
A Critical Reassessment
of the Saerens-Latinne-Decaestecker Algorithm
for Posterior Probability Adjustment

ANDREA ESULI, Consiglio Nazionale delle Ricerche, Italy

ALESSIO MOLINARI, Consiglio Nazionale delle Ricerche, Italy and Università di Pisa, Italy

FABRIZIO SEBASTIANI, Consiglio Nazionale delle Ricerche, Italy

We critically re-examine the Saerens-Latinne-Decaestecker (SLD) algorithm, a well-known method for es-

timating class prior probabilities (“priors”) and adjusting posterior probabilities (“posteriors”) in scenarios

characterized by distribution shift, i.e., difference in the distribution of the priors between the training and the

unlabelled documents. Given a machine-learned classifier and a set of unlabelled documents for which the

classifier has returned posterior probabilities and estimates of the prior probabilities, SLD updates them both

in an iterative, mutually recursive way, with the goal of making both more accurate; this is of key importance

in downstream tasks such as single-label multiclass classification and cost-sensitive text classification. Since

its publication, SLD has become the standard algorithm for improving the quality of the posteriors in the

presence of distribution shift, and is still considered a top contender when we need to estimate the priors

(a task that has become known as “quantification”). However, its real effectiveness in improving the quality

of the posteriors has been questioned. We here present the results of systematic experiments conducted on

a large, publicly available dataset, across multiple amounts of distribution shift and multiple learners. Our

experiments show that SLD improves the quality of the posterior probabilities and of the estimates of the

prior probabilities, but only when the number of classes in the classification scheme is very small and the

classifier is calibrated. As the number of classes grows, or as we use non-calibrated classifiers, SLD converges

more slowly (and often does not converge at all), performance degrades rapidly, and the impact of SLD on the

quality of the prior estimates and of the posteriors becomes negative rather than positive.

Additional Key Words and Phrases: Text Classification, Probabilistic Classifiers, Posterior Probabilities, Prior

Probabilities, Distribution Shift, Dataset Shift

ACM Reference Format:
Andrea Esuli, Alessio Molinari, and Fabrizio Sebastiani. 2020. A Critical Reassessment of the Saerens-Latinne-

Decaestecker Algorithm for Posterior Probability Adjustment. ACM Transactions on Information Systems 1, 1
(November 2020), 33 pages. https://doi.org/0000001.0000001

The order in which the authors are listed is purely alphabetical; each author has given an equally important contribution to

this work.

Authors’ addresses: Andrea Esuli, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche,

56124, Pisa, Italy, andrea.esuli@isti.cnr.it; Alessio Molinari, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio

Nazionale delle Ricerche, 56124, Pisa, Italy, alessio.molinari@isti.cnr.it, Dipartimento di Informatica, Università di Pisa,

56127, Pisa, Italy; Fabrizio Sebastiani, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche,

56124, Pisa, Italy, fabrizio.sebastiani@isti.cnr.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1046-8188/2020/11-ART $15.00

https://doi.org/0000001.0000001

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

2 Esuli, Molinari, Sebastiani

1 INTRODUCTION
Single-label text classification is the task of training a text classifier h : X → Y that labels each

document xi ∈ X with a class h(xi) ∈ Y; X is a (possibly infinite) set of documents (the domain),
while Y = {y1, ...,y |Y |} is a finite set of classes (the codeframe, or classification scheme).

The classifiers trained by means of modern machine learning methods usually return, together

with the class assigned to the document, a vector (s(xi ,y1), ..., s(xi ,y |Y |)) of confidence scores, where
s(xi ,yj) by and large represents the confidence (or the strength of belief) that the classifier has

in the fact that xi belongs to yj ; the class h(xi) assigned to document xi is thus the one with the

highest confidence score, i.e.,

h(xi) = argmax

yj ∈Y
s(xi ,yj) (1)

Classifiers that return confidence scores are sometimes called scoring classifiers [12]. Without loss

of generality
1
we may assume that these confidence scores are actual probabilities (if so, these

are called posterior probabilities, or simply posteriors), i.e., we may assume that the vector being

returned has the form (Pr(y1 |xi), ..., Pr(y |Y | |xi)), where
∑ |Y |

j=1 Pr(yj |xi) = 1 and Pr(yj |xi) represents
the probability that the classifier “subjectively” attributes to the fact that xi belongs to class yj .
Rather than simple classifiers, these models are full-blown probability estimators.

The posteriors play an important role in several tasks, a role that goes beyond allowing to take a

classification decision by means of Equation 1. One of these tasks is document ranking, as when the

documents are ranked in decreasing order of the probability Pr(yj |xi) that they belong to a certain

class yj ; ranking is useful, for instance, when performing active learning by means of relevance

sampling [21], or when one needs to choose the best k documents for a certain class, or when

one needs to choose the best k classes for a certain document. Another such task is cost-sensitive
classification, where classification is performed in such a way that

h(xi) = argmin

yj ∈Y

∑
yl ∈Y

λjl · Pr(yl |xi) (2)

where λjl represents the “cost” of classifying a document in class yj when it should have been

classified in class yl (this cost is equal to 0 when j = l and higher than 0 when j , l); in other

words, xi is assigned to the class such that the expected cost (i.e., the risk) of assigning xi to it is

minimum. Example applications of cost-sensitive text classification may be found, for instance, in

spam filtering [5], or in technology-assisted review [30].

Of course, in order to guarantee that single-label multiclass classification, ranking, cost-sensitive

classification, and other such tasks, are executed with high accuracy, the posteriors must be accurate

too. An intuition of what “accurate posteriors” means can be provided by the following example.

For instance, if 10% (resp., 90%) of all the documents xi for which Pr(yj |xi) = 0.5 indeed belong

to yj , we can say that the classifier has overestimated (resp., underestimated) the probability that

these documents belong to yj , and that their posteriors are thus inaccurate. Indeed, we say (see

for instance [15]) that the posteriors Pr(yj |xi), where xi belongs to a set S = {x1, ..., x |S |}, are
(perfectly) calibrated (i.e., accurate) when, for all a ∈ [0, 1], it holds that2

|{xi ∈ S ∩ yj | Pr(yj |xi) = a}|

|{xi ∈ S | Pr(yj |xi) = a}|
= a (3)

1
See the discussion on probability calibration mechanisms later in this section.

2
Perfect calibration is usually unattainable on any non-trivial dataset; however, calibration comes in degrees (and the quality

of calibration can indeed be measured – see Section 3.1.2), so efforts can be made to obtain posteriors which are as close as

possible to their perfectly calibrated counterparts.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 3

The classifiers trained by means of some learners (such as logistic regression) are known to return

reasonably well calibrated probabilities. Those trained by means of some other learners (such as

Naïve Bayes) return probabilities which are known to be not well calibrated [9]. Yet other learners

(such as SVMs or AdaBoost) train classifiers that return confidence scores that are not probabilities

(i.e., that do not range on [0,1] and/or that do not sum up to 1). In order to address these two latter

cases, probability calibration mechanisms exist (see e.g., [28, 29, 31, 40, 41]) that convert the outputs

of these classifiers into well calibrated probabilities.

However, even when using text classifiers that tend to return well calibrated probabilities, or even

when using the probability calibration methods mentioned above, the accuracy of the posteriors

tends to be low if the problem setting exhibits dataset shift (see e.g., [33]), i.e., if the joint distribution
pL(x,y) in the training set is different from the joint distribution pU (x,y) in the unlabelled set. One

particular type of dataset shift that interests us is distribution shift [2], which occurs when the

distribution of the prior probabilities Pr(yj) (or simply priors) in the training set (noted as pL(y))
and that of the prior probabilities in the unlabelled set (noted as pU (y)) differ. To see why this is

the case, take the probabilistic classifier

Pr(yj |xi) =
Pr(xi |yj) Pr(yj)

Pr(xi)
(4)

and note that the posterior Pr(yj |xi) on the left-hand side directly depends on the prior Pr(yj) on the
right-hand side. Since the prior Pr(yj) has been estimated on the training set (i.e., its value has been

set to PrL(yj), which is distributed as pL(y)), if PrL(yj) is higher (resp., lower) than PrU (yj) (which
is distributed as pU (y)), then the posteriors Pr(yj |xi) of the documents in U will be overestimated

(resp., underestimated).
3

Ideally, in order to have well calibrated posteriors even in the presence of distribution shift, we

would need to set Pr(yj) in Equation 4 to PrU (yj), and not to PrL(yj). But this is impossible, since

PrU (yj) is unknown at training time. The only known way out of this conundrum is provided by

the Saerens-Latinne-Decaestecker algorithm (that we here call SLD for brevity)
4
, an algorithm that

iteratively re-estimates the priors PrU (yj) of the unlabelled set and adjusts the posteriors Pr(yj |xi),
in a mutually recursive way [34]. This algorithm is essentially unique in its kind, and, to the best

of our knowledge, no other algorithm that attempts to adjust the posteriors in the presence of

distribution shift has been proposed since its publication. (An exception is the algorithm described

in [38]; in Section 6 we discuss why we do not consider it as a contender.) As a result, SLD has

become a standard, and is frequently used in scenarios characterized by distribution shift, either

when the goal is improving the accuracy of the posteriors, or when the goal is obtaining estimates

of the priors more accurate than can be obtained by the trivial “classify and count” method (the

latter task is known as supervised prevalence estimation, or quantification [19]).

However, in recent experiments aimed at improving the quality of cost-sensitive text classification

in technology-assisted review [22, 23], SLD has not delivered any measurable improvement in the

quality of the posteriors. Since these experiments were limited in scope, we have then decided to

engage in a large-scale experimentation of SLD, with the goal of reassessing its true ability at (i)

accurately re-estimating the priors PrU (yj) of the unlabelled set, and (ii) improving the quality of

the posteriors Pr(yj |xi) of the unlabelled documents. Note that goal (ii) is more important than

goal (i), since the ability of SLD at estimating the priors has been systematically tested in previous

3
In other words, that distribution shift brings about a low quality of the posteriors is due to the fact that distribution shift,

as all types of dataset shift, invalidates the iid assumption (according to which the training examples and the unlabelled

examples are drawn from the same distribution), on which probability calibration methods rely.

4
In a number of other publications [17, 22, 23] the same algorithm was called EMQ, standing for “Expectation Maximization

for Quantification”; in yet other publications [3] it is called RS, standing for “rescaling algorithm”.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

4 Esuli, Molinari, Sebastiani

works (e.g., [10]), and since (as mentioned before) SLD is essentially the only known algorithm

for improving the quality of already calibrated posteriors, while there are many alternatives to

it (see the extensive review by González et al. [19]) when it comes to estimating the priors. We

thus present systematic experiments involving different learners, different datasets, and different

amounts of distribution shift, in which we try to assess the real benefits of using SLD.

The rest of the paper is structured as follows. Section 2 introduces and discusses the SLD

algorithm in detail. In Section 3 we present the systematic experimentation to which we have

subjected SLD, and in Section 4 we present its results, while in Section 5 we discuss exactly which

kinds of distribution shift we target in our experiments. Section 6 discusses some related work,

while Section 7 concludes.

2 THE SLD ALGORITHM
We assume a training set L of labelled examples and a set U = {(x1, t(x1)), . . . , (x |U |, t(x |U |))} of
unlabelled examples, i.e., examples whose true labels t(xi) ∈ Y = {y1, . . . ,y |Y |} are unknown to

the system.

SLD, proposed by Saerens et al. [34], is an instance of Expectation Maximization [8], a well-

known iterative algorithm for finding maximum-likelihood estimates of parameters (in our case:

the class prior probabilities) for models that depend on unobserved variables (in our case: the class

labels). Pseudocode of the SLD algorithm is here included as Algorithm 1.

Essentially, SLD iteratively updates (Line 11) the class priors by using the posterior probabilities

computed in the previous iteration, and updates (Line 13) the posterior probabilities by using the

class priors computed in the present iteration, in a mutually recursive fashion. The main goal is to

adjust the posteriors and re-estimate the priors in such a way that they are consistent with each

other, where this “mutual consistency” means that they should be such that

PrU (yj) =
1

|U |

∑
xi ∈U

Pr(yj |xi) (5)

In Appendix A we show that Equation 5 is a necessary (albeit not sufficient) condition for the

posteriors Pr(yj |xi) of the documents xi ∈ U to be calibrated. SLD may thus be viewed as making

a step towards calibrating these posteriors.

The algorithm iterates until convergence, i.e., until the class priors become stable and Equation 5

is satisfied. The convergence of SLD may be tested by computing how the distribution of the priors

at iteration (s − 1) and that at iteration s still diverge; this can be evaluated, for instance, in terms

of absolute error, i.e.,
5

AE(p̂(s−1)U , p̂(s)U) =
1

|Y|

|Y |∑
j=1

|P̂r
(s)
U (yj) − P̂r

(s−1)
U (yj)| (6)

In the experiments of Section 3, we decree that convergence has been reachedwhenAE(p̂(s−1)U , p̂(s)U) <

10
−6
; we stop SLD when we have reached either convergence or the maximum number of iterations

(that we set to 1000).

At each iteration of the algorithm, all the posteriors relative to class yj are multiplied by the same

amount P̂r

(s)
U (yj)/P̂r

(0)

U (yj). As a consequence, the net effect of SLD is to multiply all these posteriors

by the same amount P̂rU (yj)/P̂r
(0)

U (yj) so that the resulting posteriors Pr(yj |xi) are consistent with
the resulting class prior P̂rU (yj), i.e., so that Equation 5 is satisfied; in other words, SLD is an

iterative rescaling algorithm. The posteriors for different classes, though, do not get multiplied

5
Consistently with most mathematical literature, we use the caret symbol (ˆ) to indicate estimation.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 5

ALGORITHM 1: The SLD algorithm [34].

Input :Class priors PrL(yj) on L, for all yj ∈ Y;
Posterior probabilities Pr(yj |xi), for all yj ∈ Y and for all xi ∈ U ;

Output : Estimates P̂rU (yj) of class prevalence values onU , for all yj ∈ Y;
Updated posterior probabilities Pr(yj |xi), for all yj ∈ Y and for all xi ∈ U ;

// Initialization

1 s ← 0;

2 for yj ∈ Y do
3 P̂r

(s)
U (yj) ← PrL(yj); // Initialize the prior estimates

4 for xi ∈ U do
5 Pr

(s)(yj |xi) ← Pr(yj |xi); // Initialize the posteriors

6 end
7 end

// Main Iteration Cycle

8 while stopping condition = false do
9 s ← s + 1;

10 for yj ∈ Y do

11 P̂r

(s)
U (yj) ←

1

|U |

∑
xi ∈U

Pr
(s−1)(yj |xi); // Update the prior estimates

12 for xi ∈ U do

13 Pr
(s)(yj |xi) ←

P̂r

(s)
U (yj)

P̂r

(0)

U (yj)
· Pr(0)(yj |xi)

∑
yj ∈Y

P̂r

(s)
U (yj)

P̂r

(0)

U (yj)
· Pr(0)(yj |xi)

// Update the posteriors

14 end
15 end
16 end

// Generate output

17 for yj ∈ Y do
18 P̂rU (yj) ← P̂r

(s)
U (yj) ; // Return the prior estimates

19 for xi ∈ U do
20 Pr(yj |xi) ← Pr

(s)(yj |xi) // Return the adjusted posteriors

21 end
22 end

by the same amount; this is somehow obvious, since at the end of the process the posteriors for

document xi must all sum up to 1, which means that if the posteriors for a class y ′ all end up

increasing, there must be at least a class y ′′ whose posteriors all end up decreasing.

SLD, as proposed by Saerens et al. [34] and as described here, addresses single-label classification,

i.e., the task in which exactly 1 out of |Y| classes must be assigned to each document. This means

that SLD can be used for binary classification (which is single-label classification with |Y| = 2),

for single-label multiclass classification (which is single-label classification with |Y| > 2), and for

multi-label classification (which is the task in which any number of classes in Y can be assigned

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

6 Esuli, Molinari, Sebastiani

to a document), since multi-label classification can be trivially recast into |Y| independent binary

classification tasks.

It is worth pointing out something which Saerens et al. [34] did not observe, i.e., that the

combination of (i) a learner that trains classifiers to return posterior probabilities, and (ii) the SLD

algorithm that improves the quality of the posterior probabilities for a given set of unlabelled

documents U , might be called a transductive algorithm [39], since it uses training documents

to infer posterior probabilities only for a specific, finite set of unlabelled documents known at

training time. This is different from standard inductive algorithms, that use training documents

to infer a general-purpose hypothesis that can later be applied to the entire domain. One aspect

of this transductive nature is that SLD must operate “holistically”, i.e., on entire sets of unlabelled
documents, and cannot, for instance, update the posteriors of individual unlabelled documents in

isolation of each other; another aspect is that, as Saerens et al. [34, p. 35] put it, “the model has to

be completely refitted each time it is applied to a new data set”.

Interestingly enough, SLDwas originally designed with the goal of improving the posteriors, so as

to improve the accuracy of classification (bymeans of Equation 1) in the presence of distribution shift.

The fact that it also allows estimating the priors in a more accurate way than by just “classifying and

counting” was considered a by-product by its authors. However, in the years that followed, thanks

to increased interest in the “quantification” task (see Section 1), SLD became a popular baseline for

algorithms whose goal was the estimation of the priors, and in recent extensive experimentation it

has been found to be a top-notch performer for this task [25].

In [34], the quality of the posteriors generated by means of SLD was measured in terms of error

rate, i.e., the fraction of classification decisions that are wrong. However, a major difference between

error rate and the measures we will instead use for the same purpose (see Section 3.1.2) is that

the former, unlike the latter, evaluates not the posterior probabilities per se but the classification
decisions that are based on them. Error rate is thus only an “indirect” measure of the quality of the

posteriors, and a coarse one too. To see this, let us assume we are dealing with binary classification,

and let us consider a document xi such that its true class is y1. According to Equation 1, posteriors

Pr(y1 |xi) = .51 and Pr(y2 |xi) = .49 would lead to xi being correctly classified into y1, and so would

posteriors Pr(y1 |xi) = .99 and Pr(y2 |xi) = .01. The former set of posteriors is equivalent to the

latter set as far as error rate is concerned; however, we intuitively consider the latter set “better”

than the former set, and the measures we discuss in Section 3.1.2 indeed consider it as such. Note

also that classification (as implemented by means of Equation 1), is just a downstream application

of the posteriors, and there are many such potential applications, such as (as already recalled in

the introduction) ranking and cost-sensitive classification; rather than evaluating the posteriors

by evaluating one of their potential applications, it seems more sensible to evaluate them directly,

which can be done by means of the measures of Section 3.1.2.

In [34], SLD was subjected to a small-scale experimentation, which involved the binary case

only. The experiments we conduct in this paper are instead carried out on a very large scale, and

involve both binary and multiclass classification.

3 EXPERIMENTS
In this section we report systematic experiments in which, using a variety of datasets, learners, and

amounts of distribution shift, we compare the quality of the priors and (above all) of the posteriors

before the application of SLD, with that after the application of SLD. This allows us to see when

and in what conditions the application of SLD is beneficial.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 7

3.1 Evaluation Measures
We evaluate SLD in terms of two main criteria, i.e., (i) the ability to improve the accuracy of the

estimated class priors with respect to the trivial “Classify & Count” estimator, and (ii) the ability to

improve the accuracy of the posterior probabilities with respect to the ones originally returned by

the classifier.

3.1.1 Evaluating the Priors. For evaluating the quality of the estimated class priors we use normal-
ized absolute error (NAE) (see e.g., [35, §4.2]), defined as

NAE(pU , p̂U) =

∑ |Y |
j=1 | PrU (yj) − P̂rU (yj)|

2(1 − min

yj ∈Y
Pr(yj))

(7)

where pU and p̂U indicate the true class distribution and the predicted class distribution, resp.,

on the set U of unlabelled documents. The reason we use NAE is that, besides its simplicity, it

is also (as argued in [35]) one of the theoretically most satisfying measures for evaluating the

quality of class priors; NAE ranges between 0 (best) and 1 (worst). In all the tables of results that we

include in Section 4, we compare the estimates of the class priors before applying SLD, computed

by “classifying and counting”, i.e., as

P̂rU (yj) =
1

|U |
|{xi ∈ U ,h(xi) = yj }|

with the same estimates after applying SLD (which are the values of P̂rU (yj) resulting from Line 18

of Algorithm 1).

3.1.2 Evaluating the Posteriors. For evaluating the quality of the posterior probabilities, the measure

we use is the Brier score [4]. Given a setU = {(x1, t(x1)), . . . , (x |U |, t(x |U |))} of unlabelled documents

to be labelled according to codeframe Y, the Brier score is defined as

BS =
1

|Y| · |U |

|Y |∑
j=1

|U |∑
i=1

(I (t(xi) = yj) − Pr(yj |xi))2 (8)

where I (·) is a function that returns 1 if its argument is true and 0 otherwise. The Brier score ranges

between 0 (best) and 1 (worst), i.e., it is a measure of error, and not of accuracy. It rewards classifiers

that return a high posterior for the true class of xi and low posteriors for all classes other than the

true class of xi . The Brier score is an example of so-called strictly proper scoring rules [18], defined
as loss functions which are minimized only when Pr(yj |xi) equals 1 for yj = t(xi).

It is useful to analyze the Brier score in a more fine-grained way. For class yj , let the [0,1] interval
be partitioned into an ordered sequence of b intervals I1j , ..., Ibj , and let us define bins B1j , ...,Bbj
such that xi ∈ Bk j iff Pr(yj |xi) ∈ Ik j . DeGroot and Fienberg [7, §4] show

6
that the Brier score can

be written as

BS = CE + RE (9)

6
The formulation of the Brier score originally given in [7, §4] is slightly different since the authors assume that a posterior

may only take up one of a small, fixed number of values, which makes intervals and bins not necessary for the formulation of

BS. While this assumption is reasonable when posteriors are returned by human beings, this is not when they are returned

by automatic probabilistic classifiers; as a result, we here reformulate BS by using intervals and bins.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

8 Esuli, Molinari, Sebastiani

with

CE =
1

|Y| · b

|Y |∑
j=1

b∑
k=1

ν (Bk j ,U) · (π (Bk j) − ρ(yj ,Bk j))
2

(10)

RE =
1

|Y| · b

|Y |∑
j=1

b∑
k=1

ν (Bk j ,U) · ρ(yj ,Bk j) · (1 − ρ(yj ,Bk j)) (11)

where

• ν (Bk j ,U) is the prevalence of Bk j inU , i.e., the fraction

|Bk j |
|U | of documents xi inU that are

in Bk j ;
• π (Bk j) is the expected value

1

|Bk j |
∑

xi ∈Bk j Pr(yj |xi) of the posteriors for the documents in

Bk j ;
• ρ(yj ,Bk j) is the prevalence of yj in Bk j , i.e., the fraction

1

|Bk j |
∑

xi ∈Bk j I (t(xi) = yj) of docu-
ments xi in Bk j that belong to class yj .

Here, CE is a measure of the calibration error of the posterior probabilities; in fact, it is easy to see

that its value is 0 if and only if Equation 3 is verified for each S ∈ {B1j , ...,Bbj }. RE is instead a

measure of what DeGroot and Fienberg [7] call the refinement error of the classifier, i.e., of the lack
of confidence of its predictions; its value is 0 if and only if all the posteriors it returns have a value

of 0 or 1, while its value is 1 if and only it the classifier always “sits on the fence”, i.e., if all the

posteriors it returns have a value equal to the prevalence of yj inU .
7

As an example, in a binary setting consider a perfectly balanced unlabelled set U , consider a

(“perfect”) classifier h′ that returns Pr(yj |xi) = 1 for all xi whose true class is yj and Pr(yj |xi) = 0

for all xi whose true class is not yj , and consider a classifier h′′ that returns Pr(yj |xi) = .50 for all
xi ∈ U . Classifiers h′ and h′′ are equivalent as far as CE is concerned (they both get a score of 0),

but they are not for RE, which is equal to 0 for h′ and to .50 for h′′. Conversely, consider the same

set U and the same (“perfect”) classifier h′ of the previous example, and consider a (“perverse”)

classifier h′′′ that returns Pr(yj |xi) = 0 for all xi whose true class is yj and Pr(yj |xi) = 1 for all xi
whose true class is not yj . Classifiers h

′
and h′′′ are equivalent as far as RE is concerned (they both

get a score of 0), but they are not for CE, which is equal to 0 for h′ and to 1 for h′′. Prediction power

(which, in this case, manifests itself in the form of good-quality posteriors) thus requires calibration

and refinement. Another way of saying this is that BS measures the classifier’s knowledge, which is

a combination of the classifier’s introspection, or self-awareness (which is measured by CE), and of

the classifier’s confidence (which is measured by RE).

In this paper we define and use two variants of the Brier score, i.e.,

• the Isometric Brier Score (here shortened as BSL , where L stands for “length”), which is

obtained by partitioning U into intervals I1j , ..., Ibj of equal length; for instance, if b = 10

then I1j = [.0, .1), I2j = [.1, .2),..., Ibj = [.9, 1.0];
• the Isomerous Brier Score (here shortened as BSN , where N stands for “number”), which

is obtained by partitioning U into intervals I1j , ..., Ibj such that the corresponding bins

B1j , ...,Bbj have equal size, i.e., are such that (a) x′ ∈ Bs j and x′′ ∈ Bt j with s < t implies

that Pr(yj |x′) ≤ Pr(yj |x′′), and (b) |Bs j | = |Bt j | for any s, t ∈ {1, ...,b}. Note that, when

partitioningU this way, ν (Bk j ,U) is the same for all 1 ≤ k ≤ b.

The advantage of BSN over BSL is that all bins are guaranteed to have a high enough number of

elements, which reduces the risk that the difference between ρ(yj ,Bk j) and π (Bk j) is extreme due

7
The decomposition of BS into CE and RE was originally introduced by Murphy [26], who actually used the terms reliability
and resolution to denote CE and RE, respectively; the terminology we use in this paper is the one now current.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 9

to sparsity. In this paper we use the BSL variant for compatibility with previous literature (which

mostly uses the BSL variant – e.g., [3, 37]), and the BSN variant because, as argued, it seems to

have superior formal properties.

In the experiments reported in this paper we use b = 10.

3.2 Dataset
As the dataset, in our experiments we use RCV1-v2, a dataset comprising 804,414 news stories

published by Reuters from Aug 20, 1996, to Aug 19, 1997.
8
We here consider the “Topic” hierarchy,

consisting of 101 classes. For text classification purposes, RCV1-v2 is traditionally split into a

training set consisting of the (chronologically) first 23,149 documents (the ones written in Aug

1996), and a test set consisting of the last 781,265 documents (the ones written from Sep 1996

onwards).

RCV1-v2 is multi-label, i.e., a document may belong to several classes at the same time; since

in this paper we are interested in single-label classification, we select its “single-label fragment”,

i.e., the subset of RCV1-v2 documents that have exactly 1 label. In order to do so, (a) we remove

all “derived” labels, leaving only “primitive” labels
9
, and (b) we remove from the collection all

documents that do not have exactly one “primitive” label.

For reasons that will be clear in Section 3.2.1, in our experiments we consider only the 37 classes

with at least 2000 (training or test) positive examples; of these, 31 are “leaf” classes while the

remaining 6 classes correspond to internal nodes of the hierarchy.
10
We also remove all documents

that do not belong to any of these 37 classes, which leaves us with 517,978 documents.

3.2.1 Generating Samples with Controlled Amounts of Distribution Shift. RCV1-v2 exhibits very
little distribution shift between training set and test set. In fact, if we compute the normalized

absolute error between pL (the class distribution in the training set) and pU (the class distribution

in the unlabelled documents), i.e.,

NAE(pL,pU) =

∑ |Y |
j=1 | PrL(yj) − PrU (yj)|

2(1 − min

yj ∈Y
PrL(yj))

(12)

for RCV1-v2 we obtain NAE = .0026, which is an extremely low value (since NAE always ranges

between 0 – indicating no shift – and 1 – indicating maximum shift).

We instead want to test the SLD algorithm on a variety of distribution shift values, thus simulating

a variety of possible application scenarios.
11

In order to do so, by using the protocol described

below we extract from RCV1-v2 k different samples, each consisting of a training set and a test set

sampled from different class distributions; all the results of our experiments will thus be average

values across these k samples.

We run binary, “one-against-the-rest” classification experiments, i.e., experiments in which, for

each class yj , all the examples not belonging to yj are considered negative examples of yj . For these
experiments:

8
Available from http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm

9
The RCV1-v2 codeframe has a hierarchical structure. As a result, when a document is labelled with class yj , it is also
labelled with all classes that are ancestors of yj in the RCV1-v2 tree. Whenever a document has two labels y′ and y′′ such
that y′ is an ancestor of y′′, we remove this “derived” label y′ from its labels; we are thus left with “primitive” labels (i.e.,

labels yj such that the document has no label which is a descendant of yj).
10
Each of these latter 6 classes has at least 2000 positive examples “of its own”, i.e., such that none of its descendant classes

has any of these examples.

11
Testing SLD against different values of distribution shift is of key importance also because one of the claims made

by Saerens et al. [34, p. 31] is that their algorithm improves the prior estimates when distribution shift is substantial while it

may actually worsen them in a “zero shift” setting.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm

10 Esuli, Molinari, Sebastiani

(1) We generate two random vectors ΠL = (π
L
1
, π L

2
) and ΠU = (π

U
1
, πU

2
) of class priors, i.e., two

vectors such that 0 ≤ π L
j , π

U
j ≤ 1 for each 1 ≤ j ≤ 2 and such that

∑
2

j=1 π
L
j =

∑
2

j=1 π
U
j = 1;

12

(2) We generate a training set σL by drawingmL = |σL | different documents (withmL a parameter

to be fixed beforehand), where at each draw we pick with probability π L
j a random document

among those belonging to class yj , and with probability (1 − π L
j) a random document among

those not belonging to yj . We then generate a test set σU by first removing from the pool

the documents drawn for σL , and then by drawingmU = |σU | different documents (with

mU a parameter to be fixed beforehand), where at each draw we pick with probability πUj
a random document among those belonging to class yj , and with probability (1 − πUj) a

random document among those not belonging to yj . We thus obtain a sample σ = (σL,σU)
with which we run a train-and-test experiment.

(3) We repeat the two steps above k times for each class yj ∈ Y and average the results across

these 37 × k train-and-test experiments.

We also run single-label multiclass classification experiments, using varying number of classes. For

these experiments

(1) given a desired number n of classes, we randomly choose n of our 37 RCV1-v2 classes, thus

obtaining codeframe Y, with |Y| = n;
(2) we generate two random vectors ΠL = (π

L
1
, ..., π L

|Y |
) and ΠU = (π

U
1
, ..., πU

|Y |
) of class priors,

i.e., two vectors such that 0 ≤ π L
j , π

U
j ≤ 1 for each 1 ≤ j ≤ |Y| and such that

∑ |Y |
j=1 π

L
j =∑ |Y |

j=1 π
U
j = 1;

(3) we generate a training set σL (resp., a test set σU) by drawingmL = |σL | (resp.,mU = |σU |)
different documents (with mL and mU two parameters to be fixed beforehand), where at

each draw we pick with probability π L
j (resp., πUj) a document belonging to class yj . We thus

obtain a sample σ = (σL,σU) with which we run a train-and-test experiment;

(4) we repeat the three steps above k times and average the results across these k train-and-test

experiments.

In the experiments we run in this paper we usemL = mU = 1000, and k = 500. The fact that, as

previously specified, we only consider classes with at least 2000 positive examples allows us to

usemL =mU = 1000, i.e., there would be enough positive training examples even if, in some of

the k draws, π L
j and πUj were both 1 for some yj .

13
We run multiclass experiments for all values of

|Y| ∈ {5, 10, 20, 37}.
Thanks to the use of randomly generated drawing probabilities, the class distributions of both

the training set and the test set of each sample are random, each class distribution is equiprobable,

and the value of distribution shift (as measured by NAE) between the training set and the test set

of each sample we generate is also random. The set of samples that we generate with this method

is, since k is large enough, fairly representative of the entire spectrum of shift values.

Note that this strategy for generating samples characterized by random values of distribution

shift is radically different from the one adopted, for instance, in [10, 16]. In these latter works

there is no random component in picking class distributions or distribution shift values, and an

12
The method we use for generating each such vector is to pick two random real numbers in [0,1] and normalizing them so

that they sum to 1. We have specified this since different methods to generate random vectors of class priors (for instance,

picking a random number x in [0,1] and using (x , (1 − x)) as the vector) are possible, and may yield different results. The

same method is also used in Step 2 of the analogous process for multiclass experiments that we are going to describe next,

of course using vectors with dimensionality equal to the number of classes considered.

13
Note that documents are drawn from RCV1-v2 in its entirety, disregarding the “traditional” split of RCV1-v2 into 23,149

training documents and 781,265 test documents.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 11

equal number of samples is generated for all possible class distributions such that each class prior

belongs to a finite set of values (e.g., {.00, .01, ..., .99, 1.00}). However, those works deal only with

the binary case, where the number of all possible such class distributions is small. In the general

multiclass case (i.e., when |Y| > 2) this number is much higher, since it grows exponentially with

|Y|; therefore, even generating a single sample for all possible class distributions such that each

class prior is in {.00, .01, ..., .99, 1.00}, would be prohibitive even for small numbers of |Y|. The

random strategy we adopt in this paper thus allows us to avoid this pitfall.

3.3 Representing text
We preprocess text by using stop word removal and no stemming. As the weighting criterion we

use a version of the well-known tfidf method, expressed as

tfidf (f , xi) = log #(f , xi) × log
|L|

|x ∈ L : #(f , x) > 0|
(13)

where #(f , xi) is the raw number of occurrences of feature f in document xi ; weights are then
normalized by means of cosine normalization.

3.4 Learners
In our experiments we use four different learners, i.e., support vector machines (SVMs), logistic

regression (LR), multinomial naive Bayes (MNB), and random forests (RFs). For all of them we rely

on the implementations available from the scikit-learn package.14 For all of them we use the

default parameters of the scikit-learn implementation, since the possible accuracy improvements

resulting from a parameter optimization based on k-fold cross-validation would be obtained at the

expense of a very large computational cost.
15
This possible accuracy improvement would bring

about no evident benefit to our study, since the goal of this work is not squeezing every possible

drop of accuracy from our classifiers, but comparing the pre-SLD results with the post-SLD results

in the same experimental conditions. The default values are as follows:

• SVMs: we use soft-margin SVMs with linear kernel, L2 regularization with C = 1;

• LR: we use L2 regularization with a regularization coefficient C = 1;

• MNB: We use Laplace smoothing, with a = 1 as the additive factor;

• RFs: we use 100 trees per forest, Gini impurity as the splitting function, no max depth, no

pruning.

For each of these learners but SVMs we use two versions, one with post-calibration of the posteriors

that the learner returns (Calib), and the other without calibration (NoCalib). SVMs are an exception

because, as is well-known, the confidence scores they return are not probabilities, and the only

way to have SVMs return probabilities in scikit-learn is to invoke a calibration routine; as a

result, the only version of SVMs we experiment with is one with post-calibration.

We perform calibration using the method proposed by Platt [31], sometimes known as “Platt

scaling”.
16
Given a confidence score s(xi ,yj) produced by a classifier, either in the form of a non-

probabilistic score or of a non-calibrated probability, we transform it into a calibrated probability

14
https://scikit-learn.org/stable/index.html

15
No parameter has been optimized because it would have been too expensive to do it individually for each of the 500

samples per dataset mentioned in Section 3.2.1, and because doing it on just one of the 500 samples and using the obtained

parameter values for the other 499 would have been of dubious utility.

16
We have implemented Platt scaling ourselves since the version available from scikit-learn turns out to be not a faithful

implementation of Platt’s algorithm; see https://github.com/scikit-learn/scikit-learn/issues/16145 for a discussion. The code

of our implementation is available at https://github.com/aesuli/scikit-learn/tree/platt

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

https://github.com/scikit-learn/scikit-learn/issues/16145
https://github.com/aesuli/scikit-learn/tree/platt

12 Esuli, Molinari, Sebastiani

Pr(yj |xi) by applying the logistic transformation

Pr(yj |xi) =
1

1 + exp(α · s(xi ,yj) + β)
(14)

where the parameters α and β are determined by fitting a maximum-likelihood model on a set of

scores SCalib = {s(x,yj)|x ∈ TrCalib} produced by the classifier on some training documents TrCalib.
If the same training documents that are used to train the classifier are also used for calibration,

overfitting may happen. Held-out documents may be used, but this requires additional labelled

documents. To avoid overfitting without requiring held-out documents, Platt suggests to collect the

set of scores SCalib by performing cross-validation on the training documents. We have implemented

this k-fold cross-validation procedure, performing 10-fold cross-validation on the training docu-

ments, using the same learning algorithm that is separately used on the entire training set in order

to learn the actual classifier. We obtain the scores S
f
Calib

for each validation fold f ∈ [1, . . . , 10] and

then optimize the parameters of Equation 14 on the resulting set of scores SCalib =
⋃

f S
f
Calib

. We

then apply the optimized Equation 14 to the scores of the classifier trained on the entire training

set; we refer to this process as the Calib version of the learner.

4 RESULTS
This section presents the results of our experiments. The code for reproducing them is available at

https://github.com/HLT-ISTI/SLD-reassessment. At https://hlt-isti.github.io/SLD-visualization/ we

also make available a visualization tool that shows, for various combinations of (number of classes,

sample, learner, class) from our experiments,

(1) how the prior of the chosen class as estimated by SLD evolves as a function of the number of

iterations;

(2) as the values of the four evaluation metrics (as computed on this sample only) evolve as a

function of the number of iterations.

Figure 1 shows sample plots as generated by our visualization tool.

4.1 Results of Binary Classification Experiments
The upper half of Table 1 reports, for our binary classification experiments, the values of NAE and

of the isometric variants of BS, CE, RE, before (“Pre-SLD”) and after (“Post-SLD”) the application of

SLD. In other words, Pre-SLD indicates the values computed directly on the outputs of the classifier,

while Post-SLD indicates the values after these outputs have been updated by SLD. Since NAE, BS,

CE, RE are all error measures, differences between Pre-SLD and Post-SLD are indicated in terms

of relative error reduction RE =
B−A
B , where E ∈ {NAE, BS,CE, RE} is the specific error measure,

B and A are the Pre-SLD and Post-SLD values of E, respectively, and where the values of RE are

reported (for simplicity) as percentages instead of as fractions.
17
Note that for RE a positive value

indicates an improvement (i.e., that SLD had a beneficial effect) while a negative value indicates a

deterioration. The rows of the table each correspond to one of the learners of Section 3.4, grouped

into learners with post-calibration of the posteriors that the learner returns (Calib) and ones

without such calibration (NoCalib). As indicated in Section 3.2.1, every row of this table is the

result of 37×500=18,500 train-and-test runs; given that each of the 7 rows accounts for a different

learner, this is a total of 18,500×7=129,500 train-and-test runs.

17
In this table and in all the other tables in this paper, some values of RE might not appear to be completely justified; for

instance, when the transition from a Pre-SLD value of .001 to a Post-SLD value of .000 is indicated to correspond to a

value RE = +79.3%. Of course, this value of RE derives from using the real Pre-SLD and Post-SLD values in much higher

precision. We use the standard notation (e.g., .027) rather than the more precise E notation (e.g., 2.7E-3) for higher legibility.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

https://github.com/HLT-ISTI/SLD-reassessment
https://hlt-isti.github.io/SLD-visualization/

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 13

Fig. 1. Plots from the visualization tool at https://hlt-isti.github.io/SLD-visualization/, showing the evolution,
as a function of the number of SLD iterations, (top) of the prior of a chosen class as estimated by SLD, (center)
of NAE, and (bottom) of BS, CE and RE. The plots on the left show a successful application of SLD (3 of the
4 metrics improve and the 4th stays constant), and the distance between the prior generated by SLD and
the true prior in the unlabelled set U diminishes, while the plots on the right show an unsuccessful such
application (all 4 metrics worsen, and the distance between the prior generated by SLD and the true prior in
the unlabelled setU increases).

There are a number of observations that can be derived from the top part of Table 1:

• In terms of the quality of the estimated priors (as measured by NAE), there is a very substantial

difference between the performance of non-calibrated learners and that of calibrated learners:

for the former, the application of SLD brings about an extremely large deterioration (an

average of 72.7% across all tested learners), while it brings about a very good improvement

(an average of 43.5% across all tested learners) for the latter.
18

This adds to the fact that

calibrated learners have, on average, a much better NAE right from the start (.009, instead of

.046 for the non-calibrated ones); this means that calibrating one’s learner is a win-win move,

18
This confirms an observation of Saerens et al. [34], according to whom “In order to obtain good a priori probability

estimates [by means of SLD], it is necessary that the a posteriori probabilities relative to the training set are reasonably well

approximated (i.e., sufficiently well estimated by the model)”.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

https://hlt-isti.github.io/SLD-visualization/

14 Esuli, Molinari, Sebastiani

Table 1. Values of NAE, BS, CE, RE, before and after the application of SLD, for binary classification experi-
ments.

Priors Posteriors

N
A
E

B
S

C
E

R
E

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

I
s
o
m
e
t
r
i
c

N
o
C
a
l
i
b LR .005 .013 -136.9% .011 .011 -4.2% .008 .006 +21.4% .003 .005 -68.8%

MNB .116 .186 -60.3% .020 .025 -26.0% .013 .015 -15.6% .007 .011 -44.4%

RF .016 .039 -142.1% .010 .007 +26.2% .006 .003 +46.9% .003 .004 -12.1%

Avg .046 .079 -72.7% .013 .015 -7.8% .009 .008 +9.6% .005 .006 -41.8%

C
a
l
i
b

SVM .005 .004 +21.5% .003 .002 +31.7% .001 .000 +79.3% .002 .002 +8.6%

LR .008 .002 +78.2% .004 .003 +29.1% .001 .000 +75.8% .002 .002 +7.6%

MNB .023 .014 +39.1% .009 .006 +35.3% .004 .001 +72.8% .005 .005 +8.3%

RF .002 .002 +17.5% .005 .003 +32.7% .002 .000 +81.6% .003 .003 +7.7%

Avg .009 .005 +43.5% .005 .004 +33.0% .002 .000 +76.1% .003 .003 +8.1%

I
s
o
m
e
r
o
u
s

N
o
C
a
l
i
b LR .005 .013 -136.9% .012 .012 -3.0% .009 .009 -4.1% .003 .003 +0.0%

MNB .116 .186 -60.3% .022 .028 -26.5% .017 .023 -35.3% .005 .005 -0.0%

RF .016 .039 -142.1% .011 .008 +28.0% .007 .004 +44.4% .004 .004 +0.0%

Avg .046 .079 -72.7% .015 .016 -7.0% .011 .012 -9.8% .004 .004 +0.0%

C
a
l
i
b

SVM .005 .004 +21.5% .004 .003 +23.7% .001 .000 +90.1% .003 .003 +0.0%

LR .008 .002 +78.2% .004 .003 +22.8% .001 .000 +86.5% .003 .003 +0.0%

MNB .023 .014 +39.1% .010 .007 +33.1% .004 .001 +73.5% .005 .005 -0.0%

RF .002 .002 +17.5% .006 .004 +28.0% .002 .000 +86.8% .004 .004 +0.0%

Avg .009 .005 +43.5% .006 .004 +28.4% .002 .000 +80.3% .004 .004 -0.0%

given that it brings about much better posterior probabilities and that these posteriors have

much larger margins of improvement by means of the application of SLD.
19

• The very large magnitude of these improvements / deteriorations is not mirrored by analogous

magnitudes when it comes to the quality of the posteriors. It is still true that deteriorations

are observed in the case of non-calibrated classifiers (7.8% on average) and improvements are

instead observed for the calibrated classifiers (33.0% on average), but the magnitudes of these

variations are smaller.

• SLD seems to have a much more beneficial effect in terms of calibration than in terms of

refinement; in fact improvements in BS, when present, are largely the responsibility of CE,

while deteriorations in BS, when present, are largely the responsibility of RE.

19
Niculescu-Mizil and Caruana [29] state that “For learning methods that make well calibrated predictions such as neural

nets, bagged trees, and logistic regression, neither Platt Scaling nor Isotonic Regression yields much improvement in

performance even when the calibration set is very large. With these methods calibration is not beneficial, and actually

hurts performance when the calibration sets are small.” Our large-scale experimentation indicates that, while this might

be true in the absence of distribution shift, when distribution shift is present any calibrated learner works better than its

non-calibrated counterpart. In fact, note that the Pre-SLD values of NAE, BS and CE for the calibrated learners are always

substantially better than the values of the corresponding non-calibrated learners, and this also includes logistic regression,

a learner that is known to return well calibrated probabilities.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 15

• While there are (even substantial) quantitative differences among learners belonging to the

same category (non-calibrated or calibrated), there are very few qualitative differences, i.e.,
when a learner exhibits a deterioration in one of the measures, all other learners (with few

exceptions) also exhibit a deterioration for the same measure. This seems to indicate that the

results derive from inherent properties of the SLD algorithm, rather than from peculiarities

of the individual learning algorithms.

The lower half of Table 1 presents the analogous results for the isomerous variants of BS, CE, RE.

(The results for NAE are the same as in the upper half, since the distinction isometric/isomerous

does not apply to NAE.) The observations that can be made by looking at the lower half the table

are essentially the same as those derived from the upper half, since the results are qualitatively

similar. There is one important difference, though, i.e., the fact that, when measured by means of

the isomerous variant, RE is always 0 or very close to 0, which is far from being the case when

using isometric RE. That this should be so is an obvious consequence of the definition of RE, as

from Equation 11. In fact, since all bins are equally populated, it is clear from Equation 11 that RE

only depends, for all bins Bk j (1 ≤ k ≤ b) and for all classes yj ∈ Y, on the fraction ρ(yj ,Bk j) of
documents in the bin that belong to the class. However, for all bins, that fraction is the same in

the Pre-SLD and Post-SLD distributions, because, as observed in Section 2, SLD is just a rescaling
algorithm, that multiplies all the posteriors for a given class for the same constant but does not

change the composition of the bins. That RE is not 0 when using the isometric variant is thus due

to the fact that rescaling changes the compositions of the bins; for instance, a document that was

in the bin corresponding to the [.9, 1.0] interval before the application of SLD, after SLD has been

applied might be in the [.8, .9) bin if SLD has multiplied all the posteriors for that class by a factor

smaller than 1. In this case, rescaling not only changes the composition of the bins, but also changes

the number of documents they contain, thus potentially generating also very sparse bins.

Interestingly, the fact that SLD could not reduce RE is reminiscent of an observation by DeGroot

and Fienberg [7]:

We then study the question of when an observer can use a forecaster’s predictions to

obtain a better score than the forecaster himself, and show that such an improvement

can be achieved by the observer essentially if and only if the forecaster is not well

calibrated.

Here, the forecaster is the classifier and the observer is SLD, who tries to obtain a better score (in

terms of Brier score) than the classifier by “piggybacking” on the classifier’s predictions. DeGroot

and Fienberg [7] state that what SLD can at most hope for, is to improve on the classifier’s calibration
error, but not on its refinement error. This shows that SLD is, in essence, a re-calibration algorithm, i.e.,

an algorithm for re-calibrating the posterior probabilities of documents belonging to an unlabelled

set U , where these posteriors have been returned by a classifier already calibrated on a training set

L, and where the re-calibration is made necessary by the fact that a prior probability shift between

L andU has occurred.

4.2 Results of Multiclass Classification Experiments
Tables 2 to 5 report the results of our experiments on multiclass classification. As indicated in

Section 3.2.1, we run multiclass experiments with varying number of classes, starting from |Y| = 5

classes (Table 2) and moving up to |Y| = 10 (Table 3), |Y| = 20 (Table 4), and |Y| = 37 (Table 5),

which is the total number of classes in our dataset. For |Y| ∈ {5, 10, 20}, the classes are randomly

sampled from the entire set of 37 RCV1-v2 classes. As indicated in Section 3.2.1, every row of these

4 tables is the result of 500 train-and-test runs; given that each of the 7 rows accounts for a different

learner, this is a total of 4×500×7=14,000 train-and-test runs.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

16 Esuli, Molinari, Sebastiani

Table 2. As Table 1, but for multiclass classification (5 classes).

Priors Posteriors

N
A
E

B
S

C
E

R
E

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

I
s
o
m
e
t
r
i
c

N
o
C
a
l
i
b LR .007 .003 +50.1% .005 .007 -33.9% .004 .004 -25.2% .002 .003 -49.3%

MNB .022 .030 -36.7% .009 .012 -36.9% .005 .006 -25.3% .004 .006 -49.6%

RF .014 .036 -154.9% .005 .005 +11.0% .003 .002 +31.9% .002 .003 -22.4%

Avg .014 .023 -61.6% .007 .008 -22.9% .004 .004 -8.6% .003 .004 -42.7%

C
a
l
i
b

SVM .009 .006 +37.5% .003 .003 +2.6% .001 .001 -2.5% .002 .002 +5.0%

LR .004 .009 -133.0% .002 .002 -31.6% .001 .001 -48.2% .001 .001 -22.4%

MNB .015 .017 -15.1% .005 .004 +21.7% .002 .001 +40.1% .003 .003 +10.7%

RF .005 .005 -4.8% .003 .002 +24.4% .001 .000 +53.5% .002 .002 +9.7%

Avg .008 .009 -12.7% .003 .003 +9.5% .001 .001 +19.9% .002 .002 +3.8%

I
s
o
m
e
r
o
u
s

N
o
C
a
l
i
b LR .007 .003 +50.1% .006 .008 -28.2% .004 .006 -42.5% .003 .003 -5.7%

MNB .022 .030 -36.7% .010 .014 -35.4% .006 .009 -51.7% .004 .004 -10.7%

RF .014 .036 -154.9% .006 .006 +12.8% .004 .003 +29.2% .003 .003 -6.9%

Avg .014 .023 -61.6% .008 .009 -19.8% .005 .006 -27.8% .003 .003 -8.2%

C
a
l
i
b

SVM .009 .006 +37.5% .004 .004 -0.5% .001 .001 +4.2% .003 .003 -2.0%

LR .004 .009 -133.0% .003 .004 -20.2% .001 .001 -88.9% .002 .002 -1.8%

MNB .015 .017 -15.1% .006 .005 +18.4% .002 .001 +43.8% .004 .003 +4.7%

RF .005 .005 -4.8% .004 .003 +16.5% .001 .000 +60.6% .003 .003 +2.7%

Avg .008 .009 -12.7% .004 .004 +6.4% .001 .001 +19.7% .003 .003 +1.3%

There are several observations we can make by looking at these tables:

• The main fact that emerges is that all quality indicators of SLD (i.e., the values of error

reduction, for each of the four error measures we consider) drastically deteriorate when |Y|
grows, for all learners, calibrated or not. Table 5, that reports results for |Y| = 37, indicates

disastrous performance on the part of SLD on all counts.

• Concerning SLD’s impact on the priors, while the binary experiments had indicated a very

positive impact (at least: for the calibrated learners), the multiclass experiments indicate a

negative impact for |Y| = 5 (12.7% average deterioration across all calibrated learners) and

an even more negative impact for |Y| ∈ {10, 20, 37}, with the average deterioration across all

calibrated learners reaching up to 251.0% for |Y| = 37.

• Concerning SLD’s impact on the posteriors, while the binary experiments had indicated a

very positive impact (at least: for the calibrated learners), the multiclass experiments indicate

that this impact is still mildly positive for |Y| = 5 but becomes negative for |Y| = 10 and

deteriorates even more for |Y| ∈ {20, 37}. For instance, BS in the isomerous variant has,

thanks to SLD, an average improvement across the calibrated learners by 28.0% for |Y| = 2

and 6.4% for |Y| = 5, but this improvement becomes a deterioration for |Y| = 10 (28.2%)

and for |Y| ∈ {20, 37} (e.g., 72.2% for |Y| = 37). This trend is even more marked for CE, and

indicates an improvement for |Y| = 2 (80.3%, average across the calibrated learners) and

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 17

Table 3. As Table 2, but with 10 classes.

Priors Posteriors

N
A
E

B
S

C
E

R
E

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

I
s
o
m
e
t
r
i
c

N
o
C
a
l
i
b LR .014 .030 -107.5% .005 .007 -61.0% .002 .004 -55.1% .002 .004 -67.4%

MNB .014 .035 -143.5% .006 .009 -51.8% .002 .004 -59.9% .004 .005 -46.5%

RF .018 .068 -281.6% .004 .004 +0.3% .002 .001 +26.3% .002 .003 -24.7%

Avg .016 .044 -185.4% .005 .007 -40.2% .002 .003 -32.7% .003 .004 -46.7%

C
a
l
i
b

SVM .015 .022 -41.3% .002 .004 -43.1% .001 .001 -97.5% .002 .002 -21.9%

LR .018 .026 -45.1% .002 .004 -93.6% .001 .002 -173.3% .001 .002 -58.7%

MNB .017 .020 -19.3% .003 .004 -18.1% .001 .001 -38.0% .002 .003 -9.9%

RF .008 .020 -143.7% .002 .003 -22.4% .001 .001 -52.3% .002 .002 -12.3%

Avg .015 .022 -50.4% .003 .003 -39.6% .001 .001 -83.3% .002 .002 -22.4%

I
s
o
m
e
r
o
u
s

N
o
C
a
l
i
b LR .014 .030 -107.5% .005 .008 -52.0% .003 .006 -93.7% .003 .003 -4.8%

MNB .014 .035 -143.5% .007 .010 -48.6% .003 .006 -87.0% .004 .004 -14.2%

RF .018 .068 -281.6% .005 .005 +3.0% .002 .002 +16.5% .003 .003 -6.6%

Avg .016 .044 -185.4% .006 .008 -34.9% .003 .004 -63.4% .003 .003 -9.1%

C
a
l
i
b

SVM .015 .022 -41.3% .003 .005 -31.5% .001 .002 -158.8% .003 .003 -1.8%

LR .018 .026 -45.1% .003 .005 -58.8% .000 .002 -319.4% .002 .003 -6.1%

MNB .017 .020 -19.3% .004 .005 -14.0% .001 .002 -65.0% .003 .003 +1.4%

RF .008 .020 -143.7% .003 .004 -16.1% .001 .001 -102.1% .003 .003 +0.3%

Avg .015 .022 -50.4% .003 .004 -28.2% .001 .002 -142.3% .003 .003 -1.3%

|Y| = 5 (19.7%) but a deterioration for higher values of |Y|, with the amount of deterioration

reaching up to 937.2% for |Y| = 37.

4.3 Analyzing the Results by Amount of Shift
In this section we analyze the relations between error and distribution shift. Our goal is that of

highlighting, in the results of the experiments discussed in Sections 4.1 and 4.2, any noteworthy

correlation between error reduction, for any of our four measures, and distribution shift.

In our analysis of the results, we have not been able to detect any significant correlation between

NAE and distribution shift, or between RE and distribution shift. As a result, from here onwards

we only concentrate on discussing BS and CE. Figure 2 plots the values of relative error reduction

for the BS and CE measures (we here use the isomerous variants; the isometric variants return

similar results) for the same experiments as discussed in Sections 4.1 and 4.2, for each of our 4

calibrated classifiers,
20
but with the samples binned into four quartiles according to how much

distribution shift between the training set and test set the sample exhibits. The 1st quartile contains

the samples characterized by the lowest amounts of distribution shift, and the 4th contains the

samples characterized by the highest such amounts. The actual values of distribution shift (expressed

20
We omit discussing the non-calibrated classifiers since the experiments of Sections 4.1 and 4.2 have clearly indicated that

SLD requires, in order to perform well, calibrated classifiers.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

18 Esuli, Molinari, Sebastiani

Table 4. As Table 2, but with 20 classes.

Priors Posteriors

N
A
E

B
S

C
E

R
E

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

I
s
o
m
e
t
r
i
c

N
o
C
a
l
i
b LR .017 .081 -382.2% .003 .006 -72.3% .001 .002 -95.6% .002 .003 -59.2%

MNB .021 .075 -260.7% .004 .006 -64.6% .001 .002 -130.9% .003 .004 -39.0%

RF .025 .118 -379.4% .003 .003 -11.0% .001 .001 +17.0% .002 .002 -27.4%

Avg .021 .091 -340.5% .003 .005 -52.2% .001 .002 -71.3% .002 .003 -42.6%

C
a
l
i
b

SVM .030 .062 -110.5% .002 .004 -86.3% .001 .001 -175.3% .002 .002 -54.4%

LR .024 .047 -96.7% .002 .003 -114.5% .000 .001 -230.7% .001 .002 -74.7%

MNB .015 .047 -205.2% .002 .004 -85.2% .000 .002 -234.7% .002 .002 -38.4%

RF .015 .040 -162.8% .002 .003 -87.2% .000 .001 -265.7% .001 .002 -40.7%

Avg .021 .049 -133.4% .002 .004 -92.3% .000 .001 -222.4% .001 .002 -50.9%

I
s
o
m
e
r
o
u
s

N
o
C
a
l
i
b LR .017 .081 -382.2% .004 .006 -61.8% .002 .004 -149.6% .002 .002 -3.7%

MNB .021 .075 -260.7% .004 .007 -58.9% .001 .003 -144.7% .003 .003 -13.6%

RF .025 .118 -379.4% .003 .004 -6.1% .001 .001 -9.8% .003 .003 -4.8%

Avg .021 .091 -340.5% .004 .006 -44.1% .001 .003 -115.7% .003 .003 -7.6%

C
a
l
i
b

SVM .030 .062 -110.5% .003 .005 -57.3% .000 .002 -395.2% .002 .003 -1.4%

LR .024 .047 -96.7% .003 .004 -62.9% .000 .002 -502.6% .002 .002 -4.3%

MNB .015 .047 -205.2% .003 .005 -56.2% .000 .002 -407.9% .003 .003 -0.6%

RF .015 .040 -162.8% .003 .004 -52.1% .000 .002 -491.1% .002 .002 -1.0%

Avg .021 .049 -133.4% .003 .004 -57.0% .000 .002 -441.6% .002 .002 -1.8%

in terms of NAE) that characterize the samples in each quartile are reported in Table 6. Each result

reported in the plots is the average across all samples that belong to the bin.

A clear pattern emerges from the analysis of BS and CE values: for both measures, for both the

binary and multiclass cases, and for all numbers of classes considered in the multiclass experiments

(|Y| ∈ {5, 10, 20, 37}), performance tends to improve monotonically with the amount of distribution
shift. (Exceptions do exist for individual classifiers, but the average values across the 4 classifiers

exhibits strict monotonicity). This happens both for the cases (binary case + multiclass case with

|Y| = 5) in which SLD has a positive impact (i.e., error diminishes as a result of its application),

and for the cases (multiclass case with |Y| > 5) in which the impact of SLD is negative (i.e.,

error increases as a result of its application); in the former cases the magnitude of error reduction

increases with the increase in shift, while in the latter cases the magnitude of error amplification

diminishes with the increase in shift. Case |Y| = 5 seems the threshold here, with SLD yielding a

decrease in error for the two quartiles representing low shift and an increase in error for the two

quartiles representing high shift.

Together with the analyses presented in Sections 4.1 and 4.2, this observation suggests that

SLD should be used to improve the quality of the prior probability estimates and of the posterior

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 19

Table 5. As Table 2, but with 37 classes.

Priors Posteriors

N
A
E

B
S

C
E

R
E

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

P
r
e
-
S
L
D

P
o
s
t
-
S
L
D

E
r
r
o
r
R
e
d
u
c
t
i
o
n

I
s
o
m
e
t
r
i
c

N
o
C
a
l
i
b LR .014 .137 -913.5% .002 .003 -50.5% .000 .001 -149.9% .002 .002 -25.6%

MNB .022 .115 -411.6% .002 .004 -67.8% .000 .002 -326.1% .002 .002 -19.2%

RF .028 .159 -458.5% .002 .002 -19.6% .000 .000 +3.7% .001 .002 -28.4%

Avg .021 .137 -537.7% .002 .003 -47.9% .000 .001 -140.3% .002 .002 -23.9%

C
a
l
i
b

SVM .031 .091 -193.1% .002 .003 -115.1% .000 .001 -278.9% .001 .002 -67.9%

LR .026 .067 -160.4% .001 .003 -112.8% .000 .001 -269.0% .001 .002 -69.5%

MNB .015 .071 -368.2% .001 .003 -135.0% .000 .002 -447.1% .001 .002 -56.9%

RF .016 .080 -398.3% .001 .003 -138.2% .000 .001 -501.4% .001 .002 -62.1%

Avg .022 .077 -251.0% .001 .003 -125.2% .000 .001 -363.9% .001 .002 -64.0%

I
s
o
m
e
r
o
u
s

N
o
C
a
l
i
b LR .014 .137 -913.5% .002 .004 -45.7% .001 .002 -184.1% .002 .002 -1.7%

MNB .022 .115 -411.6% .003 .004 -64.3% .001 .002 -271.6% .002 .002 -7.5%

RF .028 .159 -458.5% .002 .003 -12.8% .000 .001 -83.0% .002 .002 -2.4%

Avg .021 .137 -537.7% .002 .003 -41.9% .000 .001 -196.4% .002 .002 -3.9%

C
a
l
i
b

SVM .031 .091 -193.1% .002 .004 -74.0% .000 .002 -803.6% .002 .002 -0.7%

LR .026 .067 -160.4% .002 .003 -57.9% .000 .001 -790.7% .002 .002 -1.1%

MNB .015 .071 -368.2% .002 .004 -79.7% .000 .002 -1009.1% .002 .002 -0.9%

RF .016 .080 -398.3% .002 .004 -76.8% .000 .002 -1206.9% .002 .002 -0.9%

Avg .022 .077 -251.0% .002 .004 -72.2% .000 .002 -937.2% .002 .002 -0.9%

Table 6. Values of distribution shift (expressed in terms of NAE) for the samples in each of the four quartiles
in which all samples are binned; for each quartile we indicate minimum shift and maximum shift of the
samples the quartiles actually contain.

2 classes 5 classes 10 classes 20 classes 37 classes

Min Max Min Max Min Max Min Max Min Max

1st quartile .000 .168 .063 .253 .116 .274 .177 .297 .224 .311

2nd quartile .168 .343 .254 .334 .274 .329 .297 .335 .311 .342

3rd quartile .343 .557 .334 .413 .329 .387 .336 .373 .342 .372

4th quartile .557 .993 .414 .746 .387 .644 .374 .534 .372 .483

probabilities, only (a) when the classifier has been calibrated, and (b) the number of classes in the

codeframe Y is low (say, |Y| ≤ 5), and (c) when the amount of distribution shift is high enough.
21

4.4 Analyzing the Distributions Produced by SLD
In the previous sections we have evaluated, among other things, the impact of SLD on the difference

between the predicted class distribution and the true class distribution, by using the NAE measure.

21
Statistical tests are indeed available that allow to detect how much distribution shift there is between the training

documents and the unlabelled documents; one such test (a likelihood ratio test) is presented in [34, §3].

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

20 Esuli, Molinari, Sebastiani

0%

10%

20%

30%

40%

50%

2 c
las

se
s

Reduction in Brier Score

0%

20%

40%

60%

80%

Reduction in Calibration Error

Calibrated-Linear-SVM
Calibrated-Logistic-Regression
Calibrated-Multinomial-Bayes
Calibrated-Random-Forest
Average of the 4 learners

-30%

-20%

-10%

0%

10%

20%

5 c
las

se
s

-200%

-150%

-100%

-50%

0%

50%

-60%

-50%

-40%

-30%

-20%

-10%

10
 cl

as
se

s

-400%

-300%

-200%

-100%

-75.0%

-70.0%

-65.0%

-60.0%

-55.0%

-50.0%

-45.0%

20
 cl

as
se

s

-900%

-800%

-700%

-600%

-500%

-400%

-300%

1 2 3 4
Quartiles

-85.0%

-80.0%

-75.0%

-70.0%

-65.0%

-60.0%

-55.0%

-50.0%

37
 cl

as
se

s

1 2 3 4
Quartiles

-1600%

-1400%

-1200%

-1000%

-800%

-600%

Fig. 2. Error reduction for the isomerous variants of Brier Score (left) and Calibration Error (right) for the four
different quartiles into which samples have been binned; in each of the ten subfigures, quartiles are arranged
with low-shift quartiles on the left and high-shift quartiles on the right. Subfigures are sorted top-to-bottom
as a function of the number of classes considered, from |Y| = 2 (top) to |Y| = 37 (bottom).

In this section we instead look at the impact of SLD on two intrinsic characteristics of class

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 21

distributions, i.e., their entropy and their shape. In order to do so we compare, for a given train-and-

test run, the four class distributions involved: (a) the true class distribution of L, (b) the true class
distribution of U , (c) the class distribution ofU predicted by the classifier (which SLD receives as

input), and (d) the class distribution ofU returned by SLD. This allows us to better understand the

impact of SLD, and the reasons behind some of the patterns highlighted in Sections 4.1 through 4.3.

4.4.1 Average Entropy of Class Distributions. For each of the 129,500+14,000=143,500 train-and-test

runs we have discussed in Sections 4.1 and 4.2, we measure the entropy

H (Y) = −

|Y |∑
i=1

Pr(yi) log |Y | Pr(yi) (15)

of the four class distributions (a) to (d) mentioned in the previous paragraph. In each case we

set the base of the logarithm to the number |Y| of classes of the distribution being observed, so

that entropy values always range between 0 and 1. A low entropy value means that most of the

documents in the sample belong to one or few classes, while a high entropy value means that the

documents are spread fairly evenly across the entire set of classes.

Table 7 shows the average value of the entropy of the four class distributions (a) to (d) (which

in this and in the following tables will be indicated as L, U , Pre-SLD, and Post-SLD, respectively)

across all the 143,500 train-and-test runs.

L U Pre-SLD Post-SLD

Entropy .902 .902 .906 .638

Table 7. Values of the entropy of the four class distributions, averaged across all train-and-test runs.

From this table we can observe that the values for L and U are the same. This is intuitive, since,

even though the training set and the test set of a given sample have in general two different class

distributions, the sampling method for generating training sets and test sets is the same and the

pool of documents from which to sample is the same, so training sets and test sets will exhibit, on

average, the same class distribution. In the following we will not report the entropy values for L,
since those forU are always practically identical.

The average entropy value of Pre-SLD class distributions is slightly higher than those for L and

U , but not substantially so. However, what immediately jumps to the eye is that the average entropy

value for Post-SLD is much lower than the values for L, U , and Pre-SLD. Similar distributions

exhibit similar entropy values, so a difference in entropy values is a clear indicator of a dissimilarity

between the two observed distributions. The sharp difference between the Pre-SLD and Post-SLD

average entropy values thus unequivocally indicates that SLD substantially alters the Pre-SLD
class distribution, and the sharp difference between theU and Post-SLD values indicates that this
alteration is detrimental. Since a high entropy value indicates a highly uniform distribution, the

above results indicate that SLD has a tendency to sharply diminish this uniformity, and label most

of the documents with one or few classes.

Table 8 reports again entropy values of class distributions, but averaged across all runs charac-

terized by the same number of classes in the codeframe. An analysis of this table shows that values

for U tend to increase as the number |Y| of classes in the codeframe increases. This is due to the

sampling method, that generates prior probabilities with mean equal to
1

|Y |
and variance equal to

1

|Y |2
(as will also be evident from Figures 4 to 7). The values for Pre-SLD follow the same trend

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

22 Esuli, Molinari, Sebastiani

Table 8. Values of the entropy of the four class distributions, averaged across all train-and-test runs with the
same number of classes in the codeframe.

of classes U Pre-SLD Post-SLD

2 .821 .819 .704

5 .894 .891 .787

10 .919 .917 .721

20 .935 .935 .574

37 .943 .946 .405

as values for U , but the values for Post-SLD have an almost opposite trend: as the number |Y| of

classes in the codeframe increases, SLD decreases the uniformity of class distributions.

Table 9 reports again entropy values of class distributions, but averaged across all runs that use

the same learning algorithm. The application of SLD following the use of the No-Calib learners

Table 9. Values of the entropy of the four class distributions, averaged across all train-and-test runs obtained
by means of the same learning algorithm.

U Pre-SLD Post-SLD

N
o
-
C
a
l
i
b LR .902 .925 .501

MNB .902 .802 .395

RF .902 .923 .751

Avg .902 .883 .549

C
a
l
i
b

SVM .902 .914 .698

LR .902 .919 .719

MNB .902 .906 .687

RF .902 .921 .719

Avg .902 .915 .706

brings about an even stronger divergence between the U values and the Post-SLD values than the

corresponding Calib versions, thus confirming that non-calibrated classifiers are not fit for use

with SLD. The application of SLD drastically reduces the average entropy for all learners, thus

indicating that the decrease in uniformity of the distributions is less related to the chosen learning

algorithm than to the number |Y| of classes in the codeframe (see also Section 4.4.2).

Table 10 shows the average entropy values of the class distributions for all the possible combi-

nations of number of classes and learners. From this table we can identify the very few cases in

which theU class distributions have an average entropy value closer to the Post-SLD value than to

the Pre-SLD value: this happens only for |Y| = 2 with calibrated SVMs, MNB, and RF.

4.4.2 Histogram-Based Representations of Class Distributions. In this section we display and com-

ment on histograms that indicate how class prevalence values are distributed inU , Pre-SLD, and

Post-SLD class distributions resulting from the use of specific learners and with specific numbers

of classes. Figure 3 does this for |Y| = 2, i.e., the binary classification case. As an example, the

histogram in its left bottom subfigure (“Pre-SLD - Random Forests”) shows that, if we pool together

all the 37×500=18,500 train-and-test runs where RF was used as the learner, the results returned by

the classifier (i.e., Pre-SLD) are such that a high number of classes have a prevalence of about 50%

(i.e., Pr(y) = .5), a slightly lower number of classes have a prevalence of 40%, ..., and a very small

number of classes have a prevalence of 0%. Every subfigure of Figure 3 is, of course, bilaterally

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 23

Table 10. Values of the entropy of the four class distributions, averaged across all train-and-test runs with
the same number of classes and obtained by means of the same learning algorithm.

of No-Calib Calib

classes LR MNB RF SVM LR MNB RF

2

U .821 .821 .821 .821 .821 .821 .821

Pre-SLD .866 .631 .868 .840 .828 .846 .851

Post-SLD .577 .409 .693 .815 .799 .820 .813

5

U .894 .894 .894 .894 .894 .894 .894

Pre-SLD .921 .772 .922 .905 .913 .896 .909

Post-SLD .708 .567 .804 .858 .851 .854 .869

10

U .919 .919 .919 .919 .919 .919 .919

Pre-SLD .939 .821 .934 .931 .940 .914 .938

Post-SLD .552 .479 .789 .809 .780 .798 .842

20

U .935 .935 .935 .935 .935 .935 .935

Pre-SLD .947 .874 .943 .946 .953 .932 .951

Post-SLD .351 .321 .762 .635 .657 .614 .678

37

U .943 .943 .943 .943 .943 .943 .943

Pre-SLD .953 .912 .949 .951 .959 .942 .958

Post-SLD .318 .198 .705 .370 .507 .346 .393

symmetric, since we are in the binary case, in which Pr(y) = α entails Pr(y) = (1 − α). The top row

of the figure (orange colour) refers to theU class distributions (the left and right histograms are

the same); the other histograms in the left column refer to Pre-SLD class distributions, one for each

of the 7 learning algorithms, while the other histograms in the right column refer to Post-SLD class

distributions for the same algorithms. Figures 4 to 7 do the same for |Y| ∈ {5, 10, 20, 37}; these
histograms are, of course, not bilaterally symmetric.

22

Figure 3 shows that all the methods produce class prevalence values that are distributed more

uniformly than the true ones, i.e., many Pre-SLD or Post-SLD distributions generate many class

prevalence values with very low or very high values. What is more important, though, is that

for each learning method the difference between theU histogram and the Post-SLD histogram is

larger than the difference between the U histogram and the Pre-SLD histogram; in other words,

this confirms that SLD alters the Pre-SLD class distribution, and that this alteration is detrimental.

However, what we learn from these histograms, and that we had not learned from the entropy

study of the previous section, is how SLD alters this distribution: it does so by generating fewer

class priors with mid values, i.e., close to 50%, and more class priors with extreme values, i.e., close

to 0% or 1% (to see this better, note that the Y axes of the left subfigure and the right subfigure are

often not on the same scale).

It is evident from Figure 3 that SLD’s impact in altering the distribution is substantial for each of

the four calibrated learners (4th to 8th rows), and it is even more for the non-calibrated ones (2nd

to 4th rows). When SLD is run on the posteriors generated by these latter learners, all class priors

except 0 and 1 become much more frequent, and class priors equal to 0 and 1 increase dramatically

with respect to the Pre-SLD case.

In Figures 4 to 7, which represent the multiclass case with |Y| ∈ {5, 10, 20, 37}, these trends
are increasingly evident, and the deterioration introduced by SLD reaches disastrous levels for

22
Note that, for higher legibility, the X axis displays a shorter interval than [0,1] when there are no classes with prevalence

outside that interval.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

24 Esuli, Molinari, Sebastiani

0

2500

5000

7500

U

0

2500

5000

7500

U

0

2000

4000
Pre-SLD - Logistic-Regression

0

2000

4000

Post-SLD - Logistic-Regression

0

2000

4000
Pre-SLD - Multinomial-Bayes

0

2500

5000

7500

Post-SLD - Multinomial-Bayes

0

2000

4000
Pre-SLD - Random-Forest

0

1000

2000

Post-SLD - Random-Forest

0

2000

4000
Pre-SLD - Calibrated-Linear-SVM

0

1000

2000

3000

Post-SLD - Calibrated-Linear-SVM

0

2000

4000
Pre-SLD - Calibrated-Logistic-Regression

0

1000

2000

3000

Post-SLD - Calibrated-Logistic-Regression

0

1000

2000

3000

Pre-SLD - Calibrated-Multinomial-Bayes

0

1000

2000

3000

Post-SLD - Calibrated-Multinomial-Bayes

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000
Pre-SLD - Calibrated-Random-Forest

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

Post-SLD - Calibrated-Random-Forest

Fig. 3. Histograms showing various distributions of the class priors for |Y| = 2 experiments. The two top
subfigures show the true distribution in the unlabelled setU ; the other subfigures show, for different classifiers,
the distribution of predicted class priors before SLD is applied (i.e., as computed on the classifier output) and
the distribution of predicted class priors after the application of SLD.

|Y| = 37. Post-SLD average class distribution become increasingly skewed when |Y| grows, and

this concerns both calibrated and non-calibrated learners (although the latter are impacted to a

much higher degree). While for the |Y| = 2 case class priors equal to 0 and class priors equal to 1

were both prevalent, in the multiclass cases class priors equal to 1 are practically absent and, as

|Y| grows, the histogram becomes increasingly skewed and class priors equal to 0 become the

overwhelming majority.

Overall, what all these histograms show, aligns very well with our experimental findings of

Sections 4.1 and 4.2, i.e., with the facts that SLD works better with calibrated than with non-

calibrated classifiers, and with the fact that it works better for small values of |Y| and (much) worse

for high values of |Y|. They also show something more, i.e., that the reason of the bad behaviour

is the fact that SLD has, especially when |Y| is high and/or when classifiers are non-calibrated, a

tendency to return many class priors equal to 0 and few class priors different from 0.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 25

0

100

200

300

U

0

100

200

300

U

0

50

100

150
Pre-SLD - Logistic-Regression

0

200

400

Post-SLD - Logistic-Regression

0

100

200

300
Pre-SLD - Multinomial-Bayes

0

250

500

750

Post-SLD - Multinomial-Bayes

0

50

100

150

Pre-SLD - Random-Forest

0

100

200

300
Post-SLD - Random-Forest

0

50

100

Pre-SLD - Calibrated-Linear-SVM

0

50

100

Post-SLD - Calibrated-Linear-SVM

0

50

100

Pre-SLD - Calibrated-Logistic-Regression

0

50

100

150
Post-SLD - Calibrated-Logistic-Regression

0

50

100

Pre-SLD - Calibrated-Multinomial-Bayes

0

50

100

150

Post-SLD - Calibrated-Multinomial-Bayes

0.0 0.1 0.2 0.3 0.4
0

50

100

Pre-SLD - Calibrated-Random-Forest

0.0 0.1 0.2 0.3 0.4
0

50

100

Post-SLD - Calibrated-Random-Forest

Fig. 4. As in Figure 3 but with |Y| = 5.

4.5 On the Speed of Convergence of SLD
As indicated in Section 2, in our experiments we stop SLDwhen we have reached either convergence

(which we take to mean that AE(p̂(s−1)U , p̂(s)U) < 10
−6
) or the maximum number of iterations (that we

set to 1000). Table 11 reports, for each learner and for each number |Y| of classes,

• the average number of iterations (column “#”) SLD required to reach convergence (when

convergence was actually reached – the value 1000 is used whan convergence was not

reached), where the average is computed across all the train-and-test runs we have performed;

• the percentage of cases (column “%”) in which convergence was not reached, and processing

had to be stopped after 1000 iterations.

There are three conclusions that can be reached from this table, i.e.,

(1) For a given number of classes, convergence tends to be quicker when the Pre-SLD posteriors

have been obtained by calibrated learners; this is always true for LR and RF, although it is

always false for MNB. The difference between the two versions (non-calibrated and calibrated)

of LR is somehow surprising, since LR is often presented as an algorithm that naturally returns

calibrated probabilities, i.e., a classifier which does not need post-calibration; our results

throughout this paper instead show that post-calibration is beneficial for LR too.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

26 Esuli, Molinari, Sebastiani

0

200

400

600

U

0

200

400

600

U

0

100

200

Pre-SLD - Logistic-Regression

0

1000

2000

Post-SLD - Logistic-Regression

0

200

400

Pre-SLD - Multinomial-Bayes

0

1000

2000

Post-SLD - Multinomial-Bayes

0

100

200

Pre-SLD - Random-Forest

0

500

1000

Post-SLD - Random-Forest

0

100

200

Pre-SLD - Calibrated-Linear-SVM

0

250

500

750
Post-SLD - Calibrated-Linear-SVM

0

100

200

Pre-SLD - Calibrated-Logistic-Regression

0

250

500

750

Post-SLD - Calibrated-Logistic-Regression

0

100

200

Pre-SLD - Calibrated-Multinomial-Bayes

0

250

500

750

Post-SLD - Calibrated-Multinomial-Bayes

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

100

200

Pre-SLD - Calibrated-Random-Forest

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

200

400

600
Post-SLD - Calibrated-Random-Forest

Fig. 5. As in Figure 3 but with |Y| = 10.

Table 11. Average number of iterations needed to reach convergence (“#”) and percentage of cases in which
convergence was not reached (“%”) for all combinations of learner and number |Y| of classes.

2 classes 5 classes 10 classes 20 classes 37 classes

% # % # % # % # %

N
o
-
C
a
l
i
b LR 60.86 0.18% 138.92 0.20% 476.69 12.40% 939.06 77.60% 999.62 99.80%

MNB 29.27 0.00% 53.74 0.00% 136.46 0.60% 296.92 5.80% 469.28 14.00%

RF 32.38 0.01% 83.65 0.20% 223.70 1.40% 446.88 5.80% 636.25 14.80%

Avg 40.84 0.06% 92.10 0.13% 278.95 4.80% 560.95 29.73% 701.72 42.87%

C
a
l
i
b

SVM 9.29 0.00% 29.02 0.00% 109.75 0.00% 288.73 0.80% 353.37 1.40%

LR 9.39 0.00% 27.68 0.00% 95.87 0.00% 249.06 1.00% 368.32 4.00%

MNB 35.69 0.82% 58.95 0.40% 162.36 1.00% 308.40 4.20% 507.15 20.60%

RF 12.66 0.00% 26.85 0.00% 86.00 0.00% 223.57 1.20% 432.19 11.00%

Avg 16.76 0.20% 35.62 0.10% 113.49 0.25% 267.44 1.80% 415.26 9.25%

(2) For a given learner, the number of iterations required to reach convergence grows monotoni-

cally with the number |Y| of classes considered.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 27

0

500

1000

U

0

500

1000

U

0

200

400

Pre-SLD - Logistic-Regression

0

2000

4000

6000

Post-SLD - Logistic-Regression

0

250

500

750

Pre-SLD - Multinomial-Bayes

0

2500

5000

7500
Post-SLD - Multinomial-Bayes

0

200

400

Pre-SLD - Random-Forest

0

1000

2000

3000

Post-SLD - Random-Forest

0

200

400

Pre-SLD - Calibrated-Linear-SVM

0

2000

4000
Post-SLD - Calibrated-Linear-SVM

0

200

400

Pre-SLD - Calibrated-Logistic-Regression

0

1000

2000

3000

Post-SLD - Calibrated-Logistic-Regression

0

200

400

Pre-SLD - Calibrated-Multinomial-Bayes

0

1000

2000

3000

Post-SLD - Calibrated-Multinomial-Bayes

0.00 0.05 0.10 0.15 0.20
0

200

400

Pre-SLD - Calibrated-Random-Forest

0.00 0.05 0.10 0.15 0.20
0

1000

2000

3000
Post-SLD - Calibrated-Random-Forest

Fig. 6. As in Figure 3 but with |Y| = 20.

(3) For a given learner, the percentage of cases in which convergence is not reached grows

monotonically with the number |Y| of classes considered.

These findings constitute yet another argument in favour of calibrated learners, and yet another

reason why the use of SLD should be contemplated only when the number |Y| of classes is small.

5 WHAT KIND OF DISTRIBUTION SHIFT DOWE SIMULATE IN OUR EXPERIMENTS?
In Section 3.2.1 we stated that, in extracting from RCV1-v2 a number of samples with trining sets

and test sets characterized by random class distributions, our goal is to test the SLD algorithm on a

variety of distribution shift values. But what kind of distribution shift are we simulating, exactly?

In order to distinguish different types of dataset shift (of which distribution shift is a type),

Moreno-Torres et al. [24] distinguish (along with Fawcett and Flach [13]) between “X → Y

problems” and “Y → X problems”.

Problems of type X → Y are ones in which it is the values of the features in x that stochastically

determine the class y = t(x) to which x belongs. An example of a X → Y learning problem is

weather forecasting, since it is a number of climatic conditions (for instance, pressure, temperature,

humidity, etc., that can be represented in a feature vector x) that determine whether it is going to

snow or not (a fact that can be represented by a binary dependent variable y). In these cases, it is

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

28 Esuli, Molinari, Sebastiani

0

1000

2000

U

0

1000

2000

U

0

500

1000
Pre-SLD - Logistic-Regression

0

5000

10000

15000
Post-SLD - Logistic-Regression

0

500

1000

Pre-SLD - Multinomial-Bayes

0

5000

10000

15000

Post-SLD - Multinomial-Bayes

0

500

1000
Pre-SLD - Random-Forest

0

2500

5000

7500

Post-SLD - Random-Forest

0

500

1000

Pre-SLD - Calibrated-Linear-SVM

0

5000

10000

Post-SLD - Calibrated-Linear-SVM

0

500

1000

Pre-SLD - Calibrated-Logistic-Regression

0

5000

10000
Post-SLD - Calibrated-Logistic-Regression

0

500

1000
Pre-SLD - Calibrated-Multinomial-Bayes

0

5000

10000

Post-SLD - Calibrated-Multinomial-Bayes

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
0

500

1000

Pre-SLD - Calibrated-Random-Forest

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
0

5000

10000

Post-SLD - Calibrated-Random-Forest

Fig. 7. As in Figure 3 but with |Y| = 37.

useful to write the joint distribution p(x,y) as

p(x,y) = p(y |x)p(x) (16)

Equation 16 suggests that there are two phenomena (or, of course, a combination of both) that can

cause p(y) to vary across L andU , i.e.,

(1) Covariate shift, defined as the case in which pL(y |x) = pU (y |x) and pL(x) , pU (x);
(2) Concept shift, defined as the case in which pL(y |x) , pU (y |x) and pL(x) = pU (x).

For instance, in the example above, if the distribution of climatic conditions change, the probability

that it is going to snow changes too; this is a case of covariate shift. Instead, if the causal relationship

between climatic conditions and snowing were to change (an admittedly unlikely case), this would

be a case of concept shift.

Problems of type Y → X are instead ones in which the class y = t(x) to which document x
belongs stochastically determines the values of the features in vector x. An example of a Y → X

learning problem is authorship attribution, i.e., the task of determining the author (from a set of

|Y| candidate authors) of a text of unknown or disputed paternity [20], a task which is usually

carried out by using as features a number of “stylistic” traits that tend to characterize an author’s

writing style. Authorship attribution is an Y → X problem, since it is the fact that a certain text is,

say, Shakespeare’s, that causes it to have certain stylistic characteristics, and not the other way

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 29

around. In these cases, the joint distribution p(x,y) can be usefully written as

p(x,y) = p(x|y)p(y) (17)

Here, p(y) can vary for independent reasons (since y is a cause, and not an effect), a phenomenon

which is usually called prior probability shift. For instance, in Stratford-upon-Avon’s municipal

library there might proportionally be more books by Shakespeare than in any other municipal

library. (Note that p(x|y) may vary too, but this is not our concern since it would not cause

distribution shift anyway.)
23

So, what kind of distribution shift are we simulating with the sampling strategy of Section 3.2.1,

exactly?

If our dataset is from a X → Y problem, we are certainly simulating covariate shift but not
concept shift; in fact, we are selectively removing documents (which means that p(x) changes) but
we are not making the causal relationship between X andY change (which means that p(y |x) does
not change), since the documents that are not removed still have the same class label. Conversely,

if our dataset is from a Y → X problem, we are simulating prior probability shift, because by

selectively removing documents we are making p(y) change.
So, what we are simulating with the sampling strategy of Section 3.2.1 is covariate shift and/or

prior probability shift, but not concept shift.

There are two reasons for this:

• While a strategy that also simulates concept shift might have been better, since it would have

allowed us to test the SLD algorithm in a broader set of challenging situations, it is not clear

how concept shift should be simulated, since this would involve changing the class labels of

documents that are included in a sample, and it is unclear whether there are sensible policies

for doing it.

• SLDwas conceived for handling not concept shift but distribution shift; it would thus probably

make no sense to simulate situations for which SLD is intentionally unequipped.
24

6 RELATEDWORK
Despite having been proposed more than 15 years ago, SLD remains an algorithm unique in its

kind, since at the same time it updates the posterior probabilities and the class prior probability

estimates returned by the classifier.

As discussed in the previous sections (and, especially, in Appendix A), SLD bears strong relations

to probability calibration. While several calibration methods have been proposed in the last 20

years (e.g., [1, 3, 6, 27]), none of them actually deals with calibrating the posterior probabilities of

the unlabelled set in the presence of distribution shift.
As already mentioned throughout the paper, dataset shift (and distribution shift in particular)

is central to SLD’s concerns. Dataset shift (the word “shift” and “drift” sometimes being used

interchangeably) is a multifaceted phenomenon and a largely unexplored territory, and only in the

23
Note also that it is not always easy to characterize with certainty a given problem as being of type X → Y or of type

Y → X; sometimes this question looks a bit akin to wondering which of chicken and egg came first. As a result, different

types of dataset shift (covariate shift, concept shift, prior probability shift) that concur in causing distribution shift may be

at play at the same time.

24
Saerens et al. [34] explicitly assume

“that the generation of the observations within the classes, and thus the within-class densities, p(x |y), does not change
from the training set to the new data set (only the relative proportion of measurements observed from each class has

changed). This is a natural requirement; it supposes that we choose the training set examples only on the basis of the

class labels y , not on the basis of x.”
Our method to generate samples, detailed in Section 3.2.1, is indeed based on choosing the training set examples only on

the basis of the class labels.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

30 Esuli, Molinari, Sebastiani

last ten years or so the machine learning community has started to address it systematically [33].

The task of estimating class prior probabilities in the presence of distribution shift has, since about

2005, evolved as a task of its own, called quantification [19], and many algorithms alternative to

SLD have been proposed (see [11, 14, 32, 36] for a few recent examples). However, while these

algorithms are interesting alternatives to SLD as far as estimating class prior probabilities goes,

there are no current alternatives to SLD when it comes to adjusting the posterior probabilities in
the presence of distribution shift. To the best of our knowledge, the only alternative to SLD that

has ever been proposed for adjusting the posterior probabilities in the presence of distribution

shift is the algorithm in [38], based on the idea of binning the unlabelled documents based on an

invariance property of ROC curves. However, this algorithm assumes that the true class priors in
the unlabelled set are known; this is an assumption which is not verified in practice (because, in

the presence of distribution shift, these class priors are different from the ones in the training set),

which means that this algorithm cannot be used in practice.
25

7 CONCLUSIONS
We present a thorough reassessment of SLD, a well-known algorithm that, given a machine-

learned single-label classifier and a set of unlabelled documents characterized by distribution shift

with respect to the labelled documents the classifier has been trained on, adjusts the posterior

probabilities and class prior probability estimates returned by the classifier, in an iterative, mutually

recursive way, with the goal of making both more accurate. Since its publication more than 15 years

ago, SLD has become the standard algorithm for improving the quality of posterior probabilities,

and is still considered a contender when it comes to estimating the class prior probabilities on

unlabelled sets. However, its real effectiveness at improving the quality of posterior probabilities

has been questioned. Studying SLD is thus not just an academic exercise, and is still important, since

no other algorithm for adjusting the posterior probabilities returned by a classifier in the presence

of distribution shift is known, and since the quality of posterior probabilities is of key importance

for a number of document management tasks, including document ranking and cost-sensitive text

classification.

We here present the results of a large scale experimentation that uses multiple learners and a very

large, publicly available dataset for text classification, on which multiple amounts of distribution

shift (i.e., difference in the distribution of prior probabilities between the training and the unlabelled

documents) have been simulated. In total, the experimentation consists of 129,500 train-and-test

runs for the binary case and 14,000 such runs for the multiclass case. In these experiments we are

especially interested in SLD’s ability at improving the quality of posterior probabilities, something

which Saerens et al. [34] evaluated only indirectly, i.e., in terms of the accuracy of (cost-insensitive)

classification that results from using the posteriors SLD generates.

Our study allows three main conclusions. The first conclusion is that SLD is ineffective, and

often detrimental, when the classifier has not been previously calibrated; in this latter case, an

additional disadvantage is that the speed of convergence of SLD is slower, and the probability that

the computation does not even converge is higher. The second conclusion is that, in any situation,

the improvements that SLD brings about are higher (or the deterioration it brings about is lower)

when distribution shift is higher. The third conclusion is that the improvements that SLD brings

about are higher (or the deterioration it brings about is lower) when the number of classes in the

codeframe is small; binary classification is thus the most apt context for the use of SLD, which

should instead be used with prudence in multiclass classification with small numbers of classes,

25
Indeed, the experiments reported in [38] use an oracle that provides to the algorithm the true class priors of the unlabelled

set; but this oracle, as all oracles, is not available in practice, so the utility of this algorithm is extremely questionable.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 31

and completely avoided in multiclass classification with high numbers of classes. An additional

disadvantage of working with a high number of classes is that, as for non-calibrated classifiers, the

speed of convergence of SLD is much slower, and the probability that the computation does not

even converge is much higher.
26

Our results also show that, concerning the improvements in the quality of the posteriors that have

been found in the binary case (and, to a lesser extent, in the multiclass case when the codeframe is

small), these are due to a reduction of the calibration error, and not to a reduction of the refinement

error. This shows that SLD is, in essence, a re-calibration algorithm, i.e., an algorithm for re-

calibrating the posterior probabilities of documents belonging to an unlabelled setU , where these

posteriors have been returned by a classifier already calibrated on a training set L and where the

re-calibration is made necessary by the presence of prior probability shift. For this kind of use, and

when the number of classes |Y| is small and the classifiers have been calibrated beforehand, the

use of SLD is still recommended.

ACKNOWLEDGMENTS
The present work has been supported by the ARIADNEplus project, funded by the European

Commission (Grant 823914) under the H2020 Programme INFRAIA-2018-1, by the AI4Media project,
funded by the European Commission (Grant 951911) under the H2020 Programme ICT-48-2020,

and by the SoBigData++ project, funded by the European Commission (Grant 871042) under the

H2020 Programme INFRAIA-2019-1. The authors’ opinions do not necessarily reflect those of the

European Commission. We thank Alejandro Moreo for useful discussions on the SLD algorithm.

REFERENCES
[1] Tuomo Alasalmi, Jaakko Suutala, Heli Koskimäki, and Juha Röning. 2020. Better classifier calibration for small data

sets. ACM Transactions on Knowledge Discovery from Data 14, 3 (2020), 1–19. https://doi.org/10.1145/3385656

[2] Antonio Bella, Cèsar Ferri, José Hernández-Orallo, and María José Ramírez-Quintana. 2014. Aggregative quantification

for regression. Data Mining and Knowledge Discovery 28, 2 (2014), 475–518. https://doi.org/10.1007/s10618-013-0308-z

[3] Artem Bequé, Kristof Coussement, Ross W. Gayler, and Stefan Lessmann. 2017. Approaches for credit scorecard

calibration: An empirical analysis. Knowledge-Based Systems 134 (2017), 213–227. https://doi.org/10.1016/j.knosys.

2017.07.034

[4] Glenn W. Brier. 1950. Verification of forecasts expressed in terms of probability. Monthly Weather Review 78, 1 (1950),

1–3. https://doi.org/10.1175/1520-0493(1950)078<0001:vofeit>2.0.co;2

[5] Gordon V. Cormack. 2008. Email spam filtering: A systematic review. Foundations and Trends in Information Retrieval
1, 4 (2008), 335–455. https://doi.org/10.1561/9781601981479

[6] Kristof Coussement and Wouter Buckinx. 2011. A probability-mapping algorithm for calibrating the posterior

probabilities: A direct marketing application. European Journal of Operational Research 214, 3 (2011), 732–738. https:

//doi.org/10.1016/j.ejor.2011.05.027

[7] Morris H. DeGroot and Stephen E. Fienberg. 1983. The comparison and evaluation of forecasters. The Statistician 32,

1/2 (1983), 12–22. https://doi.org/10.2307/2987588

[8] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. 1977. Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society, B 39, 1 (1977), 1–38.

[9] Pedro M. Domingos and Michael J. Pazzani. 1996. Beyond independence: Conditions for the optimality of the simple

Bayesian classifier. In Proceedings of the 13th International Conference on Machine Learning (ICML 1996). Bari, IT,
105–112.

[10] Andrea Esuli, Alejandro Moreo, and Fabrizio Sebastiani. 2018. A recurrent neural network for sentiment quantification.

In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM 2018).
Torino, IT, 1775–1778. https://doi.org/10.1145/3269206.3269287

[11] Andrea Esuli, Alejandro Moreo, and Fabrizio Sebastiani. 2020. Cross-lingual sentiment quantification. IEEE Intelligent
Systems 35, 3 (2020), 106–114. https://doi.org/10.1109/MIS.2020.2979203

[12] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27 (2006), 861–874.

26
Note that our results do not contradict the original results of Saerens et al. [34], since these authors, while presenting SLD

as a general-purpose multiclass algorithms, only run (900) binary classification experiments.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/10.1145/3385656
https://doi.org/10.1007/s10618-013-0308-z
https://doi.org/10.1016/j.knosys.2017.07.034
https://doi.org/10.1016/j.knosys.2017.07.034
https://doi.org/10.1175/1520-0493(1950)078<0001:vofeit>2.0.co;2
https://doi.org/10.1561/9781601981479
https://doi.org/10.1016/j.ejor.2011.05.027
https://doi.org/10.1016/j.ejor.2011.05.027
https://doi.org/10.2307/2987588
https://doi.org/10.1145/3269206.3269287
https://doi.org/10.1109/MIS.2020.2979203

32 Esuli, Molinari, Sebastiani

[13] Tom Fawcett and Peter Flach. 2005. A response to Webb and Ting’s ‘On the application of ROC analysis to predict

classification performance under varying class distributions’. Machine Learning 58, 1 (2005), 33–38. https://doi.org/10.

1007/s10994-005-5256-4

[14] Afonso Fernandes Vaz, Rafael Izbicki, and Rafael Bassi Stern. 2019. Quantification under prior probability shift: The

ratio estimator and its extensions. Journal of Machine Learning Research 20 (2019), 79:1–79:33.

[15] Peter A. Flach. 2017. Classifier Calibration. In Encyclopedia of Machine Learning (2nd ed.), Claude Sammut and

Geoffrey I. Webb (Eds.). Springer, Heidelberg, DE, 212–219.

[16] George Forman. 2008. Quantifying counts and costs via classification. Data Mining and Knowledge Discovery 17, 2

(2008), 164–206. https://doi.org/10.1007/s10618-008-0097-y

[17] Wei Gao and Fabrizio Sebastiani. 2016. From classification to quantification in tweet sentiment analysis. Social Network
Analysis and Mining 6, 19 (2016), 1–22. https://doi.org/10.1007/s13278-016-0327-z

[18] Tilmann Gneiting and Adrian E. Raftery. 2007. Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist.
Assoc. 102, 477 (2007), 359–378. https://doi.org/10.1198/016214506000001437

[19] Pablo González, Alberto Castaño, Nitesh V. Chawla, and Juan José del Coz. 2017. A review on quantification learning.

Comput. Surveys 50, 5 (2017), 74:1–74:40. https://doi.org/10.1145/3117807

[20] Moshe Koppel, Jonathan Schler, and Shlomo Argamon. 2009. Computational methods in authorship attribution. Journal
of the American Society for Information Science and Technology 60, 1 (2009), 9–26. https://doi.org/10.1002/asi.20961

[21] David D. Lewis and William A. Gale. 1994. A sequential algorithm for training text classifiers. In Proceedings of the
17th ACM International Conference on Research and Development in Information Retrieval (SIGIR 1994). Dublin, IE, 3–12.
https://doi.org/10.1007/978-1-4471-2099-5_1

[22] Alessio Molinari. 2019. Leveraging the transductive nature of e-discovery in cost-sensitive technology-assisted review.

In Proceedings of the 8th BCS-IRSG Symposium on Future Directions in Information Access (FDIA 2019). Milano, IT, 72–78.

[23] Alessio Molinari. 2019. Risk minimization models for technology-assisted review and their application to e-discovery.
Master’s thesis. Department of Computer Science, University of Pisa, Pisa, IT.

[24] Jose G. Moreno-Torres, Troy Raeder, Rocío Alaíz-Rodríguez, Nitesh V. Chawla, and Francisco Herrera. 2012. A unifying

view on dataset shift in classification. Pattern Recognition 45, 1 (2012), 521–530. https://doi.org/10.1016/j.patcog.2011.

06.019

[25] Alejandro Moreo and Fabrizio Sebastiani. 2020. Tweet sentiment quantification: An experimental re-evaluation.

Submitted for publication.

[26] Allan H. Murphy. 1973. A new vector partition of the probability score. Journal of Applied Meteorology 12, 4 (1973),

595—-600.

[27] Mahdi P. Naeini, Gregory F. Cooper, and Milos Hauskrecht. 2015. Obtaining well calibrated probabilities using Bayesian

binning. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015). Austin, US, 2901–2907.
[28] Alexandru Niculescu-Mizil and Rich Caruana. 2005. Obtaining calibrated probabilities from boosting. In Proceedings of

the 21st Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI 2005). Arlington, US, 413–420.
[29] Alexandru Niculescu-Mizil and Rich Caruana. 2005. Predicting good probabilities with supervised learning. In

Proceedings of the 22nd International Conference on Machine Learning (ICML 2005). Bonn, DE, 625–632. https://doi.org/

10.1145/1102351.1102430

[30] Douglas W. Oard, Fabrizio Sebastiani, and Jyothi K. Vinjumur. 2018. Jointly minimizing the expected costs of review

for responsiveness and privilege in e-discovery. ACM Transactions on Information Systems 37, 1, Article 11 (2018),
11:1–11:35 pages. https://doi.org/10.1145/3268928

[31] John C. Platt. 2000. Probabilistic outputs for support vector machines and comparison to regularized likelihood

methods. In Advances in Large Margin Classifiers, Alexander Smola, Peter Bartlett, Bernard Schölkopf, and Dale

Schuurmans (Eds.). The MIT Press, Cambridge, MA, 61–74.

[32] Pablo Pérez-Gállego, Alberto Castaño, José Ramón Quevedo, and Juan José del Coz. 2019. Dynamic ensemble selection

for quantification tasks. Information Fusion 45 (2019), 1–15. https://doi.org/10.1016/j.inffus.2018.01.001

[33] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence (Eds.). 2009. Dataset shift
in machine learning. The MIT Press, Cambridge, US. https://doi.org/10.7551/mitpress/9780262170055.001.0001

[34] Marco Saerens, Patrice Latinne, and Christine Decaestecker. 2002. Adjusting the outputs of a classifier to new a priori

probabilities: A simple procedure. Neural Computation 14, 1 (2002), 21–41. https://doi.org/10.1162/089976602753284446

[35] Fabrizio Sebastiani. 2020. Evaluation measures for quantification: An axiomatic approach. Information Retrieval Journal
23, 3 (2020), 255–288. https://doi.org/10.1007/s10791-019-09363-y

[36] David Spence, Christopher Inskip, Novi Quadrianto, and David Weir. 2019. Quantification under class-conditional

dataset shift. In Proceedings of the 11th International Conference on Advances in Social Networks Analysis and Mining
(ASONAM 2019). Vancouver, CA, 528–529. https://doi.org/10.1145/3341161.3342948

[37] D. B. Stephenson, C. A. S. Coelho, and I. T. Jolliffe. 2008. Two extra components in the Brier score decomposition.

Weather and Forecasting 23, 4 (2008), 752–757. https://doi.org/10.1175/2007WAF2006116.1

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/10.1007/s10994-005-5256-4
https://doi.org/10.1007/s10994-005-5256-4
https://doi.org/10.1007/s10618-008-0097-y
https://doi.org/10.1007/s13278-016-0327-z
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1145/3117807
https://doi.org/10.1002/asi.20961
https://doi.org/10.1007/978-1-4471-2099-5_1
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.1145/3268928
https://doi.org/10.1016/j.inffus.2018.01.001
https://doi.org/10.7551/mitpress/9780262170055.001.0001
https://doi.org/10.1162/089976602753284446
https://doi.org/10.1007/s10791-019-09363-y
https://doi.org/10.1145/3341161.3342948
https://doi.org/10.1175/2007WAF2006116.1

A Critical Reassessment of the SLD Algorithm for Posterior Probability Adjustment 33

[38] Meesun Sun and Sungzoon Cho. 2018. Obtaining calibrated probability using ROC binning. Pattern Analysis and
Applications 21, 2 (2018), 307–322. https://doi.org/10.1007/s10044-016-0578-3

[39] Vladimir Vapnik. 1998. Statistical learning theory. Wiley, New York, US.

[40] Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. 2004. Probability estimates for multi-class classification by pairwise

coupling. Journal of Machine Learning Research 5 (2004), 975–1005.

[41] Bianca Zadrozny and Charles Elkan. 2002. Transforming classifier scores into accurate multiclass probability estimates.

In Proceedings of the 8th ACM International Conference on Knowledge Discovery and Data Mining (KDD 2002). Edmonton,

CA, 694–699. https://doi.org/10.1145/775107.775151

A SLD’S GOAL IS TO ENFORCE THE MUTUAL CONSISTENCY OF THE POSTERIORS
AND THE PRIORS OFU

We here show that SLD may be viewed as an attempt to enforce a necessary condition for the

posteriors Pr(yj |xi) of the documents xi ∈ U to be calibrated. In order to show this, let us define

• Ua to be the set of documents xi ∈ U such that Pr(yj |xi) = a;
• U j

to be the set of documents xi ∈ U such that xi ∈ yj ;
• U j

a to be the set of documents xi ∈ Ua ∩U
j
.

Recall from Section 1 that the posteriors Pr(yj |xi), with xi ∈ U , are perfectly calibrated when, for

all a ∈ [0, 1], it holds that
|U j

a |

|Ua |
= a. If so, then it holds that

|U j
a | = |Ua | · a

=
∑

xi ∈Ua

a

=
∑

xi ∈Ua

Pr(yj |xi)

(18)

Since U is finite, there is a finite set A of values that the posteriors of the documents in U take.

From Equation 18 it follows that ∑
a∈A

|U j
a | =

∑
a∈A

∑
xi ∈Ua

Pr(yj |xi)
(19)

which can be rewritten as

|U j | =
∑
xi ∈U

Pr(yj |xi)
(20)

By multiplying both sides by
1

|U | we obtain

PrU (yj) =
1

|U |

∑
xi ∈U

Pr(yj |xi) (21)

which is exactly the condition on the “mutual consistency” of priors and posteriors that SLD tries

to enforce (see Equation 5 and Step 11 of Algorithm 1), and that holds after SLD has converged.

In sum, for the posteriors Pr(yj |xi) of the documents xi ∈ U to be calibrated, Equation 21 must

hold. While SLD is not a full-fledged attempt to calibrate the posteriors in U (which would be

impossible, since we do not know the label of any document inU), it may nevertheless be seen as a

step in that direction.

Received September 2020; accepted November 2020

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/10.1007/s10044-016-0578-3
https://doi.org/10.1145/775107.775151

	Abstract
	1 Introduction
	2 The SLD Algorithm
	3 Experiments
	3.1 Evaluation Measures
	3.1.1 Evaluating the Priors
	3.1.2 Evaluating the Posteriors

	3.2 Dataset
	3.2.1 Generating Samples with Controlled Amounts of Distribution Shift

	3.3 Representing text
	3.4 Learners

	4 Results
	4.1 Results of Binary Classification Experiments
	4.2 Results of Multiclass Classification Experiments
	4.3 Analyzing the Results by Amount of Shift
	4.4 Analyzing the Distributions Produced by SLD
	4.4.1 Average Entropy of Class Distributions
	4.4.2 Histogram-Based Representations of Class Distributions

	4.5 On the Speed of Convergence of SLD

	5 What Kind of Distribution Shift do we Simulate in our Experiments?
	6 Related Work
	7 Conclusions
	Acknowledgments
	References
	A SLD's goal is to enforce the mutual consistency of the posteriors and the priors of U

