
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1703  | https://doi.org/10.1038/s41598-023-27389-7

www.nature.com/scientificreports

A new perspective of molecular 
diffusion by nuclear magnetic 
resonance
Giulio Costantini 1,3, Silvia Capuani 1,3*, Francis Allen Farrelly 2,3 & Alessandro Taloni 2,3

The diffusion-weighted NMR signal acquired using Pulse Field Gradient (PFG) techniques, allows for 
extrapolating microstructural information from porous materials and biological tissues. In recent 
years there has been a multiplication of diffusion models expressed by parametric functions to fit 
the experimental data. However, clear-cut criteria for the model selection are lacking. In this paper, 
we develop a theoretical framework for the interpretation of NMR attenuation signals in the case 
of Gaussian systems with stationary increments. The full expression of the Stejskal–Tanner formula 
for normal diffusing systems is devised, together with its extension to the domain of anomalous 
diffusion. The range of applicability of the relevant parametric functions to fit the PFG data can be 
fully determined by means of appropriate checks to ascertain the correctness of the fit. Furthermore, 
the exact expression for diffusion weighted NMR signals pertaining to Brownian yet non-Gaussian 
processes is also derived, accompanied by the proper check to establish its contextual relevance. The 
analysis provided is particularly useful in the context of medical MRI and clinical practise where the 
hardware limitations do not allow the use of narrow pulse gradients.

Introduced by Stejskal and Tanner in 19651, the molecular diffusion measurement by nuclear magnetic resonance 
(NMR), in parallel to the development of sophisticated experiments in soft condensed matter2,3 and porous 
materials4, entered into clinical practice at the beginning of the second millennium, resulting in a revolution in 
clinical radiology5 and neuroimaging investigations6.

The hodological approach to molecular diffusion makes NMR the only technique capable of inferring micro-
scopic structures in a non-invasive, non-destructive, and radiation-free modality. However, NMR measurements 
capture a statistical average of microscopic dynamical features over a large ensemble of molecules, rather than 
their individual pathways. This inherent probabilistic description must necessarily rely on assumptions regarding 
the dynamics of molecular diffusion. In turn, these assumptions are implemented in mathematical models yield-
ing the parametric functions that are used to fit the diffusion-weighted (DW) NMR signals. The NMR acquisition 
sequences for obtaining a DW signal are based on applying pulse field gradient (PFG)1 along different directions 
�q2,4,6, where |�q| = γ gδ/(2π) , γ is the nuclear gyromagnetic ratio, g is the magnetic field gradient strength and δ is 
the duration of the applied pulse. Due to molecular diffusion, this signal S(�q) is attenuated compared to the signal 
S(0) acquired without gradient application. In general, the functional form of the S(�q)/S(0) DW-NMR signal 
decay depends on the interplay between the type of molecular diffusion and the media where the diffusion occurs.

Conventional diffusion NMR, such as diffusion weighted imaging (DWI)7 and Diffusion Tensor Imaging 
(DTI)8, largely used in current clinical applications, is based on the simplifying assumption that water molecules 
perform normal (Brownian) self-diffusion inside the tissues, i.e. their dynamics are characterized by a molecular 
mean squared displacement (MSD) which grows linearly in time9,10. A further fundamental assumption that is 
usually accepted in classical NMR signal representation theory is that the motion propagator (MP) is Gaussian. 
The genesis of these two assumptions dates back to the Torrey description of self-diffusion as a “transport of 
magnetization”11 in the form introduced by Abragam12, obtained by the insertion of an additional term into the 
Bloch equation. However, with the improvement of the experimental acquisition set-ups, it appears clear that 
the diffusion in most human tissues, soft matter, and porous systems, is far from being normal and/or Gaussian, 
exhibiting more complex and diversified scenarios, due to the concatenation of the diffusion dynamics and to the 
contribution of structural inhomogeneities, such as component mixtures and/or confining regions. Therefore, 
several approaches have been developed in the attempt to find parametric functions that best fit the experimental 
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data and provide new parameters characterizing the tissues microstructures. The goal is to increase sensitivity 
and resolution of diagnostics NMR, obtaining complementary information compared to conventional DWI 
and DTI metrics6. Moreover, a productive strategy to be able to extract relevant information from diffusion is, 
certainly, a multidirectional approach using different techniques. In this regard, however, many works13–16 use 
models that assume a Gaussian MP and Brownian diffusion.

The disengagement from the Gaussian assumption hinges upon the context of the cumulant expansion of the 
DW-NMR attenuation signals9. If the cumulant expansion is truncated to the second order, the conventional 
picture applies, resulting in the so-called “Gaussian approximation in cumulant expansion”17–20. Conversely, 
any deviation from the Gaussian behavior can be quantified using a convenient dimensionless expression of the 
MP fourth cumulant called the excess kurtosis, often shortened to “kurtosis”21–23. This approach is particularly 
promising in clinical investigations24. Moreover, the deviation from the Gaussianity can be readily identified in 
the narrow-pulse gradient (NPG) experiments, i.e. when δ ≪ � . In this case the normalized NMR signal turns 
out to be the Fourier transform in |�q| of the MP2,25.

Anomalous diffusion is a generalization of the Brownian diffusion, in the sense that the molecular MSD 
scales as tα with 0 < α < 2 and α  = 126. In the past 30 years, a large number of experimental results have been 
accumulated, providing evidence that NMR attenuation may exhibit systematic deviations from the pure (Debye) 
exponential decay, arising from the assumption of normal molecular self-diffusion27–33. At the end of the last 
century it was observed that a stretched-exponential or Kohlrausch–Williams–Watts (KWW) parametric func-
tion could better describe the decay of S(�q)/S(0)34, a feature that was later attributed to the anomalous diffusion 
dynamics of water molecules inside complex self-similar structures34,35. Hence, in heterogeneous systems the 
Brownian assumption was replaced by other assumptions, searching for more effective models to reproduce 
the anomalous microscopic transport dynamics. In all likelihood, the continuous time random walk (CTRW)36 
is the most popular among the anomalous diffusion models37–41 used in NMR, due to its connection both to 
Lévy statistics34 and to the fractional diffusion equation, regarded as the natural generalization of the classical 
Bloch–Torrey equation42–45. It is worth noticing that the CTRW also surmounts the Gaussianity assumption, as 
the MP, in this case, is given by a Fox function46. Although less fashionable than CTRW, different microscopical 
models have been postulated to justify the anomalous diffusion appearing in the KWW decay: diffusion on fractal 
structures35,47, fractional motion models48, anomalous diffusion with Gaussian MP49–52 or processes fulfilling 
the generalized fluctuation–dissipation theorem such as those generated by a fractional Langevin equation53. 
However, the methodologies used, the results and their interpretation have often aroused doubts, even question-
ing the fact that biological water in tissues can effectively diffuse anomalously54–56.

The progressive departure from the hypothesis subtending the unbounded free diffusion is evident in the 
case of NMR signals arising from compartmentalized system, where water diffusion takes place in restricted 
geometries. In these cases, the exact solution of the Bloch–Torrey equation and the ensuing attenuation sig-
nal form gets complicated expressions57,58. Indeed, the first attempts to solve the Bloch–Torrey equation were 
directed toward perturbative approaches59,60, highlighting the presence of two distinct dynamical regimes in 
the spin-echo signal decay. If time is short compared to the time required from diffusion from one boundary to 
the other, the resulting equation and the corresponding outcome reduce to those representing unrestricted dif-
fusion. For longer times instead, the bulk diffusion coefficient D is reduced to an apparent diffusion coefficient, 
Deff  , accounting for the presence of the microstructure. Deff  , however, reveals a non-trivial dependence on the 
time which undoubtedly unveils the violation of the hypothesis of Brownian diffusion. On the other side, the 
Gaussian character of the propagator is still preserved, as the g2 dependence of the DW signal proves. This is 
ultimately clarified by the fact that the identical limiting expressions for the spin-echo amplitude were derived 
using a completely different technique, namely the Gaussian phase approximation (which coincides with the 
Gaussian approximation in cumulant expansion )61,62. In 1991 the exact solution of the Bloch-Torrey equation 
was provided by Stoller et al., although limited to one dimensional bounded domains63. In this thorough study it 
was implicit that another regime could arise, when the intrinsic length scale of dynamics depending on the field 
gradient ( ∝ g−1/3 ) is much smaller than the average size characterizing the microstructure. This important point 
was extensively developed in64 where it was demonstrated that in this regime the Gaussian phase approximation 
does not hold and higher cumulants become important. This scenario, named localization regime, has attracted 
more and more interest in recent years, since it has become clear that it constitute an universal feature of the 
Bloch–Torrey equation (see Ref.57 and references therein).

This manuscript aims at providing a useful toolkit for an NMR-scientist who is facing the twofold problem 
of using the correct fitting formula for the PFG NMR attenuation S(�q)/S(0) and, at the same time, inferring the 
underlying details of the molecular dynamics. We show how to implement a sequence of simple checks leading 
to the identification of the correct analytical expression for the analysis of PFG DW-NMR signal, in various dif-
fusion contexts. We provide a “recipe” that can help to understand the type of dynamics “before” applying the 
diffusion models, or the (dynamical) domain of applicability of a certain microscopical model. For the sake of 
clarity, different parametric formulas are derived from different molecular diffusion models: one for the Brown-
ian Gaussian processes with stationary increments10, one for the anomalous Gaussian processes with stationary 
increments65, and one for Brownian yet non-Gaussian diffusion-like systems66. A set of easy-to-implement checks, 
hereby called validation rules, define the range of applicability of each one of these formulas. In addition we show 
how existing and apparently scattered results in literature fit neatly into our framework.

The paper is organized as follows. In “Gaussian approximation in cumulant expansion” we recall the Gaussian 
approximation in cumulant expansion, where the assumptions of Gaussianity and stationarity of increments of 
the stochastic processes are clearly formulated. Moreover, by applying the PFG sequence, we furnish a clear-cut 
benchmark to determine if the self-diffusion is normal or anomalous. In “Normal diffusion” and “Anomalous dif-
fusion” we discuss separately the two cases, providing the correct formulas to fit the DW-NMR attenuation 
signals. In “Checking the assumptions: model’s discriminative power” we question the applicability of these 
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formulas to systems where they are not compelling, i.e., which do not fulfill the Gaussianity and the stationarity 
of increments assumptions. Furthermore, we furnish the precise criteria to discern Gaussian stationary processes 
from any other. In particular in “PFG NMR signal for the superstatistical model for Brownian yet non-Gaussian 
diffusion” we furnish the correct fitting expression for system displaying the Brownian yet non-Gaussian dif-
fusion. In “Validation rules: a practical example” a practical example is reported, considering the PFG signal 
of free water diffusion and water diffusion in packed microspheres of different diameters. Our conclusions are 
summarized in “Conclusions”.

Gaussian approximation in cumulant expansion
The transverse magnetization of a spin-bearing particle (or molecule) can be expressed via the unit complex 
vector e−iφ , where the phase built up during the motion in a magnetic field gradient is given by67

Here γ is the gyromagnetic ratio, r(t) is the particle/molecule position and G(t) is the uniform magnetic field 
gradient. It is clear that the fluctuation of φ results from the stochastic change of the particle location, which we 
imagine continuous and differentiable, obeying the following equation

with v(t) the spin velocity and r(0) the initial spin position measured from the gradient center. After integration 
by parts, Eq. (1) becomes17–19,21,22, at the time of spin refocusing t = TE (time echo),

where F(t) =
∫ t
0 dt

′
G(t ′) and F(TE) = 0 . The NMR signal attenuation is defined as the ensemble average spin 

echo amplitude, properly normalized:

where S(0) is the initial value of the signal. Taking the logarithm of this expression and performing its cumulant 
expansion9,17–22,53, we obtain

where F2(t1, t2) ≡ F(t1)F(t2) and F4(t1, t2, t3, t4) ≡ F(t1)F(t2)F(t3)F(t4) . u2() and u4() represent respectively 
the second and fourth cumulants of the molecular velocity, in the simpler situation where the gradient is in 
the x-direction only (the extension to the three dimensional tensorial structure is a delicate aspect that can be 
treated to measure the correlations between the differing components of the displacements2,21). We neglected 
both higher-order cumulants, since we imagine the field amplitude small enough, and the odd-order terms, as 
they do not contribute to the signal attenuation22.

Finally, we introduce the fundamental assumptions characterizing the one-dimensional stochastic process 
v(t). We consider a zero-mean molecular velocity whose correlation function is stationary (stationarity of incre-
ments), i.e.

and whose fourth cumulant is negligible:

Thanks to Eq. (7) and to the zero flow condition, the DW-NMR signal assumes the following form17–21,53,68,69

which becomes

after implementing the stationarity hypothesis (6).
The second order cumulant expansion can be performed also by adopting the phase definition (1)2,49–51,70–73

(1)φ(t) = γ

∫ t

0
dt′r(t′) · G(t ′).

(2)r(t) = r(0)+
∫ t

0
dt′v(t′),

(3)φ(TE) = −γ

∫ TE

0
dt′v(t′) · F(t′),

(4)
S(TE)

S(0)
= �eiγ

∫ TE
0 dt′v(t′)·F(t′)�,

(5)

ln
S(TE)

S(0)
≃ −γ 2

2

TE
∫

0

u2(t1, t2)F2(t1, t2)dt1dt2 +
γ 4

4!

TE
∫

0

u4(t1, t2, t3, t4)F4(t1, t2, t3, t4) dt1dt2dt3dt4 + · · · ,

(6)u2(t1, t2) ≡ �v(t1)v(t2)� = C(|t1 − t2|),

(7)u4(t1, t2, t3, t4) ≃ 0.

(8)ln
S(TE)

S(0)
≃ −γ 2

2

TE
∫

0

dt1

TE
∫

0

dt2�v(t1)v(t2)�F(t1)F(t2),

(9)ln
S(TE)

S(0)
≃ −γ 2

TE
∫

0

C(s)ds

TE
∫

s

F(t′)F(t ′ − s) dt′
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where �x(t)� = 0 (stagnant liquids). It is clear that Eq. (10) is equivalent to Eq. (8) and, once one assumes the 
stationarity of the position autocorrelation function, the analogous of Eq. (9) reads

Normal and anomalous DW‑NMR signal in a Pulsed field gradient (PFG) experiment.  In the 
PFG-based experiment1 after a radiofrequency π/2 pulse which brings the magnetization in the transverse plane 
to the direction of the static magnetic field �B , a short gradient pulse of amplitude g and duration δ confers phase 
shifts to the spins. A second equivalent pulse, after an intermediate 180◦ radio-frequency pulse reverses the 
phase shifts to yield an unattenuated signal in the absence of any motions along the gradient. However, the 
molecular spins collisions during the diffusion time � between the two gradient pulses can cause unequal phase 
shifts, resulting in an attenuated NMR signal. Thus, once the g and δ values have been set, the NMR attenuation 
signal is a function of the magnetic-field gradient pulse interspacing � . In PFG experiments, the same effect is 
achieved if the two pulses have an opposite sign, but without the 180◦ radio-frequency pulse. Without loss of 
generality, in our treatment we will adopt the latter PFG pulses sequence (see Fig. 1a,b and Supplementary Fig.S1 
in the supplementary online materials (SOM)). Furthermore, in the following we will not consider the effects of 
nuclear relaxation, as we will deal with the temporal duration of the PFG sequence which is much less than the 
relaxation time T2

2.

(10)ln
S(TE)

S(0)
≃ −γ 2

2

TE
∫

0

dt1

TE
∫

0

dt2�x(t1)x(t2)�G(t1)G(t2),

(11)ln
S(TE)

S(0)
≃ −γ 2

TE
∫

0

�x(0)x(s)�ds
TE
∫

s

G(t ′)G(t ′ − s) dt′.

Figure 1.   PFG and anomalous diffusion. Panel (a) A schematic representation of the couple of magnetic field 
gradients in PFG-based sequence. Panel (b) Integral function F(t) of the gradient in panel (a). Panel (c) phase 
accumulating during the gradient pulses: the same scheme has been used to obtain the DW-NMR signal from 
stochastic trajectories (see “Methods” section). Panel (d) Expected behavior of the derivative of the logarithm 
of the normalized echo amplitude for different values of the anomalous diffusion exponent α . For subdiffusive 
processes the derivative is a decaying function of � , for superdiffusive processes it is an increasing function, 
whilst for normal diffusing systems it is constant.
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The explicit calculation of the Eq. (9) in case of PFG yields (see “Methods” section for details and SOM)

Likewise (see the SOM), it is possible to derive the echo amplitude from Eq. (11):

Taking the derivative of both members of Eq. (12) we obtain

Now, recalling that the relation between the mean square displacement and the velocity autocorrelation 
function of the process (2) is given by

the following equality is valid in the limit of large gradient-field interspacing � ( � 2δ):

The Eq. (16) is the linchpin of the first part of our analysis, because it allows to disclose the nature of the 
asymptotic diffusive dynamics, be normal or anomalous, by just looking at the derivative of the logarithm of the 
DW-NMR signal attenuation for a Gaussian process with stationary increments. Let us illustrate this point with 
the help of the theorem in74 (see also the discussion in Ref.75).

Suppose that the spins undergo normal diffusion, i.e.

–	 Hence, 
∫ �

0 ds C(s) → D for � larger than the typical velocity correlation time. The derivative of the logarithm 
of the DW-NMR signal would then attain a constant value (Fig.1d).

–	 Now, let us imagine that the spins behave anomalously: 

 with 0 < α < 2 . Therefore 
∫ �

0 ds C(s) → αDα�
α−1 for � → ∞ , ergo 

–	 Subdiffusive processes characterized by 0 < α < 1 and antipersistency in the velocity correlation, would 
display 

∫ �

0 ds C(s) → 0 for large � (Fig.1d).
–	 Superdiffusive processes with 1 < α < 2 and a positive velocity autocorrelation function, would be identified 

by 
∫ �

0 ds C(s) → ∞ as � → ∞ (Fig.1d).

Thus, the quantity − d
d�

(

ln S(�)
S(0)

)

 helps to assess the diffusive regime that in average a molecular system 
exhibits in time, if the velocity stochastic process fulfills the hypothesis (6)–(7). Furthermore, plugging the 
normal or anomalous form of C(s) into the expression (12) will furnish the analytical function for the correct 
interpretation of the signal attenuation.

Normal diffusion
The determination of the molecular diffusion by means of the relations (8) or (10) has a long history2,20,53,73. 
Indeed, the classical Stejskal–Tanner spin-echo attenuation was recovered in the limit of large � , if compared to 
the correlation time of migrations2,20.

In our framework, the PFG expression (12) for normal diffusing molecules can be calculated exactly.

(12)
ln

S(�)

S(0)
= −γ 2g2

{

δ2
[
∫ δ

0
ds C(s)

(

�− δ

3

)

+
∫ �

δ

ds C(s)(�− s)

]

−
∫ δ

0
ds C(s)s2

(

δ − s

3

)

− 1

6

∫ �

�−δ

ds C(s)(�− δ − s)3 + 1

6

∫ �+δ

�

ds C(s)(�+ δ − s)3
}

.

(13)
ln

S(�)

S(0)
=− γ 2g2

{

2

∫ δ

0
ds �x(0)x(s)�(δ − s)

+
∫ �

�−δ

ds �x(0)x(s)�(�− δ − s)−
∫ �+δ

�

ds �x(0)x(s)�(�+ δ − s)

}

.

(14)

d

d�

(

ln
S(�)

S(0)

)

=− γ 2g2δ2
∫ �

0
ds C(s)

+ γ 2g2

2

[

−
∫ �

�−δ

ds C(s)(�− δ − s)2 +
∫ �+δ

�

ds C(s)(�+ δ − s)2
]

.

(15)�[x(t)− x(0)]2� = 2

∫ t

0
ds C(s)(t − s),

(16)
d

d�

(

ln
S(�)

S(0)

)

≃ −γ 2g2δ2

2

d

d�

(

�[x(�)− x(0)]2�
)

.

(17)�[x(�)− x(0)]2� = 2D�.

(18)�[x(�)− x(0)]2� = 2Dα�
α ,

(19)C(s) ∼ α(α − 1)Dαs
α−2.
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Brownian motion.  The Brownian motion (BM) is the only process undergoing normal diffusion under 
the hypothesis (6) and (7). The underneath stochastic process connected to the Eq. (2) is given by the Langevin 
equation

The molecule mass here has been set equal to 1, while ζ is the viscous drag and the Gaussian white noise 
satisfies the following properties: �ξBM(t)� = 0 and �ξBM(t1)ξBM(t2)� = 2kBTζ δ(t1 − t2) , where kB is the Boltz-
mann constant and δ(t) is the Dirac’s delta function. The spin velocity autocorrelation function can be easily 
calculated2,20,53:

By insertion of (21) into the signal attenuation (12), we obtain (see “Methods” section and SOM)

where the diffusion coefficient is given by D = kBT
ζ

 . This result extends and amends the conclusions presented 
in previous references2,20,73, providing the generalization of the Stejskal–Tanner formula in terms of the generic 
gradient-pulse duration δ , of the diffusing time � and of the velocity correlation time ζ−1 . Using the Eq. (22) for 

(20)v̇(t)+ ζv(t) = ξBM(t).

(21)C(s) = kBTe
−ζ s .

(22)ln
S(�)

S(0)
= −γ 2g2δ2D

(

�− δ

3

)

+ 2γ 2g2D

{

δ

ζ 2
− 1− e−δζ + e−�ζ [cosh(δζ )− 1]

ζ 3

}

,

Figure 2.   Panel (a) Normal diffusion. Main panel: comparison between synthetic DW-NMR signals obtained 
from normal diffusing trajectories and fitting curves obtained from Eq. (22) (dashed curves). The parameters 
of BM are ζ = 20 s−1 and g = 0.01 T/m . The estimated D and ζ are reported in Table 1. The fitted parameters 
are in excellent agreement with the expected values (see SOM). Inset: the constant trend of the derivative of 
the normalized DW-NMR signals is shown. Panel (b) Anomalous diffusion echo amplitudes. Main panel: 
comparison between different synthetic DW-NMR signals obtained from FBM subdiffusive and superdiffusive 
trajectories (symbols), and relative fitting curves obtained through Eq. (24) (dashed curves). The signals 
are obtained with a magnetic field gradient g = 0.01 T/m. Inset : trend of the derivative of the logarithm of 
the normalized DW-NMR signals shown in the main plot. Superdiffusive (increasing trend as a function of 
the diffusion time) and subdiffusive (decreasing trend as a function of the diffusion time) systems are easily 
appraised.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1703  | https://doi.org/10.1038/s41598-023-27389-7

www.nature.com/scientificreports/

fitting DW-NMR attenuations coming from simulated Brownian trajectories, yields the correct estimates of the 
parameters D and ζ (see Fig. 2a and Table 1).

Thus the Eq. (22) is the correct expression for fitting DW-NMR attenuations coming from systems for which 
the Brownian motion is the significant model of diffusion. The two fitting parameters are D and ζ , the latter of 
which allows to assess if the pulse gradient amplitude δ is short enough to assume that the velocity autocorrelation 
function can be approximated by a delta function ( δζ ≫ 1 ), or it has an exponential form such as that in Eq. (21).

Anomalous diffusion
The Gaussian approximation (8) was used in several NMR measurements of anomalous diffusion described in Eq. 
(18)17,52. Gradient modulation sequences different than PFG were hypothesized to determine the low-frequency 
information concerning the spectrum of the molecular velocity autocorrelation, which in the time domain 
exhibited long-time tails2,17,68,69,76,77. Moreover, since power-law decay such that in (19) also characterizes the 
molecular motion in compartments of limited size, the same modulated-gradient spin-echo method (MGSE) 
has been suggested for the interpretation of diffusion in restricted geometries17–19,75,78.

Our theory assesses that the PFG expression (12) is an important tool to gain direct access to the details of the 
velocity autocorrelation function53. The same idea was exploited in Refs.49–51, using position correlation function 
rather than velocity, i.e. the Eq. (13).

Let us plug the anomalous velocity correlation function (19) into the Eq. (9). The result is

and, as expected49, it corresponds to that obtained using the position correlation function such as in Eq. (13) 
(see SOM). However, it does not correspond to the expression furnished in Ref.53, although a similar approach 
was implemented. Furthermore, in Ref.52 the NPG limit, δ ≪ � , of (23) was derived: in this case the Eq. (4) 
corresponds to the Fourier transform of the MP.

In the SOM it is shown that the two last integrals appearing in Eq. (12) can be safely neglected for pulses 
interspacing � � 2δ , leading to the more clear and manageable formula

The previous equation constitutes one of the central results of our work, as it can be considered the natural 
extension of the celebrated Stejskal–Tanner expression to the domain of anomalous diffusion. Notice, indeed, 
how the Stejskal–Tanner relation is recovered in case of Brownian diffusion, i.e. α = 1.

We will make use of Eq. (24) to fit synthetic NMR signals from anomalous diffusing systems.

Fractional Brownian motion.  The Fractional Brownian motion (FBM) represents a paradigmatic model 
for systems satisfying the hypothesis (6) and (7) and displaying anomalous diffusion on the score of persistent 
non-Markovian effects65. Moreover, being a Gaussian stationary process, it satisfies the hypotheses (6)–(7). The 
stochastic equation for the velocity is

where the fractional Gaussian noise satisfies �ξFBM(t)� = 0 and �ξFBM(t)ξFBM(t′)� = H(2H − 1)K
∣

∣t − t ′
∣

∣

2H−2 . 
K is a positive constant, H is the Hurst exponent, 0 < H < 1 and a comparison with Eq. (19) gives α = 2H and 
Dα = K

2 .
We have generated synthetic DW-NMR signals from large ensembles of stochastic FBM trajectories, for dif-

ferent values of K, H, δ and g. The procedure used is detailed in the “Methods” section. Furthermore, we have 
fitted the numerical curves with the anomalous diffusion formula (24), in order to test the reliability and the 
robustness of our theoretical framework. The results are displayed in Fig. 2b and Supplementary Fig.S6 (see SOM) 
and reported in Table 2, where the discrepancy between the couple of α and Dα fitted and those implemented in 
the simulations is shown to be ≤ 5%.

Checking the assumptions: model’s discriminative power
In this section we test the discriminative power of our model, namely, the capability to discern processes that may 
diffuse normal or anomalous, but do not meet the criteria in Eqs. (6) and (7). It is crucial, indeed, that the use of 
the formula (22) and (24) is limited to Gaussian processes with stationary increments, otherwise the values of 

(23)ln
S(�)

S(0)
= − γ 2g2Dα

(α + 1)(α + 2)

[

(�+ δ)α+2 + (�− δ)α+2 − 2�α+2 − 2δα+2

]

,

(24)ln
S(�)

S(0)
≃ −γ 2g2δ2Dα

[

�α − 2δα

(α + 1)(α + 2)

]

.

(25)v(t) = ξFBM(t),

Table 1.   Fit parameters of the synthetic curves obtained from BM trajectories.

δ (s) g (T/m)
Exact D (m2/
s) Fitted D (m2/s) Exact ζ  (s−1) Fitted ζ  (s−1) D error (%) ζ  error (%)

0.005 0.01 2× 10−9 2.010227× 10−9 ± 1.40× 10−13 20.0 20.30564± 0.01309 0.51% 1.53%

0.010 0.01 2× 10−9 2.013836× 10−9 ± 0.43× 10−13 20.0 19.91906± 0.00383 0.69% 0.40%

0.010 0.02 2× 10−9 2.033644× 10−9 ± 8.38× 10−13 20.0 19.07904± 0.06802 1.68% 4.60%
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the fitted parameters may turn out to be biased and/or erroneous. We check this hypothesis by simulating NMR 
attenuation signals from stochastic systems that violate one or both the requirements (6) and (7).

The first case of study is the Brownian yet non-Gaussian diffusion. This expression tends to comprehend 
a large class of biological, soft, and active matter systems that exhibit normal diffusive dynamics with a non-
Gaussian distribution of increments, thus violating the hypothesis (7). Several mathematical models have been 
introduced to reproduce this peculiar diffusion dynamics, whose most prominent examples are certainly the 
superstatistical BM66 and the diffusing diffusivities model79,80. In our study we implement the numerical simula-
tion of stochastic trajectories based on the superstatistical (SS) model. This consists in integrating an overdamped 
version of the Langevin equation (20), i.e.

with �ξSS� = 0 , �ξSS(t)ξSS(t′)� = 2Dδ(t − t ′) and D the diffusion coefficient. However the value of D is not con-
stant for all trajectories, but it can assume any value drawn from a specific distribution P(D). We chose two 
types of P(D): a Gamma and a Gaussian distribution, the first with a scale parameter θ = 2× 10−9 m2 s−1 
and shape parameter k = 0.5, 1.5 and the second with mean D∗ = 2× 10−9 m2 s−1 and standard deviation 
σD = 10−10 m2 s−1 . In the “Methods” section we clarify the numerical details of our procedure for generat-
ing the NMR signals from the stochastic trajectories achieved through the SS model. The results are shown in 
Fig. 3a. The first striking observation is that the signal does not show a linear trend, as instead one would expect 
for Brownian diffusing physical systems. In particular this appears clear when P(D) is a Gamma distribution 
function. Hence one could erroneously conclude that the relevant formula to use is the (24), with a complete 
misguided interpretation of the anomalous nature of the stochastic process (see Table 3). Additionally, when the 
linear behavior is respected, as in the case of P(D) Gaussian, the fitted value of D is close enough to the mean D∗ 
(as long as σD is small), thus leading to the wrong conviction that the process is Brownian (see Table 2).

(26)v(t) = ξSS(t),

Figure 3.   Panel (a) Superstatistical echo amplitudes. Main panel: comparison between different synthetic 
NMR signals obtained from SS trajectories (symbols) with a Gamma ( θ = 2× 10−9 m2 s−1 and k = 0.5 ) and 
a Gaussian ( D∗ = 2× 10−9 m2 s−1 and σD = 10−10 m2 s−1 ). PDFs and fitting curves obtained from Eq. (24) 
(dashed curves). The signals are obtained with a gradient g = 0.01 T/m. Inset: trend of the derivative of the 
logarithm of the normalized DW-NMR signals shown in the main plot. Panel (b) CTRW echo amplitudes. Main 
plot: comparison between different synthetic NMR signals obtained from CTRW trajectories (symbols) and 
fitting curves obtained from Eq. (24) (dashed curves). The signals are obtained with a gradient g = 0.02 T/m. 
Inset: trend of the derivative of the logarithm of the normalized NMR signals shown in the main plot.
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To substantiate further this finding, we have simulated another type of non-Gaussian linearly diffusing system, 
i.e. the Variance Gamma process, obtaining the same erroneous conclusions. This is plainly described in the SOM 
(see also Supplementary Fig. S5 and Table 5).

The second case addressed concerns a model for anomalous diffusing systems which satisfies none of the 
hypotheses (6) and (7). The continuous-time random-walk (CTRW) model36,46,81 is a pure stochastic jump 

Table 2.   Fit parameters of the synthetic curves obtained from FBM trajectories.

δ (s) g (T/m)
Exact 
Dα = K

2
(m2/sα] Fitted Dα(m

2/sα] Exact α = 2H Fitted α Dα error (%) α error (%)

0.001 0.01 2× 10−9 1.96133× 10−9 ± 11.7× 10−13 0.5 0.477207± 3.45× 10−4 1.93% 4.56%

0.02 0.01 2× 10−9 1.99011× 10−9 ± 7.5× 10−13 0.5 0.496056± 3.40× 10−4 0.80% 1.65%

0.02 0.02 2× 10−9 2.08086× 10−9 ± 24.57× 10−12 0.5 0.519624± 7.01× 10−4 3.92% 3.09%

0.005 0.04 2× 10−9 2.01488× 10−9 ± 5.6× 10−13 0.5 0.500618± 3.12× 10−4 1.14% 4.02%

0.03 0.01 2× 10−9 1.98559× 10−9 ± 2.29× 10−12 0.7 0.699299± 6.80× 10−4 0.72% 0.10%

0.02 0.01 1.5× 10−9 1.48289× 10−9 ± 3.1× 10−13 1.2 1.194670± 1.07× 10−4 1.14% 0.44%

0.005 0.04 1.5× 10−9 1.48345× 10−9 ± 1.4× 10−13 1.2 1.194503± 9.3× 10−5 0.57% 0.14%

0.03 0.01 8× 10−10 8.0741× 10−10 ± 4.2× 10−13 0.8 0.805499± 2.91× 10−4 0.93% 0.69%

0.005 0.01 8× 10−10 8.0080× 10−10 ± 4× 10−14 0.7 0.698734± 4.9× 10−5 0.10% 0.18%

0.003 0.01 1.5× 10−9 1.50691× 10−9 ± 1.3× 10−13 0.7 0.701762± 9.1× 10−5 0.46% 0.25%

Figure 4.   Model’s discriminative power. Panel (a) behavior of the logarithm of the normalized DW-NMR signal 
divided by g2 as a function of � , obtained from synthetic NMR signals of BM and SS model at two different 
g. We used a Gamma distribution as P(D) with θ = 2× 10−9 m2 s−1 and k = 0.5 . The other parameters are: 
D = 2× 10−9 m2 s−1 and δ = 0.01 s. Panel (b) behavior of the same quantity as in panel (a), obtained from 
synthetic NMR signals of FBM and CTRW with α = 0.5 , Dα = 2× 10−9 m2 s−α and δ = 0.01 s. The different 
gradient rescaling of the curves is apparent and it is due to the fact that BM and FBM are based on Gaussian 
processes satisfying (6) and (7), while SS and CTRW are not.
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process, with jumps and waiting times that are uncorrelated and Markovian. For this system an equation like Eq. 
(2) can not be drawn and, therefore, a velocity does not have any meaning. In the “Methods” section it is plainly 
illustrated the numerical method to generate CTRW stochastic subdiffusive trajectories. The reconstructed DW-
NMR attenuations for several values of g, δ , α and Dα are shown in Fig. 3b and Supplementary Fig.S7 (see SOM). 
In Table 5 the parameters enforced in the simulations and the corresponding fitted values upon the formula (24) 
are reported. As in the case of the SS previously discussed, the fitting curves (dashed lines in Fig. 3 and Supple-
mentary Fig.S7) seem to describe very well the numerical data. However, the inferred values of the anomalous 
parameters are dramatically divergent from the correct ones (see the values reported in Table 5).

We can now assert that our initial hypothesis is correct: although the fit appears to work well, the estimated 
parameters are wrong. They are erroneous because they have been quantified using a parametric data fit function 
that is not relevant for the type of microscopic molecular diffusion scrutinized. As stressed at the beginning of 
this section, this observation is at the core of the question of the model discriminative power.

To illustrate this crucial point, let us take the experimentalist perspective. Imagine having either a linear or 
non-linear NMR attenuation signal like those displayed in Figs. 2, or 3, without any prior knowledge about the 
hidden microscopical mechanisms that led to it. Applying the fitting formula (22) or (24) would give an excellent 
agreement between the theoretical curve and the experimental data. However, owing to the examples discussed 
above, how can we trust the estimates of these parameters? How can we be sure that the formula we are adopting 
is relevant for the system under consideration? The answer is implicit in the expressions (22) and (24).

At first instance, let us suppose to perform a couple of distinct experiments characterized by two gradient 
fields g1 and g2 , keeping the value of δ unvaried. If the ensuing NMR attenuations ln S1(�)

S1(0)
 and ln S2(�)

S2(0)
 are of the 

form (22) or (24), namely the experimental system satisfies the hypothesis (6) and (7), therefore the rescaled 
functions 1

g21
ln S1(�)

S1(0)
 and 1

g22
ln S2(�)

S2(0)
 should collapse on top of each other. In the opposite case, the rescaled signals 

would appear well separated. This is indeed what can be seen in Fig. 4. Gaussian processes with stationary incre-
ments, such as BM of FBM, exhibit the expected collapse, while attenuations arising from SS or CTRW processes 

Table 3.   Fit parameters of the synthetic curves obtained from SS trajectories obtained using a Gamma 
distribution with k = 0.5 and a Gaussian distribution with σD = 10−10m2/s.

δ (s) g (T/m) �D� = kθ(m2/s) Fitted Dα(m
2/sα) Exact α Fitted α

0.01 0.01 1× 10−9 7.01043× 10−10 ± 1.194× 10−12 1.0 0.84871± 0.00161

0.02 0.01 1× 10−9 3.99161× 10−10 ± 1.204× 10−12 1.0 0.66751± 0.00299

0.003 0.01 1× 10−9 7.04554× 10−10 ± 1.440× 10−12 1.0 0.86612± 0.00184

0.005 0.01 1× 10−9 8.96327× 10−10 ± 6.18× 10−13 1.0 0.93906± 0.00066

δ (s) g (T/m) D∗(m2/sα ] Fitted Dα(m
2/sα ] Exact α Fitted α

0.01 0.01 2× 10−9 2.002813× 10−9 ± 2.35× 10−13 1.0 0.99741± 0.00011

Table 4.   Fit parameters of the synthetic curves obtained from VGP trajectories.

δ (s) g (T/m) Exact D = σ 2

2
(m2/s] Fitted D(m2/s) D error (%) Fitted ζ(s−1]

0.01 0.02 2× 10−9 6.7167× 10−10 ± 3.1× 10−13 66.41% 7.1× 105 ± 1.2× 108

0.02 0.02 2× 10−9 2.8797× 10−10 ± 3.9× 10−13 85.60% 3.5× 105 ± 8.3× 107

0.03 0.02 2× 10−9 1.6233× 10−10 ± 4.3× 10−13 91.84% 2.4× 105 ± 7.1× 107

0.03 0.02 1.5× 10−9 1.5191× 10−10 ± 3.4× 10−13 89.87% 2.4× 105 ± 6.1× 107

0.003 0.02 2× 10−9 1.61876× 10−9 ± 5.8× 10−13 19.06% 2.4× 105 ± 9.9× 108

0.003 0.02 1.5× 10−9 1.29447× 10−9 ± 1.6× 10−13 13.70% 552× 105 ± 12

Table 5.   Fit parameters of the synthetic curves obtained from CTRW trajectories.

δ (s) g (T/m)
Exact 
Dα(m

2/sα] Fitted Dα[m
2/sα] Exact α Fitted α Dα error (%) α error (%)

0.01 0.02 2× 10−9 7.7751× 10−10 ± 6× 10−14 0.5 0.308098± 1.90× 10−4 61.12% 38.38%

0.02 0.02 2× 10−9 4.3879× 10−10 ± 2.3× 10−13 0.5 0.114993± 1.04× 10−4 78.06% 77%

0.03 0.02 2× 10−9 4.9302635× 10−7 ± 4.6619492× 10−7 0.7 5.3× 10−5 ± 5× 10−5 24551% 100%

0.003 0.02 2× 10−9 1.71476× 10−9 ± 1.6× 10−13 0.5 0.536484± 1.0× 10−4 14.26% 7.30%

0.003 0.02 2× 10−9 1.84380× 10−9 ± 1.0× 10−13 0.7 0.714850± 5× 10−5 7.81% 2.12%
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do not. This finding clearly evidences that fourth (kurtosis) and higher cumulants cannot be neglected in the 
expansion (5).

Let us now consider the case of two experiments conducted using the same value of g, but with two different 
pulses δ1 and δ2 . By rescaling the NMR attenuation signals as 1

δ2
ln S(�)

S(0)  , one immediately sees that the function

must be independent of � for Gaussian processes with stationary increments. This is exactly what we found when 
analyzing the BM or FBM curves as in Fig. 5. The situation, however, changes considerably when we analyze 
DW-NMR signals coming from non-Gaussian processes like SS or CTRW. In this case, the quantity (27) exhibits 
a non-linear dependence on � . This gives a sharp criterion to distinguish Gaussian processes with stationary 
increments from any other, where either one of the hypothesis (6)–(7) is violated.

To test effect of the experimental noise on the practicability of these validation rules, we added a Rician noise82 
to the FBM and CTRW synthetic signals reported in Fig. 4. The results are displayed in Supplementary Fig. S9: the 
FBM collapse holds up to a value of �∗ depending on the signal-to-noise ratio (SNR), i.e. larger the noise, lower 
is the collapse bound �∗ . Conversely, CTRW curves appear well separated also in the presence of strong SNR.

We stress that the methodological questions raised in this section have a validity that extends beyond the 
PFG-type of experiments. The MGSE method, for example, has been developed under the same assumptions of 
Gaussianity and stationarity of increments18,68,70,71,75. Hence, before applying any fitting formula derived according 
to a precise model of molecular diffusion, a good practice would be to ascertain whether both such a model and 
the physical process generating the DW-NMR signals, fulfil the hypothesis (6) and (7). By instance, in Ref.32 the 
subdiffusion of tetrafluoromethane inside the AlPO4 -5 zeolite channels was detected and analyzed. The formula 
(22) was used to characterize the self-diffusion molecular MSD arising from the DW-NMR signal, assuming 
the validity of the NPG approximation. This was possible thanks to the fact that the single-file model was right-
fully considered the physical model relevant for the tetrafluoromethane diffusion inside the zeolite channels. 

(27)f (δ1, δ2) = (γ g)−2

[

1

δ21
ln

S1(�)

S1(0)
− 1

δ22
ln

S2(�)

S2(0)

]

Figure 5.   Model’s discriminative power. Panel (a) behavior of the f (δ1, δ2) Eq. (27) as a function of � , 
obtained from synthetic DW-NMR signals of BM and SS at different δ , D = 2× 10−9 m2 s−1 and g = 0.01 
T/m. We used a Gamma distribution as PDF with θ = 2× 10−9 m2 s−1 and k = 0.5 . Panel (b) behavior of the 
same quantity as in panel (a), obtained from synthetic DW-NMR signals of FBM and CTRW with α = 0.5 , 
Dα = 2× 10−9 m2 s−α and the same g as in panel (a) . The deviation from the Gaussian stationary signal is well 
visible.
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As a matter of fact, molecular dynamics in single-file systems is known to be a clear example of FBM74,83. Yet, 
in Ref.33 evidence of anomalous diffusion, and transitional behavior among two distinct regimes, was provided 
for the segmental displacement in a monodisperse polystyrene polymer solution. Also in this case, within the 
NPG approximation, the formula used was (22), as the models considered for the polymer dynamics, were both 
giving rise to FBM, i.e. the Schweizer generalized Langevin equation model84, and the Doi–Edwards–deGennes 
model for reptation74,85,86.

PFG NMR signal for the superstatistical model for Brownian yet non‑Gaussian 
diffusion
The rescaling procedures of the DW-NMR signals define, without a doubt, whether the subtending stochastic 
process is Gaussian and with stationary increments or it is not. However, the case of signal rescaling failure does 
not reveal the nature of the process yielding to it, neither the correct formula to use to fit. As a matter of fact, 
any model of diffusion generates a different fitting formula which stems from the Eq. (4). In general, devising 
this expression is not an easy task.

The case of the SS model for Brownian yet non-Gaussian diffusion represents an exception. This case is 
treatable because the arising signal is just the Stejskal–Tanner formula, averaged over the diffusion distribution 
function P(D). The way the DW-NMR formula for SS model are derived is straightforward and is reported in 
the “Methods” section. We hereby report the fitting formula in case of Gamma and Gaussian P(D) respectively. 
The DW-NMR for Gamma distributed diffusion coefficient is given by

where k and θ are the shape and scale parameters identifying the Gamma distribution function, and 
b = γ 2g2δ2

(

�− δ
3

)

 is the usual b value6.
When P(D) is a Gaussian distribution function of mean D∗ and standard deviation σD , the attenuation signal 

becomes

where a = σD/D∗ and erfc(x) is the complementary error function30.
The fitting formula Eqs. (28) and (29) show that the DW-NMR signals obtained from SS models depend 

uniquely on the b value. Interestingly, this property holds for any choice of P(D), different from (28) or (29). 
This means that, once plotted against b, signals obtained from different experiments collapse on top of each 
other, as indeed shown in Fig. 6. Once again, the experimentalist point of view comes to our aid. If a number of 
attenuation signals exhibit the linear or non-linear trends in Fig. 3a and fail the checks in Fig. 4a, their collapse 
as a function of b ensures that the are generated by Brownian yet non-Gaussian processes. Therefore the cor-
rect formula to be used are (28), (29) or any other expression drawn from the P(D) according to the very same 
procedure outlined in the “Methods” section. For the sake of completeness, in Supplementary Fig.S5 we show 
that DW-NMR signals obtained from CTRW do not show any collapse as a function of b.

Validation rules: a practical example
The set of checks outlined in the last two sections helps to disclose the nature of the molecular diffusion process 
yielding the DW-NMR signal, and to determine the pertinent parametric function to be used for its analysis. 
We hereby summarize them with the help of the flowchart in Fig. 7.

(28)ln
S(�)

S(0)
= −k ln(1+ bθ),

(29)ln
S(�)

S(0)
=

(

− D∗b+
1

2
a2D2

∗b
2
)

+ ln
[

erfc
(

− 1√
2a

+ aD∗b√
2

)]

− ln
[

erfc
(

− 1√
2a

)]

,

Figure 6.   SS assessment criterion. Behavior of the synthetic rescaled DW-NMR signals as a function of the 
parameter b = (γ gδ)2(�− δ/3) for SS systems with a Gamma distribution P(D).
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First, the NMR attenuations achieved at different experimental conditions (two distinct PFG pulses dura-
tion δ1 and δ2 , or two distinct gradient strengths g1 and g2 ) must be rescaled as in Figs. 4 or 5. In case of curves 
collapse, the derivative of the signal must be performed. If the derivative is constant, the parametric function 
to use is that reported in Eq. (22), in the opposite case the anomalous expression reported in Eq. (24) applies. If 
the NMR signals rescaled according to Figs. 4 or 5 do not collapse on top of each other, they can be plotted as a 
function of b as in Fig. 6. If they show a satisfactory collapse, the formula (28) or (29) are the correct parametric 
functions for fitting the experimental PFG data. Otherwise, new formulas valid for different (anomalous) dif-
fusion processes, accompanied by new validation rules, must be devised. For instance, the validation rules for 
CTRW-like processes will be the subject of a forthcoming investigation.

Let us try the chain of validation rules on a practical example. In panel (a) of Fig. 8 three different signals of 
diffusing protons in free water are provided, obtained using a PFG-type acquisition sequence at various values of 
the gradient strength g. The rescaling of the curves as in Fig. 4 is respected and the derivative is constant. Hence 
the fit achieved through the use (22) is correct and the fitting parameters are reported inside the caption. Panel 
(b) shows the experimental DW-signal outcomes, hailing from water diffusion inside disordered heterogene-
ous systems composed by a mixture of 6 µ m, 10 µ m and 40 µ m polystyrene micro-beads with a 55% sphere 
packing37,39. In this case, the absence of collapse among the curves, achieved at different g after proper rescaling, 
highlights that the parametric fit function (24) cannot be used. Hence we try to replot the curves as a function of 
the b value (see the inset), but the collapse is not solid. We can conclude that the physical diffusive process giv-
ing rise to the signals in panel (b) is not even Brownian yet no-Gaussian. At this stage of our analysis we cannot 
conclude much more about the true nature of the process, neither about the right formula to fit the DW-NMR 
data. The details of both the experimental setups are provided in the “Methods” section.

Conclusions
We have furnished a comprehensive theory of the diffusion NMR attenuation signals, under the Gaussian 
approximation in cumulant expansion. We have shown that PFG constitutes an excellent experimental method 
to probe the molecular velocity autocorrelation properties. This is particularly compelling for systems exhibit-
ing persistent long-standing memory effects. Indeed, opposite to previous theories that made use of MGSE to 
infer the low-frequency part of the velocity spectrum17,68,69, we adopted the PFG sequences to ascertain the long 
time behavior of the velocity autocorrelation function. In particular, for power-law behavior such that in Eq. 
(19) we demonstrated that a non-linear decay of the logarithm of the signal is to be expected, corresponding to 
a stretched-exponential (KWW) attenuation. In turn, this represents the signature of anomalous diffusion, as 
compactly expressed in the Eq. (16).

When applied to BM, our theory provides the final expression for the Stejskal–Tanner formula, including 
the corrections due to the interplay between the three times scales characterizing the process, � , δ and ζ−1 . 
Most importantly, in the case of anomalous diffusion, the fitting formula (24) is presented here for the first time, 
although similar approaches were proposed in the past. It represents an excellent tool for both the classifica-
tion and the prediction of the PFG signal decay, as we have shown by testing it on synthetic signals from FBM 

Figure 7.   Flowchart of validation rules. The sequence of validation rules are summarized in this flowchart.
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trajectories. The same agreement is expected to hold for any Gaussian system with stationary increments, such 
as those governed by generalized Langevin equation, fractional Langevin equation or, in general, generalized 
fractional Langevin equation87. Moreover, we stress that our results are not only valid in the NPG limit, but they 
hold in any practical condition as well, such as those in clinical NMR scanners where the gradient pulse width 
δ of PFG is usually comparable to � duration. However, we did not restrict our analysis to the illustration of 
the model’s capability to describe Gaussian processes with stationary increments. A fundamental aspect of our 
theory consisted in the exact determination of the limits of its application, showing the potential of committing 
substantial errors in the diffusion parameters estimation, notwithstanding the apparent agreement between fit-
ting parametric functions and DW-attenuation data. Flagrant evidence is furnished in Fig. 3a, where a process 
that is Brownian but not Gaussian, may generate stretched exponential echos amplitudes. Hence, it appears clear 
how the appraisal of the correct formula to use, and in which conditions it must be used, constitutes the essential 
question for the correct interpretation of the DW-NMR amplitudes. Therefore, it is of fundamental importance to 
provide the NMR scientist’s toolkit with the sequence of validation rules ready to be implemented. In this article 
we sketched the first ones, defining, at the same time, a modus operandi valid for the next.

The chain of validation rules constitutes, to our advice, the most efficient and costless way of determining the 
type of diffusion and the microscopic model for its correct interpretation. Our theoretical framework is entirely 
built on the analysis of the � dependence of the DW-NMR signal. Nothing prevents, however, to gain insights 
by probing its g dependence, as shown by checking the Gaussianity assumption by the g2 rescaling. In future, 
we expect that validation rules for more complex diffusive scenario will involve both time and magnetic field 

Figure 8.   Experimental curve rescaling. DW-NMR signals of water diffusion coming from two different 
experiments are rescaled according to Fig. 5 (see “Methods”). Panel (a) diffusion of water inside water. 
The rescaled curve obtained at different values of the pulse field gradient strengths g, makes it possible to 
use the Stejskal–Tanner formula (22). The fitted values of D are D = 2.1× 10−9 m2/s for g = 0.064 T/m, 
D = 2.0× 10−9m2/s for g = 0.089 T/m and D = 2.1× 10−9m2/s for g = 0.127 T/m with an error of 
about 10−12 in all cases. The ζ values are of order of 105 , meaning that the NPG approximation holds in this 
case δζ ≫ 1 . Panel (b) DW-NMR attenuation signals of water molecules diffusing in samples filled up with 
polystyrene microbeads mixture with nominal average diameters of 6, 10, 40 µm37,39. Symbols refer to the values 
of g in Panel (a). The lack of collapse between the rescaled curves does not allow the use of the anomalous 
expression (24) for fitting. Inset: the same DW-NMR attenuation signals of panel (b) are plotted versus b value, 
showing a no solid rescaling.
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dependence of S(t)/S(0). For instance, a viable validation rule for the appearance of the localization regime in 
bounded diffusion systems could be the rescaling of the attenuation signal by g2/357,58,63,64.

At last, we want to draw the reader’s attention to an innovative aspect of our analysis, somehow implicit in 
the previous discussion. The question of the correct choice of a microscopical model has been recognized to 
be a crucial issue, for systems displaying anomalous diffusion88–90. Different models may produce the law (18), 
although the mechanisms subtending the non-linear diffusion are completely different. This is the case, for 
instance, of FBM and CTRW as shown in Figs. 2b and 3b. Therefore, assessing the right model provides fun-
damental insights into the microscopical origins of the anomalous transport. Moreover, these considerations 
extends also to normal diffusing systems, that exhibit linear MSD although the MP is not Gaussian, i.e. the class 
of mathematical models which go under the name of Brownian yet non-Gaussian diffusion66. In our analysis we 
addressed the case of one of these models, i.e. the superstatistical model. So far, the only methods available to 
discern among (anomalous) diffusion models were limited to the realm of single particle tracking89,91, with the 
obvious drawback that a very large number of trajectories are needed to reach a satisfactory reliable assessment, 
and only in-vitro experiments can be conducted. In this study we have provided, for the first time, the theoreti-
cal evidence that the NMR using PFG sequences may constitute a very sensitive non-invasive tool, generating a 
well defined chain of validation rules sifting for the correct model of (anomalous) diffusion. This question is all 
the more timely since, in the last decade, with improved microscopy imaging and tracking methods, it became 
clear that a single trajectory exhibits spatial and temporal heterogeneity, and the picture of a constant anomalous 
exponent and/or a constant generalized diffusion coefficient is not tenable92–95. The complete characterization 
of echo amplitudes generated by non-Gaussian anomalous diffusing processes such as CTRW fractional motion 
(FM)48, or different models of Brownian yet no-Gaussian diffusion such as diffusing diffusivity models79,80, will be 
the subject of forthcoming publications. However, this study constitutes the first conceptual step toward the use 
of NMR as a experimental tool for characterizing different diffusive processes, and their microscopical origins.

Methods
Calculation of NMR PFG signal attenuation: velocity autocorrelation function.  The derivation 
of Eqs. (22) and (23) is hereby sketched, the full theory is reported in SOM. First, we must calculate the time 
integral of F(t)F(t − s) and its dependence on s. As F(t) is

it turns out that only few values of s guarantee that the product F(t)F(t − s) is different than 0 (see the graphical 
representation in Supplementary Fig. S2 in the SOM). In particular the product vanishes for s > �+ δ and is 
non zero in four separate s-intervals [0, δ] , [δ,�− δ] , [�− δ,�] , [�,�+ δ] . Performing the integrals in each 
interval (see Supplementary Eqs. (S4)–(S7) in the SOM) we obtain the result (12). The Eq. (22) for BM can be 
derived integrating respect to s and using the velocity autocorrelation function C(s) = kBTe

−ζ s . In the same 
way the result in Eq. (23) can be obtained using C(s) ∼ α(α − 1)Dαs

α−2 and assuming δ large enough to ensure 
∫ δ

0 ds C(s) → αDαδ
α−1 (see SOM).

Monte Carlo simulations.  BM.  BM trajectories have been simulated integrating the Langevin equation 
with a time step dt = 10−3 s. We simulated an ensemble of Nt = 105 trajectories for different values diffusion 
coefficient D reported in Table 1 of the SOM.

FBM.  FBM trajectories have been simulated using the Davies–Harte method96 with a time step dt = 10−3 s. 
We simulated an ensemble of Nt = 105 trajectories for different values of generalized diffusion coefficient Dα and 
anomalous exponent α reported in Table 2 of the SOM.

SS.  SS trajectories have been simulated by the same protocol of the BM trajectories. In each trajectory we used 
a different diffusion coefficient D extracted from a probability density function p(D).

CTRW​.  We simulated the CTRW dynamics following the method in Ref.97; we generated the sequences of inde-
pendent and identically distributed waiting times and jumps starting from two independent uniform random 
numbers ∈ (0, 1) and using the two transformations due to Chambers et al.98 and Kozubowski and Rachev99. The 
jump sequences thus obtained are characterized by a symmetric Lévy α-stable probability density and a length 
parameter γx , while the waiting times sequences are determinated by the β parameter of the Mittag-Leffler 
probability density and a time parameter γt . As we simulate only subdiffusive motion, the jumps are drawn 
from a Gaussian distribution. The γx and γt quantity are connected to the generalized diffusion coefficient Dα by 
the relation Dα = γ 2

x /[γ
β
t Ŵ(1+ β)] , where Ŵ(x) is the gamma function. We performed Nt = 5× 104 CTRW 

Monte Carlo simulations using Dα = 2× 10−9 m2 s−1 and γt = 10−4 s. We sampled the trajectories with a time 
step dt = 10−5 s.

Synthetic NMR signal.  A way to obtain a synthetic NMR signal consists in simulating a representative 
set of trajectories r(t) , calculating the acquired dephasing φ(t) = γ

∫ t
0 dt

′
r(t′) · G(t ′) for each trajectory and 

obtaining the free induction decay (FID) S/S(0) = E{eiφ} by means of an average of the simulated outcomes100. 

(30)F(t) =



















0 0 < t < t1
g(t − t1) t1 < t < t1 + δ
gδ t1 + δ < t < t1 +�
g(t1 +�+ δ − t) t1 +� < t < t1 +�+ δ
0 t > t1 +�+ δ,
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In particular to create the NMR signal we utilized the PFG sequence1 with bipolar diffusion gradient pulses of 
constant amplitude g that are turned on during the time interval [t1, t1 + δ] and [t1 +�, t1 +�+ δ] (see Fig. 1 
in the main text and Supplementary Fig. S1 in the SOM). We used t1 = 0.005 s.

PFG NMR signal for the superstatistical model of Brownian yet non‑Gaussian diffusion.  In 
systems with Brownian yet non-Gaussian diffusion the peculiar behavior emerges due to the fact that different 
particles, located in different environments, are characterized by different transport properties . Defining p(D) 
the distribution of the local diffusivities, the rescaled NMR signal is given by

In particular if p(D), with D ≥ 0 , is a normalized Gamma distribution with parameters k and θ the above 
expression becomes

where Ŵ(k) is the Gamma function and b = γ 2g2δ2
(

�− δ
3

)

.
Defining u = D

(

b+ 1
θ

)

 we have

and using the definition of the Gamma function we obtain

If, on the other hand, p(D), with D ≥ 0 , is a normalized Gaussian function with mean equal to D∗ and variance 
σD the rescaled NMR signal is given by

with erfc(x) is the complementary error function. Defining y = D−D∗+σ 2
d b

σd
 we have

with c = σ 2
Db−D∗
σD

 . If a = σD/D∗ we have the final expression for the rescaled NMR signal

Experimental methods.  NMR diffusion measurements were performed on a Bruker Avance system, 
operating at 9.4 T with a micro-imaging probe (10 mm internal diameter bore) and equipped with a gradient 
unit characterized by maximum magnetic field gradient strength of 1.2 T/m , and a rise time of 100 µ s. The tem-
perature of each sample was fixed at 291 K. A spectroscopic pulsed gradient stimulated echo (PGSTE)101 with δ 
= 4.4 ms and 2.2 ms, g = 0.064, 0.089 and 0.12 T/m along the x-axis, repetition time TR = 5000 ms, number of 
averaged signals NSA = 32, and 48 values of � in the range 10–1000 ms was used to collect data.

One sample was carried out using equal volume fractions of polystyrene micro-beads (Microbeads AS, Nor-
way) with nominal average diameters of 40 µ m, 10 µ m, and 6 µ m mixed inside a 10 mm NMR tube filled up to 
a volume of approximately 2 cm3 with a solution of polyoxyethylene-sorbitan-mono-laurate (Tween 20) 10−6 M 
and deionized water. The sample was investigated four months after its preparation. Moreover, one NMR tube 
filled up with free water was also analyzed with δ = 2.2 ms and g = 0.089 and 0.12 T/m along the x-axis .

(31)
S(t)

S(0)
=

∫ ∞

0
exp

[

− γ 2g2δ2D
(

�− δ

3

)]

p(D)dD.

(32)

S(t)

S(0)
= 1

Ŵ(k)θk

∫ ∞

0
exp

[

− γ 2g2δ2D
(

�− δ

3

)]

Dk−1 exp
(

− D

θ

)

dD

= 1

Ŵ(k)θk

∫ ∞

0
Dk−1 exp

[

− D
(

b+ 1

θ

)]

dD,

(33)
S(t)

S(0)
= 1

Ŵ(k)θk

∫ ∞

0

uk−1e−u

(

b+ 1
θ

)k
du,

(34)
S(t)

S(0)
= 1

θk

1
(

b+ 1
θ

)k
.

(35)
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S(0)
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√

2

π

1

σD · erfc[−D∗/(
√
2σD)]

∫ ∞

0
exp

[

− (D − D∗)2

2σ 2
D

]

exp(−bD)dD

=
√

2

π

1

σD · erfc[−D∗/(
√
2σD)]

∫ ∞

0
exp

[
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DbD

2σ 2
D

]

dD

=
√

2

π

1
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√
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(36)
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√

2
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1
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2σ 2
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∫ ∞

c
exp
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(37)S(t)
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= exp
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1

2
a2D2
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2
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− 1√
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 Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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