
Using mCRL2 for the Analysis of Software Product Lines
(extended version)

Maurice H. ter Beek
ISTI–CNR, Pisa, Italy

maurice.terbeek@isti.cnr.it

Erik P. de Vink
Eindhoven University of Technology &

CWI, Amsterdam, The Netherlands
evink@win.tue.nl

ABSTRACT
We show how the formal specification language mCRL2 and
its state-of-the-art toolset can be used successfully to model
and analyze variability in software product lines. The mCRL2

toolset supports parametrized modeling, model reduction
and quality assurance techniques like model checking. We
present a proof-of-concept, which moreover illustrates the
use of data in mCRL2 and also how to exploit its data language
to manage feature attributes of software product lines and
quantitative constraints between attributes and features.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods, Model checking ; D.2.13 [Software
Engineering]: Reusable Software—Domain engineering

General Terms
Experimentation,Verification

Keywords
Model checking, product lines, variability analysis, mCRL2

1. INTRODUCTION
The last decades have witnessed a paradigm shift from mass
production to mass customization in order to serve as many
individual customer needs as possible. This has led to the
emergence of Software Product Line Engineering (SPLE) [22],
a software engineering approach aimed at cost-effectively de-
veloping a variety of software-intensive products that share
a reference model, i.e. that together form a (software) prod-
uct line. In SPLE, commonality and variability are defined
in terms of features, which may be mandatory, optional or
alternative, and managing variability means identifying vari-
ation points in a shared family model to encode exactly those
combinations of features concerning valid products. Actual
product configuration during application engineering is then
reduced to selecting desired options in the variability model.

The most prominent variability model, a feature diagram,
is a compact representation of all products of a product line
in terms of features [24]. Graphically, features are nodes of
a rooted tree and relations between them model constraints
(mandatory, optional or alternative, but also, e.g., mutually

The body of this technical report appears in the Proceedings
of the 2nd FME Workshop on Formal Methods in Software
Engineering (FormaliSE’14), Hyderabad, India, IEEE. This
extended version contains the full mCRL2 code in an appendix.

exclusive). However, there may be hundreds of features, re-
quiring models with hundreds of options, which easily leads
to anomalies like superfluous or—worse—contradictory vari-
ability information (e.g. false optional or dead features).
There is a large body of literature on computer-aided analy-
ses of variability models to extract valid products and detect
anomalies [5]. None of these analyses consider behavioral
variability, though, meaning that only the presence of fea-
tures is measured, not their causality or ordering in time.

Formal methods have successfully been applied in single
product engineering for decades now with the aim of rigor-
ously establishing critical system requirements. In SPLE, on
the contrary, formal methods are not exploited that broadly,
despite their potential to detect anomalies and to improve
product quality. One reason is that mainstream formal meth-
ods do not consider variability directly. Still, in SPLE the
correctness of artifacts intended for reuse as well as the cor-
rectness of the developed products is of crucial importance
since many of them concern massively produced and safety-
or business-critical applications. Remarkably, formal meth-
ods that have been applied in SPLE mainly focus on struc-
tural rather than behavioral properties.

To lay a basis for a formal analysis of product lines that
does take behavior into account, it is important to formally
model behavioral variability. After this was first recognized
in the context of UML [17, 27], it has caused a growing in-
terest in behavioral variability and the tailoring of several
behavioral models for SPLE, which has given rise to variants
of transition systems [11, 18, 19, 1, 7], process algebras [16,
12, 3], Petri nets [21], Event-B models [15] and state ma-
chines [20]. As a result, behavioral analysis techniques like
model checking are recently being deployed for the verifica-
tion of temporal properties over product lines [6, 4, 20].

In this paper, in line with the analysis recommendations
of [2], we report on the feasibility of using the mCRL2 toolset
for the analysis of software product lines. Whenever appro-
priate, connections with related approaches are mentioned,
but a detailed comparison is left for future work. mCRL2 [10]
is a formal, process-algebraic specification language with an
associated industrial-strength toolset [13], specifically de-
signed to reason on distributed and concurrent systems. It
has been developed, improved and actively maintained for
several years now and it strives for maximal user influence at
every step during modeling and verification. System analysis
with mCRL2 has been successfully applied in a wide range of
academic and industrial case studies. Furthermore, mCRL2’s
modeling language supports user-defined abstract datatypes
that can be exploited to deal with feature attributes and as-
sociated quantitative constraints.

In this paper, we present our ideas through a toy example,
but we have started to work on a larger industrial case study
that we hope to present in the near future. The contribution
of this paper is a proof-of-concept for variability analysis
using the mCRL2 toolset. Sect. 2 introduces basic notions of
variability modeling and our flavor of coffee machine used as
a running example. Sect. 3 provides some details on mCRL2

and prepares the ground for Sect. 4, where the basic setup
of the approach is sketched. In particular, we discuss mCRL2

modeling of feature selection and analysis for the example
product line using model checking of properties in the modal
µ-calculus. Having added pointers to related work on-the-fly
mostly, Sect. 5 wraps up with concluding remarks.

2. RUNNING EXAMPLE PRODUCT LINE
Our running example is an extension of the family of coffee
machines from [1]. It has the following list of requirements:

• Initially, money must be inserted: either at least one
euro’s worth in coins, exclusively for European prod-
ucts, or at least one dollar’s worth in coins, exclusively
for Canadian products.

• Input of money can be canceled via a cancel button.
Optionally, the machine returns change after more than
one euro or one dollar was inserted.

• Once the machine contains at least one euro or one dol-
lar, the user has to choose whether (s)he wants sugar,
by pressing one of two buttons, after which (s)he can
select a beverage.

• The choice of beverage (coffee, tea, cappuccino) varies,
but coffee must be offered by all products whereas cap-
puccino may be offered solely by European products.

• Optionally, a ringtone may be rung after delivering a
beverage. However, a ringtone must be rung by all
products offering cappuccino.

• After the beverage is taken, the machine returns idle.

A feature diagram is an and/or-hierarchy of features of a
product line, which regulates their presence in products:
optional features may be present provided their parent is,
mandatory features must be present provided their parent is,
and exactly one alternative feature must be present provided
their parent is. We speak of a feature model when a feature
diagram is moreover equipped with cross-tree constraints: a
requires constraint indicates that the presence of a feature
requires that of another, and an excludes constraint indi-
cates that two features are mutually exclusive. Finally, by
adding (non-functional) attributes (e.g. cost (tea) = 3) to
features and quantitative constraints (e.g. cost (Machine) 6
30) we obtain an attributed feature model.

Figure 1 depicts the attributed feature model of the prod-
uct line for our example family of coffee machines, involving
the root feature M and the set Feature consisting of the
10 non-trivial features S, O, R, B, X, E, D, P, C, and T.
As usual, we identify a product from the product line with
a non-empty subset of Feature united with the root fea-
ture. The cost function cost : Feature → N, associated to
the attribute cost, extends to products straightforwardly:
cost (product) =

∑
{ cost (feature) | feature ∈ product }.

The example only involves binary cross-tree constraints,
non-interacting feature-wise quantifiable attributes and a
single optimization objective, viz. cost (Machine)630. More
general and complex constraints, properties and objectives
can however be treated as well [5, 25]. The feature diagram,
i.e. ignoring the cross-tree constraints, gives rise to 25 valid
products out of the 210 − 1 possible non-empty feature sets.
The feature model reduces this number to 20, while it is fur-
ther reduced to 16 valid products if the attributed feature
model is considered (e.g. cost ({M,S,O,R,B,X,E,C, T}) =
33 exceeds the limit of 30).

3. THE mCRL2 LANGUAGE AND TOOLSET
mCRL2 is a formal specification language together with a
toolset for the specification and analysis of the behavior of
distributed systems and protocols [13]. Starting from its de-
velopment almost a decade ago, mCRL2 is actively maintained
and targets industrial-size applications. The specification
language originates from the process algebra ACP. Abstract
datatypes can be used to parametrize actions. mCRL2 aims
to provide the user maximal access to artifacts constructed
during analysis for tailored manipulation. As a consequence,
the toolset consists of a wide range of tools and supports
simulation, visualization, behavioral reduction and model
checking, as well as dedicated optimization techniques and
back-ends to other software.

The mCRL2 toolset was successfully applied in various set-
tings. One of them concerns the massive data collection sys-
tem used for the high-energy experiments conducted at the
large hadron collider of CERN [23]. Parts of the system oc-
casionally entered inconsistent states, leading to a loss of effi-
ciency and a potential loss of data. Critical subsystems were
modeled in mCRL2 and safety and liveness requirements were
verified using model checking. These requirements stated,
e.g., that jobs are always processed once submitted, and
that jobs never enter an inconsistent state. Violations of
these requirements revealed livelocks and race conditions,
explaining phenomena observed in the actual system.
FlexRay is a widely adopted communication protocol in

the automotive industry. It aims to provide a reliable, high-
bandwidth communication channel between car components.
The protocol is time-triggered, i.e., it relies on components to
have synchronized clocks, and operates by allocating band-
width based on a global, cyclic schedule. The FlexRay start-
up procedure, which ensures that activated components will
find each other and will correctly initialize their local view
on the global schedule, was modeled and checked for correct-
ness using mCRL2 [9]. The expressivity of the mCRL2 language
allowed the author of [9] to specify the protocol faithfully.
The robustness of FlexRay was analyzed by injecting faults
that may occur in the system. This was implemented by
making small, local changes to the fault-free model.

Documentation and binaries of the mCRL2 toolset can be
downloaded at www.mcrl2.org. The toolset is open source;
the associated boost license allows anyone free use for any
purpose. For our approach to variability analysis, mCRL2’s
full expressivity is not needed. We can resort to relatively
simple structured models, extending the range of the tools.
A trivial example is the labeled transition system (LTS) in
Figure 2, which can be modeled by an mCRL2 process Foo

with integer st as a parameter holding the state and with
actions a - e. Part of the code for the Foo process looks like:

Figure 1: Attributed feature model of the family of coffee machines (with shorthand names)

proc Foo(st:Int) =

(st==0) -> (b.Foo(1) + a.Foo(2)) +

(st==1) -> (c.Foo(3)) +

(st==2) -> (b.Foo(1) + b.Foo(3) + a.Foo(4)) +

...

Figure 2: Example LTS

With mCRL2, a system property can be expressed as a formula
in a variant of the modal µ-calculus [14]. Subsequently, the
property can be verified against the specification using the
model checking facilities of the mCRL2 toolset. Among the
properties that hold for the specification above we mention:

• [true*]< true > true: absence of deadlock.

• [true*.b.true*.a] false: after any sequence where
the action b precedes the action a, false will hold. As
the latter never holds the formula can be reformulated:
no a-action is possible after a b-action has happened.

• mu Y.(< c > || [true] Y): a least-fixed-point constru-
ction. Always, after a finite amount of steps a c-action
can be done (or deadlock occurs earlier). The smallest
set of states Y that can do a c-action or cannot step
outside of Y, can be computed by iteration.

• mu Y.((nu Z.(<b.d.e> Z)) || [true] Y): a nesting
of a least-fixed-point and a greatest-fixed-point con-
struction. Always after a finite amount of steps an
infinite repetition of b, d, and e is possible.

The modal µ-calculus, occasionally also dubbed the ‘Logic of
Everything’, is known to be very expressive and to subsume
other well-known temporal logics like LTL and (A)CTL.
The process-algebraic approaches of [16, 3] propose multi-
valued modal µ-calculus and LTL model checking, respec-
tively, while that of [19] proposes CTL model checking. Only

the approach of [3] is implemented, viz. in the Maude toolset
(maude.cs.uiuc.edu). The appeal of the modal µ-calculus
variant used in mCRL2 [14] is the possibility to quantify over
data, as we shall see in the example product line below.

The general workflow for model checking with mCRL2 con-
sists of (i) translating a specification foo.mcrl2 into a stan-
dard format called a linear process specification foo.lps,
(ii) transforming the linear process together with the modal
formula bar.mf to a so-called parametrized Boolean equation
system foo.pbes and then solving it, yielding true or false
for the formula bar.mf with respect to the specification
foo.mcrl2. Alternatively, one can generate the underlying
state space foo.lts of the specification to visually inspect
it. The hiding of well-chosen actions and minimization with
respect to one of the process equivalences offered by the
toolset (like trace equivalence, weak and branching bisim-
ulation) allows one to transform foo.lts and to focus on
specific behavioral aspects of the specification. Using the
latter technique, as will be illustrated in the next section, a
state space with millions of states can be reduced substan-
tially, bringing it in scope for human examination.

4. VERIFYING THE RUNNING EXAMPLE
In our approach to variability analysis we model a product
line as an mCRL2 process. A product line can be represented
as a combination of two finite state machines (FSMs). An
initial FSM, whose behavior is transient, deals with feature
selection. Its successful end states are in one-to-one corre-
spondence with the consistent and complete configurations
of the product line, and are the starting point for the FSM
describing the actual behavior of a product. Therefore, the
FSM takes an eligible set of features as an argument to
model the particular instance of the product line with re-
spect to the selected set of features. Only actions that are
in agreement with these selected features will be executed.

We model the configuring of a product separate from its
actual behavior (following [3]). The breadth-first node tra-
versal of a feature diagram is directly translated into an FSM
leading from the initial state to an end state. At this stage
an end state is successful (but temporary) if the selected
features meet the constraints of the feature model; other-

wise the end state is a deadlock state (or, alternatively, the
starting point of a process that catches the error). To start
with, the root feature is selected in the initial state. For our
example the nodes of the feature diagram of Figure 1 are
visited in the order S, O up to T to include all mandatory
features and to select a number of optional features.

The full mCRL2 code can be found in the Appendix. We
define a process Sel with parameters st and fs that hold,
respectively, a state represented by an integer and a set of
features included so far. The initial call to the process is
Sel(0,[M]), i.e. the selection process starts in state 0 with
only the root feature M selected. The mCRL2 code snippet
below shows the inclusion of the mandatory feature O in
state 1. The parameter st is incremented and the param-
eter fs is updated via the construct insert(O,fs), adding
the feature O to the feature set under construction (with the
mandatory feature S added in state 0, yielding [M,S,O]). In
state 2 there is a choice since the R-feature is optional. If
the feature R is not selected the silent action tau is taken,
the state parameter st is incremented but the parameter fs
is left unchanged. If, on the contrary, the feature R is se-
lected, then the action setR is taken, and the parameters
are updated accordingly.

proc Sel(st:Int,fs:FSet) =

...

(st == 1) -> (

(M in fs) -> (

setO . Sel(2,insert(O,fs))

)) +

(st == 2) -> (

(M in fs) -> (

tau . Sel(3,fs) +

setR . Sel(3,insert(R,fs))

)) +

...

This leads to a number of deterministic actions for manda-
tory features, like setO, and non-deterministic actions for
optional features, like tau and setR. After all nodes (leaves
included) in the feature diagram have been visited, a result-
ing feature set fs still may or may not satisfy the cross-tree
and attribute constraints of the (attributed) feature model.

The cross-tree constraints are considered next. In the code
snippet below, the action wrong_set is taken to reject the
selected feature set. If this action is executed, the process
enters a deadlock state; there is no transition beyond delta.
The first condition (D in fs) && (P in fs) captures that
the D-feature and P -feature exclude each other, i.e. they
cannot both be in an admissible feature set. The second
condition !(R in fs) && (P in fs) captures that the P -
feature requires the R-feature, i.e. P cannot be in an admis-
sible feature set if R is not. If the two tests fail, i.e. both
additional constraints are met, then the action ctc_ok with
the selected feature set fs as an argument is taken and the
quantitative constraints on attributes are handled similarly.

(st == 8) -> (

((D in fs) && (P in fs)) ->

wrong_set . delta <>

(!(R in fs) && (P in fs)) ->

wrong_set . delta <>

ctc_ok . Sel(9,fs)

) +

(st == 9) -> (

(tcost(fs) <= 30) ->

set_ok(fs) . cost(tcost(fs)) . Prod(0,fs) <>

wrong_set . delta);

In our example, a function tcosts calculates the total costs
over the set of features fs. If this exceeds the threshold of 30,
as expressed in the attributed feature model of Figure 1, the
wrong_set action is taken to the deadlock state. If the total
costs remain within bounds, the set_ok is taken and control
is transferred from the feature selecting process Sel to the
process Prod modeling the product behavior. Note that the
feature set fs is passed as an argument of the action set_ok.
This will prove useful for model checking purposes later.

Thus, the modeling of feature selection is guided by the
feature diagram, while afterwards fulfillment of the cross-
tree and of the attribute constraints is checked, in that order.

The actual behavior of the product is launched by the call
Prod(0,fs) for a specific consistent and complete feature set
fs, after execution of actions set_ok and cost by the selec-
tion process Sel. To model the behavior of our example
we follow the LTS in Figure 3. This is the LTS from [1]
extended with detailed money insertion handling. For con-
ciseness, the box labelled Insert/Return abbreviates the
sub-LTS concerning the latter. The process Prod thus starts
with a call to the process Insert to enable money insertion.

Figure 3: LTS modeling family behavior

To reflect product configuration, we only allow an action if
the feature it belongs to is part of fs (i.e. reminiscent of the
way this is done in [7, 21, 3], we implicitly assume actions to
be tagged with a feature). In the mCRL2 code we have, e.g.,

proc Prod(st:Int,fs:FSet) =

(st == 0) -> (Insert(0,fs)) +

...

(st == 2) -> (

(C in fs) -> coffee . Prod(4,fs) +

(T in fs) -> tea . Prod(5,fs) +

(P in fs) -> cappuccino . Prod(6,fs)

) +

...

Figure 4: Product behavior with configuration and payment abstracted away

expressing that a coffee action is possible provided the
(mandatory) C-feature is selected. Likewise for the tea and
cappuccino actions (which do stem from optional features).

Handling coins is more involved and illustrates the use of
data in mCRL2. In our example, money is to be inserted until
the balance is 100 cents or more, unless the cancel button is
pressed earlier. In the latter case, the balance is returned.
In the former case, control continues to the handling of sugar
and beverage. However, with the change feature X selected,
change may be returned. Otherwise no change will be given,
as notified by the no_change action. Below, the code for the
process Insert is given. The process has two parameters:
bal holding the balance and fs holding the selected features.

proc Insert(bal:Nat,fs:FSet) =

(bal < 100) -> (

(D in fs) -> (

insert(dime) . Insert(bal+10,fs) +

insert(quarter) . Insert(bal+25,fs) +

insert(half) . Insert(bal+50,fs) +

insert(dollar) . Insert(bal+100,fs)) +

(E in fs) -> (

insert(ct10) . Insert(bal+10,fs) +

insert(ct20) . Insert(bal+20,fs) +

insert(ct50) . Insert(bal+50,fs) +

insert(euro) . Insert(bal+100,fs))) +

((bal > 0) && (bal < 100)) ->

Return(bal,fs) . cancel . Prod(0,fs) +

(bal >= 100) -> (

((!(X in fs)) ->

no_change . continue . Prod(1,fs) <>

Return(Int2Nat(bal-100),fs) .

continue . Prod(1,fs)));

For a balance less than 100 cents, insertion of a specific coin
is coupled to an update of the balance. Only coins of the
right currency are accepted. Note that this assumes that an
eligible feature set fs, which was passed by the Sel process,
contains either D or E. For the action cancel, the balance is
returned via a call to Return and control returns to the ini-
tial state Prod(0,fs). If, on the other hand, the balance has
grown sufficiently, control proceeds to the state Prod(1,fs)

via the continue action. Furthermore, in case change is
returned, 100 cents are subtracted from the balance first.

Characteristic for process-algebraic approaches, including
mCRL2, is the availability of hiding. One can abstract away
a subset of actions to focus on the behavior built from the
remaining ones. Moreover, as with mCRL2 all intermediate
artifacts are available to the user, these can be manipulated
to the user’s liking, possibly with the help of the many tools
available in the toolset. For instance, when the actions of
configuring the product and those related to payment are
abstracted away, and the result is minimized with respect
to a process equivalence like weak trace equivalence, then
the state space depicted in Figure 4 is obtained. The ac-
tual behavior of such an abstracted product consists of a
sequence of actions starting with a sugar or no_sugar ac-
tion and ending with a take_cup action.

Starting from the initial state, one out of six cyclic behav-
iors is reached: four products with coffee only and no ring-
tone (varying in dollar or euro currency and the availability
of change) and four products with coffee only but with a
ringtone (and similar variations for the other features); four
products with coffee and tea and no ringtone and, because
of the cost constraint, two products with coffee and tea but
with a ringtone; one product with coffee, cappuccino and a
ringtone, and one product with coffee, tea, cappuccino and
a ringtone. This way, by visual inspection of part of the
state space, viz. the part remaining after hiding and min-
imization, one may verify that a product with cappuccino
indeed provides a ringtone as well. In general, by these re-
duction techniques large state spaces can be tuned to inspect
specific, not necessarily local, behavior.

The property language of mCRL2 is first-order and thus
allows to incorporate data. To show what can be consid-
ered for variability analysis using the modal µ-calculus, we
discuss the following properties of our example product line:

• [(!continue)*.take_cup] false: if payment is not
settled by action continue, no beverage is delivered.

• [true*.setX.true*.no_change] false: once the X-
feature is selected, action no_change will not occur.

• forall fs:FSet.val(isSet(fs)) && [true*.

set_ok(fs)] true => val((D in fs) => !(P in fs)):
if a product is configured successfully as indicated by
the set_ok action, then it cannot be a product that
accepts dollars and also provides cappuccino.

• mu Y.(< exists fs:FSet.set_ok(fs) > true ||

< wrong_set > true || [true] Y): from the initial sta-
te, after a finite number of steps, either action set_ok

(with some parameter fs) or action wrong_set occurs.

• forall c:Coin.[true*.insert(c)] mu Y.(< cancel

|| take_cup > true || [true] Y): after money has
been inserted, in a finite number of steps, a beverage
can be taken unless the transaction was canceled.

The first property only concerns the actual behavior of any
eligible product. The second relates an action in the config-
uration phase, setX, and an action in the behavior phase,
no_change. The third property involves a quantification
over all possible configurable feature sets, which shows the
aforementioned usefulness of passing the feature set fs as
an argument of set_ok. The casts val are needed to yield
a Boolean value. The last two properties involve a minimal
fixed point over the formal variable Y. In the fourth property
the existential quantification is framed within the modality
as no further reference to the actual feature set is needed.
The last property involves a universal quantification, viz.
over the set of coins. In such a situation, as occurs also in
property 3, it is essential that the range of the quantifier
is bounded. For the relative small example coffee machine
product line that we consider here, properties are model
checked on a standard PC within seconds (e.g. property 3),
and often much quicker (like the other properties above).

The above describes the basic setup for our approach of
using mCRL2 for variability analysis; several extensions of
the basic scheme are possible. (i) For instance, similar to
the way this is done in [3], dynamic feature management
can be arranged for by adding transitions from the Prod

process to the Sel process and back again to Prod to deal
with feature selection on-the-fly. (ii) Here, we followed a
strict order for feature selection: first the feature diagram
was taken into account, then cross-tree constraints were con-
sidered and finally quantitative (attribute) constraints were
checked. When dealing with many more features, it is likely
advantageous to do this in a more flexible way, so as to
rule out inconsistent feature sets at an early stage during
selection. Clearly, any of the additional constraints can be
checked as soon as all features involved have been selected
or not. Even more refined selection schemes traversing the
tree associated with the feature diagram can be modeled as
well. (iii) As a final variation we mention the possibility to
tweak the feature selection process and have it enumerate
subfamilies, e.g. containing the products satisfying all re-
quirements or those violating a specific family requirement,
to gain insight in the relation between specific constraints
and subsets of features. This can be achieved by stealing
control at the corresponding point of the selection process
and to transfer to a proper signaling process.

On a final note, because of the open workflow with mCRL2,
any output of the toolset can be exported to other tools,
e.g. SAT/SMT-solvers. Reversely, specific feature settings,
e.g. resulting from other means of analysis, can be used as
a starting point by jumping to the right state of the Sel or
Prod process. The crucial point is that we perform product
line analysis within the framework of a full-fledged verifica-
tion toolset while maintaining control of the design choices
to be made during modeling and of the properties to verify.
Still, larger case studies need to be done to assess the scala-
bility of our setup, in particular regarding model checking.

Several of the behavioral variability models mentioned in
Sect. 1 have an associated tool for behavioral variability
analysis with verification techniques like model checking.
SNIP [6] is a model checker for product lines modeled as
featured transition systems (FTSs) specified in a language
based on that of the SPIN model checker (spinroot.com).
The feature diagram is coded in the textual variability lan-
guage TVL to be consulted by the explicit-state on-the-fly
model-checking algorithm of SNIP to verify properties ex-
pressed in so-called feature LTL interpreted over FTSs (e.g.
to verify a property over only a subset of the valid products).

Symbolic FTS model checking was implemented as an ex-
tension of the NuSMV model checker (nusmv.fbk.eu) with a
fully symbolic algorithm for feature CTL, as it is called. In
SNIP, special-purpose exhaustive model checking algorithms
(continuing a search also after a violation was found) allow
the user to verify all products of a product line at once and
to output counterexamples for all products that violate a
property (in contrast with the NuSMV extension that only
produces a counterexample for the first violating product
found). SNIP has recently been re-engineered and the result-
ing tool suite ProVeLines can handle feature attributes [8].
VMC [4] (fmt.isti.cnr.it/vmc) is a model checker for

product lines modeled as modal transition systems (MTSs)
with added variability constraints, but with no specific refer-
ence to feature diagrams. VMC offers automatic generation of
one/some/all valid products (modeled as LTSs) of a product
line. The user can simulate, visualize or model check either
the full product line or a set of its valid products. VMC’s
explicit-state on-the-fly model-checking algorithm allows the
verification of properties expressed in so-called variability-
ACTL interpreted over MTSs; it moreover offers the possi-
bility to inspect the (interactive) explanations of a verifica-
tion result. An extension handling data is forthcoming.

In [20], FSMs are extended with variability by means of
guards over variables on transitions and a global predicate
defining the valid configurations by value assignments. For
each product line feature, two FSMs are built, one for the
requirements and one for the design level, and it is specified
how to check their conformance. The prototype tool SPLEnD
transforms pairs of XML files for the FSMs into a file that
can be fed to SPIN, which either returns the conformance
mappings or declares nonconformance, after which the be-
havior of the product line can be checked by SAT solving. As
far as we know, SPLEnD does not cater for feature attributes.

5. CONCLUDING REMARKS
We have presented a proof-of-concept for formal variabil-
ity analysis with mCRL2, highlighting its main features con-
cerning both modeling (e.g. parametrized processes, data
handling) and analysis (e.g. minimization techniques, model
checking properties in the modal µ-calculus with data).

Most model-checking analyses described in this paper fall
in the category of product-based analyses, i.e. operating on
individually generated products (or at most a subset) [26].
This contrasts with family-based analyses, operating on an
entire product line at once using variability knowledge about
valid feature configurations to deduce results for products,
of which SNIP is a well-known and successful representative.
VMC offers the full spectrum of analyses, but—contrary to the
special-purpose FTS model-checking algorithms of SNIP—
when a formula is verified over an entire product line, then a
negative result does not actually list the specific products in

which the property fails to hold. However, both in VMC and in
mCRL2, the full list of violating products can be obtained by
model checking the formula against each individual product
of the product line (inspection of a counterexample reveals
one violating product only).

There might be a trade-off between brute-force product-
based analysis with model checkers that have been highly
optimized for single system engineering, like SPIN and—
to a lesser degree—mCRL2, and highly innovative family-
based analysis with model checkers that have been developed
specifically for product lines, like SNIP. In fact, SPIN gener-
ally outperforms SNIP [6] (according to the authors of [6]
this is due to SPIN’s many optimizations, among which par-
tial order reduction). In this respect, an evaluation of the
state-of-the-art mCRL2 toolset, which may lead to the de-
sire to implement some product line-specific features into
its model-checking algorithms, is left for future work.

6. ACKNOWLEDGMENTS
Maurice ter Beek conducted part of this work while on sab-
batical leave at Leiden University. He gratefully acknowl-
edges the hospitality and support of the Leiden Institute
of Advanced Computer Science during his stay in Leiden.
Maurice ter Beek also acknowledges support of the EU FP7-
ICT FET-Proactive project QUANTICOL (600708) and of
the Italian MIUR project CINA (PRIN 2010LHT4KM).

7. REFERENCES
[1] P. Asirelli, M.H. ter Beek, A. Fantechi, and S. Gnesi.

Formal description of variability in product families.
In SPLC. IEEE, 2011, 130–139.

[2] J.M. Atlee, S. Beidu, N.A. Day, F. Faghih, and P.
Shaker. Recommendations for improving the usability
of formal methods for product lines. In FormaliSE.
IEEE, 2013, 43–49.

[3] M.H. ter Beek, A. Lluch Lafuente, and M. Petrocchi.
Combining declarative and procedural views in the
specification and analysis of product families. In
FMSPLE . ACM, 2013, 10–17.

[4] M.H. ter Beek, F. Mazzanti, and A. Sulova. VMC: A
tool for product variability analysis. In FM. LNCS
7436, Springer, 2012, 450–454.

[5] D. Benavides, S. Segura, and A. Ruiz-Cortés.
Automated analysis of feature models 20 years later:
A literature review. Inf. Syst. 35, 6 (2010), 615–636.

[6] A. Classen, M. Cordy, P. Heymans, A. Legay, and
P.-Y. Schobbens. Model checking software product
lines with SNIP. STTT 14, 5 (2012), 589–612.

[7] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans,
A. Legay, and J.-F. Raskin. Featured transition
systems: Foundations for verifying variability-intensive
systems and their application to LTL model checking.
IEEE TOSEM 39, 8 (2013), 1069–1089.

[8] M. Cordy, P.-Y. Schobbens, P. Heymans, and A.
Legay. Beyond Boolean product-line model checking:
Dealing with feature attributes and multi-features. In
ICSE . ACM, 2013, 472–481.

[9] S. Cranen. Model checking the FlexRay startup phase.
In FMICS. LNCS 7437, Springer, 2012, 131–145.

[10] S. Cranen, J.F. Groote, J.J.A. Keiren, F.P.M. Stappers,
E.P. de Vink, W. Wesselink, and T.A.C. Willemse. An
overview of the mCRL2 toolset and its recent advan-
ces. In TACAS. LNCS 7795, Springer, 2013, 199–213.

[11] D. Fischbein, S. Uchitel, and V. Braberman. A founda-
tion for behavioural conformance in software product
line architectures. In ROSATEA. ACM, 2006, 39–48.

[12] S. Gnesi and M. Petrocchi. Towards an executable al-
gebra for product lines. In SPLC . ACM, 2012, 66–73.

[13] J.F. Groote, A. Mathijssen, M.A. Reniers, Y.S. Usenko,
and M.J. van Weerdenburg. Analysis of distributed sys-
tems with mCRL2. In Process Algebra for Parallel and
Distributed Processing. Chapman & Hall, 2009, 99–128.

[14] J.F. Groote and R. Mateescu. Verification of temporal
properties of processes in a setting with data. In
AMAST. LNCS 1548, Springer, 1998, 74–90.

[15] A. Gondal, M. Poppleton, and M. Butler. Composing
Event-B Specifications - Case-Study Experience. In
SC. LNCS 6708, Springer, 2011, 100–115.

[16] A. Gruler, M. Leucker, and K.D. Scheidemann.
Modeling and model checking software product lines.
In FMOODS . LNCS 5051, 2008, 113–131.

[17] Ø. Haugen and K. Stølen. STAIRS: Steps to analyze
interactions with refinement semantics. In UML.
LNCS 2863, Springer, 2003, 388–402.

[18] K.G. Larsen, U. Nyman, and A. W ↪asowski. Modal I/O
automata for interface and product line theories. In
ESOP . LNCS 4421, Springer, 2007, 64–79.

[19] K. Lauenroth, K. Pohl, and S. Töhning. Model
checking of domain artifacts in product line
engineering. In ASE . IEEE, 2009, 269–280.

[20] J.-V. Millo, S. Ramesh, S.N. Krishna, and G.K. Nar-
wane. Compositional verification of software product
lines. In IFM . LNCS 7940, Springer, 2013, 109–123.

[21] R. Muschevici, J. Proença, and D. Clarke. Modular
modelling of software product lines with feature nets.
In SEFM . LNCS 7041, Springer, 2011, 318–333.

[22] K. Pohl, G. Böckle, and F.J. van der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer, 2005.

[23] D. Remenska, T.A.C. Willemse, K. Verstoep, W.
Fokkink, J. Templon, and H.E. Bal. Using model
checking to analyze the system behavior of the LHC
production grid. In CCGrid . IEEE, 2012, 335–343.

[24] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y.
Bontemps. Feature diagrams: A survey and a formal
semantics. In RE . IEEE, 2006, 136–145.

[25] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C.
Kästner, S. Apel, and G. Saake. SPL conqueror: To-
ward optimization of non-functional properties in soft-
ware product lines. Softw. Qual. 20 (2012), 487-517.

[26] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I.
Schaefer, and G. Saake. Analysis strategies for soft-
ware product lines. Technical Report FIN-004,
Universität Magdeburg, 2012.

[27] T. Ziadi and J.M. Jézéquel. Software product line
engineering with the UML: Deriving products. In Soft-
ware Product Lines: Research Issues in Engineering
and Management . Springer, 2006, 557–588.

APPENDIX
A. mCRL2 SPECIFICATION OF EXAMPLE
%% mCRL2 specification of the running example

%% variation of coffee machine with change feature,

%% cost attribute and handling of coins

sort

Feature = struct

M | S | O | R | B | X | D | E | P | T | C ;

FSet = List(Feature);

Coin = struct

dime | quarter | half | dollar |

ct10 | ct20 | ct50 | euro ;

Currency = struct Dollar | Euro ;

act

insert, return : Coin ;

continue, cancel, sorry, no_change,

sugar, no_sugar, coffee, tea, cappuccino,

pour_sugar, pour_milk, pour_coffee, pour_tea,

ring, skip, take_cup ;

setS, setO, setR, setB, setX,

setD, setE, setP, setT, setTP, setC ;

wrong_set, ctc_ok ;

set_ok : FSet ;

cost : Int ;

map

isSorted: FSet -> Bool;

noDuplicates: FSet -> Bool;

isSet: FSet -> Bool;

var

ft,ft’: Feature; fset: FSet;

eqn

isSorted([]) = true;

isSorted([ft]) = true;

isSorted(ft |> (ft’ |> fset)) =

ft <= ft’ && isSorted(ft’ |> fset);

noDuplicates([]) = true;

noDuplicates(ft |> fset) =

!(ft in fset) && noDuplicates(fset);

isSet(fset) =

isSorted(fset) && noDuplicates(fset);

map

insert: Feature # FSet -> FSet;

var

ft, ft’: Feature; fset: FSet;

eqn

insert(ft, []) = [ft];

(ft < ft’) -> insert(ft, ft’ |> fset) =

ft |> ft’ |> fset;

(ft == ft’) -> insert(ft, ft’ |> fset) =

ft’ |> fset;

(ft > ft’) -> insert(ft, ft’ |> fset) =

ft’ |> insert(ft, fset);

map

union: FSet # FSet -> FSet;

var

ft, ft’: Feature; fset, fset’: FSet;

eqn

union([], fset) = fset;

union(fset, []) = fset;

(ft < ft’) -> union(ft |> fset, ft’ |> fset’) =

ft |> union(fset, ft’ |> fset’);

(ft == ft’) -> union(ft |> fset, ft’ |> fset’) =

ft’ |> union(fset, fset’);

(ft > ft’) -> union(ft |> fset, ft’ |> fset’) =

ft’ |> union(ft |> fset, fset’);

map

fcost : Feature -> Int ;

eqn

fcost(M) = 0 ;

fcost(S) = 5 ;

fcost(O) = 0 ;

fcost(B) = 0 ;

fcost(R) = 5 ;

fcost(D) = 5 ;

fcost(E) = 5 ;

fcost(X) = 10 ;

fcost(C) = 5 ;

fcost(T) = 3 ;

fcost(P) = 7 ;

map

tcost : FSet -> Int ;

var

ft : Feature; fset : FSet;

eqn

tcost([]) = 0;

tcost(ft |> fset) = fcost(ft) + tcost(fset) ;

proc Sel(st:Int,fs:FSet) =

%% feature states

(st == 0) -> (

(M in fs) -> (

setS . Sel(1, insert(S,fs))

)) +

(st == 1) -> (

(M in fs) -> (

setO . Sel(2, insert(O,fs))

)) +

(st == 2) -> (

(M in fs) -> (

tau . Sel(3, fs) +

setR . Sel(3, insert(R,fs))

)) +

(st == 3) -> (

(M in fs) -> (

setB . Sel(4, insert(B,fs))

)) +

(st == 4) -> (

(M in fs) ->

tau . Sel(5, fs) +

setX . Sel(5, insert(X,fs)

)) +

(st == 5) -> (

(O in fs) -> (

setD . Sel(6, insert(D,fs)) +

setE . Sel(6, insert(E,fs))

)) +

(st == 6) -> (

(B in fs) -> (

tau . Sel(7, fs) +

setT . Sel(7, insert(T,fs)) +

setP . Sel(7, insert(P,fs)) +

setTP . Sel(7, union([T,P],fs))

)) +

(st == 7) -> (

(B in fs) -> (

setC . Sel(8, insert(C,fs))

)) +

%% cross-tree constraints

(st == 8) -> (

((D in fs) && (P in fs)) ->

wrong_set . delta <>

(!(R in fs) && (P in fs)) ->

wrong_set . delta <>

ctc_ok . Sel(9,fs)

) +

%% attribute constraints

(st == 9) -> (

(tcost(fs) <= 30) ->

set_ok(fs) .

cost(tcost(fs)) . Prod(0,fs) <>

wrong_set . delta);

proc Prod(st:Int,fs:FSet) =

(st == 0) -> (

Insert(0,fs)

) +

(st == 1) -> (

(S in fs) -> (sugar . Prod(2,fs)) +

(S in fs) -> (no_sugar . Prod(3,fs))

) +

(st == 2) -> (

(C in fs) -> coffee . Prod(4,fs) +

(T in fs) -> tea . Prod(5,fs) +

(P in fs) -> cappuccino . Prod(6,fs)

) +

(st == 3) -> (

(C in fs) -> coffee . Prod(9,fs) +

(T in fs) -> tea . Prod(8,fs) +

(P in fs) -> cappuccino . Prod(7,fs)

) +

(st == 4) -> (

(M in fs) -> (pour_sugar . Prod(9,fs))

) +

(st == 5) -> (

(M in fs) -> (pour_sugar . Prod(8,fs))

) +

(st == 6) -> (

(M in fs) -> (pour_sugar . Prod(7,fs))

) +

(st == 7) -> (

(M in fs) -> (pour_milk . Prod(10,fs)) +

(M in fs) -> (pour_coffee . Prod(11,fs))

) +

(st == 8) -> (

(M in fs) -> (pour_tea . Prod(12,fs))

) +

(st == 9) -> (

(M in fs) -> (pour_coffee . Prod(12,fs))

) +

(st == 10) -> (

(M in fs) -> (pour_coffee . Prod(12,fs))

) +

(st == 11) -> (

(M in fs) -> (pour_milk . Prod(12,fs))

) +

(st == 12) -> (

(R in fs) -> (ring . Prod(13,fs)) +

(!(R in fs)) -> (skip . Prod(13,fs))

) +

(st == 13) -> (

(M in fs) -> (take_cup . Prod(0,fs))

) ;

proc Insert(bal:Nat,fs:FSet) =

(bal < 100) -> (

(D in fs) -> (

insert(dime) . Insert(bal+10,fs) +

insert(quarter) . Insert(bal+25,fs) +

insert(half) . Insert(bal+50,fs) +

insert(dollar) . Insert(bal+100,fs)) +

(E in fs) -> (

insert(ct10) . Insert(bal+10,fs) +

insert(ct20) . Insert(bal+20,fs) +

insert(ct50) . Insert(bal+50,fs) +

insert(euro) . Insert(bal+100,fs))) +

((bal > 0) && (bal < 100)) ->

Return(bal,fs) . cancel . Prod(0,fs) +

(bal >= 100) -> (

((!(X in fs)) ->

no_change . continue . Prod(1,fs) <>

Return(Int2Nat(bal-100),fs) .

continue . Prod(1,fs))

);

proc Return(bal:Nat,fs:FSet) =

(bal == 0) -> tau +

(D in fs) -> (

(bal >= 50) ->

return(half) . Return(Int2Nat(bal-50),fs) +

((bal < 50) && (bal >= 25)) ->

return(quarter) .

Return(Int2Nat(bal-25),fs) +

((bal < 25) && (bal >= 10)) ->

return(dime) . Return(Int2Nat(bal-10),fs) +

((bal < 10) && (bal > 0)) ->

sorry . Return(0,fs)) +

(E in fs) -> (

(bal >= 50) ->

return(ct50) . Return(Int2Nat(bal-50),fs) +

((bal < 50) && (bal >= 20)) ->

return(ct20) . Return(Int2Nat(bal-20),fs) +

((bal < 20) && (bal > 0)) ->

return(ct10) . Return(Int2Nat(bal-10),fs) +

((bal < 10) && (bal > 0)) ->

sorry . Return(0,fs)

);

init

Sel(0,[M]) ;

%% example system properties

mu X.(

< exists fs:FSet . set_ok(fs) > true ||

< wrong_set > true ||

[true] X)

[true* . setX . true* . no_change] false

%% this is a nice one :)

[true* . setE . true* . sorry] false

%% next one is false, that is correct

[true* . setD . true* . sorry] false

[true* . insert(ct20)]

mu X.(< cancel || take_cup > true || [true] X)

forall c:Coin .

[true* . insert(c)]

mu X.(

< cancel || take_cup > true || [true] X)

[true*] forall c:Coin . [insert(c)]

mu X.(

< cancel || take_cup > true || [true] X)

%% this one is OK

forall fs:FSet . val(isSet(fs)) =>

[true* . set_ok(fs) . true*] < true > true

%% but this equivalent one is verified much quicker

[true* . (exists fs: FSet . set_ok(fs)) . true*]

< true > true

forall fs:FSet .

val(isSet(fs)) && [true* . set_ok(fs)] true =>

val((D in fs) => !(P in fs))

[(!continue)* . take_cup] false

[true* . take_cup . (!continue)* . take_cup] false

[true*] forall n:Nat . [cost(n)] (val(n <= 30))

