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A B S T R A C T

The maintenance of good milk quality standards is still a challenge for dairy farmers that requires a rapid control 
system that is compatible with both the environment and production cost. A patented Hazard Analysis and 
Critical Control Points-like remote diagnostic (sensor driven) system named BEST was implemented to enable 
both quality monitoring and traceability in the dairy chain. BEST was daily tested in a dairy farm to identify new 
reliable indicators of anomalies (safety and quality) in milk production based on a Machine-Learning approach. 
The database obtained in four months of sensoristic analysis was subjected to a statistical study with AI algorithm 
to identify outliers. BEST proved ability to spot cows with specific characteristics in the whole herd's database. In 
particular, AI highlighted the sole cow from a different breed, the only cow that recently gave birth and the only 
cow in the herd that received treatment with the drug Micospectone® (Lincomycin + Spectinomycin).

1. Introduction

While world milk production is projected to increase by 177 million 
tons by 2025, dairy farming practices today are required to combine 
several requirements, including environmental sustainability, animal 
welfare, food quality and safety, and production efficiency. Food safety 
and traceability are crucial throughout the food chain, starting with 
primary production [1]. Ensuring safety involves preventive measures 
like Hazard Analysis and Critical Control Points (HACCP), which ana-
lyzes risks at critical control points (CCPs). Alternatively, a HACCP-like 
approach focusing on Points of Particular Attention (POPAs) can be used 
[2]. POPAs are conditions posing threats to animal and public health or 
on-farm management. Monitoring them, although not mandatory, en-
ables better understanding and management. Currently, HACCP pri-
marily addresses microbiological hazards but should expand to include 
chemical and physical hazards from farm to fork [2]. The EU advises 
primary producers, such as dairy farmers, to implement HACCP and 
HACCP-like programs to prevent milk-borne zoonoses, now including 
toxicological risks in animal-origin foods [3]. Indeed, milk is a food, an 
animal health bioindicator, and a process indicator, and hence a One 
Health matrix.

In the dairy supply chain, milk analyses are not routinely carried out 
at farm level, but in the laboratory (off-line analyses). In case of un-
wanted and/or unexpected events, e.g., due to chemical contamination, 
the disposal of huge quantities of milk would causes financial losses for 
both dairy farmers and milk processing industry. A 2017 European 
overview report of the general animal welfare conditions in EU's dairy 
farms indicates several issues, such as i) the lack of clear indicators 
useful for farmers to manage herds and improve productivity and animal 
welfare, ii) the lack of monitoring and assessment systems for existing 
indicators; iii) the lack of collection and analysis of data at farm level 
[4].

In recent years, focus shifted to on-line and at-line sensor systems for 
dairy farms [5,6], known as ‘precision livestock farming' (PLF). PLF 
emphasizes individual animal management through new technologies, 
enabling a continuous real-time monitoring of animal health, welfare, 
and environmental impact. If implemented effectively, PLF could 
enhance efficiency and sustainability in dairy farming, improving ani-
mal welfare and facilitating traceability across the food supply chain 
[7]. To be most effective, PLF tools must be properly adapted to farmers' 
needs and skills; otherwise, they can even lead to negative impacts [8]. 
Noticeably, the lack of a proper PLF data collection and data elaboration 
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is a hot point. The absence of appropriate adoption of targeted elabo-
ration system for parameters that are continuously monitored would 
make them useless [9].

In this study, we discuss results from monitoring 11 milk parameters 
over a 4-month period during standard dairy farm production. Param-
eters include Temperature (◦C), O2 (ppm), CO2 (mV), Redox potential 
(mV), pH, Conductivity (mS), Ca2+ (mV), NH₄+ (mV), NO₃− (mV), Cl−

(mV), and Milk Yield (L). These parameters have been selected from the 
literature due to their established interrelations and their potential to 
indicate changes in milk quality and safety. For instance, they can act as 
indicators of milk freshness, as the values of measured parameters can 
influence the stability of vitamins, the bioavailability of bioactive 
compounds, and consequently, the nutritional profile of the milk. Al-
terations in these parameters can also affect milk microbiota and indi-
cate potential contamination, spoilage, or the presence of pathogens. 
Furthermore, they can be linked to (patho)physiological aspects in dairy 
cows, they are correlated with the technological characteristics of milk 
and their values can also indicate possible adulterations, such as dilution 
with water [10–19].

We assessed differences in milk samples identified by BEST as 
anomalous based on statistical analysis (i.e., outside “daily mean +/- 
standard deviation”). Our aim was to identify potential new biomarkers 
in the dairy chain for environmental health, food safety, and animal 
welfare. Statistical findings were compared with a machine learning 
approach for faster anomaly detection and explanation. Machine 
learning tools offer new perspectives in data processing for sensing 
systems and present novel opportunities in animal farming management 
[20].

2. Materials and method

The European semi-automated BEST platform (patent 
EP2304428B1) is a HACCP-like multi-sensor early warning system for 
continuous monitoring of biological, chemical, and physico-chemical 
parameters. Developed by Amel Srl (Milan, Italy) during the ALERT 
project funded by the Italian Ministry of Economic Development, BEST 
aids in identifying and managing anomalies in milk production, sup-
porting self-monitoring diagnostics and milk chain traceability for dairy 
farming. It facilitates sampling and field analyses of individual cow's raw 
milk, detecting and monitoring variations in (bio)markers at critical 
control points (CCPs) and points of particular attention (POPAs). BEST a 
valuable tool for dairy farmers due to its user-friendly nature and easy 
integration into routine practices.

BEST's analytical strategy relies on the monitoring of chemical- 
physical parameters namely redox potential, pH, ionic conductivity 
and temperature, concentrations of main free ions (Ca2+, NH4

+, NO3
− , 

and Cl− ), and concentrations of dissolved gases (O2 and CO2) in raw 
milk. Concentrations of main free ions were measured by using combi-
nation ion selective electrodes purchased by Sentek Ltd. (Braintree, 
Essex, UK), while redox potential, pH, electrical conductivity and tem-
perature sensors were purchased by Amel Srl (Milan, Italy). Dissolved 
oxygen sensor and dissolved carbon dioxide sensors were purchased by 
Mettler Toledo (Milan, Italy). Measured values build a dataset and 
control charts, essential for generating multi-parameter milk footprints 
for preventive and corrective actions in good production practices 
[21–23]. BEST identifies anomalous signals by detecting anomalous 
trends or samples, aiding early anomaly detection in food production 
chains. Its flexibility allows integration of new probes to enhance 
anomaly identification in dairy production.

We conducted a statistical analysis on the database collected be-
tween March and June by the BEST prototype at "Elio Pascolini" dairy 
farm in Central Italy (Lazio region, coordinates 41◦54′47.94”N, 
12◦15′48.25″E) during the ALERT project. Up to 15 milk samples per day 
were automatically collected from one of the 14 milking stations in the 
milking parlour. Throughout the sampling period, 850 milk samples 
were collected and 72 different dairy cows passed the sampling station 

at least once. The dairy farm, known for its high standards in dairy 
farming, agricultural, and sanitary practices, was previously detailed in 
a separate study [2].

This study focused on individual cow's raw milk, with sensor data 
recorded and collected during milking. An in-line automatic sampler, 
approved by the International Committee for Animal Recording [24], 
was installed at one of the farm's 14 milking units. The automatic 
sampler sampled milk from cows passing through the first gate, thus 
generating random daily milk samples. The milk sampled at the end of 
each individual cow's milking was collected and convoyed to the BEST 
by a specially designed automatic system. Statistical analysis of data was 
performed without knowing the history of the cow. Only after the 
identification of the ‘anomalous’ samples, milk samples were associated 
with the specific milking and therefore with the cow. This was possible 
because individual cows in the milking parlour weared automatic pe-
dometers on their paws, and each cow was identifiable by a registration 
number (or ID number). The history of each cow (e.g. ongoing treat-
ments, breed, etc.) was noted in the farm register.

As previously stated, each individual cow's raw milk sample under-
went analysis for 11 parameters: Temperature (◦C), O2 (ppm), CO2 
(mV), Redox potential (mV), pH, ionic conductivity (mS/cm), and free 
inorganic ions (Ca2+, NH₄+, NO₃− , Cl− ) here expressed as electro-
chemical potential (mV), along with Milk Yield (expressed in L, 
measured by the automated milking system provided by Nutriservice s.r. 
l., Brescia, Italy). Preliminary laboratory tests advised against daily 
calibration at the milk farm to save time and minimize chemical usage. 
These tests revealed that any sensor measurement drift would not 
impact daily results (sensor drift ≤1 %). The procedure for these tests 
involves verifying the correct response of each sensor's response using 
three calibration standard solutions with known analyte concentrations. 
The concentration ranges of these solutions bracket the expected analyte 
concentration in milk samples and are close to the midpoint of the 
recommended range for the specific sensor. The signals were plotted 
against the analyte concentration or, in the case of combination ion- 
selective electrodes, the logarithm of the ion concentration to estab-
lish the correct slope of the calibration curves. A two-point calibration of 
the dissolved oxygen sensor was conducted at 25 ◦C and at atmospheric 
pressure of 760 mmHg by measuring oxygen in open air (O2 concen-
tration 8.20 mg L− 1), and dissolved oxygen in a 10 g L− 1 sodium sulfite 
solution (O2 concentration 0.00 mg L− 1) (powder ≥98 %, purchased 
from Merck, Milan, Italy).

Sensor responses were verified using two laboratory-prepared solu-
tions of known composition (three concentrations: 1000, 100, and 10 
mg L− 1):

Solution a: 1000 mg L− 1NH4CO3 + 1000 mg L− 1NaNO3 (serial 
dilution for 10 and 1 mg L− 1).

Solution b: 1000 mg L− 1 mg L− 1 CaCl2 + 1000 mg L− 1NaNO3 (serial 
dilution for 10 and 1 mg L− 1).

Using these solutions, we verified that the slopes of the sensors' 
calibration curves remained stable for several months. To streamline 
field operations, we opted to use daily means as a reference for sensor 
response. Daily means represent the average values of each parameter 
measured in milk samples collected on a given day. Each parameter's 
value in each milk sample is derived from the average of 10 consecutive 
measurements automatically conducted by BEST, with %RSD < 5 %.

2.1. Statistical approach

The Wilcoxon Signed Rank Test was conducted on all highlighted 
values of “anomalous samples” to assess their statistical significance (P 
< 0.05). Data analysis utilized Microsoft Excel and the R software 
package. Daily mean and standard deviation of the 11 parameters were 
calculated. Parameters showing trends that are more regular and less 
variability were pH, Ca2+, NH₄+, NO₃− , and Cl− . Statistical analysis 
focused on these five parameters to identify outlier samples (remaining 
parameters investigated subsequently). Values of the five parameters in 
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all records were compared with their respective daily mean and stan-
dard deviations. Any parameter value outside the “daily mean +/- 
standard deviation” was highlighted. Records with at least three high-
lighted values were labeled as “anomalous samples” (AS). The IZSLT 
(Istituto Zooprofilattico Sperimentale del Lazio e della Toscana) per-
formed additional analysis on cow's milk samples, specifically 
measuring the percentages of Fat, Proteins, and Lactose.

2.2. Neural network approach

Drifts in sensor calibration slopes may adversely affect statistical 
analysis. To address this, we propose a neural network (NN) method. 
NNs, recognized as universal approximators [25], can approximate both 
linear and nonlinear functions depending on their configuration. Pop-
ular in the ‘80s, NNs have seen renewed interest due to the success of 
deep learning. Their rapid growth in remote sensing stems from their 
ability to learn complex patterns [26]. NNs are robust in noisy envi-
ronments, capable of generalizing even with incomplete or incorrect 
input data [27]. Additionally, they can flexibly combine different data 
types without assumptions about data set distributions [28].

In this study, we conducted two approaches: supervised and unsu-
pervised. In the supervised approach, we employed the standard 
multilayer perceptron (MLP) neural network algorithm with sigmoid 
activation function and two hidden layers [29]. Training of the MLP 
network utilized a backpropagation approach with a gradient descent 
algorithm. While NNs are recognized as universal approximators [30], 
improper use may lead to undesired network overfitting or underfitting, 
depending on the training set. Overfitting occurs when the network is 
tailored too much to the learning examples, hindering satisfactory per-
formance on new patterns. Addressing two main issues in supervised NN 
design is crucial: 1) when to stop the training algorithm, and 2) how 
many neurons have to be included in the hidden layers of the topology.

For the first issue, we utilized the early stopping algorithm [29]. This 
algorithm involves both training and test sets, with the test set con-
taining examples not in the training set. Network parameters are 
adjusted iteratively to minimize error on the training set while simul-
taneously evaluating network performance on the test set. Training 
stops when the error on the test set reaches its minimum. Failure to 
employ this procedure may lead to network overtraining, reducing 
generalization capability despite smaller training dataset errors. For the 
second issue, a grid search method aimed to minimize mean-square 
error (MSE).

In supervised NN training, selecting a representative training dataset 
is crucial. However, obtaining an extensive dataset to fully train a NN is 
often impractical, risking ineffective representation of all possible dy-
namics. An alternative for limited training data is unsupervised classi-
fication, commonly known as clustering. Among various clustering 
techniques, Self-Organizing Maps [31] are considered highly effective. 
SOMs map multidimensional data onto lower-dimensional subspaces, 
typically two-dimensional, where geometric relationships between 
points indicate similarity. They define an ordered mapping onto a reg-
ular, two-dimensional grid, with each node associated with a model. 
Data items are mapped to the node whose model is most similar, i.e., 
closest in some metric. Models at nearby nodes are more similar than 
those at distant nodes, forming a similarity graph and structured ‘skel-
eton’ of data distribution. The neural network is represented as a grid of 
neurons, each containing a weight vector and a geometric location. 
These weight vectors determine the “winning” neuron for each input 
and are updated based on location during training. Unlike traditional 
NNs, SOMs are trained using competitive learning rather than error 
correction learning like gradient descent. SOM training involves 
randomly initializing weights, iterating over input data, finding the 
“winning” neuron for each input, and adjusting weights based on its 
location. The algorithm used to find the “winning” neuron is the 
Euclidean distance, which minimizes the equation: 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑d

i=0
(ni − vi)

2

√
√
√
√

where n represents a neuron of dimension d for sample input v. The 
adjusting of the weights is then performed considering not only the 
winning neuron, but also its neighbors. Generally, the neighborhood 
function is designed to have a global maximum at the “winning” neuron 
and decrease as it gets further away from it. This makes it so that neu-
rons close to the “winning” neuron get scaled towards the sample input 
the most while neurons far away get scaled the least which creates 
groupings of similar neurons in the final map (Fig. 1).

3. Results

3.1. Statistical approach

The Wilcoxon Signed Rank Test confirmed statistical significance for 
all highlighted anomalous samples (P < 0.05). Results revealed only 
three cows producing more than two anomalous milk samples (i.e., re-
cords with at least 3 highlighted values). Comparing all anomalous 
samples in the ALERT database (i.e., those with at least 3 highlighted 
values) with the farm's paper register provided specific information on 
the cows. This comparison revealed that these anomalous milk samples 
came from cows with distinct characteristics from others in the herd. 
Cow ID number 432, producing four anomalous samples (Table 1), was 
identified as a Jersey breed, unique in the ALERT database, while other 
cows were Holstein-Friesian breed. Jersey cow milk consistently showed 
significantly higher Ca2+ and NO₃− values than the daily mean of all 
cows sampled that day, with NH₄+ values consistently lower. Cl− values 
tended to decrease over time.

Examining other parameters (Table 2), redox potential values 
consistently exceed the daily mean, while electrical conductivity values 
consistently fall below it, although not always significantly. Addition-
ally, compositional analyses by the IZSLT reveal that milk samples from 
the Jersey cow exhibit significantly higher fat levels compared to those 
from Holstein-Friesian cows.

Three ASs represent the milk produced by the cow with ID number 
577 (Table 3). These ASs were measured on three consecutive days; this 
cow had given birth 2 weeks earlier (hereinafter referred as “post-
parturient cow”). According to the milk farm's paper register, this cow 
was the only postparturient cow for the period considered. It is inter-
esting to note that in milk samples from this cow, the Ca2+ and NO₃− mV 
values recorded are always significantly higher and the level of Cl− ion 
gradually decreases over time, until they become significantly lower 

Fig. 1. Structure of the SOM mapping.
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than the daily mean; reverse trend occurs for the level of NH₄+ ion. In 
addition, the pH values always significantly lower than the respective 
daily mean, obtained from the milk samples of all the cows measured 
that day.

The laboratory analyses conducted by the IZSLT showed that this 
cow's milk sample was significantly richer in %protein and significantly 
less rich in %lactose respect to daily means (Table 4).

A second cow, with serial number 500, produced three AS. The milk 
farm's paper register did not mention any particular condition for this 
cow.

Cow serial number 680 (Table 5) produced only one AS. Upon review 
of the farm's paper register, we discovered that this cow had previously 
been treated with the drug Micospectone® (Lincomycin + Spectino-
mycin). After completing the drug treatment and the subsequent with-
drawal period, the cow was reintegrated into the herd. The anomalous 

sample was collected on 24 March, 4 days after the cow's reintroduction. 
This sample exhibited significantly higher levels of Ca2+, NH₄+, and 
NO₃− compared to the respective daily mean. Two other milk samples 
from this cow were found in the database, collected 7 and 8 days after 
reintegration. The sample taken after 7 days had outliers for two pa-
rameters (Ca2+ and NH₄+), while the sample taken after 8 days had 
none.

According to the milk farm's paper register, cow ID number 680 was 
the only one in our database that had received drug treatment.

3.1.1. Supervised neural network approach
A supervised classification approach based on MLP was tested. In 

particular, it was used a NN architecture with two hidden layers and 
sigmoidal activation function in each node: 

σ(x) = 1
1 + e− x 

where x is the weighted sum of the output from the nodes of the 
previous layer: 

x =
∑

i
wigi 

The NN is trained by the Adam algorithm in order to minimize the 
sum-of-squares error of the form: 

Table 1 
Parameters recorded in Jersey cow's milk.

Data Registration number T (◦C) pH Ca2+ (mV) NH₄+ (mV) NO₃− (mV) Cl− (mV)

May 4, 2017 432 26.97 6.32 419.46 249.69 303.88 116.43
6.62 413.92 252.44 280.99 109.21 Daily mean
0.12 2.25 2.52 10.3 4.95 SD

May 10, 2017 432 27.81 6.52 413.95 250.22 289.48 114.66
6.58 411.68 253.37 275.81 111.14 Daily mean
0.06 2.13 1.73 6.28 3.36 SD

May 24, 2017 432 24.55 6.5 412.11 249.45 254.73 99.48
6.52 409.67 253.32 244.73 98.18 Daily mean
0.05 1.92 3.01 5.55 3.88 SD

May 30, 2017 432 28.12 6.55 413.59 251.39 249.32 93.47
6,51 409,55 251.56 242.82 97.97 Daily mean
0.04 2.07 0.96 4.27 3.87 SD

Table 2 
Other interesting parameters recorded in the Jersey cow's milk.

Data ID 
number

T (◦C) ORP 
(mV)

Cond 
(mS)

Fat Bov 
(%)

May 4, 
2017

432 26.97 73.05 5.86 /

24.75 6.18 / Daily 
mean

16.71 0.31 / SD
May 10, 

2017
432 27.81 34.27 5.9 4.84

20.95 5.95 4.13 Daily 
mean

6.69 0.29 0.44 SD
May 24, 

2017
432 24.55 27.95 5.96 4.86

18.95 6.36 3.70 Daily 
mean

5.29 0.29 0.80 SD
May 30, 

2017
432 28.12 54.41 6.17

30.65 6.48 Daily 
mean

11.64 0.26 SD

Table 3 
Postparturient dairy cow.

Data ID number T (◦C) pH Ca2+ (mV) NH₄+ (mV) NO₃− (mV) Cl− (mV)

May 16, 2017 577 27.63 6.24 412.44 250.50 279.38 104.06
6.55 407.67 251.36 260.06 99.13 Daily mean
0.11 2.91 1.47 7.48 7.62 SD

May 17, 2017 577 30.75 6,29 415.07 259.97 265.45 103.44
6.56 405.80 254.7 258.40 104.32 Daily mean
0.12 3.83 3.00 6.75 5.49 SD

May 18, 2017 577 24.63 6.35 412.19 258.19 265.02 92.13
6.50 405.48 253.97 255.43 102.64 Daily mean
0.07 3.08 3.33 4.59 5.36 SD

Table 4 
Other interesting parameters of the postparturient cow.

Data ID number T (◦C) % Protein %Lactose

May 16, 2017 577 27.63 – –
– – Daily mean
– – SD

May 17, 2017 577 30.75 3.94 4.46
3.47 4.81 Daily mean
0.34 0.19 SD

May 18, 2017 577 24.63 4.00 4.31
3.32 4.85 Daily mean
0.25 0.21 SD
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E =
1
2
∑N

n=1

∑d

k=1

[
yk(x

n) − xn
k
]2 

where yk (k = 1, 2, d) is the output vector. The Adam algorithm is a first- 
order gradient-based optimization of stochastic objective functions, 
based on adaptive estimates of lower-order moments [32].

The input dataset was composed of 9 parameters out of the initial 11, 
by excluding “Temperature” and “Milk yield”. In fact, the measurement 
procedures did not allow the measurement of milk temperature imme-
diately after milking, and measured temperature was more affected by 
environmental temperature than by the cows' body.

Milk yield was not considered in the analysis because not always 
measured.

Four main classes were associated to the anomalies identified during 
the analysis carried out in the statistical approach, namely “Post-
parturient”, “Post antibiotic-treatment”, “Jersey Breed”, and “Normal”.

Since the original data was affected by daily drift, day-by-day data 
standardization was performed, characterized by zero-mean and unitary 
standard deviation.

We used a grid search method to determine the optimal number of 
hidden layers and neurons, minimizing the mean-square error (MSE). 
Then, an early stopping approach was carried out, to avoid data over-
fitting. This has been obtained by dividing the whole measurements into 
three datasets, namely “training”, “test” and validation datasets. The 
training, test and validation datasets were composed respectively of 
about 10 %, 5 % and 85 % of the whole measurements. The optimal 
topology was composed by 9 input nodes, two hidden layers with 20 
nodes each, and an output layer with 4 nodes.

3.1.2. Unsupervised neural network approach
As for the unsupervised classification of the data (clustering) based 

on SOMs, a NN architecture was used to map the original data into a 
square grid. In addition, in this case, “Temperature” and “Milk yield” 
were not included. A day-by-day data standardization was performed to 
mitigate the daily drift in the input data. Several training runs, 200 
epochs each, were performed in order to find the optimal network to-
pology by varying the size of the square grid.

The optimization of the SOM algorithms involved several key steps to 
ensure accurate and robust results. The optimal grid size was determined 
through iterative training runs, with the final configuration being a 12 
× 12 grid. The SOM training process utilized the Euclidean distance 
metric for updating the neurons' weight vectors. The neighborhood 
function used in these experiments is a Gaussian function, which is 
commonly used due to its smooth and continuous nature. This function 
was selected to ensure that neurons closer to the winning neuron (best 
matching unit) are updated more significantly than those further away, 
creating a smoother mapping of the data. As unsupervised approach, the 
labeling of the results was carried out by analyzing the neighbor of each 
neuron corresponding to “Normal” cows and those affected by the three 
types of anomalies identified during the analysis carried out in the sta-
tistical approach, namely namely “Postparturient”, “Post antibiotic- 
treatment”, “Jersey Breed”, and “Normal”.

From a first visual analysis of the grid map in Fig. 2, it is possible to 
identify two extended yellow areas on the top left and lower right parts 
of the grid. Because of their extensions, these two areas can be associated 
to the Normal class. Similarly, the neurons that have darker connections 
(larger distances) represent data less correlated with the neighbors, 
which can be associated with the anomalies Classes. This distance is 
based on the Euclidean metric, not the correlation coefficient.

Moreover, it is possible to analyze the neurons associated with the 
anomalies in order to understand the accurateness of this proposed 
approach.

Figure 3 depicts the nodes associated with the measurements related 
to the classes “Jersey breed” (ID number 432, circled in blue), “Post-
parturient” (ID number 577, circled in cyan), and “Post antibiotic- 
treatment” i.e., cow treated with Micospectone® ID number 680, circled 
in green).

As it can be noted, all the measurements present weak connections 
with the neighbors. Moreover, most of these measurements, with the 
exception of the measurement of May 24, 2017, present fewer connec-
tions with the neighbors being on the border, confirming the anomaly 
behavior. Regarding the neurons associated with the milk measurements 
from the postparturient cow (ID number 577), all the measurements lie 
on the border and present very weak connection with the neighbors' 
neurons. It is interesting to note that since the three measurements are 

Table 5 
Cow treated with Micospectone®.

Data ID number ◦C pH Ca2+ (mV) NH₄+ (mV) NO₃− (mV) Cl− (mV)

March 24, 2017 680 24.30 6.67 458.18 303.31 354.30 122.95
6.68 452.51 294.39 349.98 122.34 Daily mean
0.08 2.92 4.71 3.07 4.18 SD

March 27, 2017 680 26.68 6.67 436.73 279.18 358.09 130.67
6.64 434.93 274.28 356.96 127.78 Daily mean
0.06 1.74 4.06 2.29 9.23 SD

March 28, 2017 680 25.85 6.64 432.87 270.97 357.31 135.23
6.65 431.73 267.92 357.47 135.32 Daily mean
0.04 2.49 3.77 2.60 5.08 SD

No other cows present in the milk farm's paper register could be associated to any other different characteristics respect to the herd.

Fig. 2. SOM neighbor weight distance map. The red lines represent the re-
lations between a neuron and each neighbor. The neighbor patches are colored 
from black (far) to yellow (close) to show the Euclidean distance between each 
neuron's weight vector and its neighbors, indicating similarity. Darker colors 
represent larger distances (less similarity), while lighter colors indicate smaller 
distances (more similarity). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

R. Dragone et al.                                                                                                                                                                                                                                Sensing and Bio-Sensing Research 45 (2024) 100683 

5 



very close (positions 135, 136 and 138) it is possible to suppose that the 
neuron at position 137 (Fig. 3, circled in black) could be associated to a 
cow presenting similar conditions to the cow ID number 577. Regarding 
the neurons associated with the cow treated with Micospectone® (ID 
number 680), it is interesting to note that the connections of these three 
neurons tends to become stronger as the time pass from the last dose of 
Micospectone®. This means that while the March 24, 2017 measure-
ment presents slightly weak connections with the neighbors, the other 
two present a higher level of correlation with the surrounding neurons, 
thus allowing us to suppose that on March 28, 2017 the effect of the 
Micospectone® is almost completely disappeared.

4. Discussion

As expected, the presence of three cows with different characteristics 
compared to the herd reflect the good condition of the dairy farm where 
the BEST was applied.

In particular, this research spotted the only Jersey cow (ID number 
432), the only postparturient cow (ID number 577) and the only cow (ID 
number 680) previously treated with Micospectone® in the whole herd's 
database. As far as we know, no other cows present in the milk farm's 
paper register could be associated to any other different condition 
respect to the other cows of the herd.

The physicochemical properties of raw milk depend on numerous 
factors, including genetic factors such as breed [33]. Previous studies 
showed that genetic factors determine differences in the chemical 
composition and physicochemical properties of milk among cow breeds 
[34,35]. In milk, ionized Ca in the soluble phase accounts for about 10 % 
of the total Ca [36–40]. Our findings of higher levels of Ca2+ and milk fat 
in Jersey cow's milk compared to Friesian cow's milk align with litera-
ture data [34,41–43]. Compared to other cow's milk, Jersey cow milk is 
higher in milk fat and calcium levels [43,44]. In particular, the con-
centrations of all forms of Ca is higher in Jersey cows milk than in 
Holstein-Friesian cows [42,43].

In our research the postparturient cow (ID number 577), 2 weeks 
after calving, was in the postcolostrum period (day 6 to 30 of lactation) 
[45]. Milk samples from that postparturient cow always had an amount 
of Ca2+ significantly higher than the daily mean. A higher ionic calcium 
value has been previously reported in milk on the first day after birth, 
which steadily decreases over subsequent days [45].

It was also measured a lower pH in the milk of the postparturient 
cow, increases over time. The pH of bovine milk (nonmastitic and 

noncolostrum) commonly ranges 6.4–6.8 [47–49], but it can decrease in 
the first 5 days after calving and then steadily increased [45].

Our results also indicate a gradual decrease in Cl− levels over time in 
the milk of the postparturient cow. Levels of Cl− in milk may vary with 
lactation stage, decreasing from colostrum to mature milk but increases 
sharply towards the end of lactation [19,46,50].

Our research has found that postparturient cow's milk is richer in 
protein (Table 4). The high protein content observed during early 
postpartum was not unusual and has been reported before [45,51,52]. 
Lower percentage of lactose in milk from postparturient cow (Table 4) is 
also confirmed by literature data [45].

Results from cow serial number 500 (i.e., another cow that produced 
three AS) suggest an alteration in physiological state of that cow. But no 
additional information are available on the farm's paper register or re-
ported by the breeder for that cow in the period considered. The cow 
treated with Micospectone® was identified because its milk had Ca2+, 
NH₄+ and NO₃− significantly higher compared to the daily averages, 
until the seventh day post-reintegration into the herd. Outlier parame-
ters gradually normalized, with all returning to normal values by the 
eighth day. Our research suggests that pregnancy, drugs and breed or 
physiological factors could also influence the amount of NO₃− and NH₄+

in raw milk; further studies will investigate this aspect.
The results from this study motivate us to integrate the BEST plat-

form with the MOLOKO multi-parameter optical sensor [53] to expand 
the range of monitored parameters. Specifically, the MOLOKO sensor 
will provide quick, semi-quantitative, on-site, and automated analysis of 
contaminants and indicators of milk quality and safety (e.g., antibiotics 
and lactoferrin). The use of the integrated Moloko-‘Best’ system in the 
farm scenario can promote the application of new tools for on-farm milk 
analyses.

5. Conclusions

The Neural Network approach confirms the results of the statistical 
approach, with the advantage of being a more rapid and predictive. The 
BEST platform has proven to be a valuable tool for identifying cows with 
different characteristics in the herd, thus opening the way towards early 
HACCP and traceability in the dairy supply chain. Future research and 
technological improvement requires increasing participative and tight 
collaboration between milk producers and scientific researchers.

Fig. 3. Positions on the grid of the neurons associated with the classes “Jersey breed” (Blue), “Postparturient” (Cyan), and “Post antibiotic-treatment” (Green). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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