipliers) and forward (for the state variable)
integration such as to identify the optimal control. The algorithm
can be summarized with the following pseudocode, Table 2.

In the practical implementation we used γ= 5 × 10−4,
δ= 10−4 and as initial guess for the control variable we used
the best heuristic strategy, i.e., the one with the minimum
performance index. Using PP for the initialization provides
quantitatively similar results. If the convergence is not realized
after 20K iterations of the algorithm, we repeated the FBSM
rescaling the parameters γ ← γ/10, δ ← δ/10 and increasing the
maximum number of iteration to 2 × 105. This setup ensure the
convergence in the 81% of the total episodes studied. In the other
19% of episodes, the FBSM algorithm does not converge, so the
global optimum is not achieved. However, it is always possible to
consider the strategy that during the iterations of the FBSM
algorithm provides the minimum of the performance index as an
approximate solution of the optimal control. Indeed, since the
initialization of the algorithm is provided by the best of the
heuristic strategies, the approximate solution will always be an
upper bound of the reactive behavior. By refining the hyper-
parameters even more, should be possible to make the algorithm
to always converge. Moreover for the function f in Eq. (6) we used

f ¼ 1
2
tanh α

Rt � Rc

Rc

� 	
ð11Þ

which is a smoothed version of the Heaviside function, whose
stiffness is ruled by α (here chosen to be 10). In addition, to
impose the capture condition, i.e. that whenever the agent is at
distance R ≤ Rc from the target it sticks to it we modified Eq. (5)
such that _Rt ! 0 when Rt ≤ Rc by redefining the dynamics as
follows:

f _Rt ! _Rt ; ð12Þ
which implies that the backward evolution of the Lagrangian
multipliers in (8) becomes

_ϕt ¼ � cλR2
c þ ∇utRt þ V sn̂t

� � � ϕt

� � ∂f
∂Rt
� f∇u>t ϕt : ð13Þ

Heuristic strategies. Differently from the optimal control equa-
tions, the heuristic control strategies we studied are reactive,
meaning that they need only instantaneous information about the
system to be applied. The pure pursuit (PP) strategy, for instance,
does not exploit any information on the flow during the navi-
gation but constantly realign the control direction to the moving

target, i.e. n̂PPt ¼ �R̂t . The other two strategies, the surfing

control (SC) and the perturbative optimal control (PO), instead,
consider both the direction of the target and the instantaneous
velocity gradient. While these two strategies are both based on a
free parameter to be optimized numerically, τs and τp respectively,
they are obtained from different assumptions.

Surfing control strategy. This control is inspired by Ref. 51,
where one assume that a linear approximation of the flow
underlying the active particle is reasonable for an interval of time
τs. In other words, one has to assume τs as the persistence time of
the local (to the agent) gradients of the flow. This control was
proposed as an effective strategy to drift in a given direction (e.g.
the vertical one) fixed in time, essentially it is obtained with the
request to maximize over the time interval τs the displacement in
the chosen direction. Here, we adapt it to our case by assuming
that the direction toward the target, R̂t , remains constant during
the same interval of time τs. Then, maximizing the searcher
displacement along the target direction, i.e. maxn̂t ½ � ðX

ðaÞ
tþτs �

XðaÞt Þ � R̂t � and considering a continuous measurement of the
environment, we find the following strategy:

n̂SCt ¼ � ½expðτs∇utÞ�
>R̂t

j½expðτs∇utÞ�>R̂tj
: ð14Þ

The details on the derivation are discussed in Ref. 51 and are not
repeated here. However, it is important to note the role of the
exponential in the control variable, as demonstrated in50. In
particular, by expanding in series eq.(14) it is possible to obtain

n
SCð Þ

t /� ∑
1

k¼0
τks
k!
ðð∇utÞ>Þk


 �
Rt

¼� Rt þ τs∇utRt þ
1
2
τ2s∇ðut∇utRtÞ þ :::


 �
¼ ∑
1

k¼0
nt;k ;

ð15Þ
with nt,0=− Rt and 8k >; 0 nt;k ¼ 1

k τs½∇ut �nt;k�1. This means
that surfing control is achieved through a weighted sum of several
directions, nt,k, where the weight is defined by τs. These directions
are obtained as the gradient of the local field, ut, projected along
the direction of the previous term in the series, nt,k−1. This allows
the surfing strategy to reorient the order 0 of the series (Pure
Pursuit strategy) under the influence of beneficial currents.

Perturbative optimal control strategy. The PO strategy we
propose, works in the same regime we derived optimal control
equations, considering the velocity field between the agent and
the target to be linearizable (5) but, similarly to the surfing, by
assuming local gradients persistence for a time τp. Under these
assumptions, it is easy to show that

Rτp
¼ expðτp∇u0ÞR0 þ V s

Z τp

0
dt exp½ðτp � tÞ∇u0� n̂POt

h i
:

ð16Þ
Then, we derive the PO strategy by imposing that Rτp

� RV s¼0
τp is

minimum (note that this perturbative approach can be thought as
the 0th order, in Vs, solution of the optimal control equations),
i.e., minimizing directly the separation of the pair. Finally,
assuming continuous measurements as before, we obtain the
following control:

n̂POt ¼ � ½expðτp∇utÞ�
> expðτp∇utÞR̂t

j½expðτp∇utÞ�> expðτp∇utÞR̂tj
: ð17Þ

Note that SC and PO strategies recover PP for the free
parameters, τs and τp, set to be zero. Clearly, the optimal free

Table 2 Pseudocode of the optimal control algorithm.

Algorithm: Forward-Backward Sweep
Parameters: learning rate γ, threshold for convergence δ
1: Initial guess for the control variable n̂t 8t 2 ½0; tf�
2: Forward integration of Rt in t∈ [0: tf] (Eq. (5))
3: Backward integration of ϕt in t∈ [tf: 0] (Eq. (8))
4:Update control n̂t  ð1� γÞn̂t þ γ ϕt

jϕtj (Eq. (10))

5: Check convergence if∑tf=dt
i¼1 jΔwidtj � δ∑tf=dt

i¼0 jwidtj
for all w 2 fϕ;R; n̂g end else goto 2

where Δwt is the difference between the old and new estimate of the variables
Forward-backward sweep method for iterative solution of the Euler-Lagrange equations.
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parameters depend on the temporal variation of both the
underlying gradients,∇ ut, and the target direction, R̂t . As a
result, it is tempting to guess that they will be proportional to τη.
Their values have been determined empirically, searching for the
values that maximize the capture frequencies. In particular, we
have found τs≃ 0.6τη and τp≃ 1.3τη.

To get an intuition of the difference between the strategies we
show them in simple steady flows. Consider for simplicity a
2-dimensional case, where the target is fixed at the origin (0, 0) in
the coordinate space R= (Rx, Ry). In a hyperbolic field, it is easy
to see that SC and PO strategies are equivalent as long as we
define τp as half of τs. Additionally, unlike PP, these strategies
leverage the local gradient to reach the contracting axis of the
field which directly leads them towards the target. In an elliptic
field, PO and PP strategies are identical and optimal. Instead, the
SC is not optimal and approaches the target while counter-
rotating with respect to the direction induced by the flow.

As an illustration, in Fig. 6 we show the trajectories and
controls followed by the strategies in a generic steady field. SC
and PO utilize the local gradient to navigate towards regions
where the flow is weaker and the target can be reached more
efficiently. Furthermore, in this case the PO strategy nearly
performs as good as the OC.

Data availability
The Lagrangian target trajectories (including positions, velocities, accelerations and fluid
gradients along each particle) used in this work are available for download in the Smart-
TURB portal http://smart-turb.roma2.infn.it, under the TURB-Lagr repository60. TURB-
Lagr is a new open database of 3d turbulent Lagrangian trajectories, obtained by Direct
Numerical Simulations (DNS) of the Navier-Stokes equations with homogeneous and
isotropic forcing. Details on how to download and read the database are also given in the

portal. The analysis that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The code (written in C language) to study the optimal tracking strategies in a turbulent
flow is free downloadable on GitHub at this link: https://github.com/SmartTURB/
Optimal-tracking-strategies-in-a-turbulent-flow.

Received: 2 May 2023; Accepted: 31 August 2023;

References
1. Trincavelli, M. et al. Towards environmental monitoring with mobile robots.

In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
2210–2215 (IEEE, 2008).

2. Zhang, W., Inanc, T., Ober-Blobaum, S. & Marsden, J. E. Optimal trajectory
generation for a glider in time-varying 2d ocean flows b-spline model. In 2008
IEEE International Conference on Robotics and Automation, 1083–1088 (IEEE,
2008).

3. Bellemare, M. G. et al. Autonomous navigation of stratospheric balloons using
reinforcement learning. Nature 588, 77–82 (2020).

4. Chai, F. et al. Monitoring ocean biogeochemistry with autonomous platforms.
Nat. Rev. Earth Environ. 1, 315–326 (2020).

5. Wang, J. & Gao, W. Nano/microscale motors: biomedical opportunities and
challenges. ACS Nano 6, 5745–5751 (2012).

6. Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L. & Wang, J. Micro/
nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci.
Rob. 2, eaam6431 (2017).

7. Wang, B., Kostarelos, K., Nelson, B. J. & Zhang, L. Trends in micro-/
nanorobotics: materials development, actuation, localization, and system
integration for biomedical applications. Adv. Mater. 33, 2002047 (2021).

8. Szczerba, R. J., Galkowski, P., Glicktein, I. S. & Ternullo, N. Robust algorithm
for real-time route planning. IEEE Trans. Aerospace Electr. Syst. 36, 869–878
(2000).

9. Song, Z., Lipinski, D. & Mohseni, K. Multi-vehicle cooperation and nearly
fuel-optimal flock guidance in strong background flows. Ocean Eng. 141,
388–404 (2017).

10. Guerrero, J. & Bestaoui, Y. Uav path planning for structure inspection in
windy environments. J. Intell. Robotic Syst. 69, 297–311 (2013).

11. Nasiri, M., Löwen, H. & Liebchen, B. Optimal active particle navigation meets
machine learning. Europhys. Lett. 142, 17001 (2023).

12. Lolla, T., Lermusiaux, P. F. J., Ueckermann, M. P. & Haley, P. J. Time-optimal
path planning in dynamic flows using level set equations: theory and schemes.
Ocean Dyn. 64, 1373–1397 (2014).

13. Rhoads, B., Mezić, I. & Poje, A. C. Minimum time heading control of
underpowered vehicles in time-varying ocean currents. Ocean Eng. 66, 12–31
(2013).

14. Biferale, L., Bonaccorso, F., Buzzicotti, M., Clark Di Leoni, P. & Gustavsson, K.
Zermelo’s problem: optimal point-to-point navigation in 2d turbulent flows
using reinforcement learning. Chaos: Interdiscip. J. Nonlinear Sci. 29, 103138
(2019).

15. Buzzicotti, M., Biferale, L., Bonaccorso, F., Clark di Leoni, P. & Gustavsson, K.
Optimal control of point-to-point navigation in turbulent time dependent
flows using reinforcement learning. In AIxIA 2020 – Advances in Artificial
Intelligence, 223–234 (Springer International Publishing, Cham, 2021).

16. Alageshan, J. K., Verma, A. K., Bec, J. & Pandit, R. Machine learning strategies
for path-planning microswimmers in turbulent flows. Phys. Rev. E 101,
043110 (2020).

17. Daddi-Moussa-Ider, A., Löwen, H. & Liebchen, B. Hydrodynamics can
determine the optimal route for microswimmer navigation. Commun. Phys. 4,
15 (2021).

18. Gunnarson, P., Mandralis, I., Novati, G., Koumoutsakos, P. & Dabiri, J. O.
Learning efficient navigation in vortical flow fields. Nat. Commun. 12, 7143
(2021).

19. Verma, S., Novati, G. & Koumoutsakos, P. Efficient collective swimming by
harnessing vortices through deep reinforcement learning. Proc. Natl. Acad.
Sci. 115, 5849–5854 (2018).

20. Goh, S., Winkler, R. G. & Gompper, G. Noisy pursuit and pattern formation
of self-steering active particles. New J. Phys. 24, 093039 (2022).

21. Zhu, G., Fang, W.-Z. & Zhu, L. Optimizing low-reynolds-number predation
via optimal control and reinforcement learning. J. Fluid Mech. 944, A3 (2022).

22. Yang, Y. & Bevan, M. A. Optimal navigation of self-propelled colloids. ACS
Nano 12, 10712–10724 (2018).

Fig. 6 Control strategies in a simple 2d flow. Trajectories obtained in a
2-dimensional steady linear flow. Pure Pursuit strategy (black), Surfing
Control (blue), Perturbative Optimal Control (green) and Optimal Control
(red). The trajectories are shown in the relative coordinate space,
R= (Rx, Ry), thus the target is fixed in the origin (full yellow circle). The
dashed lines show the trajectories followed by the strategies after the
capture time of OC. The arrows indicate the control directions followed by
each strategy.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01366-y ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:256 | https://doi.org/10.1038/s42005-023-01366-y |www.nature.com/commsphys 9

http://smart-turb.roma2.infn.it
https://github.com/SmartTURB/Optimal-tracking-strategies-in-a-turbulent-flow
https://github.com/SmartTURB/Optimal-tracking-strategies-in-a-turbulent-flow
www.nature.com/commsphys
www.nature.com/commsphys


23. Yang, Y., Bevan, M. A. & Li, B. Efficient navigation of colloidal robots in an
unknown environment via deep reinforcement learning. Adv. Intell. Syst. 2,
1900106 (2020).

24. Piro, L., Mahault, B. & Golestanian, R. Optimal navigation of microswimmers
in complex and noisy environments. New J. Phys. 24, 093037 (2022).

25. Piro, L., Golestanian, R. & Mahault, B. Efficiency of navigation strategies for
active particles in rugged landscapes. Front. Phys. 10, 1125 (2022).

26. Calascibetta, C., Biferale, L., Borra, F., Celani, A. & Cencini, M. Taming
lagrangian chaos with multi-objective reinforcement learning. Eur. Phys. J. E
46, 9 (2023).

27. Xu, A., Wu, H.-L. & Xi, H.-D. Long-distance migration with minimal energy
consumption in a thermal turbulent environment. Phys. Rev. Fluids 8, 023502
(2023).

28. Peterson, C. & Paley, D. Multivehicle coordination in an estimated time-
varying flowfield. J. Guid. Control Dyn. 34, 177–191 (2011).

29. Song, Z. & Mohseni, K. Anisotropic active lagrangian particle swarm control
in a meandering jet. In 2015 54th IEEE Conference on Decision and Control
(CDC), 240–245 (IEEE, 2015).

30. Mallory, K., Hsieh, M., Forgoston, E. & Schwartz, I. Distributed allocation of
mobile sensing swarms in gyre flows. Nonlinear Processes Geophys. 20,
657–668 (2013).

31. Wynn, R. B. et al. Autonomous underwater vehicles (auvs): Their past, present
and future contributions to the advancement of marine geoscience. Mar. Geol.
352, 451–468 (2014).

32. Witt, J. & Dunbabin, M. Go with the flow: Optimal auv path planning in
coastal environments. Proceedings of the 2008 Australasian Conference on
Robotics and Automation, ACRA 2008 (2008).

33. Smith, R., Das, J., Hine, G., Anderson, W. & Sukhatme, G. Predicting wave
glider speed from environmental measurements. OCEANS’11 - MTS/IEEE
Kona, Program Book (2011).

34. Lumpkin, R. & Pazos, M.Measuring surface currents with Surface Velocity
Program drifters: the instrument, its data, and some recent results, 39-67
(Cambridge University Press, 2007).

35. Bechinger, C. et al. Active particles in complex and crowded environments.
Rev. Mod. Phys. 88, 045006 (2016).

36. Kurzthaler, C. et al. Probing the spatiotemporal dynamics of catalytic janus
particles with single-particle tracking and differential dynamic microscopy.
Phys. Rev. Lett. 121, 078001 (2018).

37. Popescu, M. N., Tasinkevych, M. & Dietrich, S. Pulling and pushing a cargo
with a catalytically active carrier. Europhys. Lett. 95, 28004 (2011).

38. Baraban, L. et al. Transport of cargo by catalytic janus micro-motors. Soft
Matter 8, 48–52 (2012).

39. Panda, M., Das, B., Subudhi, B. & Pati, B. B. A comprehensive review of path
planning algorithms for autonomous underwater vehicles. Int. J. Autom.
Comput. 17, 321–352 (2020).

40. Bryson, A. E. Applied Optimal Control: Optimization, Estimation and Control
(1st ed.) (Routledge, 1975).

41. Ben-Asher, J. Z.Optimal Control Theory with Aerospace Applications
(American Institute of Aeronautics and Astronautics, 2010).

42. Liebchen, B. & Löwen, H. Optimal navigation strategies for active particles.
Europhys. Lett. 127, 34003 (2019).

43. Hays, G. et al. Route optimisation and solving zermelo’s navigation problem
during long distance migration in cross flows. Ecol. Lett. 17, 137–143 (2013).

44. Nahin, P. J.Chases and escapes: the mathematics of pursuit and evasion
(Princeton University Press, 2012).

45. Frisch, U.Turbulence: the legacy of AN Kolmogorov (Cambridge University
Press, 1995).

46. Pope, S. B.Turbulent Flows (Cambridge University Press, 2000).
47. Cencini, M., Cecconi, F. & Vulpiani, A.Chaos: From Simple Models to Complex

Systems. Series on advances in statistical mechanics (World Scientific, 2010).
48. Saw, E. W., Shaw, R. A., Ayyalasomayajula, S., Chuang, P. Y. & Gylfason, A.

Inertial clustering of particles in high-reynolds-number turbulence. Phys. Rev.
Lett. 100, 214501 (2008).

49. Ishihara, T., Gotoh, T. & Kaneda, Y. Study of high-reynolds number isotropic
turbulence by direct numerical simulation. Ann. Rev. Fluid Mech. 41, 165–180
(2009).

50. Monthiller, R.A mechanistic approach to plankton migration. PhD
dissertation, Central Méditerranée https://github.com/rmonthil-phd/thesis-a-
mechanistic-approach-to-plakton-migration/releases/download/v1.0-
comments-addressed/thesis_a_mechanistic_approach_to_plankton_
migration_v1.pdf (2022).

51. Monthiller, R., Loisy, A., Koehl, M. A., Favier, B. & Eloy, C. Surfing on
turbulence: a strategy for planktonic navigation. Phys. Rev. Lett. 129, 064502
(2022).

52. Lenhart, S. & Workman, J. T.Optimal Control Applied to Biological Models.
Chapman & Hall/CRC Mathematical and Computational Biology (Taylor &
Francis, 2007).

53. Trélat, E. Optimal control and applications to aerospace: some results and
challenges. J. Optim. Theory Appl. 154, 713–758 (2012).

54. Brunton, S. L. & Rowley, C. W. Fast computation of finite-time Lyapunov
exponent fields for unsteady flows. Chaos: Interdiscip. J. Nonlinear Sci. 20,
017503 (2010).

55. Krishna, K., Song, Z. & Brunton, S. L. Finite-horizon, energy-efficient
trajectories in unsteady flows. Proc. R. Soc. A 478, 20210255 (2022).

56. Krishna, K., Brunton, S. L. & Song, Z. Finite time lyapunov exponent analysis
of model predictive control and reinforcement learning. arXiv preprint
arXiv:2304.03326 (2023).

57. Fleming, W. H. & Rishel, R. W.Deterministic and stochastic optimal control,
vol. 1 (Springer Science & Business Media, 2012).

58. Crespo, L. G. & Sun, J.-Q. Stochastic optimal control via bellman’s principle.
Automatica 39, 2109–2114 (2003).

59. Sawford, B. L. Reynolds number effects in Lagrangian stochastic models of
turbulent dispersion. Phys. Fluids A: Fluid Dyn. 3, 1577–1586 (1991).

60. Biferale, L., Bonaccorso, F., Buzzicotti, M. & Calascibetta, C. Turb-lagr. a
database of 3d lagrangian trajectories in homogeneous and isotropic
turbulence. arXiv preprint arXiv:2303.08662 (2023).

61. Buzzicotti, M., Bhatnagar, A., Biferale, L., Lanotte, A. S. & Ray, S. S.
Lagrangian statistics for navier-stokes turbulence under fourier-mode
reduction: Fractal and homogeneous decimations. New J. Phys. 18, 113047
(2016).

Acknowledgements
This work was supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant Agreement No.
882340).

Author contributions
C.C., L.B., F.B., A.C., and M.C. conceived the research. C.C. performed all the numerical
simulations and data analysis. C.C., L.B., F.B., A.C., and M.C. contributed to the inter-
pretation of the results and writing of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42005-023-01366-y.

Correspondence and requests for materials should be addressed to Chiara Calascibetta.

Peer review information : Communications Physics thanks Abdallah Daddi-Moussa-
Ider, and the other, anonymous, reviewer(s) for their contribution to the peer review of
this work. A peer review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01366-y

10 COMMUNICATIONS PHYSICS |           (2023) 6:256 | https://doi.org/10.1038/s42005-023-01366-y | www.nature.com/commsphys

https://github.com/rmonthil-phd/thesis-a-mechanistic-approach-to-plakton-migration/releases/download/v1.0-comments-addressed/thesis_a_mechanistic_approach_to_plankton_migration_v1.pdf
https://github.com/rmonthil-phd/thesis-a-mechanistic-approach-to-plakton-migration/releases/download/v1.0-comments-addressed/thesis_a_mechanistic_approach_to_plankton_migration_v1.pdf
https://github.com/rmonthil-phd/thesis-a-mechanistic-approach-to-plakton-migration/releases/download/v1.0-comments-addressed/thesis_a_mechanistic_approach_to_plankton_migration_v1.pdf
https://github.com/rmonthil-phd/thesis-a-mechanistic-approach-to-plakton-migration/releases/download/v1.0-comments-addressed/thesis_a_mechanistic_approach_to_plankton_migration_v1.pdf
https://doi.org/10.1038/s42005-023-01366-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys

	Optimal tracking strategies in a turbulent flow
	Results
	Tracking Lagrangian targets
	Heuristic control strategies
	Optimal control
	Capture time statistics
	Final and intermediate distance statistics
	Conditional growth rate and controllability
	Sensitivity to initial conditions

	Discussion and outlook
	Methods
	Navier-Stokes simulations for Lagrangian tracers
	Optimal control equations
	Heuristic strategies
	Surfing control strategy
	Perturbative optimal control strategy

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




