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Abstract: Image resizing (IR) has a crucial role in remote sensing (RS), since an image’s level of detail
depends on the spatial resolution of the acquisition sensor; its design limitations; and other factors
such as (a) the weather conditions, (b) the lighting, and (c) the distance between the satellite platform
and the ground targets. In this paper, we assessed some recent IR methods for RS applications
(RSAs) by proposing a useful open framework to study, develop, and compare them. The proposed
framework could manage any kind of color image and was instantiated as a Matlab package made
freely available on Github. Here, we employed it to perform extensive experiments across multiple
public RS image datasets and two new datasets included in the framework to evaluate, qualitatively
and quantitatively, the performance of each method in terms of image quality and statistical measures.

Keywords: image resizing; image downscaling; remote sensing; image upscaling; remote sensing
applications

1. Introduction

Remote sensing (RS) technology plays a crucial role in many fields, since it provides
an efficient way to access a wide variety of information in real time for acquiring, detecting,
analyzing, and monitoring the physical characteristics of an object or area without having
any physical contact with it. Specifically, geoscience is one of the major fields in which RS
technology is used to quantitatively and qualitatively study weather, forestry, agriculture,
surface changes, biodiversity, and so on. The applications of geoscience extend far beyond
mere data collection, as it aims to inform international policies through, for instance,
environment monitoring, catastrophe prediction, and resource investigation.

The source of RS data is the electromagnetic radiation reflected/emitted by an object.
The electromagnetic radiation is received by a sensor on an RS platform (towers/cranes
at the ground level, helicopters/aircraft at the aerial level, and space shuttles/satellites at
the space-borne level) and is converted into a signal that can be recorded and displayed in
different formats: optical, infrared, radar, microwave, acoustic, and visual, according to the
elaborative purpose. Different RS systems have been proposed, corresponding to each data
source type [1–4].

In this paper, as a data source, we considered the RS visual images employed in RS
applications (RSAs), referred to in the following simply as RS images. Specifically, we were
interested in processing visual information in the same way as the human visual system
(HVS), i.e., elaborating the information vector of visible light, a part of the electromagnetic
spectrum, according to human perceptual laws and capabilities. In this framework, we
were concerned with the notion of the scale representing, as reported in [5–9], “the window
of visual perception and the observation capability reflecting knowledge limitation through
which a visible phenomenon can be viewed and analyzed”. Indeed, since the objects in RS
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images usually have different scales, one of the most critical tasks is effectively resizing
remotely sensed images by preserving the visual information. This task, usually termed
image resizing (IR) for RSAs, has attracted huge interest and become a hot research topic,
since IR can imply a scale effect such as constraining the accuracy and efficiency of RSAs.

Over the past few decades, the IR problem has been extensively studied [10–13]. It
is still a popular research field distinguished by many applications in various domains,
including RSAs [14–18]. IR can be carried out in an up or down direction, respectively
denoted as upscaling and downscaling. Upscaling is a refinement process in which the
size of the low-resolution (LR) input image is increased to regain the high-resolution (HR)
target image. Conversely, downscaling is a compression process by which the size of the
HR input image is reduced to recover the LR target image. In the literature, downscaling
and upscaling are often considered separately, so most existing methods specialize in only
one direction, sometimes for a limited range of scaling factors. IR methods can be evaluated
in supervised or unsupervised mode, depending on whether a target image is available.

Traditionally, IR methods are classified into two categories: non-adaptive and adap-
tive [19–21]. In the first category, including well-known interpolation methods, all image
pixels are processed equally. In the second category, including machine learning (ML) meth-
ods, suitable pixel changes are selectively arranged to optimize the resized image quality.
Usually, non-adaptive methods [22,23] present blurring or artifacts, while adaptive meth-
ods [24,25] are more expensive, provide superior visual quality, and keep high-frequency
components. In particular, ML methods ensure high-quality results and require widespread
learning based on many labeled training images and parameters.

From a methodological point of view, the above considerations also hold for IR
methods specifically designed for RSAs [26–35]. However, most of these methods concern
either upscaling [26–31] or, to a lesser extent, downscaling [32–35], despite both being
necessary and having equal levels of applicability (see Section 2.1). In addition, the number
of IR methods for RSAs that can perform both upscaling and downscaling is very low.

Overall, researchers have developed a significant number of IR methods over the
years, although a fair comparison of competing methods promoting reproducible research
is missing. To fill this gap and promote the development of new IR methods and their
experimental analysis, we proposed a useful framework for studying, developing, and
comparing such methods. The framework was conceived to apply this analysis to multiple
datasets and to evaluate quantitatively and qualitatively the performance of each method
in terms of image quality and statistical measures. In its current form, the framework was
designed to consider some IR methods not specifically proposed for RSAs (see Section 2.1),
with the intent of evaluating them for this specific application area. However, the frame-
work was made open-access, so that all authors who wish to make their code available can
see their methods included and evaluated. Beyond being useful in ranking the considered
benchmark methods, the framework is a valuable tool for making design choices and
comparing the performance of IR methods. We are confident that this framework holds the
potential to bring significant benefits to research endeavors in IR/RSAs.

The framework was instantiated as a Matlab package made freely available on GitHub
to support experimental work within the field. A peculiarity of the proposed frame-
work is that it can be used for any type of color image and can be generalized by in-
cluding IR methods for 3D images. For more rationale and technical background details,
see Section 2.2.

To our knowledge, the proposed framework represents a novelty within IR methods
for RSAs. Precisely, the main contributions of this paper can be summarized as follows:

1. A platform for testing and evaluating IR methods for RSAs applied to multiple RS image
datasets was made publicly available. It provided a framework where the performance
of each method could be evaluated in terms of image quality and statistical measures.

2. Two RS image datasets with suitable features for testing are provided (see below and
Section 2.2.2).
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3. The ranking of the benchmark methods and the evaluation of their performance for
RSAs were carried out.

4. Openness and robustness were guaranteed, since it was possible to include other IR
methods and evaluate their performance qualitatively and quantitatively.

Using the framework, we analyzed six IR methods, briefly denoted as BIC [36], DPID [37],
L0 [38], LCI [20], VPI [21], and SCN [39] (see refMethods, Section 2.1). These methods were
selected to provide a set of methodologically representative methods. According to the above
remarks, an extensive review of all IR methods was outside of this paper’s scope.

Experiments were carried out on six datasets in total (see Section 2.2.2). Four datasets are
extensively employed in RSAs, namely AID_cat [40], NWPU VHR-10 [41], UCAS_AOD [42],
and UCMerced_LandUse [43]. The remaining two datasets, available on Github, comprised
images that we extracted employing Google Earth, namely GE100-DVD and GE100-HDTV
(see Section 2.2.2). We quantitatively evaluated the performance of each method in terms of
the full-reference quality assessment (FRQA) and no-reference quality assessment (NRQA)
measures, respectively, in supervised and unsupervised mode (see Section 2.2.1).

The proposed open framework provided the possibility of tuning and evaluating
IR methods to obtain relevant results in terms of image quality and statistical measures.
The experimental results confirmed the performance trends already highlighted in [21] for
RSAs, showing significant statistical differences among the various IR benchmark methods,
as well as the visual quality they could attain in RS image processing. The deep analysis of
the results led to the conclusion that for RSAs, the quality measure and CPU time findings
confirmed that, on average, VPI and LCI presented adequate and competitive performances,
with experimental values generally better and/or more stable than those of the benchmark
methods. Moreover, VPI and LCI, besides being much faster than the methods performing
only downscaling or upscaling, had no implementation limitations and could be run in an
acceptable CPU time on high image sizes and for large scale factors (see Section 4).

The paper is organized as follows: Section 2 describes the benchmark methods (see
Section 2.1), the rationale and technical background (see Section 2.2), and the proposed
framework (see Section 2.3). Section 3 reports a comprehensive comparison in quantitative
and qualitative terms over multiple datasets. Section 4 provides a discussion and draws
some conclusions.

2. Materials and Methods

This section is organized into several subsections, as follows: First, a short review of
several methods available in the literature, performing the function of benchmark methods,
is briefly presented (see Section 2.1). This subsection will help the reader to fully under-
stand the main guidelines followed in the literature and the benchmark methods’ main
features. Following this, the rationale and technical background necessary to realize the
proposed framework are provided; see Section 2.2. This section also contains a description
of the quality measures (see Section 2.2.1) and benchmark datasets (see Section 2.2.2) em-
ployed herein. Finally, the proposed framework is described, outlining its peculiarities,
in Section 2.3. All materials, including the new benchmark datasets and the framework,
are publicly available to the reader (refer to the GitHub link in the section named Data
Availability Statement).

2.1. Benchmark Methods

In this subsection, we outline the benchmark methods considered in the validation
phase (see Section 3), denoted as BIC [36], DPID [37], L0 [38], LCI [20], VPI [21], and
SCN [39]. Except for BIC, LCI, and VPI, these methods were developed and tested by
considering the IR problem in one scaling mode, i.e., the downscaling (DPID and L0) or
upscaling mode (SCN). In the following, when necessary (for LCI and VPI), we distinguish
the upscaling and downscaling modes using the notations u-LCI/u-VPI and d-LCI/d-
VPI, respectively.
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• BIC (downscaling/upscaling)
Bicubic interpolation (BIC), the most popular IR method, employs piecewise bicubic
interpolation. The value of each final pixel is a weighted average of the pixel values in
the nearest 4× 4 neighborhood. BIC produces sharper images than other non-adaptive
classical methods, such as bilinear and nearest neighbors, offering a comparatively
favorable image quality and processing time ratio. BIC was designed to perform
scaling by selecting the size of the resized image or the scale factor.

• DPID (downscaling)
The detail-preserving image downscaling (DPID) method employs adaptive low-pass
filtering and a Laplacian edge detector to approximate the HVS behavior. The idea
is to preserve details in the downscaling process by assigning larger filter weights to
pixels that differ more from their local neighborhood. DPID was designed to perform
scaling by selecting the size of the resized image.

• L0 (downscaling)
The L0-regularized image downscaling method (L0) is an optimization framework for
image downscaling. It focuses on two critical issues: salient feature preservation and
downscaled image construction. For this purpose, it introduces two L0-regularized
priors. The first, based on the gradient ratio, allows for preserving the most salient
edges and the visual perceptual properties of the original image. The second optimizes
the downscaled image with the guidance of the original image, avoiding undesirable
artifacts. The two L0-regularized priors are applied iteratively until the objective
function is verified. L0 was designed to perform scaling by selecting the scale factor.

• LCI (downscaling/upscaling)
The Lagrange–Chebychev interpolation (LCI) method falls into the class of interpola-
tion methods. Usually, interpolation methods are based on the piecewise interpolation
of the initial pixels, and they traditionally use uniform grids of nodes. On the con-
trary, in LCI, the input image is globally approximated by employing the bivariate
Lagrange interpolating polynomial at a suitable grid of first-kind Chebyshev zeros.
LCI was designed to perform scaling by selecting the size of the resized image or the
scale factor.

• VPI (downscaling/upscaling)
The VPI method generalized to some extent the previous LCI method. It employs an
interpolation polynomial [44] based on an adjustable de la Vallée–Poussin (VP)-type
filter. The resized image is suitably selected by modulating a free parameter and fixing
the number of interpolation nodes. VPI was designed to perform scaling by selecting
the size of the resized image or the scale factor.

• SCN (upscaling)
The sparse-coding-based network (SCN) method adopts a neural network based
on sparse coding, trained in a cascaded structure from end to end. It introduces
some improvements in terms of both recovery accuracy and human perception by
employing a CNN (convolutional neural network) model. SCNs were designed to
perform scaling by selecting the scale factor.

In Table 1, the main features of the benchmark methods are reported. Note that various
other datasets, often employed in other image analysis tasks (e.g., color quantization [45–51]
and image segmentation [52–55]) were employed in [21] to evaluate the performance of the
benchmark methods. Moreover, some of the benchmark methods had limitations that were
either overcome without altering the method itself too much or resulted in their inability to
be used in some experiments (see Sections 2.3 and 3).



Remote Sens. 2023, 15, 4039 5 of 32

Table 1. Benchmark methods.

Method Type Selection Features

BIC Down/up Scale/size Bicubic interpolation

DPID Down Size Higher convolutional filter weights assigned to
pixels differing from their neighborhoods

L0 Down Scale Optimization framework based on two priors
iteratively applied

LCI Down/up Scale/size Lagrange interpolation at Chebyshev zeros
VPI Down/up Scale/size Filtered VP interpolation at Chebyshev zeros
SCN Up Scale Cascade of SCNs trained for scaling factors

2.2. Rationale and Technical Background

This section aims to present the rationale and the technical background on which the
study was based, highlighting the evaluation process’s main constraints, challenges, and
open problems. Further, we introduce the mandatory problem of the method’s effectiveness
for RSAs. These aspects are listed below.

1. An adequate benchmark dataset suitable for testing IR methods is lacking in general.
Indeed, experiments have generally been conducted on public datasets not designed
for IR assessment, since the employed datasets, although freely available, do not
contain both input and target images. This has significantly limited the quantita-
tive evaluation process in supervised mode and prevented a fair comparison. To
our knowledge, DIV2k (DIVerse 2k) is the only dataset containing both kinds of
images [56]. For a performance evaluation of the benchmark methods on DIV2k,
see [21]. This research gap is even more prominent for RS images, due to the nature of
their application.

2. Since the performance of a method on a single dataset reflects its bias in relation to that
dataset, running the same method on different datasets usually produces remarkably
different experimental results. Thus, an adequate evaluation process should be based
on multiple datasets.

3. Performance assessments performed on an empirical basis do not provide a fair
comparison. In addition, a correct experimental analysis should be statistically sound
and reliable. Thus, an in-depth statistical and numerical evaluation is essential.

4. A benchmark framework for the IR assessment of real-world and RS images is missing
in the literature. In particular, as mentioned in Section 1, this research gap has a greater
impact in the case of RSAs due to the crucial role of IR in relation to the acquisition
sensor and factors connected to weather conditions, lighting, and the distance between
the satellite platform and the ground targets.

As mentioned in Section 1, due to the importance of a fair method comparison and
promoting reproducible research, we proposed a useful open framework for studying,
developing, and comparing benchmark methods. This framework allowed us to address
issues 1–3, considering the IR problem in relation to RSAs and extending the analysis
performed in [21]. To assess the specific case of RS, in the validation process, we used
some of the RS image datasets that are commonly employed in the literature, and we also
generated a specific RS image dataset with features more suitable to quantitative analysis
(see Section 2.2.2). The framework was employed here to assess IR methods for RS images,
but it could be used for any type of color image [57] and generalized for 3D images [58].

2.2.1. Quality Metrics

• Supervised quality measures
As usual, when a target image was available, we quantitatively evaluated the per-
formance of each method in terms of the following full-reference quality assessment
(FRQA) measures that provided a “dissimilarity rate” between the target resized
image and the output resized image: the peak signal-to-noise ratio (PSNR) and the
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structural similarity index measure (SSIM). The definition of PSNR is based on the
definition of the mean squared error (MSE) between two images and extended to color
digital images [59] following two different methods [20,21,60]. The first method is
based on the properties of the human eye, which is very sensitive to luma information.
Consequently, the PSNR for color images is computed by converting the image to
the color space YCbCr; separating the intensity Y (luma) channel, which represents a
weighted average of the components R, G, and B; and considering the PSNR only for
the luma component according to its definition for a single component. In the second
method, the PSNR is the average PSNR computed for each image channel. In our
experiments, the PSNR was calculated using both of these methods. However, since
the use of the first or the second method did not produce a significant difference, for
brevity, we report only the values obtained by the first method in this paper. A greater
PSNR value (in decibels) indicates better image quality.
For an RGB color image, the SSIM is computed by converting it to the color space
YCbCr and applying its definition to the intensity Y channel [61]. The resultant SSIM
index is a decimal value between −1 and 1, where 0 indicates no similarity, 1 indicates
perfect similarity, and −1 indicates perfect anti-correlation. More details can be found
in [20,21,60].

• Unsupervised quality measures
When the target image was not available, we quantitatively evaluated the performance
of each method in terms of the following no-reference quality assessment (NRQA)
measures: the Natural Image Quality Evaluator (NIQE) [62], Blind/Referenceless
Image Spatial QUality Evaluator (BRISQUE) [63,64], and Perception-based Image
Quality Evaluator (PIQE) [65,66], using a default model computed from images of
natural scenes.
The NIQE involves constructing a quality-aware collection of statistical features based
on a simple and successful space-domain natural scene statistic (NSS) model. These
features are derived from a corpus of natural and undistorted images and are modeled
as multidimensional Gaussian distributions. The NIQE measures the distance between
the NSS-based features calculated from the image under consideration to the features
obtained from an image database used to train the model.
The BRISQUE does not calculate the distortion-specific features (e.g., ringing, blur, or
blocking). It uses the scene statistics of locally normalized luminance coefficients to
quantify possible losses of “naturalness” in the image due to distortions.
The PIQE assesses distortion for blocks and determines the local variance of perceptibly
distorted blocks to compute the image quality.
The output results of the three functions are all within the range of [0, 100], where the
lower the score, the higher the perceptual quality.

2.2.2. Benchmark Datasets

The multidataset analysis included four datasets widely utilized in RSAs and pos-
sessing different features, namely AID [40], NWPU VHR-10 [41], UCAS_AOD [42], and
UCMerced_LandUse [43]. Moreover, we employed two datasets comprising images we
extracted from Google Earth, namely GDVD and GHDTV. All datasets, representing 6850
color images in total, are briefly described in the following list.

• AID
The Aerial Image Dataset (AID), proposed in [67] and available at [40], was designed
for method performance evaluation using aerial scene images. It contains 30 dif-
ferent scene classes, or categories (“airport”, “bare land”, “baseball field”, “beach”,
“bridge”,“center”, “church”, “commercial”, “dense residential”, “desert”, “farmland”,
“forest”, “industrial”, “meadow”, “medium residential”, “mountain, park”, “‘park-
ing”, “playground”, “pond”, “port”, “railway station”, “resort”,“river”, “school”,
“sparse residential”, “square”, “stadium”, “storage tanks”, and “viaduct”) and about
200/400 samples with sizes of 600 × 600 in each class. The images were collected from
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Google Earth and post-processed as RGB renderings from the original aerial images.
They images are multisource, since, in Google Earth, they were acquired from different
remote imaging sensors. Moreover, each class’s sample images were carefully chosen
from several countries and regions worldwide, mainly in the United States, China,
England, France, Italy, Japan, and Germany. These images were captured at different
times and seasons under disparate imaging conditions, with the aim of increasing the
data’s intra-class diversity. The images of the categories “‘beach”, “forest”, “parking”,
and “sparse residential“ were considered altogether and are denoted as AID_cat in
this paper. Note that these images and the images belonging to the same categories in
UCAS_AOD were also considered altogether in Section 3.2.3.

• GEDVD and GHDTV
Google Earth 100 Images—DVD (GDVD) and Google Earth 100 Images—HDTV
(GHDTV) are datasets included with the proposed framework and publicly available
for method performance evaluation using Google Earth aerial scene images. The
GDVD and GHDTV datasets each contain 100 images generated by collecting the same
scene in the two formats: 852 × 480 (DVD) and 1920 × 1080 (HDTV). These two size
formats were chosen based on the following considerations: Firstly, these are standard
formats that are widely used in practice, and, in particular, the HDTV format was large
enough to allow scaling operations to be performed at high scaling factors. Secondly,
each image dimension was a multiple of 2, 3, or 4, so resizing operations could be
performed with all benchmark methods. Thirdly, since the corresponding images of
the two datasets were acquired from the same scene with different resolutions for a
specific, non-integer scale factor, these datasets could be considered interchangeably
as containing the target and input images. Each image in the two datasets presents a
diversity of objects and reliable quality.

• NWPU VHR-10
The image dataset NWPU VHR-10 (NWV) proposed in [68–70] is publicly available
at [41] for research purposes only. It contains images with geospatial objects belonging
to the following ten classes: airplanes, ships, storage tanks, baseball diamonds, tennis
courts, basketball courts, ground track fields, harbors, bridges, and vehicles. This
dataset contains in total 800 very-high-resolution (VHR) remote sensing color images,
with 715 color images acquired from Google Earth and 85 pan-sharpened color infrared
images from Vaihingen data. The images of this dataset were originally divided into
four different sets: a “positive image set” containing 150 images, a “negative image
set” containing 150 images, a “testing set” containing 350 images, and an “optimizing
set” containing 150 images. The images of this dataset were considered altogether in
this paper.

• UCAS_AOD
The image dataset UCAS_AOD (UCA) proposed in [71] (available at [42]) contains
RS aerial color images collected from Google Earth, including two kinds of targets,
automobile and aircraft, and negative background samples. The images of this dataset
were considered both altogether and divided into certain categories (see Section 3.2.3)
in this paper.

• UCMerced_LandUse
The image dataset UCMerced_LandUse (UCML) proposed in [72] (available at [43])
for research purposes, contains 21 classes of land use images. Each class contains
100 images with a size of 256× 256 manually extracted from larger images of the USGS
National Map Urban Area Imagery collection, framing various urban areas around
the country. The images of this dataset were considered altogether in this paper.

In Table 2, the main features of all datasets are reported. Each stand-alone dataset con-
tained images that could be considered the target image starting from a given input image.
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Table 2. Datasets (# is the short way to indicate ”number of“).

Dataset # Total Images # Categories Image Format Image Size

AID_cat 1340 30 jpg 600 × 600
GDVD 100 1 jpg 852 × 480
GHDTV 100 1 jpg 1920 × 1080

NWV 800 2 jpg From 381 × 601 to
939 × 1356

UCA 2410 3 png 1280 × 659
UCML 2100 21 tif 256 × 256

In order to test the benchmark methods in supervised mode, we needed to generate
the input image to apply the chosen resizing method. To this end, we followed a practice
established in the literature and often adopted by other authors, i.e., we rescaled the target
image by BIC and used it as an input image in most cases in the framework validation (see
Section 3.1). However, in Section 3.1.3, we also used the benchmark methods to generate
the input image with the aim of studying the input image dependency. To discriminate
how the input images were generated, we include the acronym of the resizing method
used for their generation when referring to the images. For instance, “BIC input image”
indicates the input image generated by BIC.

In unsupervised mode, besides the above datasets, we also tested the benchmark
methods according to four categories: beach, forest, parking, and sparse residential. To
this end, we fused the corresponding category images of AID and UCA to generate the
subsets, indicated in the following as AU_Beach (500 images), AU_Forest (350 images),
AU_Parking (390 images), and AU_SparseRes (400 images) (see Section 3.2.3).

2.3. Proposed Framework

As stated above, the proposed framework allowed us to test each benchmark method
on any set of input images in two modes: “supervised” and “unsupervised”, depending
on the availability of a target image. Three image folders were used: the folder of input
images (mandatory), named “input_image”; the folder of output IR images (optional),
named “output_image”; and the folder of ground-truth images (mandatory in supervised
mode but not required in unsupervised mode), named “GT_image”. Note that the images
in each folder should have the same graphic format. Moreover, in supervised mode, the
GT_image folder should include ground-truth images whose file names are the same as
those of the input images in the input_image folder.

Preliminarily, the user has to set the scale factor (Scale) to a real value not equal to 1.
Then, the user has to complete an initialization step consisting of the following settings:

• Supervised ‖ unsupervised;
• Upscaling ‖ downscaling;
• Input image format (.png ‖ .tif ‖ .jpg ‖ .bmp);
• Benchmark method (BIC ‖ SCN ‖ LCI ‖ VPI for upscaling; BIC ‖ DPID ‖ L0 ‖ LCI ‖

VPI for downscaling);
• Ground-truth image format (.png ‖ .tif ‖ .jpg ‖ .bmp);
• Image saving option (Y ‖ N);
• Image showing option (Y ‖ N).

Note that if the downscaling option is selected, Scale is automatically updated to
1/Scale. The initialization step is managed through dialog boxes, as shown in Figure 1.
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Figure 1. Dialog boxes employed in the framework.

The dialog box for selecting the graphic format of the input and the GT image remains
on hold until the user selects the correct file extension for the files included in their re-
spective folders. A comprehensive table is generated at the end of the initialization step,
according to the selected mode (supervised or unsupervised). The selected benchmark
method is applied to each image in the folder input_image during a run using the default
parameter values. Successively, the computed quality measures and CPU time are stored
in the table. If the image saving option is selected (i.e., ‘Y’ is chosen), the corresponding
resized image is stored in the output_image folder with the same file name. Similarly, if
the image showing option is selected (i.e., ‘Y’ is chosen), the corresponding resized image
is shown on the screen. In the end, the average CPU time and image quality measures
are also computed and stored in the table. Then, the table is saved as an .xls file in the
directory “output_image”. For more details, see the description reported as pseudo-code
in Algorithm 1.

In unsupervised mode, each benchmark method, DPID excluded, was implemented
by selecting the scale factor, and the resulting resized image was consequently computed.
Since DPID was designed to perform scaling by selecting the size of the resized image,
based on the selected scale factor, we computed the size of the resized image, which was
used as a parameter for DPID.

In supervised mode, almost all benchmark methods were implemented by selecting
the size of the resized image equal to the size of the ground-truth image taken from the
folder GT_image. Indeed, in supervised mode this was possible for BIC, DPID, LCI, and
VPI, since they were designed with the possibility of performing scaling by selecting the
size of the resized image or the scale factor.

Since this did not apply to the SCN method and L0, we had to introduce some minor
variations to make them compliant with our framework. Specifically, for the SCN method,
to perform the supervised resizing by indicating the size, we introduced minor algorithmic
changes to the original code and modified the type of input parameters without significantly
affecting the nature and the core of the SCN. The changes consisted in computing the scale
factor corresponding to the size of the ground-truth image and then implementing the SCN
with this scale factor as a parameter. However, these minor changes were not sufficient to
remove three computational limitations of the SCN, which remained impractical, since a
complete rewriting of the SCN method (outside our study’s scope) would be necessary.
The first limitation involved the size of the resized image being incorrectly computed for
some or all of the input images; for example, for the UCA dataset, if the desired resized
image was equal to 1280 × 659, starting from an input image generated by BIC with a size
of 640 × 330 and considering a scale factor equal to 2, the computed size of the resized
image would be 1280 × 660. This computational limitation is indicated in the following
as “not computable” using the notation “–”. The second SCN computational limitation
was related to the resizing percentage, which could not correspond to a non-integer scale
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factor—for instance, in the case of supervised upscaling with input images from GDVD for
the ground truths of GHDTV corresponding to a scale factor equal to about 2.253. This is
indicated in the following as “not available” using the abbreviation “n.a.”. The third SCN
computational limitation pertained to scale factors greater than or equal to 3 for larger or
more numerous input images, as the available demo code of the SCN caused Matlab to run
out of memory. This occurrence is indicated in the following as “out of memory” using the
notation “OOM”.

Algorithm 1 Framework

Insertion Scale value
if Scale 6= 1 then

Initialize :
Supervised ‖ Unsupervised
Upscaling ‖ Downscaling
Input Image Format
Image saving option
Image showing option
if Supervised then

GT_ f ormat← Select Ground Truth Image Format
end if
Generate an appropriate Table
METHOD ← Select Upscaling‖Downscaling Resizing Method
N ← Compute the number o f input images
for i = 1 to N do

Read Input image (Ii)
[Ti, Ri]← METHOD(Ii) {where Ri ← resized image, Ti ← CPU time}
if Supervised then

Read the corresponding GT image (GTi) with GT_ f ormat
end if
Compute quality measures f or Ri. Then store them and Ti in the Table
if Image saving option =′ Y′ then

Save(Ri)
end if
if Image showing option =′ Y′ then

Show(Ri)
end if

end for
Compute average quality measures and CPU time. Then store them in the Table
Save Table as .xls f ile

else
Warning : No Scaling method has been applied!

end if

It was not possible to implement L0 because it is only available as a Matlab p-code.
Using L0 to perform resizing by selecting the size of the resized image, we computed
the scale factor corresponding to the size of the ground-truth image, which was passed
on as a parameter for L0. However, in this way, it was not possible to avoid an error in
the size calculation when each size dimension of the resized image was not equal to the
product of the scaling factor and the corresponding size dimension of the input image or
when different scale factors had to be considered for each dimension. In these cases, in the
framework, the user is simply notified that the calculation is impossible. Note that this
L0 computational limitation did not affect the experimental results presented herein (see
Section 3), since L0 was used only for downscaling with an equal scale factor for each size
dimension on images prior to zooming using the same scale as other benchmark methods,
so that we did not have any problem in performing resizing.
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The framework was made open-access so that other benchmark methods can be
added. Thus, we invite other authors to make their method code available to expand the
framework’s capabilities for a fair comparison. The proposed framework was instantiated
as a Matlab package that is freely available on GitHub. It was run on a computer with an
Intel Core i7 3770K CPU configuration @350 GHz and Matlab version 2022b.

3. Experimental Results and Discussion

This section reports the comprehensive performance assessment of the benchmark
methods outlined in Section 1 over multiple datasets. We considered BIC, d-LCI, L0, DPID,
and d-VPI as downscaling benchmark methods, while BIC, SCN, u-LCI, and u-VPI were
considered as upscaling benchmark methods. Indeed, although DPID and L0 (SCN) could
also be applied in upscaling (downscaling) mode, we did not focus on this unplanned
comparison to avoid an incorrect experimental evaluation. Note that BIC was implemented
using the built-in Matlab function imresize with the bicubic option. For the remaining
methods, we employed the publicly available source codes in a common language (Matlab).
These codes were run with the default parameter settings.

We tested the benchmark methods for scale factors varying from 2 to large values in
both supervised and unsupervised mode for upscaling/downscaling. However, for brevity,
in this paper, we limit ourselves to showing the results for the scale factors of 2, 3, and 4.

In the following, Sections 3.1 and 3.2 are devoted to evaluating the quantitative results
for the supervised and unsupervised modes, respectively. Moreover, for each type of
quantitative evaluation, we distinguish the upscaling and downscaling cases. In addition,
in Section 3.3, the trend of CPU time is investigated. Section 3.4 concerns the qualitative
results for both the supervised/unsupervised modes and upscaling/downscaling cases. In
particular, performance examples are given for different scale factors and modes. Finally,
in Section 3.5, conclusive global assessments are presented.

3.1. Supervised Quantitative Evaluation

In supervised mode, for the quantitative evaluation of both upscaling and down-
scaling methods, we show the full-reference visual quality measures PSNR and SSIM
(see Section 2.2.1) for all benchmark methods where the ground-truth image had a size
corresponding to the scale factors s = 2, 3, 4.

Since the target image was necessary to estimate these quality measures, we employed
the benchmark methods for both upscaling and downscaling by mainly modifying their
input parameters so that the output image’s size was automatically computed after the
ground-truth image was considered and its dimensions computed. For LCI, VPI, and BIC,
we used the version of the method where the input parameters were the image dimensions
of the resized image.

As mentioned above, we took the target images from the datasets and applied BIC
in upscaling (or downscaling) mode to them in order to generate the input images for the
downscaling (or upscaling) benchmark method. We refer to these images as “BIC input
images”. This was performed for all datasets.

In Sections 3.1.1 and 3.1.2 we interpret the results respectively for supervised down-
scaling and upscaling. In addition, as presented in Section 3.1.3, we studied the impact
of how the input images were generated. For this purpose, we repeated the quantitative
analysis and computed the average PSNR and SSIM values for the supervised benchmark
methods while varying the unsupervised scaling method used to generate the input images
from the target images in the dataset.

3.1.1. Supervised Downscaling

Table 3 and Figure 2 show the average performance of supervised downscaling meth-
ods with BIC input images for a ground-truth image with a size corresponding to the scale
factors s = 2, 3, 4. The results confirmed the trend already observed in [21]. Specifically,
for even scale factors (s = 2, 4), d-VPI always supplied much higher performance values
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than DPID and L0, which always presented the lowest quality measures. For odd scale
factors, d-VPI performed similarly to d-LCI, reaching the optimal quality measures for
input images generated by BIC [21]. This trend was also detectable from the boxplots in
Figure 2. The trend could also be observed for higher scale factors. To provide further
insights, the results obtained for scale factors s = 6, 8, 10 on the GHDTV dataset with BIC
input images are reported in Table 4.

Table 3. Average performance of supervised downscaling methods with BIC input images.

:2 :3 :4

MSE PSNR SSIM TIME MSE PSNR SSIM TIME MSE PSNR SSIM TIME

AID_cat
BIC 4.012 44.844 0.994 0.011 3.680 45.669 0.995 0.018 3.743 45.530 0.994 0.033

DPID 2.760 45.602 0.997 22. 952 2.685 45.684 0.997 35.686 3.082 45.175 0.996 56.004
L0 9.585 39.458 0.989 3.402 10.894 39.093 0.987 6.955 1.515 47.158 0.998 12.930

d-LCI 0.205 55.121 0.999 0.112 0.00 Inf 1.000 0.163 0.141 56.903 1.000 0.276
d-VPI 0.152 56.676 1.000 1.904 0.00 Inf 1.000 0.163 0.053 61.787 1.000 5.017

GDVD
BIC 10.416 38.636 0.989 0.012 9.711 38.955 0.990 0.018 9.843 38.895 0.990 0.036

DPID 5.055 41.591 0.996 20.071 5.105 41.565 0.996 32.671 5.913 40.935 0.995 49.898
L0 17.573 36.169 0.988 3.552 170.353 26.453 0.882 7.945 2.625 44.346 0.998 14.063

d-LCI 0.212 54.903 0.999 0.107 0.00 Inf 1.000 0.177 0.149 56.513 1.000 0.277
d-VPI 0.164 56.065 1.000 1.959 0.00 Inf 1.000 0.177 0.059 60.544 1.000 4.912

GHDTV
BIC 3.167 44.322 0.996 0.034 2.900 44.829 0.997 0.044 2.945 44.746 0.996 0.067

DPID 2.681 44.449 0.997 101.297 2.697 44.411 0.997 163.577 3.107 43.806 0.997 253.606
L0 10.956 38.351 0.992 19.607 1.482 46.854 0.999 79.947 1.482 46.854 0.999 79.640

d-LCI 0.185 55.489 0.999 0.481 0.00 Inf 1.000 0.863 0.124 57.361 1.000 1.323
d-VPI 0.127 57.160 1.000 9.808 0.00 Inf 1.000 0.863 0.041 62.262 1.000 26.009

NWV
BIC 5.015 43.218 0.992 0.018 4.641 43.695 0.993 0.031 4.709 43.618 0.993 0.050

DPID 2.463 45.576 0.996 35.596 2.359 45.763 0.997 57.479 2.694 45.214 0.996 89.015
L0 7.989 40.058 0.990 5.255 64.247 21.445 0.641 12.826 1.304 47.870 0.998 22.503

d-LCI 0.189 55.452 0.999 0.308 0.00 Inf 1.000 0.302 0.125 57.387 1.000 0.443
d-VPI 0.134 57.065 1.000 3.423 0.00 Inf 1.000 0.302 0.043 62.225 1.000 7.852

UCA
BIC 7.394 40.912 0.993 0.019 6.825 41.330 0.994 0.026 6.943 41.246 0.994 0.042

DPID 3.559 43.488 0.996 47.762 3.257 43.887 0.997 77.220 3.452 43.366 1.000 10.966
L0 9.547 39.055 0.990 10.743 12.595 37.911 0.987 22.979 1.694 46.435 0.998 43.939

d-LCI 0.234 54.548 0.999 0.244 0.00 Inf 1.000 0.451 0.133 57.019 1.000 0.729
d-VPI 0.180 55.796 0.999 5.307 0.00 Inf 1.000 0.025 0.057 60.936 1.000 14.452

UCML
BIC 6.977 42.931 0.992 0.003 6.430 43.422 0.993 0.003 6.552 43.339 0.992 0.006

DPID 3.481 43.685 0.980 4.293 3.317 43.807 0.980 6.672 3.865 43.235 0.980 10.553
L0 13.755 37.832 0.987 0.565 49.057 32.747 0.958 1.245 2.606 45.108 0.997 2.194

d-LCI 0.251 54.838 0.999 0.014 0.00 Inf 1.000 0.024 0.159 56.384 1.000 0.035
d-VPI 0.201 56.148 1.000 0.258 0.00 Inf 1.000 0.024 0.068 61.027 1.000 0.612
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Figure 2. Boxplots derived from Table 3.

Table 4. Average performance of supervised downscaling methods on the GHDTV dataset with BIC
input images for other scale factors (OOM indicates ”out of memory“).

:6 :8 :10

MSE PSNR SSIM TIME MSE PSNR SSIM TIME MSE PSNR SSIM TIME

BIC 2.932 44.777 0.996 0.268 2.928 44.791 0.996 0.454 2.925 44.802 0.997 0.662
DPID 3.665 43.094 0.997 675.213 3.979 42.740 0.997 1057.820 4.180 42.527 0.996 1617.292

L0 2.008 45.737 0.998 172.889 2.536 44.881 0.997 359.239 OOM OOM OOM OOM
d-LCI 0.084 59.137 1.000 3.746 0.058 60.892 1.000 6.382 0.039 62.620 1.000 10.062
d-VPI 0.018 66.018 1.000 71.330 0.009 69.115 1.000 118.630 0.005 72.098 1.000 172.154

3.1.2. Supervised Upscaling

Table 5 and Figure 3 show the average performance of supervised upscaling methods
with BIC input images for a ground-truth image with a size corresponding to the scale
factors s = 2, 3, and 4. The results confirmed the trend already observed in [21]. Specifically,
SCN produced the highest quality values in the case of BIC input images, followed by
u-VPI, u-LCI, and BIC. This trend was also detectable from the boxplots in Figure 3. The
trend could also be observed for higher scale factors. To provide further insights, the results
obtained for scale factors s = 6, 8, and 10 on the GHDTV dataset with BIC input images are
reported in Table 6.

3.1.3. Supervised Input Image Dependency

We conducted the following two experiments on GEHDTV and GDVD to test the
supervised input image dependency. We selected these datasets due to their features
and size.

Supervised Input Image Dependency–Experiment 1
We changed the input image for both downscaling and upscaling, generating it using

the other methods in unsupervised mode. Indeed, for supervised downscaling, the input
HR images were generated by the unsupervised upscaling methods BIC, SCN, u-LCI,
and u-VPI. In contrast, for supervised upscaling, the input LR images were created using
the unsupervised BIC, L0, DPID, d-LCI, and d-VPI methods. The input-free parameter
of unsupervised u-VPI and d-VPI, employed to generate the input image, was set to a
prefixed value equal to 0.5.

In Tables 7 and 8 (Tables 9 and 10), the average performance of supervised downscaling
(upscaling) methods with different input images is shown for scale factors s = 2, 3, and 4.
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Table 5. Average performance of supervised upscaling methods with BIC input images (– indicates
“not computable”).

×2 ×3 ×4

MSE PSNR SSIM TIME MSE PSNR SSIM TIME MSE PSNR SSIM TIME

AID_cat
BIC 52.421 33.730 0.920 0.004 125.176 29.533 0.823 0.004 173.186 28.091 0.759 0.004
SCN 34.781 35.403 0.943 1.995 104.941 30.235 0.851 4.210 141.371 28.988 0.794 2.415

u-LCI 42.336 34.866 0.932 0.021 115.093 29.965 0.833 0.014 162.040 28.462 0.766 0.013
u-VPI 41.791 34.918 0.934 0.046 113.838 30.007 0.836 0.349 160.206 28.507 0.770 0.348

GDVD
BIC 110.341 28.323 0.885 0.005 226.175 25.149 0.779 0.005 287.487 24.110 0.718 0.005
SCN 70.700 30.327 0.922 2.001 188.604 25.959 0.818 4.160 230.674 25.086 0.765 2.457

u-LCI 94.945 29.028 0.897 0.027 213.260 25.414 0.787 0.019 273.375 24.335 0.724 0.015
u-VPI 93.865 29.075 0.900 0.545 211.541 25.449 0.791 0.438 271.386 24.364 0.728 0.375

GHDTV
BIC 49.487 32.310 0.941 0.016 198.067 25.855 0.821 0.014 186.544 26.191 0.800 0.014
SCN 28.120 34.671 0.963 7.654 205.939 25.713 0.832 22.342 136.649 27.624 0.842 9.415

u-LCI 38.194 33.629 0.951 0.146 194.723 25.942 0.824 0.121 171.400 26.631 0.806 0.109
u-VPI 37.690 33.682 0.953 3.211 192.858 25.981 0.828 2.342 169.586 26.676 0.810 2.541

NWV
BIC 66.156 31.461 0.895 0.006 121.121 28.665 0.816 0.006 161.265 27.290 0.764 0.006
SCN – – – – – – – – – – –

u-LCI 62.809 31.767 0.901 0.040 118.937 28.799 0.819 0.028 159.109 27.382 0.765 0.021
u-VPI 62.220 31.807 0.903 0.795 117.727 28.842 0.822 0.613 157.707 27.420 0.768 0.532

UCA
BIC 96.844 29.229 0.897 0.007 210.907 25.608 0.779 0.006 213.253 25.703 0.755 0.007
SCN – – – – – – – – – – – –

u-LCI 92.463 29.437 0.903 0.074 212.377 25.582 0.779 0.061 208.064 25.844 0.757 0.051
u-VPI 91.758 29.468 0.905 1.731 209.280 25.644 0.782 1.377 206.237 25.882 0.762 1.288

UCML
BIC 75.233 31.873 0.910 0.001 319.719 24.854 0.729 0.002 222.251 26.625 0.754 0.001
SCN 44.938 33.598 0.922 0.422 – – – – 170.748 27.314 0.777 0.480

u-LCI 63.395 32.881 0.921 0.003 327.294 24.766 0.727 0.003 207.548 27.001 0.761 0.002
u-VPI 62.573 32.934 0.923 0.088 319.763 24.865 0.728 0.084 205.230 27.044 0.765 0.074

Table 6. Average performance of supervised upscaling methods on the GHDTV dataset with BIC
input images for other scale factors.

×6 ×8 ×10

MSE PSNR SSIM TIME MSE PSNR SSIM TIME MSE PSNR SSIM TIME

BIC 299.353 24.037 0.717 0.021 383.714 22.924 0.674 0.021 448.808 22.229 0.651 0.020
SCN 240.168 25.044 0.754 21.233 323.354 23.694 0.702 12.154 389.037 22.867 0.672 30.237

d-LCI 284.941 24.274 0.719 0.083 369.640 23.096 0.675 0.074 435.666 22.365 0.651 0.069
d-VPI 282.678 24.309 0.722 1.829 367.357 23.124 0.678 1.673 433.169 22.390 0.653 1.597
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Analyzing these tables, it follows that:

(a) For supervised downscaling (see Tables 7 and 8) starting from HR input images
created by the upscaling methods other than BIC, for even scale factors (s = 2, 4),
d-VPI always produced much higher quality values than DPID and L0,, which always
presented the lowest performance in qualitative terms. The d-VPI method, followed
by d-LCI, obtained the best performance, apart from the case of SCN input images,
where BIC showed the better performance, in agreement with the limitations reported
in Section 2.3, followed by d-VPI, DPID, d-LCI, and L0. For odd scale factors, since
d-VPI coincided with d-LCI, these methods attained better quality values in the case
of input images created by BIC, u-LCI, or u-VPI. However, for SCN input images,
the rating of the methods for even scale factors s = 2, 4 was as expected, i.e., the
best performance was attributed to BIC, followed by d-LCI = d-VPI, DPID, and
L0, respectively.

(b) For supervised upscaling (see Tables 9 and 10), starting from LR input images created
by downscaling methods other than BIC, SCN always produced the lowest quality
values. The best performance was accomplished by u-VPI, apart from in the upscaling
×2 case with L0 input images, where BIC had slightly higher performance values
than u-VPI. Analogously to BIC, u-VPI had a more stable trend with regard to the
variations in the input image. The quality values obtained by u-VPI were always
higher than those obtained by u-LCI, which preformed better than BIC only for BIC
input images.

Figure 3. Boxplots derived from Table 5.
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Table 7. Average performance results of supervised downscaling methods on GHDTV dataset with
input images generated by the BIC and SCN methods.

BIC Input SCN Input
MSE PSNR SSIM TIME MSE PSNR SSIM TIME

GHDTV
:2

BIC 3.167 44.322 0.996 0.034 0.844 49.440 0.999 0.036
DPID 2.681 44.449 0.997 101.297 7.546 40.316 0.993 105.20

L0 10.956 38.351 0.992 19.607 23.228 35.423 0.981 19.150
d-LCI 0.185 55.489 0.999 0.481 6.275 41.512 0.993 0.499
d-VPI 0.127 57.160 1.000 9.808 0.936 49.277 0.999 10.591

:3
BIC 2.900 44.829 0.997 0.018 0.942 48.946 0.999 0.046

DPID 2.697 44.411 0.997 32.671 6.091 41.164 0.994 165.18
L0 1.482 46.854 0.999 7.945 19.016 36.190 0.983 44.421

d-LCI 0.00 Inf 1.000 0.177 6.759 41.278 0.993 1.274
d-VPI 0.00 Inf 1.000 0.177 6.659 41.278 0.993 1.274

:4
BIC 2.945 44.746 0.996 0.067 0.964 48.951 0.999 0.065

DPID 3.107 43.806 0.997 253.606 6.315 40.969 0.994 263.86
L0 1.482 46.854 0.999 79.640 4.343 42.529 0.996 68.453

d-LCI 0.124 57.361 1.000 1.323 8.055 40.507 0.992 1.457
d-VPI 0.041 62.262 1.000 26.009 3.263 44.208 0.997 27.397

Table 8. Average performance results of supervised downscaling methods on GHDTV dataset with
input images generated by u-LCI and u-VPI.

u-LCI Input u-VPI Input
MSE PSNR SSIM TIME MSE PSNR SSIM TIME

GHDTV
:2

BIC 1.562 47.262 0.998 0.038 2.658 45.092 0.996 0.038
DPID 3.782 43.079 0.997 100.833 3.110 43.873 0.997 105.12

L0 12.004 37.985 0.991 19.777 11.545 38.145 0.991 19.326
d-LCI 0.073 59.615 1.000 0.510 0.070 59.712 1.000 0.517
d-VPI 0.012 68.774 1.000 10.613 0.024 64.575 1.000 10.625

:3
BIC 1.412 47.948 0.998 0.048 2.502 45.529 0.997 0.048

DPID 3.637 43.195 0.997 168.89 3.110 43.840 0.997 207.796
L0 12.278 37.895 0.990 44.82 11.744 38.079 0.990 45.137

d-LCI 0.00 Inf 1.000 0.863 0.000 Inf 1.000 0.865
d-VPI 0.00 Inf 1.000 0.863 0.000 Inf 1.000 0.865

:4
BIC 1.448 47.742 0.998 0.069 2.534 45.416 0.997 0.065

DPID 4.073 42.697 0.996 258.79 3.524 43.295 0.997 316.138
L0 1.325 47.380 0.999 79.695 1.423 47.058 0.999 86.846

d-LCI 0.053 60.977 1.000 1.33 0.053 60.974 1.000 1.342
d-VPI 0.002 80.119 1.000 26.220 0.001 78.820 1.000 26.022
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Table 9. Average performance results of supervised upscaling methods on GHDTV dataset with
input images generated by BIC, L0, DPID.

BIC Input L0 Input DPID Input
MSE PSNR SSIM TIME MSE PSNR SSIM TIME MSE PSNR SSIM TIME

GHDTV
×2

BIC 49.487 32.310 0.941 0.016 53.119 31.699 0.949 0.016 46.659 32.514 0.950 0.016
SCN 28.120 34.671 0.963 7.654 132.387 27.781 0.906 7.347 74.599 30.282 0.934 7.316

u-LCI 38.194 33.629 0.951 0.146 79.672 30.029 0.917 0.143 53.518 31.986 0.936 0.145
u-VPI 37.690 33.682 0.953 3.211 55.568 31.496 0.947 3.134 45.190 32.684 0.952 0.952

×3
BIC 198.067 25.855 0.821 0.014 321.797 23.672 0.772 0.015 117.956 28.302 0.879 0.014
SCN 205.939 25.713 0.832 22.342 476.268 22.003 0.716 16.311 163.018 26.840 0.864 16.358

u-LCI 194.723 25.942 0.824 0.121 375.026 23.022 0.736 0.117 133.960 27.817 0.854 0.120
u-VPI 192.858 25.981 0.828 2.342 312.075 23.805 0.766 2.634 116.398 28.403 0.880 2.638

×4
BIC 186.544 26.191 0.800 0.014 175.799 26.481 0.819 0.014 175.799 26.481 0.819 0.014
SCN 136.649 27.624 0.842 9.415 226.220 25.366 0.807 9.570 226.220 25.366 0.807 9.593

u-LCI 171.400 26.631 0.806 0.109 197.676 26.033 0.788 0.112 197.676 26.033 0.788 0.108
u-VPI 169.586 26.676 0.810 2.541 173.450 26.587 0.820 2.342 173.450 26.587 0.820 2.315

Table 10. Average performance results of supervised upscaling methods on GHDTV dataset with
input images generated by d-LCI and d-VPI (– indicates “not computable”).

d-LCI Input d-VPI Input
MSE PSNR SSIM TIME MSE PSNR SSIM TIME

GHDTV
×2

BIC 45.604 32.782 0.948 0.016 39.019 33.438 0.954 0.016
SCN 80.349 30.309 0.926 7.406 62.009 31.367 0.940 7.356

u-LCI 55.250 32.206 0.929 0.138 43.203 33.275 0.941 0.141
u-VPI 43.587 33.155 0.949 3.092 34.944 34.142 0.957 3.166

×3
BIC 242.474 25.006 0.811 0.014 129.583 28.045 0.874 0.015
SCN – – – – 239.088 25.348 0.826 16.157

u-LCI 290.641 24.253 0.768 0.121 167.492 27.032 0.828 0.116
u-VPI 239.576 25.051 0.808 2.713 127.752 28.156 0.874 2.629

×4
BIC 226.910 25.445 0.806 0.013 219.069 25.597 0.810 0.014
SCN 420.078 22.727 0.742 9.484 397.439 22.972 0.751 9.523

u-LCI 292.124 24.389 0.748 0.105 280.268 24.569 0.753 0.105
u-VPI 220.180 25.575 0.807 2.363 213.686 25.708 0.811 2.345

Supervised Input Image Dependency–Experiment 2
Since both GDVD and GHDTV were generated by collecting images of the same scene

in two different formats with a scale ratio equal to about 2.253 (see Section 2.2.2), we used
the images of the GHDTV dataset as the input for all supervised downscaling processes
by considering as ground truth the images of the GDVD dataset. Correspondingly, we
used the images of the GDVD dataset as the input for all supervised upscaling processes by
considering the images of the GHDTV dataset as the ground truth. In Table 11 (Table 12),
the average quality values of supervised downscaling (upscaling) methods with input
images from GDVD (GHDTV) and ground-truth images from GHDTV (GDVD) are shown.
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Table 11. Average performance of supervised downscaling methods with input images from GDVD
for the ground truth from GHDTV—scale factor :2.253.

MSE PSNR SSIM TIME

BIC 121.116 27.860 0.916 0.013
DPID 152.851 26.814 0.897 34.260
L0 309.388 23.673 0.817 5.028
d-LCI 175.546 26.213 0.880 0.114
d-VPI 139.928 27.208 0.900 2.143

Table 12. Average performance of supervised upscaling methods with input images from GDVD for
the ground truth from GHDTV—scale factor x2.253 (n.a. indicates “not available”).

MSE PSNR SSIM TIME

BIC 188.974 25.902 0.837 0.015
SCN n.a. n.a. n.a. n.a.

u-LCI 188.304 25.916 0.835 0.134
u-VPI 184.094 26.001 0.840 2.953

Analyzing these tables, it follows that:

(a) For supervised downscaling starting from the HR input image from GDVD with a
scale factor of about s = 2.253, BIC produced moderately better quality values than
d-VPI, followed by d-LCI, DPID, and L0.

(b) For supervised upscaling starting from the HR input image from GHDTV with a scale
factor of s = 2.253, d-VPI produced better quality values than u-LCI and BIC. At the
same time, the SCN method was not able to provide results, since it did not work in
supervised mode with a non-integer scale factor.

3.2. Unsupervised Quantitative Evaluation

In unsupervised mode, for the quantitative evaluation, we report the no-reference
visual quality measures NIQE, BRISQUE, and PIQE (see Section 2.2.1) for all benchmark
methods; the scale factors s = 2, 3, and 4; and both downscaling and upscaling. The frame-
work employed the unsupervised benchmark methods for both upscaling and downscaling,
simply using the specified scale factor, since the target image was not necessary to compute
these quality measures. In Section 3.2.1 and 3.2.2 we interpret the results respectively for
unsupervised downscaling and upscaling. In addition, as presented in Section 3.2.3, to
study the impact of the image category, we performed the same quantitative analysis and
computed the average NIQE, BRISQUE, and PIQE values for the unsupervised benchmark
methods on the image sub-datasets selected by category.

3.2.1. Unsupervised Downscaling

Table 13 and Figure 4 show the average performance of unsupervised downscaling
methods for the scale factors s = 2, 3, and 4 on all datasets.

The results indicated that the best performance was attributable to BIC, followed by
d-VPI, d-LCI, L0, and DPID, respectively. The same trend could be observed for higher
scale factors as well. To provide further insights, the results obtained for scale factors s = 6,
8, and 10 on the GHDTV dataset are reported in Table 14.

3.2.2. Unsupervised Upscaling

Table 15 and Figure 5 show the average performance of unsupervised upscaling
methods for the scale factor s = 2, 3, 4 on all datasets.

The results indicated that the best performance was attributable to SCN, followed by
u-VPI, u-LCI, BIC, and L0, respectively. The same trend could be observed for higher scale
factors as well. To provide further insights, the results obtained for scale factors s = 6, 8,
and 10 on the GHDTV dataset are reported in Table 16.
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Table 13. Average performance of unsupervised downscaling methods.

:2 :3 :4

NIQE BRISQUE PIQE TIME NIQE BRISQUE PIQE TIME NIQE BRISQUE PIQE TIME

AID_cat
BIC 5.147 29.242 27.054 0.004 6.023 26.741 35.621 0.003 18.880 27.089 38.532 0.003

DPID 11.251 39.527 36.759 5.657 13.692 37.558 47.219 4.202 18.878 36.649 50.782 3.556
L0 6.739 33.353 38.500 0.823 9.485 33.882 47.561 0.824 18.881 31.308 46.302 0.835

d-LCI 6.339 31.009 34.049 0.024 10.483 32.484 47.235 0.014 18.882 34.162 51.061 0.013
d-VPI 6.184 30.609 33.500 0.030 10.483 32.484 47.235 0.014 18.882 33.789 50.467 0.015

GDVD
BIC 3.910 17.698 24.632 0.004 5.886 19.987 26.148 0.004 6.275 22.486 35.670 0.004

DPID 7.554 34.082 36.059 6.595 10.937 32.194 39.806 4.796 11.643 33.413 49.788 4.047
L0 6.765 24.805 38.179 0.921 9.919 27.361 37.694 0.920 10.286 28.892 43.381 0.976

d-LCI 6.714 22.966 32.659 0.025 11.409 29.972 39.986 0.018 12.950 33.464 49.578 0.015
d-VPI 6.502 22.573 31.809 0.031 11.802 30.639 39.791 0.021 12.449 32.844 48.988 0.017

GHDTV
BIC 3.091 18.196 22.834 0.023 3.472 16.618 25.837 0.019 4.011 17.297 24.477 0.015

DPID 4.983 34.709 30.127 34.047 6.089 31.589 36.280 24.283 7.367 31.571 36.985 20.761
L0 3.944 21.288 30.967 4.083 4.983 21.645 34.016 4.116 6.537 23.584 31.895 4.123

d-LCI 3.826 19.861 26.933 0.146 6.173 24.547 35.094 0.106 8.188 28.211 37.146 0.087
d-VPI 3.710 20.221 26.938 0.178 6.230 24.827 35.520 0.125 8.036 27.805 36.884 0.100

NWV
BIC 3.370 19.481 23.754 0.006 4.334 19.833 26.575 0.005 6.068 20.752 28.709 0.004

DPID 5.860 35.350 29.366 11.687 7.516 31.966 34.362 8.684 9.718 31.611 37.862 7.437
L0 5.039 21.079 32.706 1.384 6.282 20.344 31.589 1.378 8.323 23.322 31.434 1.363

d-LCI 5.002 20.541 26.981 0.045 8.072 25.941 34.744 0.028 10.248 28.346 38.033 0.023
d-VPI 4.850 21.239 27.702 0.053 8.208 26.582 35.698 0.034 10.434 28.724 38.422 0.026

UCA
BIC 3.940 22.410 23.350 0.010 4.506 21.335 27.062 0.08 5.350 21.571 29.022 0.007

DPID 6.550 38.872 28.987 18.459 7.366 34.679 34.369 16.083 9.694 34.131 39.354 11.182
L0 5.172 26.068 32.346 2.121 6.016 24.507 30.767 2.086 8.033 26.928 33.403 2.085

d-LCI 4.938 23.953 26.694 0.071 7.523 27.478 36.059 0.049 9.581 29.600 38.526 0.038
d-VPI 4.787 23.669 26.846 0.085 7.574 27.742 36.081 0.057 9.696 30.164 38.754 0.045

UCML
BIC 18.878 32.331 28.198 0.001 18.878 33.958 45.817 0.001 18.878 35.676 33.524 0.001

DPID 18.875 40.497 35.564 1.066 18.876 39.356 52.020 1.145 18.876 40.651 44.790 0.672
L0 18.880 33.306 36.646 0.147 18.879 34.637 49.134 0.143 18.878 36.518 39.791 0.143

d-LCI 18.879 33.339 32.174 0.003 18.879 36.283 52.429 0.003 18.879 37.808 43.669 0.003
d-VPI 18.878 33.163 31.917 0.004 18.879 36.136 52.350 0.003 18.879 37.579 43.343 0.003

Table 14. Average performance of unsupervised downscaling methods on GHDTV dataset for other
scale factors (OOM indicates “out of memory”).

:6 :8 :10

NIQE BRISQUE PIQE TIME NIQE BRISQUE PIQE TIME NIQE BRISQUE PIQE TIME

BIC 3.833 30.542 25.055 0.264 3.836 30.543 25.022 0.447 3.833 30.569 24.960 0.666
DPID 4.456 36.624 24.248 618.400 4.443 36.614 24.330 1.099.824 4.493 36.717 24.350 1.571.694

L0 3.490 28.952 24.340 173.938 3.570 29.502 24.938 349.645 OOM OOM OOM OOM
d-LCI 3.213 27.227 22.817 3.989 3.224 27.173 22.832 6.358 3.230 27.156 22.851 9.302
d-VPI 3.230 27.206 22.874 4.265 3.231 27.184 22.883 7.031 3.232 27.175 22.866 9.769



Remote Sens. 2023, 15, 4039 20 of 32

Figure 4. Boxplots derived from Table 13.

Figure 5. Boxplots derived from Table 15.
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Table 15. Average performance of unsupervised upscaling methods (OOM indicates “out of memory”).

×2 ×3 ×4

NIQE BRISQUE PIQE TIME NIQE BRISQUE PIQE TIME NIQE BRISQUE PIQE TIME

AID_cat
BIC 5.511 46.137 60.961 0.019 6.300 54.606 84.114 0.034 6.089 56.880 90.072 0.044
SCN 4.954 41.759 44.649 6.810 5.580 46.534 68.778 32.226 5.737 49.338 78.464 36.273

u-LCI 5.640 45.602 49.749 0.112 6.033 53.292 77.299 0.170 6.590 57.121 85.928 0.264
u-VPI 5.558 47.069 58.454 0.151 6.245 54.782 82.513 0.247 6.354 57.548 89.619 0.406

GDVD
BIC 4.159 38.024 45.976 0.023 5.464 51.620 75.954 0.039 5.232 55.886 85.886 0.058
SCN 4.050 32.100 26.690 7.435 4.614 38.881 50.570 37.611 4.875 44.598 66.384 36.491

u-LCI 4.840 35.244 29.687 0.138 5.123 47.808 62.489 0.233 5.560 54.041 76.456 0.353
u-VPI 4.149 39.341 41.727 0.174 5.260 51.702 72.957 0.309 5.363 56.302 84.908 0.496

GHDTV
BIC 4.600 45.243 61.791 0.075 5.285 55.751 82.571 0.125 5.412 57.725 87.739 0.204
SCN 4.130 38.827 46.202 41.271 OOM OOM OOM OOM OOM OOM OOM OOM

u-LCI 4.641 43.782 51.363 0.817 5.147 54.291 77.137 1.299 5.734 57.865 83.961 2.179
u-VPI 4.627 46.866 58.726 1.053 5.340 56.306 80.972 1.659 5.667 58.639 86.632 2.954

NWV
BIC 4.104 42.862 57.460 0.029 5.275 54.023 80.634 0.051 5.285 56.122 86.505 0.069
SCN 3.829 34.834 46.900 10.639 OOM OOM OOM OOM OOM OOM OOM OOM

u-LCI 4.538 39.783 51.150 0.178 5.133 52.152 74.552 0.302 5.752 57.133 82.417 0.485
u-VPI 4.181 44.918 56.006 0.228 5.204 54.480 79.037 0.402 5.467 56.351 85.867 0.645

UCA
BIC 4.478 45.141 61.809 0.041 5.354 54.948 80.193 0.063 5.387 56.798 85.772 0.097
SCN 4.080 38.435 52.804 17.223 4.643 46.539 69.608 132.644 4.905 49.747 74.276 133.794

u-LCI 4.573 42.633 55.653 0.298 5.166 53.189 73.964 0.545 5.627 57.647 78.101 0.883
u-VPI 4.590 46.975 60.633 0.486 5.311 55.090 78.395 0.788 5.592 57.010 84.680 1.165

UCML
BIC 6.871 42.085 57.862 0.005 6.538 51.958 79.503 0.007 6.097 54.232 88.876 0.011
SCN 6.862 38.411 41.871 1.349 6.052 42.871 60.530 5.731 5.947 46.992 72.435 5.825

u-LCI 7.580 41.832 43.705 0.018 6.307 49.469 68.655 0.030 6.665 53.715 81.340 0.046
u-VPI 6.856 42.413 54.593 0.024 6.337 51.922 77.516 0.038 6.301 55.224 88.085 0.068

Table 16. Average performance of unsupervised upscaling methods on GHDTV dataset for other
scale factors.

×6 ×8 ×10

NIQE BRISQUE PIQE TIME NIQE BRISQUE PIQE TIME NIQE BRISQUE PIQE TIME

BIC 6.891 59.236 89.523 0.025 6.992 59.282 97.206 0.022 6.858 61.451 100.00 0.021
SCN 5.402 48.950 78.023 21.135 5.481 51.565 85.429 12.174 5.386 53.224 87.700 30.241

d-LCI 7.107 57.226 82.019 0.088 7.281 58.435 95.896 0.080 7.265 60.402 100.000 0.073
d-VPI 6.836 58.686 89.908 0.135 7.163 59.282 97.390 0.127 7.177 62.215 100.000 0.118

3.2.3. Unsupervised Category Dependency

For unsupervised upscaling (downscaling), we also tested the benchmark methods
according to the four categories: “beach”, “forest”, “parking”, and “sparse residential”
defined in Section 2.2.2 on the corresponding sub-datasets in AID_cat and UCA. In
Tables 17 and 18, we report the average performance of unsupervised downscaling and
upscaling methods, respectively, for the scale factors s = 2, 3, and 4 for each category. The
resulting quality measures, shown in these tables, confirmed the same trends detected
for unsupervised downscaling and upscaling. On this basis, we could confirm that the
methods’ performances did not seem to be dependent on the image category.
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Table 17. Average performance of unsupervised downscaling methods for the five considered
categories common to AID_cat and UCA.

:2 :3 :4

NIQE BRISQUE PIQE TIME NIQE BRISQUE PIQE TIME NIQE BRISQUE PIQE TIME

Beach
BIC 7.165 22.791 23.223 0.003 7.825 21.478 31.644 0.003 18.876 23.488 31.295 0.003

DPID 8.754 30.702 26.399 4.866 9.859 27.447 36.761 3.496 18.877 27.910 36.480 2.971
L0 8.236 24.361 28.389 0.628 9.654 24.563 36.433 0.612 18.876 25.256 36.427 0.630

d-LCI 8.146 23.624 24.406 0.017 10.226 25.154 36.922 0.011 18.878 27.189 36.608 0.010
d-VPI 8.076 23.982 24.665 0.020 10.233 25.282 37.213 0.012 18.877 26.702 36.097 0.011

Forest
BIC 10.438 39.922 27.845 0.004 11.022 39.673 44.932 3.286 18.885 39.142 45.881 0.003

DPID 22.078 43.421 44.107 4.513 25.509 43.508 60.804 3.286 18.874 43.600 64.024 2.763
L0 11.782 41.848 47.852 0.558 14.187 41.723 59.867 0.562 18.886 41.738 59.111 0.562

d-LCI 11.280 40.366 41.576 0.016 15.736 42.467 61.499 0.010 18.885 43.435 64.493 0.009
d-VPI 11.195 40.200 40.009 0.018 15.932 42.417 61.442 0.012 18.885 43.318 63.981 0.011

Parking
BIC 8.273 30.648 26.590 0.003 9.204 26.935 37.071 0.003 18.880 27.683 37.196 0.003

DPID 11.314 42.514 32.252 4.629 12.343 39.276 44.849 3.313 18.880 38.192 47.311 2.788
L0 8.756 33.340 32.606 0.628 11.015 34.615 45.077 0.627 18.881 31.670 41.820 0.628

d-LCI 8.371 30.631 28.288 0.018 10.912 31.041 43.501 0.011 18.881 33.255 45.201 0.010
d-VPI 8.279 29.719 28.421 0.021 10.909 30.672 43.815 0.013 18.881 33.204 45.060 0.011

Residential
BIC 7.898 26.817 26.910 0.003 8.349 26.001 36.619 0.003 18.882 27.130 33.055 0.003

DPID 12.446 43.424 45.196 4.398 14.982 42.627 54.725 3.241 18.880 42.069 53.418 2.792
L0 10.125 35.465 48.627 0.596 12.709 34.975 54.446 0.595 18.883 33.179 45.921 0.596

d-LCI 9.811 32.386 43.013 0.017 13.870 36.625 56.065 0.011 18.885 38.163 55.738 0.009
d-VPI 9.564 31.359 40.780 0.020 13.905 36.266 55.972 0.012 18.884 37.487 54.161 0.011

Table 18. Average performance of unsupervised upscaling methods for the five considered categories
common to AID_cat and UCA.

×2 ×3 ×4

NIQE BRISQUE PIQE TIME NIQE BRISQUE PIQE TIME NIQE BRISQUE PIQE TIME

Beach
BIC 4.944 43.392 56.662 0.018 5.771 51.797 83.463 0.031 5.917 52.859 92.155 0.045
SCN 4.447 38.711 42.088 5.184 5.166 46.363 65.894 25.654 5.591 50.049 77.292 25.360

u-LCI 4.905 42.972 46.546 0.086 5.654 51.583 74.759 0.148 6.380 54.211 86.545 0.205
u-VPI 4.904 45.265 54.925 0.112 5.776 52.959 81.551 0.204 6.168 54.332 91.873 0.327

Forest
BIC 6.696 46.770 58.747 0.016 7.353 54.820 83.616 0.029 6.804 57.638 91.129 0.041
SCN 6.552 44.614 40.786 4.903 6.859 46.748 67.210 24.335 6.600 48.840 77.886 23.469

u-LCI 7.215 46.952 48.107 0.082 7.131 53.587 76.966 0.135 7.550 57.417 87.054 0.203
u-VPI 6.795 46.942 55.603 0.108 7.257 54.578 81.899 0.187 7.133 57.932 90.819 0.303

Parking
BIC 5.091 47.562 69.904 0.018 5.788 56.718 85.280 0.031 5.694 58.787 89.570 0.045
SCN 4.562 42.321 55.489 5.297 5.067 47.164 73.586 25.390 5.250 50.129 79.852 25.339

u-LCI 5.207 45.659 58.065 0.089 5.507 54.320 78.966 0.142 6.020 58.245 85.803 0.211
u-VPI 5.165 48.185 67.438 0.116 5.742 56.578 84.145 0.208 5.946 59.338 88.924 0.327

Residential
BIC 5.663 43.232 50.595 0.017 6.875 52.807 79.537 0.029 6.242 56.833 87.626 0.042
SCN 5.360 39.832 30.213 5.062 6.049 42.414 58.062 24.474 6.041 45.919 72.643 24.785

u-LCI 6.218 44.091 35.170 0.087 6.422 50.430 70.130 0.142 6.895 56.181 81.822 0.212
u-VPI 5.701 43.682 46.537 0.113 6.628 52.439 77.450 0.197 6.463 57.226 87.141 0.332
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3.3. CPU Time Assessment

Since an evaluation in terms of computation time is a crucial element to consider
for a quantitative performance assessment, in all Tables, we report the CPU time taken
by each benchmark method to produce the resized images for each dataset and scale
factor. In Figures 6 and 7, we also show boxplots representing the CPU time derived from
Tables 3 and 5 and from Tables 3 and 15, respectively. Upon analyzing the results, we found
no significant variations with respect to the trend detected in [20,21]. In particular, the
results confirmed that BIC required the least CPU time, with u-LCI and u-VPI producing
similar values to those of BIC. Much more CPU time was required by SCN for upscaling
and DPID and L0 for downscaling, principally on datasets with larger images. Specifically,
DPID exhibited the slowest performance, often resulting in impractical and unsustainable
processing times. Of course, for each benchmark method, the greater the increase in time,
the higher the image resolution.

Figure 6. Boxplots derived from Tables 3 and 5.

Figure 7. Boxplots derived from Tables 13 and 15.

3.4. Supervised and Unsupervised Qualitative Evaluation for Upscaling and Downscaling

In this subsection, some visual results of the many tests performed herein are pre-
sented for scale factors equal to 2, 3, and 4. For simplicity, we show only the results
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obtained in the supervised mode for downscaling (see Figures 8 and 9) and upscaling
(see Figures 10 and 11) using BIC input images, since no appreciable visual difference was
present in the corresponding images obtained in the unsupervised mode. All images are
shown at the same printing size to provide accurate evidence regarding the visual details.
Figures 12 and 13 are examples related to the image dependency, displaying the results in
supervised mode at the scale factor of 4 with u-LCI and L0 input images for downscaling
and upscaling, respectively.

:2 :3 :4

Target image
car_P0209 (685 × 1280) p_014 (590 × 1063) im61 (480 × 852)
from UCAS_AOD from NWPU VHR-10 from GE100-DVD

BIC
PSNR = 49.887 PSNR = 43.782 PSNR = 43.183
SSIM = 0.998 SSIM = 0.997 SSIM = 0.996

DPID
PSNR = 47.906 PSNR = 44.058 PSNR = 46.138
SSIM = 0.998 SSIM = 0.997 SSIM = 0.998

Figure 8. Examples of supervised downscaling performance results using BIC input images at the
scale factors of 2 (left), 3 (middle), and 4 (right).

The visual inspection of these results validated the quantitative evaluation in terms of
the quality measures presented in Sections 3.1 and 3.2. Indeed, the results obtained by VPI
and LCI, on average, appeared visually to be more attractive, since (a) the detectable object
structure was captured; (b) the input image local contrast and luminance were retained;
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(c) most of the salient borders and the small details were preserved; and (d) the presence of
over-smoothing artifacts and ringing was minimal. Unfortunately, some aliasing effects in
downscaling are visible for any benchmark methods, especially when the HR image had
high-frequency details. The extent and type of aliasing visual effects depends on many
factors and vary according to the local context. Thus, aliasing in downscaling remains an
open problem.

:2 :3 :4

L0
PSNR = 41.573 PSNR = 37.408 PSNR = 48.017
SSIM = 0.994 SSIM = 0.989 SSIM = 0.999

d-LCI
PSNR = 55.703 PSNR = Inf PSNR = 61.692
SSIM = 0.999 SSIM = 1.000 SSIM = 1.000

d-VPI
PSNR = 57.908 PSNR = Inf PSNR = 66.146
SSIM = 0.999 SSIM = 1.000 SSIM = 1.000

Figure 9. Examples of supervised downscaling performance results using BIC input images at the
scale factors of 2 (left), 3 (middle), and 4 (right).
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×2 ×3 ×4

Target image
baseballdiamond73 (256 × 256) beach316 (600 × 600) im2 (1080 × 1920)
from UCMercedLandUse from AID from GE100-HDTV

BIC
PSNR = 44.595 PSNR = 47.860 PSNR = 35.594
SSIM = 0.993 SSIM = 0.995 SSIM = 0.970

SCN
PSNR = 45.892 PSNR = 48.582 PSNR = 37.227
SSIM = 0.994 SSIM = 0.995 SSIM = 0.977

Figure 10. Examples of supervised upscaling performance results using BIC input images at the scale
factors of 2 (left), 3 (middle), and 4 (right).
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×2 ×3 ×4

u-LCI
PSNR = 45.862 PSNR = 48.272 PSNR = 36.836
SSIM = 0.994 SSIM = 0.995 SSIM = 0.975

u-VPI
PSNR = 45.895 PSNR = 48.327 PSNR = 36.870
SSIM = 0.994 SSIM = 0.995 SSIM = 0.976

Figure 11. Examplesof supervised upscaling performance results using BIC input images at the scale
factors of 2 (left), 3 (middle), and 4 (right).

BIC DPID L0 d-LCI d-VPI
PSNR = 49.828 PSNR = 46.465 PSNR = 51.505 PSNR = 60.936 PSNR = 65.729
SSIM = 0.999 SSIM = 0.998 SSIM = 0.999 SSIM = 1.000 SSIM = 1.000

Figure 12. Target image im30 (top left) with size 1080 × 1920 from GE100-HDTV; tile (top right)
with size 200 × 280; qualitative comparison of :4 supervised downscaling performance results with
u-LCI image input (bottom).
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BIC SCN u-LCI u-VPI
PSNR = 35.174 PSNR = 33.999 PSNR = 35.122 PSNR = 35.515
SSIM = 0.981 SSIM = 0.976 SSIM = 0.981 SSIM = 0.983

Figure 13. Target image im40 (top left) with size 1080 × 1920 from GE100-HDTV; tile (top right)
with size 272 × 326; qualitative comparison of × 4 supervised upscaling performance results with L0

image input (bottom).

3.5. Final Remarks

Overall, the experimental results from the current working hypotheses confirmed
the trend already outlined in [20,21]. Indeed, for RSAs, the quality measures and CPU
time results demonstrated that, on average, VPI and LCI showed suitable and competitive
performances, since their experimental quality values were more stable and generally better
than those of the benchmark methods. Furthermore, VPI and LCI had no implementa-
tion limitations, were much faster than the methods specializing in only downscaling or
upscaling, and demonstrated adequate CPU times for large images and scale factors.

4. Conclusions

The primary aim of this paper was twofold: firstly, to ascertain the notable performance
disparities among some IR benchmark methods, and secondly, to assess the visual quality
they could achieve in RS image processing. To reach this objective, we realized and utilized
an open framework designed to evaluate and compare the performance of the benchmark
methods across a suite of six datasets.

The proposed framework was intended to encourage the adoption of the best prac-
tices in designing, analyzing, and conducting comprehensive assessments of IR methods.
Implemented in a widely popular and user-friendly scientific language, Matlab, it already
incorporates a selection of representative IR methods. Furthermore, a distinctive aspect
introduced was the framework’s utilization of diverse FR and NR quality assessment
measures tailored to whether the evaluation was supervised or unsupervised. In particular,
we highlight the novelty of using NRQA measures, which are not typically employed for
evaluating IR methods.

The publicly available framework for tuning and evaluating IR methods is a flexible
and extensible tool, since other IR methods could be added in the future. This leaves
open the possibility of contributing by introducing new benchmark methods. Furthermore,
although the framework was primarily conceived for evaluating IR methods in RSAs, it
can be used for any type of color image and a large number of different applications.

In this study, the framework yielded a good amount of results, encompassing CPU
time, statistical analysis, and visual quality measures for RSAs. This facilitated the estab-
lishment of a standardized evaluation methodology, overcoming the limitations associated
with conventional approaches commonly used to assess IR methods, often leading to un-
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corrected and untested valuations. Adhering to this research direction, the statistical and
quality evaluations, conducted through multiple comparisons across numerous RS datasets,
played a crucial role, since, in this way, the variance stemmed from the dissimilarities
among the independent datasets at different image scales.

The performance evaluation was conducted using four datasets selected from the most
representative within the RSA field and two new datasets generated to highlight and test
several experimental aspects of RS. These additional datasets were made publicly available,
serving as a valuable resource for the research community.

Overall, the study successfully achieved its primary objective by providing valuable
assistance to researchers in selecting and comparing diverse image scaling methods. We are
optimistic that our efforts will have a positive impact on future research, fostering advance-
ments in image scaling and its applications. We hope that our efforts will prove beneficial
for future research endeavors, driving advancements in the field of image scaling and its ap-
plications. Moving forward, our focus for future research will be on extending the proposed
framework to 3D images and validating its applicability for biomedical applications.

Author Contributions: Conceptualization; methodology; software; validation; formal analysis;
investigation; resources; data curation; writing (original draft preparation, review, and editing);
visualization; supervision: D.O., G.R. and W.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding. The research was accomplished within the
Research ITalian network on Approximation (RITA) and Approximation Theory research group
of Unione Matematica Italiana (TA–UMI). It was partially supported by GNCS–INdAM and the
University of Basilicata (local funds).

Data Availability Statement: The code and the supplementary data are openly available at https://
github.com/ImgScaling/IR_framework (accessed on 15 June 2023).

Acknowledgments: The authors would like to thank Luciano De Leo for the IT support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AID Aerial Image Dataset
BIC Bicubic interpolation
BRISQUE Blind/Referenceless Image Spatial Quality Evaluator
d-LCI Downscaling Lagrange–Chebychev interpolation
DIV2k DIVerse 2K resolution image dataset
DPID Detail-preserving image downscaling
d-VPI Downscaling de la Valleé–Poussin interpolation
IR Image resizing
FRQA Full-reference quality assessment
GDVD Google Earth 100 Images—DVD
GHDTV Google Earth 100 Images—HDTV
HVS Human visual system
L0 L0-regularized image downscaling
LCI Lagrange–Chebychev interpolation
ML Machine learning
MSE Mean squared error
NIQE Natural Image Quality Evaluator
NRQA No-reference quality assessment
NWV NWPU VHR-10 dataset
PIQE Perception-based Image Quality Evaluator
PSNR Peak signal-to-noise ratio
RS Remote sensing
RSA Remote sensing application
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SCN Sparse-coding-based network
SSIM Structural similarity index measure
UCA UCAS_AOD dataset
u-LCI Upscaling Lagrange–Chebychev interpolation
UCML UCMerced_LandUse dataset
u-VPI Upscaling de la Vallée–Poussin interpolation
VHR Very high resolution
VPI de la Vallée–Poussin interpolation
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