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A B S T R A C T   

Alzheimer’s disease (AD) is determined by various pathophysiological mechanisms starting 10–25 years before 
the onset of clinical symptoms. As multiple functionally interconnected molecular/cellular pathways appear 
disrupted in AD, the exploitation of high-throughput unbiased omics sciences is critical to elucidating the precise 
pathogenesis of AD. Among different omics, metabolomics is a fast-growing discipline allowing for the simul
taneous detection and quantification of hundreds/thousands of perturbed metabolites in tissues or biofluids, 
reproducing the fluctuations of multiple networks affected by a disease. Here, we seek to critically depict the 
main metabolomics methodologies with the aim of identifying new potential AD biomarkers and further eluci
dating AD pathophysiological mechanisms. From a systems biology perspective, as metabolic alterations can 
occur before the development of clinical signs, metabolomics – coupled with existing accessible biomarkers used 
for AD screening and diagnosis – can support early disease diagnosis and help develop individualized treatment 
plans. Presently, the majority of metabolomic analyses emphasized that lipid metabolism is the most consistently 
altered pathway in AD pathogenesis. The possibility that metabolomics may reveal crucial steps in AD patho
genesis is undermined by the difficulty in discriminating between the causal or epiphenomenal or compensatory 
nature of metabolic findings.   

1. Introduction 

In recent decades, scientists have undertaken extensive molecular 
characterization of the pathophysiological processes of Alzheimer’s 
disease (AD), a complex and progressive neurodegenerative disease. 
Primary pathophysiological hallmarks of AD include the formation of 
extracellular amyloid β (Aβ) plaques (Guo et al., 2020), resulting from 
the aggregation of Aβ peptides that have been generated by the protease 
cleavage of the type I transmembrane amyloid precursor protein (APP) 
(Deyts et al., 2016); and the development of intraneuronal neurofibril
lary tangles (NFTs) (Guo et al., 2020) resulting from the aggregation of 
tau proteins that are aberrantly hyperphosphorylated (p-tau) at multiple 
amino acid sites in several cortical brain regions (Neddens et al., 2018). 

Aβ plaques initially develop in higher order neocortical regions and, 
subsequently, progress to the limbic system, subcortical nuclei, and 
arrive at primary sensorimotor cortex and the cerebellum at late stages 
of the disease (Thal et al., 2002). Tau pathology manifests as NFTs and 
neuropil threads and primarily accumulates in the entorhinal region, 
subsequently progressing to the limbic system and neocortical regions, 
as reflected by NFTs Braak stages (Braak et al., 2006). Notably, Aβ 
plaques deposition is assumed to precede and support the spreading of 
neocortical tau pathology, driving, in turn, neurodegeneration and 
cognitive deterioration (Jack and Holtzman, 2013). Several lines of 
evidence indicate the presence of Aβ deposition as prerequisite for the 
subsequent development of tau pathology in AD (Long and Holtzman, 
2019). 

Despite the general consensus that brain Aβ overaccumulation and p- 
tau formation are major suspects for driving AD pathogenesis, phar
macological treatments targeting Aβ deposition and p-tau have not been 
proven to be effective, therefore suggesting the existence of additional 
and alternative molecular players (Kent et al., 2020). 

Notably, substantial evidence highlights that the complexity of AD is 
determined by an extensive list of pathophysiological mechanisms – 
beyond the acknowledged brain Aβ overaccumulation and tau pathol
ogy – that can present a minimum of 10–25 years prior to the appear
ance of the disease clinical signs (Jack et al., 2013). These can include, 
among others, synaptic dysfunction and loss (Camporesi et al., 2020; 

Colom-Cadena et al., 2020), immune response and inflammation (Kin
ney et al., 2018; Webers et al., 2020), lipid dyshomeostasis (Chew et al., 
2020; Yin, 2023), altered energy metabolism and disturbed mitochon
drial activity (Flannery and Trushina, 2019; Mi et al., 2021; Song et al., 
2021; Wang et al., 2020), oxidative stress (Butterfield and Boyd-Kimball, 
2018; Ionescu-Tucker and Cotman, 2021; Plascencia-Villa and Perry, 
2021), dysfunctional glucose metabolism (Butterfield and Halliwell, 
2019; Wang et al., 2022), Ca2+ dyshomeostasis (Cascella and Cecchi, 
2021; Groblewska et al., 2015), dysregulation of cellular trafficking, 
involving autophagy and endo-lysosomal degradation pathways (Cao 
et al., 2019; Krance et al., 2022; Lai et al., 2021; Lee et al., 2022) and in 
the complement cascade pathway (Krance et al., 2021), vascular dys
regulation (Iturria-Medina et al., 2016; Sweeney et al., 2019), impaired 
neurovascular coupling (Tarantini et al., 2017; Zhu et al., 2022), reac
tive astrogliosis (Garwood et al., 2017), and alterations in the status of 
some neurotransmitters, including acetylcholine, dopamine, 
gamma-aminobutyric acid (GABA), serotonin, histamine, and N-meth
yl-D-aspartate (Reddy, 2017). 

1.1. Exploring the molecular complexity of Alzheimer’s disease through 
metabolomics 

Based on the extensive number of possible mechanisms contributing 
to or co-occurring with the primary proteopathy of AD, there have been 
many attempts to dissect its molecular heterogeneity. Recently, the 
study of > 1500 transcriptomes conducted along five brain regions in 
two AD cohorts, through an integrative network approach, robustly 
defined three major molecular clusters of AD referring to combinations 
of various dysregulated pathways, including predisposition to tau- 
mediated neurodegeneration, Aβ-pathway-driven neuroinflammation, 
synaptic signaling, immune activity, mitochondrial dysfunction, and 
demyelinating processes (Neff et al., 2021). 

Because it appears that AD disrupts multiple functionally inter
connected molecular/cellular pathways (Kodam et al., 2023), the 
exploratory systems biology framework, exploiting high-throughput 
omics sciences (Castrillo et al., 2018), is critical to better characterize 
the pathogenesis of AD at a network level. This will assist in the iden
tification of biological markers (Aerqin et al., 2022; Hampel et al., 
2021b) supporting the early diagnosis of the disease and the develop
ment of individualized therapeutic plans (Hampel et al., 2023). 1 Both Authors equally contributed to this work. 
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Amid all currently recognized high-throughput omics sciences, 
metabolomics is a fast-growing discipline that simultaneously detects 
and quantifies hundreds of thousands of perturbed metabolites (small 
molecules within a mass range of 50 – 1500 Da) in tissues or biofluids, 
depicting the fluctuations of multiple networks affected by a certain 
disease (Huo et al., 2020). As of April 2023, the Human Metabolome 
Database (HMDB, available at https://hmdb.ca) contains over 220,000 
metabolite entries, including both water-soluble and lipid-soluble me
tabolites. The measured metabolic compounds include both endogenous 
and exogenous molecules, with different chemico-physical properties 
and biological stabilities, that are substrates and products of chemical 
reactions occurring in biological systems (Liu and Locasale, 2017). As 
metabolites undergo a chemical transformation during metabolism, 
metabolite concentration/expression can provide essential readouts of 
the biological status of the system in question (Liu and Locasale, 2017). 
Differently from genes and proteins whose expression and activity are, 
respectively, under the control of epigenetic modulation and 
post-translational modifications, metabolites represent direct molecular 
signatures of biochemical activity; hence, they are highly suitable to be 
correlated with specific phenotypes (Patti et al., 2012) and provide a 
rich substrate for understanding disease pathophysiology. 

Metabolomics primarily inspects polar (i.e., water-soluble) metabo
lites, including amino acids, carbohydrates, organic acids, and nucleo
tides (Liu and Xu, 2018), as well as lipids that, in general, are 
hydrophobic. Some lipids can be amphipathic, i.e., a portion of their 
structure is hydrophilic, while another larger portion is hydrophobic. 
Lipidomics, considered a complementary strategy of metabolomics, 
aims at identifying and quantifying the full complement of lipid classes 
and subclasses (Fahy et al., 2005; Kuo and Tseng, 2018). 

1.2. Metabolomic analyses in various biological matrices: an overview 

Notably, metabolomics-based approaches applied to clinical studies 
of AD and other neurodegenerative diseases can rely on different bio
logical matrices, especially including brain tissues, cerebrospinal fluid 
(CSF), and blood (plasma/serum); this aspect stresses the potential 
clinical efficacy and usefulness of metabolomics (Wilkins and Trushina, 
2018). 

In general, metabolomic analyses performed on human tissues and 
biological fluids enable the detection of disease-associated metabolite 
dissimilarities between cognitively healthy individuals, mild cognitive 
impairment (MCI) individuals, and patients with AD, as predictors of AD 
advancement (Wilkins and Trushina, 2018). The use of diverse biolog
ical matrices and robust technological platforms makes the application 
of metabolomic investigation an important and rigorous tool for un
derstanding AD pathophysiology. 

The biological matrix or tissue type for metabolomics analysis spans 
from individual cells to biofluids, to organ systems. Although CSF has 
the benefit of being continuous with the cerebral extracellular space, 
with a free flow of molecules between brain and CSF, CSF studies are 
affected by the invasive nature of the lumbar puncture, restricting its 
application in clinical practice to few specialized centers (Shaw et al., 
2020). In contrast, blood collected by routine venipuncture procedures 
is very low in invasiveness and involves procedures most adults are 
familiar with. As a result, blood may be more appropriate for remote or 
repeated measurements from patients, both for clinical diagnosis or 
screening purposes as well as for recurrent sampling in clinical trials, 
thus making it more accessible in both low-resource and non-specialist 
sites (Alawode et al., 2021). Traditionally, several metabolites – 
including amino acids, fatty acids, cholesterol, glucose, creatinine, urea, 
uric acid, ammonia, bilirubin, bile acids, among the others – are already 
examined in blood samples delivered to clinical chemistry analysis 
services to provide biomarkers for individual health status (Yin et al., 
2015). Because peripheral blood generally contains metabolites derived 
from all organ systems, blood can be useful as valid source for recurrent 
measurement of central nervous system (CNS)-derived metabolites. 

Since blood-brain barrier (BBB) disruption is associated with aging and 
cognitive impairment during AD progression, BBB shows increased 
permeability leading to intensified communication between brain and 
blood and exchange of metabolites between them (Baird et al., 2015). In 
addition, CSF is absorbed into the blood circulation each day and 
small-sized metabolites can be detected in blood following BBB weak
ening (Voyle et al., 2016). 

Notably, blood-based metabolomic studies are showing encouraging 
results in characterizing metabolic molecular signatures of complex 
multi-factorial diseases, including cancer (Buentzel et al., 2021; Zhang 
et al., 2021), diabetes (Chevli et al., 2021; Zhou et al., 2021), and car
diovascular diseases (Chevli et al., 2021; Haase et al., 2021; Wolter 
et al., 2021). A similar outcome is potentially expected in the field of 
Neurology for various neurodegenerative diseases, including AD and its 
upstream pathomechanistic conditions (Castrillo and Oliver, 2016; 
Wilkins and Trushina, 2018). 

Finally, the detection and measurement of metabolites in blood (and 
other biofluids) in clinical settings is gaining considerable attention 
following the development of innovative metabolomics platforms (Liu 
and Locasale, 2017; Reveglia et al., 2021). 

In light of the relevance of biofluid-derived metabolomics to AD and 
the rapid advancement of metabolomic technology 
(González-Domínguez et al., 2021a; Hurtado et al., 2018; Reveglia et al., 
2021; Sriwichaiin et al., 2021; Wang et al., 2021), in this review we seek 
to accomplish two main goals. First, we aim to provide a critical 
depiction of the most significant metabolomic investigations, especially 
those conducted in biofluids (such as blood [plasma/serum]), for the 
identification of candidate metabolomic biomarkers in AD. In addition, 
we will highlight future perspectives of metabolomics in the AD field to 
help understand the pathophysiological mechanisms underlying the 
phenotypes of the disease. Since the narrative inherent to the manu
script is based on the authors’ knowledge and long-term experience in 
the field, no systematic literature search was performed. 

2. Overview of metabolomics methodologies 

2.1. State-of-the-art of analytical technologies used in metabolomics 

Substantial efforts are currently focused on discovery and identifi
cation of human metabolites. Given the high complexity and heteroge
neity of the human metabolome, several analytical platforms may now 
be used for the detection and quantification of the different categories of 
metabolites. Current state-of-the-art metabolomics studies rely on two 
principle analytical platforms applied for detection, quantification, and 
characterization of metabolites: (I) mass spectrometry (MS) and (II) 
nuclear magnetic resonance (NMR) spectroscopy. The extreme sensi
tivity and selectivity of MS platforms and the elevated reproducibility of 
NMR-based techniques designate both tools as superior over other 
analytical platforms (Wilkins and Trushina, 2018). 

The benefits of NMR spectroscopy are the minimal procedures of 
sample preparation prior to analysis, the high reproducibility, the fact 
that it is a non-destructive analytical technique, allowing the examina
tion of the nature and structure of organic analytes, the brief analytical 
run times and detection of metabolites diverging in terms of physico
chemical features (Gonzalez-Riano et al., 2016), simple annotation of 
discriminant signals, hence generating reduced times (few minutes) 
needed for the high-throughput examination of samples. Also, NMR 
spectroscopy can be executed for in vivo studies (Emwas et al., 2013). In 
contrast, NMR spectroscopy is limited by its moderately low sensitivity 
versus that shown by MS platforms (Kohler et al., 2016) and the low 
spectral resolution. 

On the other hand, MS facilitates the study of various categories of 
metabolites at physiological levels and their subsequent accurate iden
tification via fragmentation techniques. Additionally, the availability of 
different procedures of sample introduction and sources of ionization 
considerably enlarges the analytical coverage offered by MS 
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methodologies and stresses their versatility (Theodoridis et al., 2011). 
As a result, MS integrates the major strategies for the metabolomic 
characterization of complex systems and, since it provides a remarkable 
combination of sensitivity and selectivity, it represents a consistent 
platform for a wide range of metabolomics research (Emwas, 2015; 
González-Domínguez et al., 2018a). In addition, compared with NMR 
spectroscopy, MS has the advantage of providing the examination of 
secondary metabolites, showing detection levels ranging from picomole 
(10-12 M) to femtomole (10-15 M). Furthermore, as the various MS 
technologies show a wide array of available operational principles (for 
instance, different ionization procedures), the amount of potentially 
measurable metabolites is amplified. However, MS has a lower degree of 
reproducibility than NMR spectroscopy since MS is a destructive tech
nique and requires rigorous sample preparation to circumvent potential 
matrix effects (Emwas, 2015; González-Domínguez et al., 2018a; Wil
kins and Trushina, 2018). 

Another shortcoming of NMR spectroscopy is its elevated cost in 
terms of purchasing and maintenance (Kohler et al., 2016; Trushina and 
Mielke, 2014), the large spaces needed for NMR platform, and the need 
for highly experienced operators. Therefore, MS instruments are more 
frequently distributed in clinical centers and hospitals versus NMR 
spectroscopy (Emwas, 2015). Most recent AD metabolomic biomarker 
studies have relied on MS as the analytical tool, versus NMR spectros
copy, mainly owing to its superior sensibility, larger range of measur
able metabolites, and high-throughput (Emwas et al., 2013). 

Table 1 reports the key features (as well as benefits and limitations) 
of MS and NMR spectroscopy as analytical platforms commonly used in 
the field of metabolomics (Emwas, 2015; Liu and Locasale, 2017; Wil
kins and Trushina, 2018). 

2.2. Complementary mass spectrometry-based platforms 

MS is an analytical platform quantifying the molecular masses of the 
analytes and their fragments to establish their identity. Briefly, a mass 
spectrometer consists of three components: an ion source, a mass 
analyzer, and a detector. The ion source is a device creating atomic and 
molecular ions; an extraction system ionizes the sample; the ions are 
then targeted through the mass analyzer and into the detector. The mass 
analyzer includes electric and magnetic fields exerting forces on the 
charged particles. The mass differences of the ion fragments flying into 
the analyzer enable their separation according to their mass-to-charge 
ratio (m/z). Then, the streams of sorted ions travel to the detector that 
allows for calculating the relative abundance of each ion type. Because 
MS platforms have the desirable qualities of high sensitivity and high- 
resolution, it is widely applied to support a large coverage of the 
metabolome and the detection of unknown analytes. Therefore, MS al
lows profiling metabolites in mixed specimens (i.e., biological samples). 
Unfortunately, no MS-based method is able to entirely cover all classes 
of metabolites, therefore different MS approaches need to be applied to 
attain an all-inclusive metabolic profiling (Emwas, 2015; 
Gonzalez-Riano et al., 2016). Sometimes, two or more mass analyzers 
can be coupled together to have tandem MS (MS/MS) to increase the 
ability in analyzing samples and to definitively identify interesting 
metabolites by comparing to known metabolite standards (Haag, 2016). 

Accordingly, the implementation of analytical multi-platforms based 
on the combination of complementary techniques is nowadays the most 
common strategy to deal with the high physicochemical complexity of 
the human metabolome (González-Domínguez et al., 2018a; 
González-Domínguez et al., 2017a). 

At present, there are two commonly used MS-based systems: multiple 
reaction monitoring (MRM) and high-resolution MS (HRMS). MRM 
mode is widely used for targeted analyses and, frequently, performed on 
a triple quadrupole (QqQ) mass analyzer to achieve inherent repro
ducibility as well as unparalleled sensitivity and selectivity to accurately 
discriminate molecules (Vidova and Spacil, 2017). The first quadrupole 
filters ions (parent ion) with an established molecular weight; the 

second quadrupole fragments the selected precursor ion; and the third 
quadrupole selects its distinctive fragments, resulting in a tandem MS 
process. Consequently, prior to data acquisition, the parent and frag
ment ions need to be defined, and the adjusted energy for the frag
mentation of each metabolite is required (Liu and Locasale, 2017). 
HRMS depends on the elevated mass resolution of the mass analyzer. A 
typical instrument here applied for mass analysis is the Orbitrap™, 
characterized by elevated mass resolution and extremely high mass 
accuracy (Hu et al., 2005). Another common instrument is the 
time-of-flight (TOF), registering the time needed by ions to fly across an 
electric field (Zhu et al., 2013). HRMS is highly appropriate in untar
geted analyses. Indeed, complex mixtures can normally include hun
dreds of metabolites showing very slight differences in terms of mass; 
thus, a resolution of 0.1 mDa, at a minimum, is essential to help separate 
all the created ions (Marshall and Hendrickson, 2008). 

From an operational standpoint, the biological sample, consisting of 
a complex mixture of metabolites, needs to be injected into the mass 
spectrometer either directly or following a separation method developed 

Table 1 
Advantages and limitations of MS and NMR spectroscopy as analytical platforms 
for metabolomics research.  

Feature Mass spectrometry NMR spectroscopy 

Sample 
preparation 

Relatively demanding; it needs 
different columns and 
optimization of 
chromatographic and 
ionization conditions 
Metabolite extraction is 
required 
GC-MS requires volatile 
samples, often derivatization 
LC-MS can form adducts 

Minimal preparation needed 
It can be directly applied to 
biofluids and intact tissues 
Sample recovery is possible 

Sample 
measurement 

It requires the combination of 
multiple techniques for a 
comprehensive analysis of the 
metabolome 
It usually needs different 
chromatography techniques for 
different classes of metabolites 

It detects all metabolites in a 
single measurement within 
detectable range 
Spectral analysis is 
demanding 
All metabolites that have 
NMR concentration level can 
be detected in one 
measurement 

Sample recovery Destructive technique but it 
needs a small amount of sample 

Non-destructive; sample can 
be recovered and stored for a 
long time; several analyses 
can be carried out on the 
same sample 

Sensitivity High: detection levels ranging 
from picomolar (10-12 M) to 
femtomolar (10-15 M) 
It detects most organic 
molecules and some inorganic 
molecules 
Broad metabolite coverage 

Low; however, it can be 
improved with higher field 
strength, cryo- and micro- 
probes, and dynamic nuclear 
polarization 
Low detection range 
(micromolar, 10-6 M) 
It requires compounds to 
have protons 
It detects most organic 
molecules 
Less metabolite coverage 

Selectivity It can be used for both selective 
and nonselective (targeted and 
untargeted) analyses 

In general, it is used for non- 
selective analysis 

Reproducibility Moderate since MS is a 
destructive technique 

Very high 

Analysis Targeted analysis (superior for 
targeted analysis) 
Untargeted analysis 

Untargeted analysis 

Platform costs Moderate High 
In vivo studies No Yes (used for1H magnetic 

resonance spectroscopy) 

Abbreviations: AD, Alzheimer’s disease; GC-MS, gas chromatography-mass 
spectrometry; LC-MS liquid chromatography-mass spectrometry; MS, mass 
spectrometry; NMR, nuclear magnetic resonance spectroscopy. 

S. Lista et al.                                                                                                                                                                                                                                     



Ageing Research Reviews 89 (2023) 101987

5

by gas chromatography (GC) or liquid chromatography (LC). Direct 
infusion MS (DIMS) is the simplest instrumental configuration, based on 
direct infusion of arranged specimens in the MS with no need for 
chromatographic separations (Anand et al., 2017; González-Domínguez 
et al., 2017b, 2014b). The absence of a time-consuming separation step 
enables reducing total analysis times, simplifying the analytical process 
(e.g., avoiding common chromatography-related troubles such as col
umn clogging, retention time drifts), and increasing metabolome 
coverage. Accordingly, DIMS has been proposed as a “first pass” 
screening tool, facilitating a considerable coverage of metabolites and 
high-throughput investigations (Abdelnur et al., 2014; Biasioli et al., 
2011), with great applicability in AD research (González-Domínguez 
et al., 2018b). As an alternative, GC coupled with MS (GC-MS) is a tool 
delivering elevated sensitivity and good resolution for 
low-molecular-weight metabolites, namely organic acids, amino acids, 
amines, carbohydrates, fatty acids, and some lipids 
(González-Domínguez et al., 2018a). However, GC-MS has several re
strictions, including a relatively complicated sample preparation 
requiring a derivatization of non-volatile analytes, a high degree of 
variability, and the loss of thermolabile analytes (since not all metabolic 
compounds can be volatilized or made sufficiently thermally stable) 
(Gonzalez-Riano et al., 2016; Kohler et al., 2016). Thus, this platform 
alone cannot generate a comprehensive depiction of the AD metab
olome. With complementary analytical performance, LC coupled with 
MS (LC-MS) permits the direct analysis of metabolites displaying evident 
physicochemical diversity, through the use of complementary retention 
mechanisms (e.g., reversed-phase liquid chromatography [RPLC]; 
hydrophilic-interaction liquid chromatography [HILIC]), ion exchange 
chromatography (IEC), and ionization techniques (e.g., electrospray 
ionization [ESI]; atmospheric pressure chemical ionization [APCI]; at
mospheric pressure photoionization [APPI]) – with high-throughput, 
selectivity, and sensitivity (González-Domínguez et al., 2018a; Kuehn
baum and Britz-McKibbin, 2013; Reveglia et al., 2021). Specifically, 
RPLC is recommended for separating non- to mid-polar compounds, e.g., 
lipids, aromatic amino acids, and their microbiota products, and helps 
explore the non-polar and semi-polar fraction of the human metab
olome. HILIC is advocated for polar molecules as it separates metabolites 
according to their hydrophilicity, with hydrophobic compounds being 
eluted faster and hydrophilic polar molecules being well-retained 
(Harrieder et al., 2022; Zeng et al., 2017). Hydrophilic metabolites 
encompass numerous categories of analytes, including several amino 
acids and derivatives, biogenic amines, carbohydrates, and organic 
acids, all of which participate in various essential metabolic pathways, 
including energy-related metabolism (glycolysis, tricarboxylic cycle), 
the urea cycle, and one-carbon metabolism, among others 
(González-Domínguez et al., 2021a). IEC is recommended for the anal
ysis of ionic solutes, such as inorganic anions and cations. Hence, RPLC 
and HILIC are complementary methods and are frequently used 
orthogonally to comprehensively explore the AD metabolome in 
untargeted analyses (González-Domínguez et al., 2021a; Harrieder 
et al., 2022; Mill and Li, 2022). LC is frequently defined as 
high-performance LC (HPLC, also known as high-pressure LC) or 
ultra-performance LC (UPLC, also known as ultra-pressure LC). While 
HPLC operates at lower pressures (psi <6000), UPLC works at higher 
pressures (15,000 psi), therefore increasing analyte resolution and 
sensitivity as well as shortening run times. In addition to chromatog
raphy, MS can be combined with capillary electrophoresis (CE), leading 
to effective separation of polar and weakly/strongly ionic metabolites, 
with reduced specimen volumes. Nevertheless, CE-MS is rarely applied 
in metabolomics experiments because of its modest reproducibility and 
instrumental limitations (Kohler et al., 2016; Kohler and Giera, 2017). 

Over the last years, significant improvements have been made in MS 
instrumentation, which have further increased the applicability and 
versatility of MS-based approaches in metabolomics research. On the 
one hand, the development of mass spectrometry imaging (MSI) tech
niques has enabled the spatial localization of metabolites within tissues 

and cells without labeling (Ma et al., 2023). In this regard, significant 
advances have also been made in MS-based single-cell metabolite 
analysis, of great utility to study cell-to-cell variability and thus provide 
a more accurate reflection of the cellular phenotype (Wang et al., 
2023a). The use of ion mobility mass spectrometry (IM-MS) demon
strated great advantages compared to conventional MS systems, 
including improved confidence in identifications thanks to the mea
surement of cross-section values, increased peak capacity and 
signal-to-noise, and the capacity of being coupled with various frag
mentation modes to facilitate structural characterization and molecular 
annotation (Paglia et al., 2022). Finally, the combination of MS with 
chemical isotope labeling (CIL) has been described for improving 
sensitivity, selectivity, accuracy, coverage, and analytical throughput 
(Gao et al., 2023). To complement these technical developments, sig
nificant efforts have also been made in the field of computational 
metabolomics, thereby facilitating the processing, annotation, 
modeling, and interpretation of MS data (Ebbels et al., 2023). 

2.3. Targeted versus untargeted metabolomics 

Typically, two different strategies can be applied in MS-based 
metabolomics, namely (I) untargeted (i.e. global) and (II) targeted 
analyses. 

Untargeted metabolomics does not require a priori knowledge of the 
metabolome and its primary objective is to detect, in an unbiased way, 
and semiquantify (in terms of relative percentage) the largest range of 
metabolites within the sample under investigation. Briefly, untargeted 
MS allows for the comprehensive and systematic exploration of metab
olites derived from the organisms, thus offering a robust hypothesis- 
generating approach to identify and validate candidate metabolomic 
biomarkers. However, separation/extraction/analytical procedures 
used can affect the classes of metabolites obtained (Johnson et al., 
2016). A large volume (on the order of gigabytes) of complex, 
multi-faceted data set is generated that necessitates advanced statisti
cal/bioinformatics tools, online platforms/softwares, and free data
bases/libraries to generate biological information needed to properly 
identify metabolites, study their correlation among samples, and explore 
their interconnectivity in metabolic pathways concerning the phenotype 
or the aberrant process (Johnson et al., 2016; Reveglia et al., 2021). This 
unbiased approach was considered to be most appropriate in AD as a 
way to boost the knowledge of pathophysiological mechanisms arising 
in the diseased brain (Reveglia et al., 2021). 

On the other hand, targeted metabolomics aims at examining me
tabolites according to a priori knowledge of the metabolome and is 
typically driven by a specific biochemical hypothesis (hypotheses-driven 
approach) that encourages the inspection of a particular physiological 
and/or pathophysiological pathway. Here, different methodologies are 
applied to scrutinize well-defined metabolites or clusters of metabolites 
and, consequently, specifically related metabolic pathways of interest. 
Usually, this approach provides a greater sensitivity and selectivity than 
untargeted metabolomics. However, such a strategy is not useful for the 
discovery of novel molecules involved in the studied process or diseases 
(Johnson et al., 2016; Reveglia et al., 2021). Please, see Fig. 1 for a 
schematic representation of the untargeted and targeted workflows, as 
highlighted by Patti et al. (2012). 

Notably, in the interface of the two above-mentioned analytical 
strategies, the use of large-scale targeted metabolomics emerged, in 
recent years, to bring together the advantages of both approaches, 
thereby enabling comprehensive and quantitative fingerprinting anal
ysis (González-Domínguez et al., 2020; K. Li et al., 2017; Yan and Yan, 
2015). Before selecting the appropriate metabolomic approach, it is 
crucial to address the scientific question and establish an effective 
experimental design. Since metabolomic experiments produce a signif
icant volume of composite data from each type of biological specimen, 
efficient and precise bioinformatic/computational tools, such as the 
softwares MATLAB® and R (Li, 2020), as well as online platforms, such 
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as XCMS Online (Forsberg et al., 2018; Huan et al., 2018) and Metab
oAnalyst (Howell and Yaros, 2023; Pang et al., 2021), are employed to 
deal with the complexity of the produced data in order to obtain relevant 
biological information (Reveglia et al., 2021). In general, efforts are 
underway to optimize the metabolomics analysis workflow to deliver 
valuable insights for researchers that can establish a preferable pipeline 
of metabolomics investigation and multi-omics integration analysis 
(Chen et al., 2022). Please, see Fig. 2 for a schematic overview of 
metabolomic data analysis. 

3. Relevance of metabolomics in Alzheimer’s disease research 
and biomarker discovery 

3.1. Primary metabolites scrutinized 

In general, alterations in circulating metabolites have been assumed 
to be related to impairments in cognition and dementia. Hence, 
improving the knowledge and comprehension of this link is expected to 
facilitate the elucidation of dementia pathogenesis, for AD and other 
forms of this disease. Metabolites, including amino acids, carbohydrates, 
lipids, bile acids, and fatty acids, show many potential roles in AD 
development and progression. Several investigations, some of which are 
discussed below, aim to detect and quantify AD-relevant metabolites in 
AD patients, MCI individuals, and cognitively normal individuals 
(Cuperlovic-Culf and Badhwar, 2020), in different tissues, including 
blood (plasma/serum), CSF or brain, therefore leading to an improved 
understanding of metabolic processes involved in AD pathogenesis and 
progression. 

3.2. Amino acids and related metabolic compounds 

The key function of amino acids as neurotransmitters, neuro
modulators, or modulators of metabolism within the CNS is globally 
acknowledged. Numerous blood metabolomic examinations have re
ported altered concentrations of specific amino acids in AD patients. For 
instance, an LC-MS/MS platform disclosed a significant decrease of 
plasma tryptophan concentrations in AD versus older healthy controls 
(HC) (Li et al., 2010). Interestingly, tryptophan and its related metab
olites can inhibit enzymes involved in Aβ biosynthesis. In particular, one 
metabolite, 3-hydroxyanthranilate, can directly impede Aβ1–42 oligo
merization. While some tryptophan-derived metabolites exert a neuro
protective role, other metabolites, including quinolinic acid, induce 
neurotoxicity and promote AD progression. Furthermore, some trypto
phan metabolites regulate the neuroinflammatory and neuroimmune 
factors eliciting pro-inflammatory cytotoxicity in AD. Tryptophan me
tabolites have also the ability to affect microglia and associated cyto
kines in order to modulate the neuroinflammatory and neuroimmune 
factors triggering pro-inflammatory cytotoxicity in AD (Savonije and 
Weaver, 2023). The gut microbiota can also metabolize tryptophan to 
produce a myriad of indole derivatives with potential neuroactivity. For 
instance, patients with AD showed increased plasma concentrations of 
3-indoleacetic acid, a metabolite found to be strongly correlated with 
various neurocognitive scores (Lin et al., 2023). Similarly, another study 
evidenced that 3-indolepyruvic acid, together with other 
microbiota-derived metabolites (short chain fatty acids, lithocholic 
acid), can serve as biomarkers for discrimination and prediction of AD 
(Wu et al., 2021). 

In another study, a gradual reduction in serum values of aspartate, 

Fig. 1. The targeted and untargeted workflow for LC/MS-based metabolomics. Panel a. In the triple quadrupole (QqQ)-based targeted metabolomic workflow, 
standard compounds for the metabolites of interest are first used to set up selected reaction monitoring methods. Here, optimal instrument voltages are determined 
and response curves are generated for absolute quantification. After the targeted methods have been established on the basis of standard metabolites, metabolites are 
extracted from tissues, biofluids or cell cultures and analysed. The data output provides quantification only of those metabolites for which standard methods have 
been built. Panel b. In the untargeted metabolomic workflow, metabolites are first isolated from biological samples and subsequently analysed by liquid chroma
tography followed by mass spectrometry (LC/MS). After data acquisition, the results are processed by using bioinformatic software such as XCMS to perform 
nonlinear retention time alignment and identify peaks that are changing between the groups of samples measured. The m/z values for the peaks of interest are 
searched in metabolite databases to obtain putative identifications. Putative identifications are then confirmed by comparing tandem mass spectrometry (MS/MS) 
data and retention time data to that of standard compounds. The untargeted workflow is global in scope and outputs data related to comprehensive cellular 
metabolism. Note: from Patti, G.J., Yanes, O., Siuzdak, G., 2012. Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13, 263–269. 
https://doi.org/10.1038/nrm3314 Copyright © 2012, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. Reproduced 
with permission from Springer Nature Customer Service Center GmbH. Abbreviations: LC-MS, liquid chromatography coupled with mass spectrometry; MS/MS, 
tandem mass spectrometry; m/z, mass-to-charge ratio; QqQ, triple quadrupole mass analyzer. 

S. Lista et al.                                                                                                                                                                                                                                     



Ageing Research Reviews 89 (2023) 101987

7

glutamine, and phenylalanine in parallel to a rise in argininosuccinic 
acid, citrulline, and homocitrulline values was observed along the 
clinical continuum of AD – i.e., from the healthy status across subjective 
memory complaint and MCI to probable AD – with MS/MS (Corso et al., 
2017). Similarly, the application of GC-MS analysis to serum samples 
from AD patients revealed decreased contents of aromatic amino acids 
(i.e. phenylalanine, tyrosine, and tryptophan) and branch chain (e.g. 
valine), and other amino acids (e.g. aspartate, glutamine, asparagine, 
histidine) (González-Domínguez et al., 2015a). Supporting these data, a 
recent multi-omics study based on the integration of MS-based metab
olomics and proteomics evidenced profound perturbations in the 
metabolism of arginine, alanine, aspartate, glutamate, and pyruvate 
(François et al., 2022). Two recent analyses disclosed a correlation be
tween greater dementia risk and higher plasma values of both glutamic 
acid and glutamine (Chouraki et al., 2017; Lee et al., 2018). An untar
geted high-resolution metabolomics analysis, carried out in two inde
pendent cohorts, revealed increased plasma concentrations of glutamine 
and an unknown halogenated compound (m/z 246.9550) and decreased 
values of piperine (a dietary alkaloid with anti-oxidant and 
anti-inflammatory activities) in AD dementia. High concentrations of 

both glutamine and the halogen-containing molecule were also observed 
in CSF, highlighting the specificity of this finding to the CNS and their 
possible synthesis and/or access into the CNS (Niedzwiecki et al., 2020). 
Higher plasma concentrations of the sulfur-containing amino acid 
taurine and hypoxanthine (a purine derivative precursor of uric acid) 
(Chouraki et al., 2017) as well as the amino acid derivative creatinine in 
serum (Tynkkynen et al., 2018) were associated with reduced dementia 
risk. In contrast, greater plasma values of the aromatic amino acid an
thranilic acid, an intermediate metabolite of the kynurenine pathway, 
were related to a more elevated risk of incident dementia (Chouraki 
et al., 2017). Moreover, diminished plasma concentrations of phenyl
alanine were observed in both amnestic MCI and mild AD (Mapstone 
et al., 2014). An investigation using HRMS followed by pathway 
enrichment analysis – conducted on stable MCI individuals, MCI con
verting to AD dementia patients, and age-matched HC – stressed that 
polyamine and L-arginine metabolisms were the only two metabolic 
pathways affected across all group comparisons. Particularly, the poly
amine metabolism was more considerably affected than that of L-argi
nine. In addition, the two metabolic pathways were interconnected by 
sharing common metabolite intermediates. Both stable MCI and MCI 

Fig. 2. Schematic overview of metabolomic data analysis. Metabolomics data analysis, regardless of the experimental platform, can be divided into data preparation, 
data mining and result interpretation. Data preparation includes metabolite assignment and quantification as well as data pre-processing (e.g., normalization). Data 
mining step should generally include both statistical and machine learning analysis followed by result interpretation through enrichment or network analysis. 
Metabolomics data can be integrated with other types of omics or clinical data for further interpretation. 
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converters exhibited a significant rise in plasma L-arginine values 
together with a reduction in L-ornithine. Notably, stable MCI partici
pants presented a substantial reduction of GABA; however, GABA was 
not subject to further decrease in MCI converters, thus highlighting a 
potential function of GABA decline as an early contributor to cognitive 
impairment (Graham et al., 2015). Metabolomic investigations showed 
that the known essential proteinogenic branched-chain amino acids 
(BCAAs) – leucine, isoleucine, and valine, consisting of an aliphatic side 
chain connected by a branch – were associated with AD dementia. A 
large longitudinal study conducted in eight prospective cohorts, overall 
including 22,623 participants and 995 incident dementia cases, used 
both NMR and MS-based (LC-MS/MS) platforms to analyze blood frac
tion and reported the association of increased serum concentrations of 
the three BCAAs with diminished AD dementia risk (Tynkkynen et al., 
2018). A comparable outcome had been previously observed by Toledo 
et al. (2017) in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
cohort, where lower plasma valine concentrations correlated with the 
rate of cognitive decay (Toledo et al., 2017). Another investigation re
ported that AD patients recruited in the Texas Alzheimer’s Disease 
Research Care Consortium (TARCC) had elevated serum BCAAs con
centrations versus HC, and that a metabolite of isoleucine (called soto
lone) was inversely correlated with Mini-Mental State Examination 
(MMSE) scores. Thus, circulating BCAAs and/or their metabolic com
pounds were positively related to AD advancement (Siddik et al., 2022). 
Nevertheless, data linking BCAAs and AD are subject to discrepancies; 
for instance, a targeted LC-MS/MS analysis reported upregulated serum 
BCAAs in AD versus age-matched HC (H. Li et al., 2018). 

Interestingly, more elevated baseline serum concentrations of 
asparagine were associated with a more rapid decay in global cognition 
follow-up. Asparagine is a non-essential amino acid critical for the 
development and metabolic control of the brain (Ruzzo et al., 2013). In 
this regard, previous analyses conducted in mouse models found that the 
activation of the asparagine endopeptidase enzyme during aging pro
moted tau aggregation and caused neurodegeneration (Zhang et al., 
2014). Moreover, inhibition of this enzyme might induce therapeutic 
effects for the treatment of neurodegenerative diseases (Zhang et al., 
2016). 

A targeted quantitative metabolomics approach exploiting CE-MS 
was conducted on brain samples in regions both susceptible and resis
tant to AD pathology; these brain samples were collected from AD pa
tients, asymptomatic AD individuals, and HC, all enrolled in the 
Baltimore Longitudinal Study of Aging (BLSA). Major variations in terms 
of metabolite expression were observed in AD versus HC, as well as 
associations of metabolites with disease severity, primarily in the infe
rior temporal gyrus. The concerned metabolic compounds participated 
in biochemical reactions belonging to the methionine cycle, trans- 
sulfuration and glutathione synthesis, polyamine synthesis/catabolism, 
the urea cycle, glutamate-aspartate metabolism, and neurotransmitter 
metabolism, especially of gamma-aminobutyric acid. The integration of 
these results with transcriptomic studies, performed in the entorhinal 
cortex and hippocampus, led to the observation of a substantial AD- 
associated dysregulation of transmethylation and polyamine synthe
sis/catabolism, including anomalies in neurotransmitter signaling, the 
urea cycle, aspartate-glutamate metabolism, and glutathione synthesis 
(Mahajan et al., 2020). 

In examining the distinct metabolic variations in different brain re
gions associated with AD and the application of spatial metabolomics, a 
study conducted in 2016 employed GC-MS to analyze seven specific 
brain areas. These regions included the hippocampus, entorhinal cortex, 
and middle-temporal gyrus, known to be severely impacted by AD, as 
well as the sensory cortex, motor cortex, and cingulate gyrus, which are 
moderately affected, and the cerebellum, which remains unaffected. 
This extensive metabolomic investigation revealed disruptions in critical 
biological pathways, including glucose metabolism and amino acid 
metabolism, particularly in the severely affected regions and the 
cingulate gyrus. However, the regional information obtained through 

MS remains limited (Xu et al., 2016). MSI is a promising spatial tech
nique with the potential to offer further insights into regional changes 
associated with AD. A limited number of MSI-based studies have been 
conducted, primarily utilizing AD mouse models due to their smaller 
brain size. These investigations identified dysregulation in several 
pathways, such as purine metabolism (Esteve et al., 2017) and 
glutamine-glutamate metabolism (Wang et al., 2023b). Human samples 
are less frequently used, as the entire human brain cannot be analyzed 
on a single slide, unlike mouse brain. However, a recent comprehensive 
review explored the numerous applications of MSI on human brains in 
AD and other related disorders (Ajith et al., 2021). One notable study 
examined sulfatide species and discovered differences in sulfatide hy
droxylation between grey matter and white matter. Interestingly, no 
differences were observed in sulfatide expression between AD patients 
and HC (Yuki et al., 2011). Incorporating sophisticated methods like 
GC-MS and MSI collectively holds the promise of elevating our 
comprehension of regional variations in brain metabolism and molec
ular pathways associated with AD in the future. 

The metabolism of homocysteine, a non-proteinogenic α-amino acid 
biosynthesized from methionine, was found to be involved in several 
age-related diseases, including AD (Morris, 2003; Smith et al., 2018). 
Raised blood concentration of homocysteine (hyperhomocysteinemia), 
which is a well-known cardiovascular risk factor, has been reported to 
be closely associated with the development of AD (Seshadri et al., 2002; 
Smith et al., 2018) and represents a potential biomarker of disease 
progression (Farina et al., 2017). In this respect, it was shown that AD 
and MCI were characterized by vascular-related metabolic alterations, 
as reflected in elevated serum concentrations of homocysteine-cysteine 
disulfide (one of the most abundant oxidized forms of homocysteine), 
asymmetric dimethyl-arginine (endogenous inhibitor of nitric oxide 
synthase), and phenylalanyl-phenylalanine (a peptide derived from a 
vasoactive oligopeptide cleaved by the angiotensin converting enzyme) 
(González-Domínguez et al., 2014a). Furthermore, an association be
tween increased homocysteine values and memory impairment exists 
even in a healthy population, determined through a longitudinal 
untargeted metabolomics analysis carried out on plasma samples of 
dementia-free middle-aged adults using UPLC-HRMS; the results of this 
study corroborate the important role of homocysteine in cognitive aging 
and disorders (Hajjar et al., 2020). Notably, results of metabolomic 
analyses of serum homocysteine indicated that it can downregulate 
metabolic compounds involved in lipid and fatty acid metabolism 
pathways such as glycerolipids, glycerophospholipids, and poly
unsaturated fatty acids (PUFAs) (Kumar et al., 2021; B. Li et al., 2018). A 
multi-dimensional study, exploring the link between leukocyte telomere 
length (LTL, measured by quantitative PCR) and serum metabolite 
concentrations (determined by a targeted metabolomics platform using 
ESI-MS/MS), reported positive or negative associations of LTL with 
some compounds implicated in homocysteine metabolism, inflamma
tion, and oxidative stress (van der Spek et al., 2019). 

Since the hippocampus, one of the most relevant brain regions 
involved in learning and memory, is widely recognized as the most 
vulnerable region in AD pathology, a study used untargeted NMR 
spectroscopy to identify the hippocampal metabolic profiles specifically 
altered in an animal model of AD-like cerebral amyloidosis (McGill-R- 
Thy1-APP transgenic rat). Overall, 26 metabolites were identified, 
including amino acids, carboxylic acids, and nucleotides. In particular, a 
panel of nine metabolites – nicotinamide adenine dinucleotide (NAD), 
nicotinamide (an amide of nicotinic acid), taurine, valine, tyrosine, N- 
acetylaspartate, glutamate, glutathione, and creatine – were signifi
cantly altered in transgenic rats versus controls, with two notable signals 
essentially attributed to NAD and nicotinamide. Subsequent analyses 
revealed that NAD expression levels were significantly lower in the 
hippocampus of AD-like transgenic rats compared with control animals. 
The translational value of these findings was confirmed by a significant 
reduction in plasma nicotinamide concentrations (measured by targeted 
GC-MS) in patients with AD included in the German study on Aging, 
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Cognition and Dementia (AgeCoDe) longitudinal cohort. Conversely, 
individuals within the highest tertile of plasma nicotinamide concen
trations had a 27% risk reduction of progressing to AD over a 2.5-year 
follow-up. Hence, a reduction of plasma nicotinamide concentrations 
was reported a couple of years prior to conversion to AD, thus suggesting 
its potential usefulness as biomarker for AD progression (Dalmasso et al., 
2023). In this regard, other studies also reported profound hippocampal 
metabolic perturbations in the APP/PS1 transgenic mouse model, 
encompassing abnormal homeostasis of amino acids, acyl-carnitines, 
nucleotides, and various lipid classes (González-Domínguez et al., 
2015g). Although these disturbances were mostly expressed in the 
hippocampus and cortex, the areas that are primarily affected in AD, the 
authors found similar changes in other brain regions (e.g. cerebellum) 
and the peripheral system (e.g. blood, liver, kidneys) 
(González-Domínguez et al., 2015c, 2015d, 2015e). 

3.3. Carbohydrates 

The human brain, which relies almost completely on glucose as a 
substrate for energy production, accounts for approximately 25% of 
whole-body glucose utilization. One of the key metabolic features of AD 
pathology is brain glucose hypometabolism. Growing evidence indicates 
that a disruption in glucose utilization occurs very early in the clinical 
trajectory of the disease, being evident even in preclinical stages (Cal
solaro and Edison, 2016). 

In addition, dysglycemia, including both chronic hyperglycemia and 
repeated hypoglycemia, has been consistently identified as a risk factor 
for the development of AD (Hsieh et al., 2019). Given the key role played 
by an altered glucose metabolism in the etiology and progression of AD 
(Mullins et al., 2018), some authors conceptualized AD as a novel 
“diabetes type 3” (González et al., 2022). This possibility was originally 
prompted by the observation that an impaired glucose metabolism due 
to reduced glycolytic flux may be intrinsic to AD pathogenesis, begin
ning several years before the onset of clinical symptoms (An et al., 
2018). Several potential mechanisms have been proposed to explain the 
well-known link between diabetes and AD. First, chronic hyperglycemia 
may lead to the accumulation of neurotoxic advanced glycation end 
products. Second, reduction of insulin signaling in the brain can induce 
the formation of cerebral amyloid deposits and promote tau hyper
phosphorylation. Third, diabetic micro- and macro-angiopathy may act 
as a contributing factor to blood-brain barrier (BBB) dysfunction, which 
is central to the onset and progression of neurodegeneration. Fourth, 
hyperglycemia may promote recruitment and activation of microglia, 
thereby resulting in neuroinflammation and neuronal damage (Hsieh 
et al., 2019). Finally, both vascular and non-vascular brain glucose 
transporters (GLUTs), including GLUT1 and GLUT3, are dysfunctional 
and/or poorly expressed in AD brains, a process which could starve the 
brain of glucose and accelerate cognitive decline (Chornenkyy et al., 
2019). 

By taking advantage of 1H-nuclear magnetic resonance spectroscopy 
(1H NMR), a recent metabolomic analysis was conducted on serum 
samples collected from 32 individuals categorized as “subjective 
cognitive decline (SCD) plus” – a more severe form of SCD that is likely 
to be an expression of preclinical AD (Jessen et al., 2014). Perturbations 
of glucose and BCAA metabolism were identified as the most prominent 
features of “SCD plus” individuals (Yang et al., 2022). Importantly, the 
occurrence of glucose metabolic dysfunction has been identified in pa
tients with SCD in two independent studies (Dong et al., 2021; Liu et al., 
2020). In this regard, Hajjar et al. (2020), by using an untargeted 
metabolomics approach based on high-resolution LC-MS, found that 
perturbed regulation of sugar metabolism, characterized by altered CSF 
concentrations of N-glycan, sialic acid, amino sugars, and galactose, 
correlated with AD-related phenotypes (Hajjar et al., 2020). 

In a study analyzing a total of 122 CSF metabolites with LC-MS, five 
of them – phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglyc
erate, pyruvate, and dihydroxyacetone phosphate – were found to be 

significantly lower in AD patients compared with HC (Bergau et al., 
2019). These metabolic alterations in the CSF are reflective of central 
glucose hypometabolism and are in accordance with the results reported 
in [18F]-fluorodeoxyglucose (FDG)-positron emission tomography 
([18F]-FDG-PET) imaging studies (Verclytte et al., 2016). Another 
shotgun MS study found that, in patients with AD, 
glyceraldehyde-3-phosphate dehydrogenase – a classical glycolytic 
enzyme that also displays a number of non-glycolytic functions – is 
hyperexpressed in the proteome of the temporal neocortex (Musunuri 
et al., 2014). Currently, glycolytic dysfunction is widely regarded as a 
prominent metabolic anomaly in the very early development of AD 
(Mamelak, 2012). In turn, glycolytic robustness, mediated at least in 
part by hexokinase upregulation, can be a contributing factor to resil
ience against AD. 

3.4. Lipids and fatty acids – Lipidomics 

Lipids have key functions in the CNS and periphery since they pre
serve cell membrane architecture and arrangement (directly affecting 
the fluidity and solubility of the membrane itself) and critically partic
ipate in several signaling pathways (Trushina and Mielke, 2014; Wilkins 
and Trushina, 2018). Notably, the significant cerebral atrophy that 
characterizes AD implies the depletion of structural lipids. It is 
well-known that changes in brain lipid levels due to their diminished 
synthesis or altered metabolism may lead to homeostatic dysregulation 
and, ultimately, neurodegeneration (Mielke and Lyketsos, 2006). Such a 
dyshomeostasis of lipid metabolism leads to cerebral aberrant activities 
characterizing the progression of AD pathophysiology, as depicted by 
Chew and colleagues (2020) (Chew et al., 2020) (Fig. 3). 

Moreover, genomic studies repeatedly demonstrate that the ε4 allele 
of apolipoprotein E gene (APOE ε4) is the crucial susceptibility factor for 
sporadic, late-onset AD (Yamazaki et al., 2019). Since the brain is the 
most lipid-rich organ in the human body and lipid molecules play a 
major role in inflammation and signaling, the development and appli
cation of lipidomics – the omic analysis consisting of large-scale studies 
of all classes of lipid molecular species and networks in biological sys
tems (Schmelzer et al., 2007) – to AD pathophysiology is becoming 
rapidly relevant. In addition to “lipidology”, the pure examination of 
lipids, lipidomics incorporates the examination of lipid-metabolizing 
enzymes and transporter proteins, as well as their genes and activity 
regulation (Reinisch and Prinz, 2021; Ware et al., 2019); the 
spatio-temporal quantitative analysis of lipids; and the investigation of 
their function (Hu and Zhang, 2018). As a result, lipidomics requires the 
use of appropriate technologies to measure the location, expression/
concentration, and regulation of lipids, enzymes, transporters, and genes 
in time, including integrative high-throughput applications (van Meer 
et al., 2007). Because of their predominant hydrophobic nature, lipids 
need to be treated and analyzed separately (e.g., requiring different 
solvent systems) from other small-molecule metabolites (Huynh et al., 
2017). 

Lipidomic technologies progressed to enable both global (i.e., non- 
targeted) lipid investigations and targeted analyses (i.e., studies of def
inite classes of lipids) (Trushina and Mielke, 2014; Wilkins and Trush
ina, 2018). The examination of the structure and function of various 
lipid species – usually classified into eight main categories, namely fatty 
acids, glycerolipids, glycerophospholipids, sphingolipids, saccha
rolipids, polyketides, prenols, and sterols (Fahy et al., 2005; Kuo and 
Tseng, 2018) – is expected to explain the mechanisms underlying 
cellular lipid homeostasis, clarify the roles of lipids in several human 
diseases, and help discover potential diagnostic and prognostic bio
markers of AD. 

Various lipid compounds associated with AD pathophysiology have 
been increasingly identified by lipidomic research, strengthened by 
rapid progress in analytical chemistry that allows for reproducible and 
high-throughput assessment of numerous lipid classes (Quehenberger 
et al., 2010). Given the considerable commonalities in metabolic 
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fluctuations between CSF and blood (Trushina et al., 2013), 
brain-related variations in lipid molecular profiles are anticipated to be 
useful blood biomarkers (Wong et al., 2017a, 2017b). Indeed, lipidomics 
is increasingly gaining relevance in the discovery of biomarkers for AD, 
with analyses exploring quantitative lipid profiles being performed in 
blood samples via lipidomics-based strategies, exploring different lipid 
classes mediators and categories. 

3.4.1. Sphingolipids 
Among the numerous compounds associated with AD detected by 

lipidomic research, sphingolipids are often in the spotlight. Sphingoli
pids are a group of phospholipids that include a sphingosine backbone; 
they are constituents of the phospholipid bilayer in the plasma mem
branes of eukaryotic cells and participate in the regulation of cell 
growth, death, senescence, adhesion, migration, inflammation, angio
genesis, and intracellular trafficking (Hannun and Obeid, 2008; Kraft, 
2017). 

Sphingomyelins (SMs) are the simplest and the most common 
sphingolipids (each one containing a fatty acid, a phosphoric acid, 
sphingosine, and choline); they largely reside in two locations within the 
brain: lipid rafts, found in neurons, astrocytes, and microglia where they 
are involved in several aspects of signal transduction and homeostasis of 
the brain, and the membranous myelin sheath that insulates many nerve 
cell axons. As part of lipid rafts, SMs are involved in signal transduction 
and the regulation of inflammatory processes as well as response to 
oxidative stress (Kao et al., 2020; Schneider et al., 2019). Lipidomic 
assays in AD brains found significant associations between severity of 

AD pathology at autopsy and increased serum concentrations of SMs, 
namely those with acyl residue sums C16:0, C18:1, and C16:1, and 
hydroxysphingomyelin with acyl residue sum C14:1 (SM (OH) C14:1). 
This association was conserved throughout preclinical and prodromal 
stages of AD as well (Varma et al., 2018). In contrast, a more recent 
targeted metabolomic approach carried out in a cohort of normal con
trols, pre-conversion individuals, and MCI/AD patients, via an 
ESI-LC-MS/MS system, reported no major difference in the concentra
tions of SMs (fourteen distinct SM species were quantified) between 
these groups. Remarkably, the amounts of only one molecule, SM (OH) 
C14:1, were decreased in the pre-conversion and MCI sets versus normal 
controls (Fote et al., 2021). In another study including 
histopathologically-confirmed AD patients and control cases, erythro
cytes, analyzed by UPLC-MS/MS, were investigated as a metabolically 
active and accessible source for discovering AD candidate biomarkers, 
being observed a consistent decrease in the content of some sphingoli
pids and sphingolipid-related species (Mill et al., 2022). Plasma SMs 
concentrations have been frequently observed to be either increased or 
decreased (D. Li et al., 2019; Lin et al., 2017; Tajima et al., 2013). Such 
contradictions emerged from the literature are thought to be caused by 
several issues, including which patient samples or animal models are 
investigated, which tissue is studied, demographics of the study partic
ipants, or even exact timing of sample collection (Hammad et al., 2010). 

Ceramides are a subcategory of bioactive lipids belonging to the 
sphingolipid family (Chaurasia and Summers, 2015). They are second
ary messengers synthesized de novo in the endoplasmic reticulum, 
starting with the conjugation of the amino acid serine with palmitate. 

Fig. 3. Factors that affect brain lipid metabolism and the importance of lipids in healthy aging and AD. Factors that affect brain lipid metabolism. Demographic 
factors, genetics, lifestyle, the environment, and trauma can influence lipid metabolism in the brain. Interestingly, these factors that influence lipid metabolism are 
also recognized risk factors of AD. Abnormalities in lipid metabolism can contribute to dysfunctional brain networks that associate with AD pathology. Importance of 
lipid metabolism in brain function and AD pathology. In healthy aging, normal transport of lipids through apolipoproteins contribute to the function of the brain. 
Homeostatic control of the brain lipid environment is responsible for sustaining a normal BBB, providing the right environment for normal APP processing, the right 
composition for ion channels and receptors, cytosis, vesicle formation, and secretion, signaling, inflammation, oxidation, energy balance, and membrane biosynthesis 
and remodeling. Dyshomeostasis in lipid delivery into the brain and its metabolism attributes to disturbed BBB, abnormal APP processing, disturbance in cytosis, 
signaling, energy balance, and enhanced/sustained inflammation and oxidation. Over time, these processes lead to neuronal death that is the hallmark of AD pa
thology. Note: from Chew, H., Solomon, V.A., Fonteh, A.N., 2020. Involvement of Lipids in Alzheimer’s Disease Pathology and Potential Therapies. Front Physiol 
11. https://doi.org/10.3389/fphys.2020.00598 Copyright © 2020 Chew, Solomon and Fonteh. Reproduced under the terms of the Creative Commons Attribution 
License (CC BY) (https://creativecommons.org/licenses/by/4.0/). Abbreviations: Aβ, amyloid-β; AD, Alzheimer’s disease; APOE ε4, ε4 allele of the APOE gene; APP, 
amyloid precursor protein; BBB, blood-brain barrier. 
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Besides the generation by de novo synthesis, cells can produce ceramide 
by SM hydrolysis through the activation of sphingomyelinases (Gar
cia-Ruiz et al., 2015). These molecules assist in several cellular activ
ities, such as controlling proliferation, senescence, and cell death; 
indeed, as a result of toxic stimuli, cells can activate sphingomyelinases 
inducing a rapid and transient release of ceramide in definite sites 
involved in specific signaling pathways (Garcia-Ruiz et al., 2015). They 
can initiate a cascade of biochemical alterations, ultimately resulting in 
neuronal death by different mechanisms, primarily along the pathways 
linked protein kinase B (PKB, also known as Akt) and mitogen-activated 
protein kinases (Jazvinšćak Jembrek et al., 2015). The 
sphingomyelinase-ceramide pathway has been directly linked to Aβ 
peptide-induced apoptosis; results from a 2004 study suggest that Aβ 
induces oligodendrocyte death by activating the neutral 
sphingomyelinase-ceramide cascade (Lee et al., 2004). Interestingly, 
ceramides have also been linked to insulin resistance and atherosclerosis 
in AD (Ichi et al., 2006; Summers, 2010). Lipidomic analyses based on 
ESI-MS/MS reported increased ceramide expression in AD brains, 
mainly ceramides C16:0, C18:0, C20:0, and C24:0 (Filippov et al., 2012). 
Notably, LC-ESI-MS analysis of AD brains disclosed that laser 
micro-dissected senile plaques were enriched in saturated ceramides Cer 
(d18:1/18:0) and Cer(d18:1/20:0) (Panchal et al., 2014). In addition, 
CSF concentrations of ceramides were increased in AD patients versus 
age-matched amyotrophic lateral sclerosis patients and other neuro
logical controls (Satoi et al., 2005). Higher baseline serum ceramide 
concentrations were related to a greater risk of all-cause dementia and 
AD; such associations were more evident in AD than in all-cause de
mentia in older women from the Women’s Health and Aging Study II 
(WHAS II) (Mielke et al., 2012). In another investigation, plasma cer
amide C22:0 and C24:0 concentrations, cross-sectionally measured by 
HPLC-ESI-MS/MS, were significantly perturbed in amnestic MCI versus 
both HC and AD; longitudinally, increased plasma ceramide C22:0 and 
C24:0 concentrations predicted cognitive impairment and hippocampal 
volume loss among amnestic MCI individuals, thus indicating a predic
tive value of peripheral ceramides (Mielke et al., 2010). Recently, a 
metabolome-wide association study (MWAS), executed via UPLC-MS, 
demonstrated an association between abnormal homeostasis of ceram
ides and AD-related single-nucleotide polymorphisms in the ABCA7 
(ATP binding cassette subfamily A member 7) gene. In particular, it was 
proposed that the activation of microglia might trigger the expression of 
the sphingosine kinase enzyme and, thus, increased intracellular con
centrations of hexosylceramides (Dehghan et al., 2022). A longitudinal 
analysis of probable AD patients, quantifying sphingolipids via 
ESI-MS/MS, reported that a greater plasma SM/ceramide ratio predicted 
slower disease progression among AD patients, thus representing a po
tential blood-based biomarker for clinical AD advancement (Mielke 
et al., 2011). A multi-dimensional MS-based shotgun lipidomics anal
ysis, conducted on AD patients and cognitively HC to measure plasma 
concentrations of over 800 molecular species of lipids, revealed sub
stantially reduced values of some SM species (especially those contain
ing long aliphatic chains) and increased values of several ceramide 
species in AD compared to HC. Furthermore, the ceramide/SM ratio 
(species containing identical fatty acyl chains) differed between AD 
patients and HC (Han et al., 2011). 

In analyzing the molecular underpinnings of SM and ceramide 
disruption in AD, multi-omics analyses (i.e., post-mortem brain tran
scriptomics/plasma lipidomics/metabolic flux examination) supported 
by multimodal neuroimaging inspection have been carried out to 
characterize the central and peripheral metabolic changes affecting this 
pathway. In particular, by means of plasma metabolomic and lipidomic 
analysis, the SM(d43:1)/SM(d34:1) ratio was identified as a key inter
mediate trait for sphingolipid dysregulation in patients with AD. In 
addition, metabolite genome-wide association studies revealed that the 
sphingosine-1-phosphate (S1P) metabolite may serve as a potential drug 
target in AD. Finally, they found that prolonged exposure to fingolimod 
– a S1P receptor modulator that has previously gained regulatory 

approval for the treatment of multiple sclerosis (Vasiliou, 2010) – was 
able to alleviate AD-associated deficits in amyloidogenic APP/PS1 mice. 
Collectively, these data support the usefulness of multi-omics analyses to 
comprehensively capture the specific molecular perturbations affecting 
pathways known to be altered in AD. This knowledge has significant 
implications for treatment and holds promise to expand the current 
therapeutic armamentarium (Baloni et al., 2022). 

A study conducted by Barupal and colleagues (2018) using UPLC-MS 
on a large, published AD lipidomics data set within ADNI Phase 1 cohort 
(N > 800) (Barupal et al., 2018) made it possible to explore 349 serum 
lipids and to test the association of sets of co-regulated lipids with dis
ease diagnosis, CSF core neurochemical markers (Aβ1–42 and t-tau) and 
imaging markers (brain atrophy) of AD, and cognitive function. AD 
diagnosis was related to 7 out of 28 lipid sets, four of which showed 
remarkable association with cognitive impairment, including mono
unsaturated fatty acids (MUFAs) and PUFAs, such as omega-3 and 
omega-6 fatty acids. A positive link was observed between 
MUFA-containing complex lipids and brain atrophy and t-tau accumu
lation; a negative link was reported between PUFA-containing complex 
lipids and AD diagnosis and cognitive deterioration. Interestingly, CSF 
Aβ1–42 concentrations were associated with glucosylceramides, lyso
phosphatidylcholines (lysoPCs), and unsaturated triacylglycerols; both 
CSF t-tau and brain atrophy were associated with monounsaturated SMs 
and ceramides, as well as eicosapentaenoic acid-containing lipids (Bar
upal et al., 2019). Similarly, in another analysis scrutinizing 60 partic
ipants from an Icelandic memory clinic via untargeted CSF lipidomic 
analysis with UPLC-MS, it was observed that ceramide C18 was a 
discriminating feature between the CSF profile of AD patients and that of 
non-AD individuals (Teitsdottir et al., 2021). Another correlative anal
ysis investigating the clinical and pathological phenotypes of AD and 
Lewy bodies dementia (LBD) disclosed that plasma ceramides C16:0, 
C18:1, C20:0, and C24:1, as well as monohexosylceramides C18:1 and 
C24:1 (measured by ESI-MS/MS) were up-regulated in patients with 
autopsy-confirmed AD pathology versus cognitively normal individuals. 
However, these lipids could not help distinguishing between 
autopsy-confirmed AD and LBD pathologies (Savica et al., 2016). 

3.4.2. Glycerophospholipids 
Besides sphingolipids, altered concentrations of glycer

ophospholipids (also referred to as phospholipids) in AD have been 
deeply explored. Glycerophospholipids are ubiquitous in nature and are 
crucial components of the cell phospholipid bilayer, constituting around 
80% of total membrane lipids, as well as being implicated in the meta
bolism of cell signaling. They are amphiphilic molecules, characterized 
by acyl chains and glycerol (as the hydrophobic moiety) and by a 
phosphate group and polar head (as the hydrophilic part). Various 
subcategories of glycerophospholipids with diverse polar heads, 
including phosphatidylcholine (PC), phosphatidylethanolamine (PE), 
phosphatidylglycerol (PG), phosphatidylinositol (PI), and phosphati
dylserine (PS), can be generated (Hachem and Nacir, 2022; Kao et al., 
2020). An analysis using UPLC-TOF-MS found reduced serum concen
trations of PCs (incorporating choline as a headgroup), as well as SMs 
and sterols, in AD patients versus MCI and HC (Orešič et al., 2011). 
Lower plasma values of three PCs – PC 16:0/20:5, PC 16:0/22:6, and PC 
18:0/22:6 – were observed in AD patients and MCI individuals versus 
age-matched HC, through a multiplatform screen consisting of LC-MS 
and NMR spectroscopy (Whiley et al., 2014). The reduction of the 
same PCs was also associated with poor memory performance in healthy 
older individuals, stressing that phospholipid dyshomeostasis is a com
mon factor in AD and age-related memory impairment (Simpson et al., 
2016). A milestone targeted quantitative metabolomic/lipidomic anal
ysis conducted by Mapstone and colleagues (2014), using stable isotope 
dilution (SID)-MRM MS (SID-MRM-MS) to definitely detect and quantify 
lipids, amino acids, and biogenic amines in plasma, disclosed and vali
dated a 10-phospholipid biomarker signature. Decreased concentrations 
of this metabolite panel – consisting of various PCs (PC diacyl (aa) 

S. Lista et al.                                                                                                                                                                                                                                     



Ageing Research Reviews 89 (2023) 101987

12

C36:6, PC aa C38:0, PC aa C38:6, PC aa C40:1, PC aa C40:2, PC aa C40:6, 
and PC acyl-alkyl (ae) C40:6), a lysophosphatidylcholine (lysoPC a 
C18:2), and acylcarnitines (propionyl acylcarnitine (C3) and C16:1-OH) 
– was able to predict conversion from HC to amnestic MCI (aMCI) or AD, 
within 2–3 years, with elevated (>90%) accuracy (Mapstone et al., 
2014). PCs and acylcarnitines are phospholipid classes showing crucial 
activity in the integrity and functionality of cell membranes (Jones et al., 
2010; van Meer and de Kroon, 2011). Thus, it was speculated that this 
plasma 10-phospholipid biomarker signature might characterize the 
disruption of neural cell membranes in participants progressing to aMCI 
or AD and may designate the conversion from preclinical states, where 
synapse dysfunction/loss and early neurodegeneration start inducing 
subtle cognitive alterations (Mapstone et al., 2014). Then, this molec
ular profile was expanded to a 24-metabolite panel, with increased 
sensitivity and specificity, including 22 perturbed lipids, comprising 
several PCs (Fiandaca et al., 2015). 

A targeted UPLC-MS/MS-based metabolomic approach by Huo and 
colleagues (2020) was applied to ante-mortem peripheral blood (serum) 
and post-mortem brain samples from two large community-based lon
gitudinal cohort studies of risk factors for cognitive decline and incident 
AD dementia, namely the Religious Orders Study (ROS) and Rush 
Memory and Aging Project (MAP), together referred to as ROSMAP 
(Bennett et al., 2018). This study disclosed that increased serum con
centrations of three acylcarnitines (tetradecadienylcarnitine (C14:2), 
decanoylcarnitine (C10), and pimelylcarnitine (C7-DC), significantly 
predicted a decreased risk of incident AD following a 4.5-year follow-up, 
independent of age, sex, and education. When combined altogether, the 
effect of C14:2, C10, and C7-DC was associated with over 60% decrease 
in risk for incident AD. Furthermore, higher concentrations of C14:2, 
C10, and C7-DC were related to a slower cognitive impairment over time 
(Huo et al., 2020). Octadecadienylcarnitine (C18:2) and hex
anoylcarnitine [C6 (C4:1-DC)] showed higher concentrations in blood 
than in CSF in patients not experiencing post-operative delirium, an 
indicator of AD risk while the opposite is true in delirium prone group 
(Cuperlovic-Culf et al., 2021). Acylcarnitines are esters arising from the 
conjugation of carnitine (3-hydroxy-4-N-trimethylammoniobutanoate, a 
quaternary ammonium compound biosynthesized from the essential 
amino acids lysine and methionine in the liver and kidneys (STEIBER, 
2004) with fatty acids (i.e., acyl groups) (S. Li et al., 2019). Acylcarni
tines are a large class of metabolites that are members of the 
non-proteinogenic amino acid family (S. Li et al., 2019). They are 
involved in long-chain fatty acid metabolism by acting as carriers of 
long-chain fatty acids into mitochondria for β-oxidation, thereby 
generating energy to support cellular activities (Jones et al., 2010). In 
addition, acylcarnitines participate in BCAA metabolism (Mihalik et al., 
2010), insulin resistance (Schooneman et al., 2013), cellular stress re
sponses (McCoin et al., 2015), and cholinergic neurotransmission (Jones 
et al., 2010). Earlier investigations reported lower serum concentrations 
of several acylcarnitines in AD patients versus cognitively HC, in line 
with the above-described analysis (Ciavardelli et al., 2016; Cristofano 
et al., 2016). 

Using an integrative systems biology framework to systematically 
interrogate genetic, transcriptomic, proteomic, and clinical data from 
the ADNI cohort participants and metabolomics data available from the 
Alzheimer’s Disease Metabolomics Consortium (ADMC), Horgusluoglu 
et al. (2022) sought to identify specific blood metabolites highly asso
ciated with AD pathology, as well as key biological processes underlying 
their modifications. The results revealed an altered balance between 
essential amino acids/BCAAs and a disturbed short-chain acylcarnitine 
homeostasis, with medium/long-chain acylcarnitine serum concentra
tions being significantly different (in the opposite direction) in AD pa
tients versus HC. Notably, two genes – ATP Binding Cassette Subfamily A 
Member 1 (ABCA1) and Carnitine Palmitoyltransferase 1 A (CPT1A) – 
and two proteins (adiponectin and neutrophil gelatinase-associated 
lipocalin) were identified as key regulators of acylcarnitines and amines. 
Increased expression levels of both the ABCA1 gene and the adiponectin 

protein were primary drivers for the decrease in short-chain acylcarni
tines and amines observed in AD. These results highlight the usefulness 
of large-scale multi-omics efforts to identify the most relevant metabolic 
disturbances in AD and their underlying biological regulators (Horgus
luoglu et al., 2022). 

Notably, various attempts were carried out to replicate the original 
10-phospholipid signature (Mapstone et al., 2014). An Austrian 
multi-cohort study using UPLC-QTrap-MS found that three lipid me
tabolites in plasma, PC aa C34:4, PC aa C38:3, and PC aa C40:5, could 
significantly discriminate HC from MCI and AD. Moreover, the ratio 
between PC aa C34:4 and lysoPC a C18:2 could distinguish HC from MCI 
and AD with further higher significance, thus highlighting the relevance 
of PCs in AD pathophysiology (Klavins et al., 2015). Another investi
gation in a subset of participants recruited from the Atherosclerosis Risk 
in Communities (ARIC) Neurocognitive Study (ARIC-NCS) reported that 
only PC aa C40:2 and PC aa C36:6 were related to the prevalence of MCI 
and dementia, respectively (Li et al., 2016). More recently, analyses 
conducted in two distinct large independent cohorts – the BLSA and the 
Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-RS) – 
were not successful in replicating the previous findings (Casanova et al., 
2016), therefore underscoring the essential need for a consensus on 
harmonized methods and platforms across laboratories (Gross et al., 
2018). In another analysis, increased plasma concentrations of some PCs 
(PC aa C32:1, PC aa C34:1, PC aa C42:1, PC ae C34:1, and PC ae C36:1) 
and lysoPCs were observed in HC that converted to AD within a 
7-to-9-year follow-up period. Such a long phase enabled the assessment 
of plasma lipid variation in very early stages within the AD clinical 
continuum. Moreover, four PCs were increased at the MCI stage: PC aa 
C34:1, PC aa C40:6, PC ae C34:1, and PC ae C40:3 (Blasko et al., 2021). 
The aforementioned targeted metabolomic-driven ROSMAP study – 
using flow injection analysis (FIA) with tandem MS (FIA-MS/MS) in both 
ante-mortem blood and post-mortem brain samples – detected baseline 
serum concentrations of ten glycerophospholipids that were predictive 
of longitudinal alterations in cognitive functions. In particular, three 
glycerophospholipids (PC aa C30:0, PC ae C34:0, and PC ae C36:1) were 
associated with both AD neuropathology and cognitive alterations (Huo 
et al., 2020). 

Despite an inability to exactly replicate definite panels of metabo
lites, there is a growing consensus that lipid dyshomeostasis may be a 
crucial feature of early AD pathophysiology. A landmark multi-cohort 
(ADNI-1, Indiana Memory and Aging Study [IMAS], Rotterdam Study 
[RS], and Erasmus Rucphen Family Study [ERF]) investigation, con
ducted by Toledo et al. (2017), used metabolomics and network ap
proaches to detect the alterations of serum lipid concentrations (as 
measured by targeted UPLC-MS/MS) associated with the different AD 
stages and correlate them to CSF AD biomarkers tracking Aβ and tau 
pathologies, neuroimaging markers (brain volume changes), and 
cognitive performance measurements. Some lipid categories, specif
ically SMs and PCs with ether bonds, were subject to changes related to 
early stages of AD (Toledo et al., 2017). Lipid alterations are assumed to 
mirror membrane structure/function modifications early in the disease 
evolution; moreover, modification in lipid rafts can induce alterations in 
Aβ processing (Rushworth and Hooper, 2011). Furthermore, modifica
tions associated with mitochondrial energetics and energy utilization 
were reported. These might be due to alterations of mitochondrial lipid 
membranes leading to elevated lipid oxidation, loss of membrane po
tential, and variations in membrane transport (Jha et al., 2017). 

González-Domínguez and colleagues (2014) performed the first deep 
comprehensive examination of serum phospholipids profiling modifi
cations in AD patients via shotgun metabolomics on UPLC-QTOF-MS 
platform. Substantial alterations in lipid concentrations were reported, 
including changes in PCs, PEs, plasmenylcholines, plasmenylethanol
amines, and lysophospholipids. A multifactorial cause for all these 
modifications, involving overactivation of phospholipases, more 
elevated anabolism of lysophospholipids, peroxisomal dysfunction, and 
dissimilarities in the levels of fatty acids saturated/unsaturated ratio, 
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was assumed (González-Domínguez et al., 2014b, 2014c). In particular, 
the most relevant perturbations were associated with a reduction in the 
levels of circulating phospholipids containing PUFAs, which was 
accompanied by a parallel increase of lipid species composed of satu
rated fatty acids (SFAs), which could provoke membrane destabilization 
processes (González-Domínguez et al., 2014b, 2014c). Next, the same 
authors investigated serum samples from a cohort of AD, MCI, and HC 
participants, using UPLC-QTOF-MS, and observed compromised meta
bolism of phospholipids and sphingolipids, resulting in membrane 
disruption, where the biology of the fatty acids integrated in the lipids 
structure as acyl chain length and extent of unsaturation seems to be 
critical (González-Domínguez et al., 2016). An untargeted plasma lip
idomic analysis, using UPLC-MS, revealed a signature of 10 metabolites 
distinguishing AD patients from HC with high accuracy. Six metabolites 
were long chain cholesteryl esters and were reduced in AD (Proitsi et al., 
2015). A larger untargeted plasma lipidomic analysis conducted with 
the same platform allowed the detection of a lipid panel including 
cholesteryl esters/triglycerides and PCs (in particular PC 40:4), associ
ated with disease progression and brain atrophy (Proitsi et al., 2017). 
Interestingly, these AD-related alterations in glycerolipids and fatty acid 
metabolic pathways could also be detected in urine, a non-invasively 
and simply collectable biofluid with elevated potential usefulness in 
clinical practice (Watanabe et al., 2021). 

As part of the ADNI study, Sakr and colleagues (2022) examined the 
association between different lipid classes characterized by lipidomics 
and traditional AD biomarkers (CSF p-tau/Ab1–42 ratio) in cases with 
preclinical and prodromal AD. They also assessed the prognostic sig
nificance of lipidomic signatures with respect to the clinical trajectories 
of cognitive decline. After adjusting for APOE ε4 status, they found that 
ether-glycerophospholipids, lyso-glycerophospholipids, free-fatty acids, 
cholesterol esters, and complex sphingolipids were significantly associ
ated with the CSF p-tau/Ab1–42 ratio. They also identified five specific 
lipidomic endophenotypes as being related to the clinical course of the 
disease in prodromal cases, as reflected by clinical dementia rating score 
conversion. Pending independent validation, these findings highlight 
the potential usefulness of lipidomics for both prognostication and 
implementation of enrichment strategies in clinical trials (Sakr et al., 
2022). 

3.4.3. Diacylglycerols 
Diacylglycerols (DAGs), esters generated from two fatty acids chains 

and a glycerol molecule, play several major biological roles. First, they 
act as mediators of diverse signal transduction pathways by activating 
various protein kinases involved in synaptic transmission – for instance, 
the protein kinases C (PKC) and D (PKD) as well as the Ca2+/calmodulin- 
dependent protein kinase (PKCaMII). They also have structural roles – 
for instance, they act as precursors for glycerophospholipids, tri
acylglycerols (TAGs), and monoacylglycerols (MAGs) – as well as acting 
as key lipids in the nuclear envelope and endoplasmic reticulum (Wood 
et al., 2018). In general, DAG expression and concentrations are accu
rately modulated to preserve their activity, especially in some major 
metabolic pathways, namely conversion to glycerophospholipids, hy
drolysis catalyzed by some lipases to produce MAGs, acylation by DAG 
acyltransferase to synthesize TAGs (Wood et al., 2015b). 

A quantitative lipidomic profiling method comparing the biochem
ical profiles of brain tissues from mild and severe AD patients with age- 
matched, cognitively HC allowed the detection of increased DAG (14:0/ 
14:0), TAG (58:10/FA20:5), and TAG (48:4/FA18:3) expressions when 
comparing AD with HC (Akyol et al., 2021). Non-targeted lipidomic 
analyses found augmented values of DAGs in both frontal cortex (Chan 
et al., 2012; Wood et al., 2015a) and serum (González-Domínguez et al., 
2015b; Wood et al., 2014) of AD patients, suggesting that modifications 
of DAGs content are common in AD. Moreover, increased DAGs ex
pressions and concentrations in frontal cortex (Wood et al., 2015a) and 
plasma (Wood et al., 2014), respectively, were reported in MCI in
dividuals. Thus, brain DAGs and circulating DAGs may start increasing 

early during the AD clinical continuum. These findings were corrobo
rated by a targeted lipidomic examination of DAGs (and MAGs) in the 
frontal cortex and plasma of MCI individuals, using HRMS/MS, thus 
suggesting the involvement of circulating DAGs in the 
MCI-to-overt-dementia conversion (Wood et al., 2015b). 

A study focusing on lipidomics explored whether a battery of plasma 
lipids could distinguish between patients with AD and cognitively HC. In 
this work, authors also assessed whether an association exists between 
plasma lipid profiles and the genetic risk for AD. After examining lipid 
species at the group level, DAGs were the only group found to be 
significantly increased in AD. At the species level, cholesterol esters, 
TAGs, and SMs showed good discrimination ability (area under curve 
>80%) for identifying patients with AD. Individual lipids that were 
significantly different between AD and HC were further explored in 
relation to both AD-associated genes and polygenic risk scores. The re
sults revealed that the fermitin family homolog-2 (FERMT2) gene – 
encoding for a member of the fermitin family of proteins involved in 
cell-matrix adhesion complexes – and the membrane spanning 4-do
mains A6A (MS4A6A) gene – previously associated with cortical and 
hippocampal atrophy – showed significantly differential association 
with all lipid classes across disease groups. Taken together, the authors 
documented specific lipid changes associated with AD, which can not 
only inform disease pathophysiology but may also have the potential to 
be transformed into a clinically applicable testing procedure (Liu et al., 
2021). 

3.4.4. Sterols 
Sterols are essential signaling molecules involved in metabolism, 

development, and homeostasis. Cholesterol, the dominant sterol in an
imal cells, is not only a structural component of cell membranes but also 
serves as the building block for the biosynthesis of steroid hormones, 
vitamin D, and bile acids (BAs) (Babu et al., 2022). 

The potential role of sex steroid metabolites in the pathogenesis of 
dementia has been reported by Bressler and colleagues (2017) in middle- 
aged community-dwelling African American individuals enrolled in the 
Atherosclerosis Risk in Communities (ARIC) study. After a median 
follow-up of 17.1 years, the authors identified one metabolite (4- 
androstene-3beta, 17 beta-diol disulfate 1) as being significantly asso
ciated with the risk of incident dementia, a finding consistently repli
cated in European Americans (Bressler et al., 2017). Given that 
4-androstene-3beta, 17 beta-diol disulfate 1 is an intermediate in the 
synthesis of testosterone from dehydroepiandrosterone (Kihel, 2012), 
that study lent further support to the idea that aging-related sex steroid 
depletion is associated with cognitive decline. 

Dysregulation of cholesterol catabolism, through its conversion to 
primary BAs, was also recently associated with the pathogenesis of de
mentia both in animal models and clinical studies. The presence of BAs 
and their receptors in the brain suggests these molecules play a direct 
role in the regulation of cerebral functions. Notably, an altered brain and 
serum BA profile has been reported in the AppNL-G-F mouse model of 
AD. The multi-compartmental characterization of APP/PS1 transgenic 
mice evidenced reduced contents of various BAs in serum 
(González-Domínguez et al., 2015f), brain (González-Domínguez et al., 
2015g), and liver (González-Domínguez et al., 2015h). Moreover, 
abnormal BA levels have been described in biological samples collected 
from patients with AD (Cuperlovic-Culf and Badhwar, 2020). 

In a study by Marksteiner and colleagues (2018), concentrations of 
20 BAs were measured by LC-MS in plasma samples obtained from 30 
cognitively HC, 20 MCI participants, and 30 AD patients. The authors 
found increased levels of lithocholic acid in AD patients compared with 
HC; additionally, concentrations of glycochenodeoxycholic acid, gly
codeoxycholic acid, and glycolithocholic acid were significantly higher 
in AD than MCI. Interestingly, increased plasma lithocholic acid levels 
predicted conversion to AD in initially healthy individuals followed for 
8–9 years (Marksteiner et al., 2018). 

More recently, the reciprocal associations between serum levels of 
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BAs, quantified using LC-MS, and traditional imaging and CSF bio
markers of AD were examined in the ADNI cohort. An abnormal BA 
profile was found to be associated with both structural (brain atrophy) 
and metabolic (glucose hypometabolism) imaging markers of AD. 
Additionally, three BA ratios (glycodeoxycholic acid/cholic acid, taur
odeoxycholic acid/cholic acid, and glycolithocholic acid/chenodeox
ycholic acid) were associated with both imaging and CSF biomarkers 
(lower Aβ1–42 concentrations) of AD. The authors concluded that BAs 
might be pathogenetically involved in AD through the Aβ cascade (Nho 
et al., 2019). Similarly, following the LC-MS measure of the abundance 
of plasma circulating factors, especially lipid molecules, in normal 
cognition, MCI, and dementia due to probable AD participants, glyco
cholic acid was found to act as a potential mediator of mitochondrial 
bioenergetics in AD (Amick et al., 2022). 

Given that the BA pool is manipulated by the gut microbiota, 
metabolomics analyses were carried out in the ADNI cohort with the 
goal of assessing whether gastrointestinal microbiota-related alterations 
of BA metabolism occur in AD, resulting in a higher proportion of sec
ondary BAs. Compared with age-matched cognitively HC, patients with 
AD were characterized by significantly lower serum levels of cholic acid, 
a primary BA, and increased concentrations of deoxycholic acid, a 
(bacterially produced) secondary BA. An increased ratio of deoxycholic 
acid/cholic acid, which reflects 7α-dehydroxylation of cholic acid by gut 
bacteria, showed a strong association with cognitive decline. Collec
tively, these results support a direct link between intestinal metabolism, 
liver homeostasis, and neurodegeneration/cognition (Mahmou
dianDehkordi et al., 2019). 

These results were confirmed by a recent analysis exploring changes 
in cholesterol and BA metabolism in AD. In particular, targeted metab
olomic quantification of primary and secondary BAs in post-mortem 
brain samples from the dorsolateral prefrontal cortex of AD patients, 
MCI individuals, and cognitively HC individuals of the ROSMAP study 
showed that deoxycholic acid, lithocholic acid, glycochenodeox
ycholate, chenodeoxycholic acid, taurodeoxycholic acid, glycodeox
ycholic acid, ursodeoxycholic acid, allolithocholate, and taurocholic 
acid were increased in AD versus HC, thus proposing a potential asso
ciation of such BAs with cognitive impairment in AD. Furthermore, 
increased serum concentrations of taurine, needed for the conjugation of 
primary and secondary BAs, were observed in AD versus HC (Baloni 
et al., 2020). 

3.4.5. Fatty acids 
Fatty acids are directly implicated in the structure of most nervous 

system lipids, being responsible for their biological and chemical fea
tures. They are related to neurogenesis, neuronal inflammation, and 
neurotransmitter production, processes that are crucial for the physio
logical development of the brain (Youdim et al., 2000). Moreover, fatty 
acids (as well as their metabolic products) can affect MCI individuals 
and AD patients through their activities in brain structure and function, 
neurotransmission, cell membrane structure organization, inflamma
tion, and oxidative stress (Calder, 2006; McNamara et al., 2010). 

Quantitative targeted GC-MS-based analysis of fatty acid methyl 
esters was carried out to screen all measurable fatty acid species in post- 
mortem neocortical tissue (Brodmann 7 region) in late-stage AD patients 
and age-matched HC. A 24-fatty acid signature was revealed; specif
ically, the expression of nine fatty acids was increased in AD brains, with 
cis-13,16-docosenoic acid being the most elevated. Docosahexaenoic 
acid (DHA) expression was significantly increased. Interestingly, sex 
might affect brain fatty acid expression in AD, since seven fatty acid 
species were found to be more elevated in males than females (Nasar
uddin et al., 2016). 

A recent meta-analysis reported a 27.2% decrease of plasma/serum 
total fatty acid concentrations in AD compared with controls; in 
particular, DHA was significantly lower in both MCI and AD, thus 
indicating a potential role for this metabolic compound as driver of AD 
pathology (Hosseini et al., 2020). 

In general, PUFAs (fatty acids that contain more than one double 
bond in their backbone), especially DHA, linoleic acid, and eicosa
pentaenoic acids, are thought to have a considerable role in AD patho
physiology. Indeed, DHA, an omega-3 fatty acid, represents the primary 
PUFA structural constituent of brain lipids and is necessary for regular 
brain development, growth of synapses, and maintenance of membrane 
fluidity. A large-scale cross-sectional investigation found a significant 
correlation between blood DHA concentrations and increased cognitive 
ability (Lee et al., 2018). The effects of high supplementation of DHA on 
cognitive benefit and AD prevention were examined, since eating fatty 
fish leads to increased DHA plasma concentrations. In particular, 
high-dose intake of DHA in APOE ε4 carriers prior to onset of AD de
mentia might reduce the risk for or delay the onset of AD symptoms, thus 
representing an effective approach to lower the incidence of AD (Yassine 
et al., 2017). Following a blood-based analysis integrating spectroscopy 
methods with an HPLC-HRMS-based metabolomic platform, plasma 
concentrations of arachidonic acid, an omega-6 fatty acid, were found to 
be reduced in AD; in contrast, its precursor, linoleic acid, was increased, 
suggesting disruption of fatty acid metabolism (Habartová et al., 2019). 
A targeted metabolomic study using GC-MS revealed significant in
creases in the expression of cis-13,16-docosenoic acid and DHA in 
post-mortem brains of late-stage AD patients versus age-matched con
trols, while other fatty acids were found to be unaltered or decreased 
(Nasaruddin et al., 2016). Metabolomic profiling performed on 
post-mortem brains of participants recruited from the BLSA study – AD 
patients, “asymptomatic Alzheimer’s disease” individuals (ASYMAD, 
individuals with significant AD neuropathology at death but without 
evidence for cognitive impairment during life), and HC – discovered 
dysregulated expressions of six UFAs: linoleic acid, linolenic acid, DHA, 
eicosapentaenoic acid, oleic acid, and arachidonic acid. These UFAs 
were significantly associated with AD (Snowden et al., 2017). However, 
there is no general agreement on whether they are increased or 
decreased in AD pathology. 

A multi-omic (transcriptomic/metabolomic/lipidomic) study was 
conducted in plasma samples from a cohort of cognitively normal in
dividuals facing subjective memory complaint, dichotomized in Aβ- 
positron emission tomography (PET) positive versus Aβ-PET negative (i. 
e., with and without brain Aβ overaccumulation on Aβ-PET imaging, 
respectively). This study allowed the detection of three medium chain 
fatty acids – undecanoic, octanoic, and hydroxy-nonanoic acids 
(together with a panel of 64 transcripts and 4-nitrophenol) – associated 
with inflammatory pathways and fatty acid metabolism, discriminating 
the two groups. This finding indicated a potential metabolic signature 
for Aβ burden, established in peripheral blood (Xicota et al., 2019). 

In one of the most comprehensive investigations ever undertaken of 
the human lipidome in AD, Huynh et al. (2020) examined 569 lipid 
species across 32 different lipid classes and subclasses using plasma 
samples from the Australian Imaging, Biomarkers and Lifestyle flagship 
study of aging (AIBL) and serum from the ADNI studies. In 
cross-sectional analyses, positive associations of PE, DAG, and TAG with 
AD were observed; conversely, alkyl and alkenyl ether lipids were 
negatively associated with the disease. A number of n-acylated ceram
ides were associated with AD. On the one hand, the authors found 
positive associations with species containing 18:0, 20:0, and 24:1 fatty 
acids. On the other hand, negative or neutral associations were identi
fied for species containing 22:0, 24:0, and 26:0 fatty acids, regardless of 
the sphingoid base. The minute class-wide and species-specific changes 
in the lipidome of subjects included in the AIBL and ADNI cohorts 
highlight the potential pathogenetic role of lipid dysregulation in AD 
and call for further confirmation in population-based studies (Huynh 
et al., 2020). 

The complementary application of GC- and LC-MS platforms allowed 
the measurement of over 2000 metabolites in 48 post-mortem tissue 
samples collected from the superior frontal gyrus of male and female 
participants divided in normal HC, cognitively normal individuals 
designated as high pathology controls, individuals with non-specific 
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MCI, and AD patients. A nine-metabolite signature including one 
monounsaturated fatty acid (palmitoleic acid), four saturated fatty acids 
(lauric acid, stearic acid, myristic acid, and palmitic acid), and four 
unidentified mass spectral features was detected. This metabolite panel 
exhibited high predictive accuracy to differentiate the four groups. 
Pathway analysis disclosed significant disruptions in fatty acid meta
bolism, as well as lysine and BCAAs degradation (Jasbi et al., 2021). In a 
recent study, higher serum concentrations of propionic acid were asso
ciated with increased odds of cognitive decline and significantly corre
lated with blood glucose (Neuffer et al., 2022). 

3.5. Other metabolites 

After conducting extensive research on various metabolites associ
ated with AD pathophysiology, it has been determined that organic 
acids, nucleosides, and alkaloids may be linked to different stages of AD, 
particularly as a result of high-throughput metabolomics analyses. Uti
lizing an untargeted LC-MS approach on whole blood samples from 
dementia patients and healthy older individuals, researchers identified 
and quantified 33 metabolites as potential biomarkers for AD diagnosis. 
These metabolites were categorized based on their possible functions. A 
subset of compounds, exhibiting increased concentrations in AD pa
tients, were suggested to be potential neurotoxins. This group included 
indoxyl-sulfate, quinolinic acid, adenosine, dimethyl-guanosine, N6- 
acetyl-lysine, pseudouridine, and kynurenine (Teruya et al., 2021). 
Kynurenine and quinolinic acid have previously been proposed as 
candidate biomarkers for AD (Gulaj et al., 2010). The remaining 26 
compounds displayed lower concentrations in AD patients and were 
believed to possess neuroprotective properties. These compounds 
encompassed antioxidants such as ergothioneine, a natural amino acid 
and thiol antioxidant obtained from the diet, as well as oxidoreductants 
like NADP+ , glutathione, adenosine triphosphate, pantothenate, 
S-adenosyl-methionine, and gluconate. Additionally, the whole blood 
concentrations of neuroprotective compounds, including glycer
ophosphocholine, dodecanoyl-carnitine, and 2-hydroxybutyrate, were 
found to be reduced in AD patients. While this investigation revealed 
promising leads for further research, it is important to note that some of 
the observed alterations could be attributed to changes in diet and 
behavior among AD patients (Teruya et al., 2021). 

The potential involvement of nucleotides in neurodegenerative 
processes has been the subject of recent review (Sebastián-Serrano et al., 
2019). Within the CNS, nucleotides function as neurotransmitters, 
activating specific receptors, such as the P2 purinergic receptors. It was 
proposed that nucleotides may modulate the molecular mechanisms 
underlying neurodegeneration. In particular, a significant increase in 
extracellular nucleotides triggers the activation of purinergic receptors, 
thereby initiating purinergic signaling pathways that play a critical role 
in oxidative stress, neuroinflammation, and synaptic alterations (e.g., 
reduced axonal growth). These pathways may also contribute to the 
production of protein aggregates, such as Aβ peptides, which are 
implicated in the onset and progression of AD and other ND. Further 
research is necessary to comprehensively elucidate the role of nucleo
tides in these processes, potentially revealing valuable therapeutic op
portunities to prevent or slow the progression of ND (Sebastián-Serrano 
et al., 2019). 

In the realm of therapeutic natural products, numerous studies 
investigated the potential of natural alkaloids as multi-targeted agents in 
AD treatment. Following the approval of the Amaryllidaceae alkaloid 
galanthamine as an anti-dementia drug, a comprehensive collection of 
selected naturally occurring plant and marine alkaloids has been sug
gested as promising multi-target candidates for developing new anti-AD 
medications. These alkaloids showed significant inhibitory effects on 
key enzymes associated with AD pathophysiology. Notably, the β-car
boline alkaloid harmine is a natural monoamine oxidase-A inhibitor and 
appears to be the most promising candidate due to its broad range of 
anti-AD activities. The isoquinoline alkaloid berberine inhibits Aβ 

production by blocking the expression of the β-site APP cleaving enzyme 
1 (BACE1). Additionally, the benzophenathridine alkaloids avicine and 
nitidine exhibit dual cholinesterase inhibitory activity, with a stronger 
effect on acetylcholinesterase compared to butyrylcholinesterase (Vra
bec et al., 2023). A recent study examined the abilities of three nicotinic 
alkaloids – nicotine, cotinine, and anatabine – to modulate nicotinic 
acetylcholine receptor activity and suppress scopolamine-induced 
spatial memory deficits in rodents. Interestingly, cotinine and anata
bine primarily affected short-term spatial memory, while nicotine 
demonstrated a broader role in memory regulation. Consequently, 
nicotinic acetylcholine receptor-activating alkaloids may possess vary
ing procognitive properties depending on the memory type (Callahan 
et al., 2021). 

3.6. Redox proteomics 

Heme oxygenase-1 (HO-1) is an inducible enzyme that catalyzes the 
conversion of heme into biliverdin, free ferrous iron, and carbon mon
oxide (Hettiarachchi et al., 2014). This enzyme plays a significant role in 
the pathogenesis of AD. Accordingly, it has been observed that HO-1 is 
overexpressed in astrocytes and neurons in the hippocampus and cere
bral cortex, co-localizing with neurofibrillary tangles, senile plaques, 
and corpora amylacea (Schipper, 2011). It was reported that microglial 
HO-1 expression increases with aging and is particularly pronounced 
during AD progression, suggesting that HO-1 could serve as a potential 
biomarker or therapeutic target for AD (Fernández-Mendívil et al., 
2020). In another study, MS was employed to identify the heme 
degradation pathway as a promising serum biomarker for early detec
tion of AD (Mueller et al., 2010). Intriguingly, a brain proteomic study 
found that heme-binding protein 1, which has a functional association 
with HO-1, is elevated in the brains of both 3 ×Tg-AD mice and patients 
affected by rapidly progressing forms of AD (Yagensky et al., 2019). 
Moving forward, redox proteomics approaches will prove invaluable in 
investigating the specificity of oxidative stress-related biomarkers, 
including HO-1, in relation to AD pathophysiology (Cioffi et al., 2021). 

4. Discussion 

Given that metabolites, such as amino acids, carbohydrates, and 
lipids, reflect the ultimate effect of gene- and protein-based patho
physiological mechanisms, metabolomic science is expected to play an 
essential role in biomarker discovery and drug development. Specif
ically, metabolomics can offer several unique benefits, such as (I) 
providing information on disease molecular mechanisms via examina
tion of the dynamic alterations within biological systems; (II) detecting 
and discovering of novel candidate molecular biomarkers and their 
associated pathways; and (III) predisposed to more effective clinical 
applications (Hurtado et al., 2018), and (IV) possible selection of 
biomarker panels of molecules reducing confounding effects. In general, 
given that numerous metabolites linked to AD pathophysiology are 
interconnected through complex metabolic pathways/networks and 
share several intermediate compounds, changes occurring in an indi
vidual metabolic compound can elicit modifications in other related 
metabolites and impact other co-regulated pathways (Toledo et al., 
2017). 

4.1. The landscape of altered metabolic pathways in Alzheimer’s disease 

Metabolomic and lipidomic profiling of different matrices – biofluids 
(blood [plasma/serum]/CSF) and brain tissues – enabled the detection 
of considerable changes in the concentration/expression of several 
metabolic compounds and, therefore, the examination of relevant 
metabolic pathways modified in AD. These pathways are mainly 
involved in fatty acid biosynthesis and lipid metabolism, amino acid 
metabolism, and mitochondrial bioenergetics (Wilkins and Trushina, 
2018) (Fig. 4). The studies presented in this review suggest a strong role 
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of lipid dyshomeostasis either alone or in combination with other 
metabolic pathways in AD (see Yin et al., 2023 for additional coverage). 
Lipid dysmetabolism may be a primary contributor to the pathophysi
ology of AD or, alternately, may reflect the convergence of multiple 
pathways. Lipids are essential for physiological function, encompassing 
membrane architecture, β-oxidation, cell signaling, and biosynthesis of 
BAs. Furthermore, the discovery of the APOE ε4 allele as a central ge
netic risk factor for sporadic AD emphasized the contribution of lipid 
dyshomeostasis in AD pathogenesis (Yamazaki et al., 2019). Apolipo
protein E is acknowledged for its main role in lipid uptake and transport 
in cells; moreover, the association between the ε4 allelic variant and 
raised expressions of toxic brain Aβ oligomers is well established (Huang 
et al., 2017). Besides apolipoprotein E, other lipids also participate in the 
modulation of membrane-bound proteins linked to AD, such as the APP, 

the BACE1 enzyme, and the presenilins (Eckert and Müller, 2009; 
Grimm et al., 2017; Hattori et al., 2006). Additionally, lipid vesicles are 
highly effective in inducing the phosphorylation and aggregation of tau 
proteins (Elbaum-Garfinkle et al., 2010). 

Numerous amino acid metabolic pathways are dysregulated in AD, 
such as arginine, aromatic amino acids, BCAAs, methionine, and 
cysteine metabolisms (Cuperlovic-Culf and Badhwar, 2020; 
González-Domínguez et al., 2021a; Mill and Li, 2022; Wilkins and 
Trushina, 2018). Remarkably, the disruption of energy-related meta
bolism is a central finding emerging along metabolomics analyses. 
Modified glucose values are consistently found in both the CNS and the 
peripheral system in AD, thereby indicating an anomalous metabolic 
rate of carbohydrates, the primary brain energy source. This perturba
tion is complemented by disturbances in other metabolic compounds 

Fig. 4. Schematic representation of relevant metabolic pathways altered in AD. Metabolomic/lipidomic studies allow exploring significant alterations of numerous 
metabolites and, consequently, scrutinizing relevant metabolic pathways altered in AD, primarily those related to fatty acid biosynthesis and lipid metabolism, amino 
acid metabolism, and mitochondrial bioenergetics. Abbreviations: AD, Alzheimer’s disease; ADP, adenosine diphosphate; ATP, adenosine triphosphate; BCAAs, 
branched-chain amino acids; CoA, coenzyme A; Cyt c, cytochrome c; PRPP, phosphoribosyl diphosphate; TCA, tricarboxylic acid cycle. 
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involved in glycolysis, the pentose phosphate pathway, gluconeogen
esis, the tricarboxylic cycle, and beta-oxidation of fatty acids, hence 
showing intense disruptions of the whole energy metabolic system 
(Cuperlovic-Culf and Badhwar, 2020; González-Domínguez et al., 
2021a; Mill and Li, 2022; Wilkins and Trushina, 2018), as well as major 
alterations in fructose metabolism with an increased role of fructose in 
energy generation (Johnson et al., 2023). 

Ultimately, efforts have been made to develop comprehensive maps 
of metabolic brain alterations associated with AD. A large, untargeted 
metabolomic analysis of 500 dorsolateral prefrontal cortex samples from 
the ROSMAP study revealed widespread metabolic dysregulation asso
ciated with AD, covering 298 metabolites from several AD-relevant 
pathways. These encompassed (I) bioenergetics (including glycolysis, 
BCAA metabolism, and mitochondrial β-oxidation), (II) cholesterol 
metabolism and sterol pathway (with degradation products of choles
terol correlating with AD-related traits), (III) neuroinflammation and 
oxidative stress (with correlations of metabolites in the glutathione 
pathway with AD), (IV) osmoregulation (impacting aspects of AD pa
thology, including protein folding, neural excitation, and autophagy), 
and (V) metabolic consequences due to the neurotransmitter glutamate/ 
GABA ratio imbalances (Batra et al., 2022). A multi-dimensional study 
interrogating metabolic signatures in AD brains (post-mortem parietal 
cortical tissue samples) was carried out to characterize three genetically 
defined AD subgroups, namely sporadic AD, autosomal dominant AD, 
and carriers of the triggering receptor on myeloid cells 2 (TREM2) gene 
risk variants. A 16-metabolite profile was significantly altered across the 
three groups and associated with AD duration. Notably, the pathways 
related to the 16-metabolite signature were associated with amino acid 
metabolism (glutamate, β-citrylglutamate, N-acetylglutamate, aspar
tate, 3-hydroxy-2-ethylpropionate). Moreover, CDP-ethanolamine, 
CDP-choline, and glycerophosphoinositol were linked to phospholipid 
metabolism, while α-tocopherol (vitamin E), retinol (vitamin A), and 
nicotinamide (vitamin B3) were constituents of the vitamin metabolism. 
Since AD genetic variants present distinctive metabolic perturbations, 
exploring such metabolites may help critically elucidate the AD etiology 
(Novotny et al., 2022). Finally, a lipidomic approach applied using 
untargeted and targeted analyses in plasma samples allowed to disclose 
differential lipid profiles between patients at the early stages of AD and 
HC. Therefore, the plasma lipid profile could be useful in the early and 
minimally invasive detection of AD. Among lipid families, relevant re
sults were obtained from DAGs, lysophosphatidylethanolamines 
(lysoPEs), lysoPCs, MAGs, and SMs. In particular, MAGs showed a po
tential diagnostic usefulness in AD detection, DAGs were associated with 
the MCI stage, while lysoPEs, lysoPCs, and SMs were more specifically 
associated with AD preclinical stage. The targeted analysis enabled to 
determine reduced plasma concentrations of some lipid species thought 
to be beneficial as potential biomarkers for AD diagnosis (18:1 lysoPE, 
18:0 lysoPC, 16:1 SM (d18:1/16:1), and 16:0 SM (d18:1/16:0). 
Although the accuracy was satisfactory for all these molecules, only 18:1 
lysoPE was characterized by significantly raised concentrations in pre
clinical AD and MCI converting to AD dementia patients versus HC. In 
addition, other lipid families, including phosphatidylglycerol, phos
phocholine, glycerophosphocholine, glycerophosphoserine, glyco
sphingolipids, terpenes, steroids, flavonoids, glycosyl diacylglycerols, 
glucosylceramides, and fucopentaoses, were found to be modified in 
early AD stages, thus giving a clear idea about the extensiveness of this 
map of lipidomic blood alterations (Peña-Bautista et al., 2022). 

Follow-up examinations are required to complete our understanding 
of the specific dysregulated metabolisms and pathological pathways 
characterizing the AD brain. Collectively, there is growing general evi
dence that progressive perturbations of key metabolic processes 
responsible for adequate brain energy supply are anatomically and 
functionally associated with AD. While a number of metabolic changes 
have been linked to AD-type symptoms, the central role of energy 
metabolism in sustaining neuronal function is emphasized by the wide 
spectrum of neurological manifestations associated with metabolic 

diseases in humans. Unfortunately, the intrinsic cellular heterogeneity 
of brain tissue currently limits the granular investigation of metabolic 
alterations taking place in specific neuronal subsets. Interestingly, there 
is pilot evidence that neurons can accommodate a significant amount of 
metabolic plasticity. This might open a therapeutic window during 
which key hallmarks of metabolic stress can be fully reversed, ultimately 
preventing neuronal degeneration. In this scenario, novel therapeutic 
approaches to sustain neuronal viability during early metabolic stress 
are eagerly awaited (Cuperlovic-Culf and Badhwar, 2020). 

4.2. Clinical implication of metabolomic analyses in Alzheimer’s disease 

Upcoming comprehensive biomarker investigations in the area of 
AD, especially using blood samples, should aim at examining the lon
gitudinal variation of metabolite concentrations in HC and in in
dividuals later progressing to MCI or AD, in order to disclose candidate 
biomarkers that help: (I) predict the progress of the disease and (II) 
recognize individuals at risk of AD for selection in clinical trials (Wong 
et al., 2017a, 2017b). 

Notably, the growing understanding of the pathophysiological 
mechanisms responsible for AD shows that, besides Aβ and tau pathol
ogies and neurodegenerative processes, the AD brain can be subject to 
several other cellular and molecular alterations (Hampel et al., 2021a; 
Tarawneh, 2020). At present, the common agreement would be to 
propose an integrated strategy where blood-based candidate metab
olomic biomarkers should be combined with all other biofluid indicators 
of AD pathophysiology and with neuroimaging markers. The latter 
would be brain atrophy measurements, namely hippocampal/entorhinal 
cortex/basal forebrain volume reduction as well as cortical thickness 
decrease, obtained using structural magnetic resonance imaging (MRI) 
techniques; alterations of brain white matter microstructures, detected 
via diffusion tensor imaging methods; and modifications of the func
tional integrity of brain networks, using functional MRI (fMRI) tools. In 
addition, the integration and implementation of genomic profiling tests 
might be crucial to better refine this approach. The incorporation of 
suitable cost-effective and time-efficient evaluations of cognitive, 
neurological, and psychiatric symptoms would be also necessary. 

Developing such a large integrated action plan, where consistent 
methods are carried out across biofluids (blood / CSF) and brain tissues, 
will be critical to attain information about whether central and pe
ripheral alterations occur in parallel, or independently of each other 
(Wong et al., 2017a, 2017b). This composite approach is expected to 
generate distinct multi-dimensional biomarker profiles according to 
different contexts-of-use, namely: (I) diagnosing AD dementia, (II) 
monitoring the spatio-temporal evolution of the disease over time, and 
(III) predicting the conversion from preclinical AD to MCI to overt AD 
dementia stages (Hampel et al., 2018; Lovestone, 2014). In summary, 
the potential diagnostic usefulness of blood-based candidate metab
olomic biomarkers can be improved through the specific information 
provided by Aβ and tau (the established core biomarkers for AD diag
nosis), other promising candidate fluid biomarkers, as well as neuro
imaging markers (Wong et al., 2017a, 2017b). 

Notably, one of the key advancements in applying metabolomics to 
AD is expected to be the identification of predictive biomarkers, 
informing the response of the individual patient to the therapy, based on 
the patient’s metabolome (Wong et al., 2017a, 2017b). A recent inves
tigation, using a systems biology analytical pipeline for metabolomic 
data analysis, showed the association between late-onset AD and distinct 
metabolomic profiles that are driven by sex and APOE genotype. In 
particular, using sex and APOE genotype to stratify a set of ADNI cohort 
participants led to the identification of patient-specific serum metabolic 
biomarker signatures, predictive of clinical diagnosis and associated 
with cognitive performance. These sex- and APOE genotype-related 
metabolic profiles might help designate effective therapeutic targets 
for AD. Hence, a precision medicine-based operational plan, integrating 
metabolomic profiling and cognitive functioning evaluation, assisted by 

S. Lista et al.                                                                                                                                                                                                                                     



Ageing Research Reviews 89 (2023) 101987

18

computational network modeling, was proposed to identify 
pathway-based targeted therapeutic interventions for different patient 
clusters (Chang et al., 2023). 

To summarize, it is imperative to recognize AD as a complex multi- 
factorial disease arising from heterogeneous etiologies. This encour
ages the research opportunity in which a combinatorial approach of 
metabolomics/lipidomics data – integrated with different layers (geno
mics/epigenomics, transcriptomics, proteomics) of omics data (i.e. 
multi-omics data) – with imaging modalities, sensitive neuropsycho
logical testing, and electronic health records (including patients’ de
mographics, clinical measurements, clinical laboratory tests) will 
hopefully provide a holistic depiction of the underlying pathophysio
logical processes characterizing AD (Termine et al., 2021) (see Fig. 5). 

4.3. The impact of Alzheimer’s disease risk factors – age, sex, race, and 
APOE ε4 – on metabolism 

Being that age, female sex, certain racial backgrounds, and APOE ε4 
allele are considerable risk factors for AD, studies were conducted to 
examine the impact of such risk factors on metabolism. Stratifying 
populations according to age, sex, race, and APOE ε4 provides infor
mation about differences in metabolic alterations in these groups, thus 
supporting the concept of AD as a metabolic disease (Arnold et al., 
2020). 

High-throughput metabolomics analyses enabled the discovery of 
age-dependent differences in levels of PCs, SMs, acylcarnitines, ceram
ides, and amino acids (Gonzalez-Covarrubias et al., 2013; Yu et al., 
2012). 

Sex was shown to impact blood concentrations of several metabolites 
belonging to a large number of biochemical pathways. For instance, a 
healthy older population mostly represented by post-menopausal fe
males exhibited higher amounts of several lipids excluding lysoPCs. 
Most amino acids, including BCAAs, showed more elevated concentra
tions in males, although glycine and serine amounts were greater in 
females (Krumsiek et al., 2015; Mittelstrass et al., 2011). A study using 
LC-MS/MS investigating the plasma lipidome of middle-aged offspring 
of nonagenarians from the Leiden Longevity Study reported 19 lipid 
species associated with familial longevity in females, especially 
increased values of ether PCs and SMs and decreased values of PEs, 
differently from males. Hence, ether PCs and SMs were indicated as 
novel longevity markers in females only. In summary, ageing might 
affect a larger range of metabolites in females than males, thus stressing 
the need for sex-stratified studies. 

Dementia disproportionately affects the African American and His
panic populations, with these groups being 2 and 1.5 times more likely 
to develop AD or other related dementias than the non-Hispanic white 
population, respectively (“2022 Alzheimer’s disease facts and figures, ”, 
2022). Despite their predisposition to developing AD, these commu
nities are typically underrepresented in AD studies. The aforementioned 
10-lipid panel established by Mapstone and colleagues (2014) (Map
stone et al., 2014) was applied to a predominantly African American 
cohort, revealing that it was not predictive of MCI or dementia in their 
cohort, with an AUC of 0.607 compared to 0.827 in the original study (D. 
Li et al., 2017). This is not the only study that has reported differences in 
metabolomic/lipidomic profile between ethnic groups; a global 
LC-HRMS study of plasma collected from the Washington Heights, 
Inwood Columbia Aging Project (WHICAP) cohort found differences in 
the metabolomic profiles of African Americans, Caribbean Hispanics, 
and non-Hispanic whites (Vardarajan et al., 2020). A PLS-DA comparing 
all ethnic groups showed that features in the African American cohort 
clustered separately from the Caribbean Hispanic and non-Hispanic 
white cohort, with differences in arginine and proline metabolism, 
PUFA biosynthesis, and glutamate metabolism highlighted as signifi
cantly different pathways, among others. 

Finally, common genetic variants in APOE were linked to blood 
cholesterol concentration in genome- and metabolome-wide association 

analyses (Shin et al., 2014; Teslovich et al., 2010). Moreover, associa
tions with different SM concentrations were found (Long et al., 2017; 
Mielke et al., 2017). Recently, a stratified linear regression analysis of 
serum metabolites from ADNI cohort individuals indicated that varia
tions in metabolites related to diagnosis and currently established bio
markers were affected by sex and APOE (performing an intertwined 
modulation) and were associated with altered energy homeostasis. In 
general, the heterogeneity in the susceptibility and severity of AD is 
influenced by sex-APOE genotype interactions and the molecular bases 
of this association are still unclear. The careful examination of AD 
metabolic heterogeneity can help establish the biomedical relevance of 
specific molecular pathways within definite clusters of patients, thereby 
outlining the way to precision medicine-based therapies (Arnold et al., 
2020). In another recent study, it was found that the regulation of fatty 
acids and related metabolic pathways during ageing and cognitive 
decline depends on complex inter-relationships between APOE ε4 ge
notype and sex (González-Domínguez et al., 2022). 

4.4. Pre-analytical and analytical phases of metabolomic studies 

Considerable technological developments paved the way to the study 
of metabolites and lipids both in health and disease conditions. Although 
there are analyses emphasizing that metabolite and lipid concentrations 
may be subject to significant changes in CSF and blood, even during the 
preclinical stages of AD, caution is needed regarding the interpretation 
of the results obtained using high-throughput screening approaches for 
biomarker discovery, since these results need to be validated in inde
pendent cohorts. Moreover, it is not clear whether relevant metabolic/ 
lipid signals detected in the discovery phase will persist in the following 
validation phases. At present, reproducibility of the results across 
different cohorts and laboratories is a critical challenge (Wong et al., 
2017a, 2017b). The scenario is further complicated by pre-analytical 
factors that can impact metabolite concentrations, including biological 
variables (age, sex, ethnicity) and technical variables (biofluid drawing, 
sample collection tubes, handling procedures, transportation protocols, 
and conditions for sample storage, as temperature and time before 
further processing). Hence, the pre-analytical phase needs to be strictly 
controlled and monitored to avoid negative effects on the profiles of the 
explored metabolome; in this regard, the whole workflow needs to be 
strictly coordinated using standard operating procedures (SOPs), 
ensuring they are appropriate for sample collection for omics methods 
(Yin et al., 2015). Concerning the analytical phase, as multiple MS 
platforms can be used to detect and quantify metabolites, experimental 
designs necessitate a robust planning, from sample extraction to 
MS-based data acquisition and analysis (Yin et al., 2015). Variability in 
metabolic profiling is due to many factors comprising the experimental 
design, sample processing, platform selection, and data analysis. In 
human studies, experimental design can be negatively affected by the 
low accessibility to clinical samples, decreasing the statistical signifi
cance. In addition, samples are often not matched in terms of age, sex, 
and race, with some studies not including the appropriate number of 
male and female participants, leading to major bias by overlooking 
sex-specific variations. The presence of confounders, including medi
cations, diet, environment, and whether patients fast before sample 
collection, can all affect an individual’s metabolome; thus, these factors 
should be considered (Wilkins and Trushina, 2018). 

In conclusion, recent breakthroughs in metabolomics platforms – 
including sampling and sample preparation methods, separation tech
niques, and ionization sources – substantially enhanced the capacity to 
identify candidate biomarkers for the early detection and progression of 
AD. In this scenario, establishment of consensus standards for sample 
collection and the unified application of a specific analytical workflow 
will be necessary to avoid multicenter variability in identifying specific 
metabolic signatures. 
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Fig. 5. Integration of multi-dimensional data for the holistic depiction of AD pathophysiology. The integration of unbiased exploratory omics sciences – including 
genomics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics – leads to generate diverse patients’ biological data (genetic/epigenetic, RNA, 
protein/peptide, and metabolic/lipid). Advanced statistical/computational tools will enable the integrative analysis of such biological data with patients’ non-omics 
data. These can include socio-demographic data as well as information on lifestyle habits and environmental exposure; data on the dimensions (psychological, 
cognitive, vitality, sensory, locomotion) of the intrinsic capacity concept; data obtained using imaging modalities (sMRI, fMRI, DTI, molecular PET, metabolic PET); 
data on patients’ genotype. The combined analysis of these multi-dimensional data will allow – under a precision medicine framework – identifying unique 
biomarker signatures, facilitating cell type discovery and characterization (and accurately defining cell type signatures), establishing disease sub-types and improving 
the stratification of patients, developing relevant prediction models of the disease, and discovering novel potential therapeutic targets. This approach is expected to 
facilitate the holistic assessment of AD pathophysiology and to optimize the development of effective individualized therapies. Abbreviations: AD, Alzheimer’s disease; 
DTI, diffusion tensor imaging; e-health, electronic health; fMRI, functional magnetic resonance imaging; PA, physical activity; PET, positron emission tomography; 
sMRI, structural magnetic resonance imaging. 
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4.5. Metabolic interventions in Alzheimer’s disease 

AD patients often exhibit brain glucose hypometabolism and are 
more susceptible to develop type 2 diabetes or insulin resistance 
compared with age-matched controls. This suggests the existence of a 
link between the two pathologies. The most studied metabolic in
terventions in AD are represented by the use of high-fat, low-carbohy
drate diets, known as ketogenic diets. A key mechanism of this treatment 
is thought to be the generation of ketones, which provide neurons with 
an energy source that is more efficient than glucose, resulting in bene
ficial downstream metabolic changes (Augustin et al., 2018). 

A single-blind, 12-week, cross-over, randomized study in 26 AD 
patients provided some encouraging results (Phillips et al., 2021). 
Twenty-one patients (81%) completed the ketogenic diet with only one 
withdrawal was attributed to the ketogenic diet. While on the ketogenic 
diet, patients achieved sustained ketosis with mean β-hydroxybutyrate 
levels of 0.95 ± 0.34 mmol/L. Compared with usual diet, patients on the 
ketogenic diet significantly improved functionality as measured with the 
ADCS-ADL scale (AD Cooperative Study - Activities of Daily Living: 
+ 3.13 ± 5.01 points) and quality of life as measured with QOL-AD 
(Quality of Life in AD: + 3.37 ± 6.86 points) scores. Changes in car
diovascular risk factors were mostly favorable, and adverse effects were 
mild (Phillips et al., 2021). A 26-week double-blind, placebo-controlled 
study of a ketogenic drink containing medium chain triglyceride in 79 
individuals with MCI individuals showed significant improvements vs 
placebo on cognition evaluated with the free and cued recall, verbal 
fluency, Boston Naming Test and the Trail-Making Test (Fortier et al., 
2021). On the other hand, a large 26-week, double-blind, placebo-con
trolled study on a proprietary ketogenic product (Tricaprilin or 
AC-1204) in 413 mild-to-moderate AD participants produced negative 
results (Henderson et al., 2020). A recent review concluded that the 
strongest evidence of ketogenic diets for cognitive improvement are in 
individuals with MCI and in non-APOE ε4 AD carriers (Bohnen et al., 
2023). When closely supervised by medical experts and well-tolerated 
by patients, the ketogenic diet can be deemed a valuable strategy for 
individuals in the early stages of dementia. As we continue to explore 
more effective treatments for AD, it is crucial to conduct extensive, 
large-scale studies on the potential benefits of the ketogenic diet. 

5. Conclusions 

As AD has been documented as a “network” disorder, not merely 
circumscribed to defined brain regions, there has been an increase in 
studies that inspect AD pathophysiology at the systemic level. The ac
curate examination of metabolomic and lipidomic biomarker profiles 
clearly shows the complexity of AD pathophysiology, where lipid dys
homeostasis is a fundamental piece. 

From a systems biology perspective, the inspection of metabolic 
pathways and networks – accounting for the metabolism of amino acids, 
fatty acids, and lipids, as well as for metabolic glucose and energy 
consumption – will bolster existing knowledge about underlying AD 
pathomechanisms. Given that metabolic alterations correlated with the 
evolution of AD can occur before the development of clinical signs, 
metabolomics – either applied individually or in tandem with the 
existing accessible biomarkers used for AD screening and diagnosis – 
may denote an innovative strategy to: (I) develop novel candidate 
metabolomic-based biomarker signatures, especially in blood (plasma/ 
serum); (II) optimize both AD diagnosis and prognosis; and (III) enhance 
personalized pharmacological treatment efficacy monitoring. However, 
the clinical translatability of metabolomics findings is currently limited 
to the lack of proper validation studies in large and independent cohorts, 
which are mandatory for assessing the real utility of metabolites as 
candidate biomarkers. In this respect, it should also be noted that many 
authors have repeatedly reported inconsistent results and unsatisfactory 
validation of metabolomics-based biomarkers for AD and cognitive 
decline. For instance, the previously discussed work by Mapstone and 

colleagues (2014) described a 10-lipid signature that could accurately 
predict the conversion of cognitively normal individuals into AD 
(Mapstone et al., 2014). Despite several subsequent studies showing 
similar findings for individual lipids or combination of lipids in the 
panel, no study to date has replicated the entire 10-lipid panel in 
external validation (Casanova et al., 2016; Costa et al., 2019; D. Li et al., 
2017). Similarly, Low and colleagues (2019) identified a serum signa
ture of 22 diet-related metabolites associated with subsequent cognitive 
decline in a prospective cohort (Low et al., 2019). Further analyses in 
other populations shown alterations in metabolites that are involved in 
the same metabolic pathways and/or derived from the consumption of 
the same food products, but individual metabolites were not successfully 
replicated (González-Domínguez et al., 2021b). In this respect, growing 
evidence suggests that biomarker validation in metabolomics is mainly 
challenged by intra- and inter-individual variability factors arising from 
genetic (e.g. sex), temporal (e.g. circadian rhythm), environmental (e.g. 
dietary habits) and microbial (e.g. eubiosis/dysbiosis) factors (Beebe 
and Kennedy, 2016). Thus, a growing number of authors emphasized, in 
recent years, the great potential of metabolomics to comprehensively 
investigate biological pathways and to decipher the molecular mecha
nisms underlying the human phenotype, but also the extreme difficulty 
of using specific metabolites as robust clinical biomarkers (Johnson 
et al., 2016). 

Application of metabolomics in clinical practice also requires 
implementation of strict experimental guidelines and the development 
of robust and easy-to-implement analytical platforms and major effort is 
underway in these areas. Increased availability of large, high-quality 
metabolomics and lipidomics datasets of relevance to AD, combined 
with high-level data analysis and modeling methods and innovation in 
analytical platforms is expected to have major impact on AD under
standing, prevention, therapy, and diagnostics. 
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Metabolomic investigation of systemic manifestations associated with Alzheimer’s 
disease in the APP/PS1 transgenic mouse model. Mol. Biosyst. 11, 2429–2440. 
https://doi.org/10.1039/C4MB00747F. 
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González-Domínguez, R., Sayago, A., Fernández-Recamales, Á., 2018b. High-Throughput 
Direct Mass Spectrometry-Based Metabolomics to Characterize Metabolite 
Fingerprints Associated with Alzheimer’s Disease Pathogenesis. Metabolites 8, 52. 
https://doi.org/10.3390/metabo8030052. 
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Mroczko, B., 2015. The Role of Visinin-Like Protein-1 in the Pathophysiology of 
Alzheimer’s Disease. J. Alzheimer’s Dis. 47, 17–32. https://doi.org/10.3233/JAD- 
150060. 

Gross, T., Mapstone, M., Miramontes, R., Padilla, R., Cheema, A.K., Macciardi, F., 
Federoff, H.J., Fiandaca, M.S., 2018. Toward Reproducible Results from Targeted 
Metabolomic Studies: Perspectives for Data Pre-processing and a Basis for Analytic 
Pipeline Development. Curr. Top. Med Chem. 18, 883–895. https://doi.org/ 
10.2174/1568026618666180711144323. 

Gulaj, E., Pawlak, K., Bien, B., Pawlak, D., 2010. Kynurenine and its metabolites in 
Alzheimer’s disease patients. Adv. Med Sci. 55, 204–211. https://doi.org/10.2478/ 
v10039-010-0023-6. 

Guo, T., Zhang, D., Zeng, Y., Huang, T.Y., Xu, H., Zhao, Y., 2020. Molecular and cellular 
mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. 
Neurodegener. 15, 40. https://doi.org/10.1186/s13024-020-00391-7. 

Haag, A.M., 2016. Mass Anal. Mass Spectrometers 157–169. https://doi.org/10.1007/ 
978-3-319-41448-5_7. 
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Peña-Bautista, C., Álvarez-Sánchez, L., Roca, M., García-Vallés, L., Baquero, M., Cháfer- 
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Joshi, R.B., He, X.-P., Patry, L., Silver, R.J., Dobrzeniecka, S., Islam, M.S., Hasnat, A., 
Samuels, M.E., Aryal, D.K., Rodriguiz, R.M., Jiang, Y., Wetsel, W.C., McNamara, J. 
O., Rouleau, G.A., Silver, D.L., Lancet, D., Pras, E., Mitchell, G.A., Michaud, J.L., 
Goldstein, D.B., 2013. Deficiency of Asparagine Synthetase Causes Congenital 
Microcephaly and a Progressive Form of Encephalopathy. Neuron 80, 429–441. 
https://doi.org/10.1016/j.neuron.2013.08.013. 
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