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ABSTRACT  

Synchrotron-based photoelectron spectra (PES) of norbornadiene (NBD) and quadricyclane 

(QC) differ significantly from previous studies. The adiabatic ionization energy (AIE1) for 

NBD, assigned to the 2B1 state at 8.279 eV, shows a progression of 18 members, with 

decreasing vibration frequency from 390 to 340 cm-1; our calculated frequency is 381 cm-1. 

Similarly, the AIE1 for QC at 7.671 eV, assigned to the 2B2 state, discloses a vibrational 

progression of 9 or more members, with vibration frequency decreasing from 703 to 660 cm-1; 

Our calculated vibration frequency is 663 cm-1. These AIE, determined by coupled cluster and 

4th order Møller-Plesset perturbation theory, were very similar to the corresponding 2nd order 

perturbation theory results. The calculated AIE symmetry sequences are NBD: 2B1 < 2A1 < 2A2 

< 2B2, and QC: 2B2 < 2A2 < 2B1 < 2A1. The overall PES vertical ionization energy profiles for 
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both compounds were closely reproduced by Tamm-Dancoff approximation energies and 

intensities. The vibrational structure of the ionic states, determined using Franck-Condon 

methods, gave a good account of the observed spectra, but the observed envelopes for both IE1 

are complex sets of vibrations, rather than single progressions. The NMR spectra for QC 

showed residual 2nd order properties at 300 MHz;  both it and NBD, have been theoretically 

analysed in greater detail as AA/BB/CC/XX/ spectra, where all H are coupled; the magnetic 

shielding and spin-spin coupling constants obtained are similar to experimental values. 

INTRODUCTION  

Recently, we reported new high-resolution photoelectron spectra (PES) of cyclooctatetraene 

(C8H8,COT)1 and cycloheptatriene (C7H8, CHT).2 These were analyzed in considerable detail 

by a combination of Møller-Plesset 4th order perturbation theory, which included single, double 

and quadruple substitutions (MP4(SDQ)), configuration interaction (CI), multi-configuration 

self-consistent field (MCSCF) and density functional theoretical methods (DFT).1,2 These 

studies were followed by detailed analyses of new vacuum ultraviolet (VUV) absorption 

spectra for both compounds, using closely related theoretical methods.3,4  

We now present new synchrotron based PES for both norbornadiene (NBD) and quadricyclane 

(QC). Interconversions between NBD and QC are important in two potentially industrial and 

commercial applications which are noted below. The present  compounds lack conjugated 

double bonds, as shown in Figure 1, but are isoelectronic with CHT.  

One application of the NBD+QC binary system enables solar energy storage in a single 

molecular system.5-8  Another application is as a switch for an optical memory system.9,10 NBD 

is converted to its valence isomer QC, via an endothermic photoinduced [2+2] reversible 

cycloaddition.11 Thermal or catalytic induction leads to the reverse reaction, where QC 

regenerates NBD with release of heat. When triplet sensitized using acetophenone, the NBD 

process appears to involve the two triplets, 3NBD and 3QC, followed by relaxation to QC,12 but 
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not all sensitizers behave similarly. During the NBD  QC process, up to 100 kJ/mol of 

chemical energy is stored, a value comparable to contemporary batteries.13  The main 

wavelengths of  sunlight lie between 300 and 700 nm. Since the NBD UV onset is 267 nm,  a 

combination of donor and acceptor groups in the NBD+QC system is necessary  to give an 

improved solar spectrum match; examples have been reported with an onset of absorption up 

to 529 nm.11,14,15  

When NBD, or its derivatives, are converted to the corresponding QC on irradiation,  the ‘OFF’ 

form of the photo-switch occurs.  Conversion back to the NBD, gives the ‘ON’ form of the 

switch. In order to release the stored energy as electricity, the photo-switch must interact with 

a semiconducting electrode surface.13 

The technological aspects of the NBD  QC equilibrium lie outside the scope of the current 

paper, but the electronic states of the neutral and ionic states for the parent molecules of NBD 

and QC are crucial to understanding these more complex interactions; our work is directed to 

performing this at a more rigorous level than is currently available. As with CHT and COT 

previously, the VUV spectra of NBD and QC will be presented in a following paper, which 

will analyze the VUV spectra in a detailed manner. 

For both title compounds, we have determined the lowest observed adiabatic ionization 

energies (AIE) of each symmetry, using  calculations at both the coupled cluster level, 

including single, double and quadruple excitations and non-iterative triples (CCSD(T)) and 

MP4(SDQ) levels. We will show that the results for these two hydrocarbons, as the basis set is 

changed are very similar, and also to those at the MP2 level. The profiles of both photoelectron 

spectra will be interpreted up to about 20 eV by the Tamm Dancoff approximation (TDA), a 
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single excitation configuration interaction (CI) method.  Franck-Condon analyses will be 

performed on the vibrational structure of several ionic states in each series.  

During the synthetic phase of the investigation, it became clear that the 1H NMR spectrum of 

QC, previously studied at lower frequencies, such as 60 MHz, were incompatible with those at 

300 MHz. The change in appearance of the spectra  is considerable, since the 3-membered 

rings of QC lead to nearly degenerate 1H NMR signals at low frequencies, and hence 

uncertainty in assignment. Further, the NMR spectra of QC even at 300 MHz showed 

additional line splitting, arising from 2nd order effects. Since  previous study of QC had only 

been analyzed by 1st order methods, a full theoretical 2nd order analysis, under conditions where 

all spin-spin interactions are included, was performed.  

Previous work has shown that the PES of NBD and QC are distinct in the gas phase.16-21 

Similarly, chemically induced dynamic nuclear polarization (CIDNP), following chloranil 

photosensitization, confirms the difference in solution. Electron spin resonance (ESR) spectra 

and equilibrium structure calculations, indicate symmetrical, but clearly different structures, 

for the NBD and QC radical cations.22-25 Much of the early experimental ionization data and 

theoretical interpretations for NBS and QC, is summarised in the NIST webbook.26 

 

Figure 1. The  compounds norbornadiene (NBD) and quadricyclane (QC). The classical 

bond switching between the two systems (1a,1b) occurs during UV excitation. Rotation of 

the orbitals  towards each other (1c,1d) leads to closure to the double cyclopropane system 

of QC. 
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II. METHODS 

NBD has CAS registry number  121-46-0 and systematic name bicyclo[2.2.1]hepta-2,5-diene. 

QC has CAS registry number 278-06-8, where it is named tetracyclo[2.2.1.02,6.03.5]heptane. 

This systematic numbering leads to both NBD and QC  having a 7-CH2 group, which  enables 

us  to retain the relationship between both compounds. However, an alternative IUPAC 

nomenclature names QC as tetracyclo[3.2.0.02,7.04,6]heptane, which leads to a 3-CH2 group; 

this difference to NBD is inconvenient and we adopt the 7-CH2 group labelling.  
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A commercial sample of NBD from Sigma-Aldrich was used after detailed 1H NMR analysis. 

We found that the chemical shifts and spin coupling constants previously reported27-31 at 60 

and 100 MHz for NBD accurately reproduced the 300 MHz 1H NMR spectrum, but this was 

not the case for QC, as discussed below.  

A. Synthetic methods. QC was prepared from NBD by irradiation, using a water-cooled 

400W medium-pressure mercury discharge lamp,32 with acetophenone as photosensitizer.33 

Fractional distillation of the reactant mixture gave QC, but was contaminated by ~5% 

unchanged NBD.  This sample was used in the spectroscopy below, since the signals do not 

interfere with the spectroscopy. Further details are also given in the Supplementary Material as 

SM1.The QC 1H NMR spectrum at 300 MHz showed chemical shifts () at 2.02 (2H, t, J = 1.5 

Hz, CH2), 1.48–1.50 (4H, m) and 1.34–1.38 ppm (2H, m), where ‘t’ and ‘m’ are triplet and 

multiplet,  in agreement with the literature.34,35 Although 13C–1H coupling constants have 

previously been reported for QC,36,37 the new spectrum for QC allowed detailed analysis and 

determination of additional 1H–1H and 13C–1H coupling constants for the first time.  

B. The photoelectron spectra of NBD and QC. These were obtained at room temperature 

on the gas-phase line of the Elettra synchrotron (Basovizza, near Trieste, Italy), using methods 

described previously.1,3 The NBD sample vapour was irradiated at both 30 eV and 95 eV 

photon energy. The 30 eV spectrum, covers the energy range 7.473 to 16.473 eV with 5670 

data points (DPs), separated by 0.001 eV (8 cm−1); this corresponds to a total resolution close 

to 8.5 meV. A wider NBD scan up to 24.473 eV, also using 30 eV irradiation, contained 10471 

DPs, with a separation of 0.0025 eV (20 cm-1). The 95 eV scan for NBD contained 7500 DPs, 

with a separation of 0.005 eV above 14.428 eV. The PES spectrum of QC up to 21.8 eV 

measured using 30 eV photons contained 9463 DP with a separation of 0.002 eV (16 cm-1).  

The 30 eV PES spectra for NBD and QC, in the 7.5 to 22 eV energy range, are super-imposed 

in Figure 2; the substantial differences support previous conclusions that the two compounds 
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are distinct in the gas phase. The onset for QC, slightly lower than that for NBD, is unexpected 

in view of its saturated QC structure. 

Figure 2. The photoelectron spectra of norbornadiene (in blue) shown with the 

quadricyclane spectrum (in red). The onset of the formally saturated hydrocarbon (QC) 

lies below that for the non-conjugated alkene (NBD). 

 

 

1. Norbornadiene. Expansion of the lowest IE, as in Figure 3, shows a considerable 

number of vibrational states, not reported in earlier spectra. It is clear that this band is not a 

single mode sequence with increasing quanta. Hence discussion in relation to the neutral state 

vibrations is irrelevant. This band is discussed in further detail below. The lowest AIE of NBD 

appears to lie at 8.279 eV. Since the onsets for most of the higher PES bands are not well-

defined, these are best described by their vertical ionization energy (VIE). Our NBD analysis, 

by fitting Gaussian peaks to the low-lying ionizations gives a close fit to the observed PES, as 

shown in Figure 4. VIE2 shows a shoulder on its leading edge, which we attribute to a group 

of vibrational states, rather than a separate IE. The fitted peak maxima, which we identify as 

the VIEs, are discussed below. Further details of the NBD analysis, together with those for QC, 

are shown in the supplementary material as SM2. 

 

Figure 3. The lowest ionic state of norbornadiene with vertical ionization energy at 8.6673 

eV (69908 cm-1) is shown in black with the Franck-Condon profile superimposed in red. 
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Each of the apparent single sequence of vibrational bands is a progressively more 

complex set of vibrational states as the energy increases. The AIE is probably at 8.2799 

eV (66783 cm-1), the first recognisable member of the initial 392 cm-1 sequence. 

 

 
 

Figure 4. Detailed analysis of the lowest ionization energy for norbornadiene. The very 

low levels of residuals (Diff) after fitting are shown in red. Further details of the fit are 

shown in the supplementary material as SM3. 
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2. Quadricyclane. Most of the PES shows little evidence of vibrational structure, but the 

vibrations shown on the leading edge of AIE1 are quite different from those on the trailing 

edge, which are attributed to the small NBD contamination. This is discussed in more detail 

below. We compare the vibrations on the leading edge with calculated values below, but the 

spacing of these clearly relate to QC and not NBD. The overall structure  of the QC PES lowest 

IE, can best be fit by a group of three asymmetric Gaussian functions, as in Figure 5. 

 

Figure 5. Detailed analysis of the lowest ionization energy for quadricyclane using 30 eV 

irradiation, with overall resolution 10 meV; the sample contains approximately 5% NBD. 

It is not known whether this represents an equilibrium between the two compounds. The 

peaks for NBD are marked 12 to 27.  Further details of the fit are shown in the 

supplementary material as SM3. 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
31

38
7



 

10 

 

 
 

 

 

C. Theoretical methods. Our methods have specific uses and no single suite can lead us 

to a complete analysis. As in our COT and CHT studies,1-4 we use several suites. 

The equilibrium structures of the X1A1 ground states for NBD and QC, shown in the 

supplementary material under SM5 as scale diagrams, demonstrate the much more compact 

QC system, arising from the double cyclopropane structure. The atomic coordinates for NBD 

and QC at the CCSD(T) level are also shown in SM5. 

1. Equilibrium structures of the ionic states. Both the GAUSSIAN-16 (G-16)38 and 

MOLPRO suites39-42were used to determine the AIE and equilibrium structures for the lowest 

states of each symmetry. The most rigorous procedures adopted here, were CCSD(T)43,44 and 

MP4(SDQ).45-47 In contrast to the former method, wave-functions from the latter are readily 

processed for vibrational analysis by G-16, as described below.  

Since these AIE procedures are impracticable for interpretation of the wide scan PES shown in 

Figure 2, our approach was to determine the VIE for many states, by means of calculations at 

the ground state (X1A1) structure, for each of NBD and QC. This broad-brush theoretical 

approach generates an overall picture of the PES ionic state energies, together with intensities, 
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and was performed by two methods. States where direct ionization occurs from one of a 

selected set of DOMOs, were formerly termed Koopmans’ Theorem states (KT) which defines 

IEi = -εi where εi is the orbital energy; this was widely used in early literature on NBD and QC. 

At higher energy, ionic states are accompanied by simultaneous electronic excitation, often 

referred to as ‘shake-up’ states. These have vacancies in two occupied orbitals, with one 

electron distributed between these, the spin between the singly occupied MOs can be either 

singlet or triplet.  

Our most detailed wide scan theoretical approach uses the Tamm-Dancoff approximation 

(TDA),48,49 as implemented in GAMESS-UK.50 It is a single excitation, configuration 

interaction (CIS) procedure. The CI space was set at 63 active MOs and excludes the 7 core 

molecular orbitals (MOs) in C2v symmetry; it is discussed further below.  

We have also been able to determine the adiabatic ionization energies for both NBD and QC 

in the first (lowest excitation energy) states of each symmetry, by using the MP4(SDQ) method. 

These are also shown below. 

2. Vibrational features of the ionic states. The equilibrium structures determined at the MP2 

level were processed by the Pisa Group software,51-53 as implemented in G-16.  

3. Basis sets. Those used varied with the nature of the calculation in progress, but all were at 

least triple zeta valence with polarisation (TZVP),56 6-311+G[2d,1p]57 and Def2-TZVPPD.58 

The equilibrium strucutres were determined using the TZVP and Def2-TZVPPD bases, 

including the calculations using the CCSD(T) method. The ionic state calculations, including 

those where vibrational analysis occurred, were at the TZVP level, since our related studies 

reported previously showed this to be adequate. Our present analyses shown in Sections III.C 

and III.D below also support this view. 

4. NMR Chemical shifts. The shielding tensors and the corresponding spin coupling constants 

were computed with the Gauge-Independent Atomic Orbital (GIAO) method.54,55 Various 
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studies54,55 have pointed to the success of the Becke-Lee-Yang-Parr (B3LYP) functional, 

relative to other density functionals, for the calculation of spin-spin constants in NMR. We 

have tried several functionals, as shown in the supplementary material, which confirm that 

B3LYP seems particularly suitable for this purpose.   

5. NMR bases. It became clear that to obtain calculated coupling constants close to 

experiment, the basis sets should have at least double  polarization functions on a triple zeta 

valence basis set (TZVP); this is normally termed TZ2P. One specifically designed for the 

prediction of hyperfine coupling tensors of electron paramagnetic resonance (EPR-III) is 

included;59,60 it is a triple-zeta basis set including diffuse functions, double d-polarizations and 

a single set of f-polarization functions. In addition, the s-functions (6,2) are contracted to [4,2] 

for H, and (11,7,2,1)/[7,4,2,1] for C; this results in an improved description close to the nuclei.  

At the Hartree-Fock level, the X1A1 state doubly occupied orbitals (DOMOs) in C2V symmetry 

differ; these are NBD: [10a1,6b1,6b2,3a2] and QC: [10a1,5b1,7b2,3a2]. 

 

III. RESULTS 

A. Comparison of the molecular structures of NBD and QC with experimental 

microwave and other spectral data. Several electron diffraction (ED),61-63  nematic phase 

nuclear magnetic resonance (NP-NMR)64-66 and microwave spectroscopy (MW) papers,67-69 

have focused on NBD with few on QC.70,71 Our theoretical comparisons with these 

experimental values are generally excellent, which give confidence in the overall theoretical 

analysis of NBD and QC. Since these results are not central to this study on ionic states, we 

defer these results to an Appendix, which shows a comparison of the bond lengths, rotational 

constants (RC) and quartic centrifugal distortion constants (QCDC) for neutral NBD in its MW  

substitution structure,68 with the present equilibrium structural theoretical values; the latter 
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were determined  at both the CCSD(T) and MP4(SDQ) levels,  as shown  in the Appendix 

Tables APP.I and APP.II.  

We find the CCSD(T) energy difference, NBD-QC, at their respective equilibrium structures 

is: -1.014 eV, close to previous calculated values24,72 (-1.023 and -1.032 eV respectively) and 

experiment.73 

We use  theoretical harmonic frequencies for both NBD and QC considerably in the analyses 

of the ionic states below. For brevity, we limit these to a1 modes, since these are the only 

vibrationally active modes present in the PES analyses; full lists of the frequencies, including 

their variation with ionic state symmetry, is given in the supplementary material as SM6. and 

can be compared with combined infrared and Raman spectral data for gas, liquid and 

polycrystalline phases.74   

The ionic state RC values determined at the MP4(SDQ) level in Tables APP.I and APP.II, 

show some variation with electronic state. For all the C2V states of NBD except 2A2, the double 

bonds are still apparent; but for the other symmetry states, there is lengthening of bonds, with 

weakening the CH2 bridge ( 2A1 and 2B2), and for breaking the C=C bonds (2A2 state).  Further 

details of the structures are given in the supplementary material as SM4. The nodal surfaces 

for the lowest AIE states of each symmetry are shown in Figure 6. 

Figure 6. The highest occupied MOs for NBD and QC with differing sequences by 

symmetry of the occupied MOs 22 to 25 (HOMO). There is considerable similarity in 

appearance of the electron distribution in both compounds for the a1 and a2 symmetry 

MOs.  
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B. Reinterpretation of the 1H NMR spectra of QC and NBD. Our experimental 

spectra for QC are shown in Figures 7A to 7C, with simulations in Figures 7D to 7F; the 

numerical results are summarized in Table I. The appearance of the QC spectrum, is critically 

dependent upon the ratio (ab/Jab) of coupling constant (Jab) to chemical shift () between a and 

b. The QC spectra are particularly complex at previously studied frequencies of 60 and 100 

MHz; 34,36,37 since the  nuclei have similar shifts. A previous treatment as an AB2X2 spectrum, 

34 where A and B were effectively degenerate, gave the spectrum as a (uneven) 1:2:1-triplet 

(A) and a single dominant line with numerous weak bands (B2).34 At 300 MHz, the 1H NMR 

spectrum for QC, shows that the multiplicity for the tertiary H-atoms (C1H /C4H), is clearly 

larger than the limiting triple-triplet coupling expected for  a 1st order analysis. Similarly, the 

uneven intensity of the triplet peaks, notionally 1:2:1 in intensity, also provides evidence that 

2nd order effects are still present. Our results for NBD at this level  agree with previous analyses, 

its spectra are omitted.31 

We have performed a theoretical analysis using the GIAO approach56,57 and obtained 

theoretical chemical shifts and coupling constants for QC. These analyses use an 

AA/BB/CC/XX/, approach where all 1H-nuclei are coupled; XX/ are designated as the 7-CH2 
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unit, because of the larger difference (0.53 ppm) from the other bands which are separated by 

only 0.13 ppm. Thus 2nd order spin couplings between chemically equivalent, but magnetically 

non-equivalent atoms (isochronous nuclei),31 are included. A summary of the comparisons 

between the experimental NMR results36,37,71,75 is given in Table I; the theoretical analyses are 

given in Tables II and III; H-atoms are labelled as the attached C-atom.  The spin-coupling and 

chemical shift parameters used in the simulated spectra, Figures 7D, 7E and 7F, reproduce the 

earlier 60 and 100 MHz spectra satisfactorily. Full arrays for these couplings, together with 

those for NBD, are shown in the supplementary material at SM2. A subset of the full analysis 

of the chemical shift and spin coupling constant theoretical analyses is shown in Table I, with 

additional data in the supplementary material as SM2. 

The present calculated chemical shifts for QC, shown in Tables I and II, are in almost exact 

agreement with those from two 2H and 13C 2-dimensional Q-COSY spectral 

determinations.71,75 The (1-bond) 1J13
C

1
H spin couplings are very dependent upon both the basis 

set and the methodology; our best values (unscaled) are within 5% of experiment. Second-

order polarization propagator approximations (SOPPA)76,77 give even closer values, when 

compared with experiment. Our 1J13
C

1
H values reflect the relative experimental magnitudes, 

C2H > C1H > C7H, as observed. The vicinal 1H-1H couplings J1,2 and J2,3 are close to 

experiment, but J2,5 and J2,7 have not been identified previously; our values are shown in Table 

III. The calculated 1H-1H couplings values over 2- and 4-bonds (2J and 4J) are all found to be 

negative, and none are close to zero. Thus attempts at a 1st order analysis are of no value for 

QC. 

Table I. 300MHz 1H NMR spectral chemical shifts (ppm) and coupling constants (Hz) for 

both NBD and QC. The only directly comparable environments between NBD and QC 

are the couplings J1,7 and J4,7 where the values are similar. 

 

 NBD QC (present) 

(1,4) 3.57 1.360(2) 

(2,3,5,6) 6.76 1.490(2) 

(7) 1.98 2.020(2) 
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3J1,7 = 3J4,7 1.5 1.5 
3J1,2 = 3J3,4 = 3J4,5 = 3J1,6 2.7 4.3 

3J2,3 = 3J5,6 5.0 2.5 
3J2,6 = 3J3,5 0 5.0 

4J1,3 = 4J2,4 = 4J4,6 = 4J1,5 1.0 0 

 

Table II. H- and C-nuclei chemical shift for both QC and NBD calculated by the GIAO 

method compared with experimental results. The magnetic shielding values are relative 

to tetramethyl silane (TMS) using the same basis set at its equilibrium geometry. For 

results from other procedures see the supplementary material, where the APFD results 

are corrected by 0.07 ppm, using our new TMS data as reference nucleus.   

QC Method/Centres H1,4 H2,3,5,6 H7 

 Present NMR  1.360 1.490 2.020 

 B3LYP/EPR-III 1.33 1.53 2.17 

  C1,4 C2,3,5,6 C7 

 NMR35,36 23.0435,36 14.7735,36 32.0335,36 

 Q-COSY 2D NMR71 22.6 14.4 31.6 

 B3LYP/EPR-III 29.08 19.24 38.80 

NBD  Method/Centres H1,4 H2,3,5,6 H7 

 from TMS/ppm Present + NMR75 3.57 6.76 1.98 

 B3LYP/EPR-III 3.69 7.28 2.24 

  C1/2 C3/4/5/6 C7 

 Present NMR 50.215 143.37 75.28 

 NMR75 50.27 143.42 75.33 

 B3LYP/EPR-III 50.78 159.30 87.25 

 

Table III. 1H1H, 13C1H and 13C13Cspin coupling constants for QC determined by using 

B3LYP with the EPR-III GIAO method. These are the only unique values, and the 

chemically equivalent but magnetically non-equivalent values are numerically the same. 

For results from other procedures see the supplementary material. 
 

13C-1H couplings 1H-1H couplings 

Centre B3LYP;E

PR-III 

Expt Centre B3LYP;EPR-

III 

Expt 

CH1 170.00 165.9,36166.0,37 H1,4 1.20  

C1H4 9.63  H1,2 5.47 4.3 

C1H2 -0.26  H1,3 -0.62  

C1H3 0.40  H1,7 1.63 1.5 

C1H7 -2.56  H2,3 2.80 2.5 

C2H1 1.83  H2,6 6.50 5.0 

C2H4 3.65  H2,5 1.50  

C2H2 189.22 183.2,36184.7,37 H2,7a -0.34  

C2H3 3.94  H2,7b -0.34  

C2H6 -2.50  H7a,7b -11.10  

C2H5 2.71  

C2H7a 0.67  

C2H7b 7.71  

C7H7 133.95 132.2,36131.4.37 
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Figure 7. The 1H NMR spectral bands of quadricyclane at 300 MHz (A, B, C) with the 

simulations (D, E, F) produced by the assigned coupling constants. 
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C.The wide scan PES of NBD and QC. (1) Comparison with the theoretical study. The 

new wide scan spectra, shown in Figures 8 and 9, have the scaled TDA energies and pole 

strength intensities superimposed in red; the AIE determined from the MP4(SDQ) calculations 

are shown in blue. These calculated sets of AIE and VIE for both compounds are close to the 

experimental peak onsets and maxima respectively, as expected. The corresponding unscaled 

TDA energies for the lower group of PES bands for both compounds are shown in Tables IV 

and V.  

(2) Assignment of the PES bands. The two lowest IE of NBD at 8.69 and 9.55 eV18-21 

dominated early interest in the spectrum, since these previously assigned to π-ionizations, were 

attributed to the symmetric(π+) and antisymmetric (π-) combinations of the two π-orbitals with 

the IE order: 2B2(π-)  < 2A1(π+). Although this was attributed to through-space interactions being 

more important than through-bond interactions,18 this is the natural energy order owing to the 

presence of a node in the anti-symmetric combination.78-80 Although the TDA calculations for 

both NBD and QC suggest an almost identical lowest VIE there is little doubt that the QC PES 
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shows the lower experimental AIE onset; we attribute this to extra σ-bond strain introduced by 

the double cyclopropane system of QC, some of which is released upon ionization.  

Several attempts to assign symmetry to higher VIE for NBD have been made, but with little 

success. Thus the asymmetry parameter () in PES angular distribution studies of NBD for 

these two ionic states, was found to be 1.04(1) and 0.94(1) for 2B2 and 2A1 states 

respectively;81,82 but does not confirm these two symmetry assignments. Similarly irradiation 

of NBD with He* (23S state at 19.82 eV), termed Penning ionization electron spectra (PIES),20 

showed that the 2nd and 4th IEs are more intense than the 1st and 3rd under PIES relative to direct 

He(I) (27.211 eV) irradiation; but again this did not lead to experimental identification of any 

ionic state symmetries. However, both IE1 and IE2 under PIES showed broad shoulders relating 

to vibrational structure which was absent on both the He(I) and He(II) (40.78 eV) spectra.20  

Although the 3rd and higher IE of NBD and all of those for QC will relate to -ionization, 

interpretation of the principal band groupings in the envelope, and their states, is important. 

Lindholm et al19 presented the first wide energy range study of the NBD PES using a semi-

empirical procedure known as the Spectroscopic Potentials adjusted Intermediate Neglect of 

Differential Overlap (SPINDO). This analysis19 and that for another closely related method 

also showed an acceptable interpretation of the experimental groupings of IE; some 

unpublished details of it19 (known as HAM3) are reported by Von Niessen et al.83 Later results 

by small scale singles and doubles configuration interaction (CISD) studies,84 and also Green’s 

function (single excitation (CIS) studies)83 gave a similar level of agreement with the observed 

PES. In all cases the lowest 4 IE were: 2B1 < 2A1 < 2A2 < 2B2. 

There are many less studies of the QC PES85,86 and the previous assignment is based upon a 

Modified Intermediate Neglect of Differential Overlap (MINDO) calculation; the lowest IE for 

QC using MINDO were:  2B2 < 2A2 < 2B1 < 2A1.  

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
31

38
7



 

20 

 

The TDA results in Tables IV and V give a very close fit to the observed PES for both NBD 

and QC. Although these show different ionic state sequences by symmetry, both assignments 

show significant agreement with KT predictions. The PES analysis in Tables IV and V, shows 

13 ionic states for NBD where the loss of electronic charge density on ionization is almost 

entirely confined to a single configuration; this is much higher than for QC, where only 8 ionic 

states have a high pole strength (intensity) over 0.8. Both indicate that ionization proceeds 

without major structural change; the low reorganization energy probably arises from the 

rigidity of these cage-like structures. The NBD and QC difference is a direct result of the π-

electron system in NBD where many of the shake-up states have ππ* excitations accompanying 

the ionization. For QC, where π-electrons are absent, the corresponding σσ* excitations occur 

at significantly higher energies.  

Table IV. The TDA analysis of the ionic states of NBD used for assignment of the NBD 

photoelectron spectrum. The ionic populations of the vacated MOs are spread over 

several ionic states at higher energy; only poles greater than 0.02 are shown. 
 

Energy  Symmetry Pole 

strength 

Orbital 

vacated 

Energy  Symmetry Pole 

strength 

Orbital 

vacated 

8.199 2B1 0.9032 5b1
-1 17.395 2A1 0.7409 4a1

-1 

9.224 2A1 0.9019 7a1
-1 17.783 2A2 0.0600 1a2

-1 

11.434 2A2
 0.8971 2a2

-1 18.564 2A2 0.2025 1a2
-1 

11.550 2B2 0.9015 4b2
-1 18.714 2A2 0.4434 1a2

-1 

12.178 2B1 0.9011 4b1
-1 19.025 2A1 0.2275 3a1

-1 

12.564 2B2 0.1671 3b2
-1 19.071 2A1 0.4243 2a1

-1 

12.815 2A1 0.8796 6a1
-1 19.210 2A2 0.0227 1a2

-1 

12.832 2B2 0.7357 3b2
-1 19.471 2A2 0.0244 1a2

-1 

13.239 2A1 0.8568 5a1
-1 22.695 2A1 0.2888 1a1

-1 

14.286 2B1 0.8873 3b1
-1 23.023 2B2 0.0404 1b2

-1 

15.986 2B1 0.7284 2b1
-1 23.241 2B2 0.0393 1b2

-1 

16.224 2B1 0.0642 2b1
-1 23.483 2B2 0.0691 1b2

-1 

16.949 2B2 0.3388 2b2
-1 23.604 2B2 0.1374 1b2

-1 

17.039 2B2 0.5046 2b2
-1 23.718 2B2 0.0468 1b2

-1 

17.187 2B1 0.0423 2b1
-1 24.037 2B1 0.0408 1b1

-1 

 

Table V. The TDA analysis of the ionic states of QC used for assignment of the QC 

photoelectron spectrum. The ionic populations of the vacated MOs are spread over 

several ionic states at higher energy; only poles greater than 0.02 are shown. All 2A2 

shake-up states have very low intensity. 
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Energy  Symmetry Pole 

strength 

Orbital 

vacated 

Energy  Symmetry Pole 

strength 

Orbital 

vacated 

8.199 2B2 0.91945 7b2
-1 19.931 2B2 0.02611 3b2

-1 

9.608 2A2 0.91719 3a2
-1 20.897 2B1 0.18474 2b1

-1 

9.946 2B1 0.91671 5b1
-1 21.105 2B1 0.21036 2b1

-1 

10.914 2A1 0.91119 10a1
-1 21.121 2B1 0.17168 2b1

-1 

11.997 2B1
 0.91301 4b1

-1 21.375 2B1 0.08938 2b1
-1 

12.134 2B2 0.91287 6b2
-1 22.366 2B1 0.06289 2b1

-1 

13.440 2A1 0.90600 9a1
-1 23.916 2A1 0.14551 5a1

-1 

14.603 2A1 0.89966 8a1
-1 24.032 2A1 0.16511 5a1

-1 

14.861 2B1
 0.90423 3b1

-1 24.115 2A1 0.04246 5a1
-1 

14.886 2B2 0.89918 5b2
-1 25.007 2B2 0.03384 2b2

-1 

17.680 2A2 0.86364 2a2
-1 25.077 2A1 0.03016 4a1

-1 

17.916 2A1 0.85989 7a1
-1 25.094 2A1 0.03436 4a1

-1 

18.648 2B2 0.81202 4b2
-1 25.379 2B2 0.06445 2b2

-1 

19.005 2A1 0.73579 6a1
-1 25.475 2B2 0.06498 2b2

-1 

19.445 2A1 0.11051 6a1
-1 25.508 2B2 0.08387 2b2

-1 

 

Figure 8. The wide scan photoelectron spectrum of norbornadiene correlated with the 

TDA pole strengths (in red). The calculated energies have been fitted to the spectrum by 

means of a linear correlation where Ecorr = 0.912(13)*ETDA  +1.067 (20) with adjacent R2 

correlation coefficient 0.998. The MP4(SDQ) AIE are shown above as blue vertical bars.  
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Figure 9. The wide scan photoelectron spectrum of quadricyclane correlated with the 

TDA pole strengths. The calculated energies shown in red have been fitted to the 

spectrum by means of a linear correlation of the energies where Ecorr = 0.887(15) *ETDA 

+1.333 (20) with adjacent R2 correlation coefficient 0.998. The adiabatic ionization 

energies for the lowest states of each symmetry calculated by the MP4(SDQ) method are 

shown in blue. 

 
D.Vibrationally excited states. (1) Norbornadiene. All previous photoelectron studies of 

NBD and QC17-24 observed the lowest IE as a single band rather than the multiplet shown in 

Figure 3 for NBD, and in Figure 5 for QC. The adiabatic ionization energy (AIE1) for NBD, 

assigned to the 2B1 state at 8.279 eV, shows this progression of 18 members, with decreasing 

vibration frequency from 392 to 340 cm-1; our calculated frequency for the 2B1 state at the 

MP4(SDQ) level is 381 cm-1. We correlate the Franck-Condon (FC) envelope of IE1 with the 

NBD spectrum  in Figure 3. The envelope becomes progressively more complex with 

increasing energy and a portion of this is shown in the supplementary material as Figure SM6. 

Only a1 vibrations contribute in this FC study and these are summarized in Tables VI and VII; 

other vibrations of b1 b2 and a2 symmetry are shown in the supplementary material as Table 

SM6.  
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Table VI. The a1 harmonic frequencies including their sequence numbers for the ground 

and ionic states for norbornadiene determined at the TZVP level. The 2A1 calculation 

leads to a negative b2 eigenvalue (mode 1). The Franck-Condon calculation is performed 

by projection out from the X1A1 modes the one having largest overlap with the ionic state 

in the Duschinsky matrix. The full sequences are shown in the supplementary material as 

SM6. The modes labelled in ascending frequency are as used in the Franck-Condon 

profiles of active modes shown in Table VII.  

X1A1 
2B1 

2B2 
2A1 

2A2 

1 2 3 2 4 

429 399 429 453 298 

7 7 7 5 8 

730 782 672 661 746 

8 8 8 8 12 

794 839 712 787 884 

11 11 10 9 14 

904 923 796 827 982 

16 15 18 15 15 

967 1013 969 964 1004 

20 19 21 20 22 

1138 1132 1110 1151 1227 

24 25 25 21 27 

1258 1292 1196 1187 1401 

29 28 28 27 29 

1513 1503 1483 1520 1633 

31 30 30 28 30 

1615 1537 1619 1563 1917 

32 32 33 30 31 

3096 3107 2951 3149 3237 

35 35 34 32 36 

3174 3221 3149 3210 3339 

39 38 39 37 38 

3277 3264 3289 3279 3369 

 

Table VII.  Vibrationally excited ionic states of NBD. The modes excited shown here are 

the a1 frequencies for the ionic state shown, together with the number (n) of quanta 

excited as ‘^n’. binary and higher combination bands are separated by semi-colons. 

 
2B1 2A1 

Energy 

 cm-1 

Modes excited 

+quanta 

Relative 

intensity 

Energy 

 cm-1 

Modes 

exciteda 

+quanta 

Relative 

intensityb 

Energy of the 0-0 transition:  8.2624 eV Energy of the 0-0 transition 9.6468 eV 

 

0 0 820 0 0 6877 

399 2^1 4147 453 2^1 24060 

798 2^2 15900 661 5^1 4785 

1197 2^3 39500 905 2^2 56040 

1238 8^1;2^1 1949 1113 5^1;2^1 21160 
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Footnotes to Table VII 

a Sequential with increasing frequency..  

bMolar absorption coefficient  dm3.mol-1.cm-1 

 

1596 2^4 71560 1358 2^3 59880 

1637 8^1;2^2 7166 1566 5^1;2^2 31830 

1995 2^5 100800 1604 20^1;2^1 3329 

2036 8^1;2^3 17060 1693 8^1;2^2 2380 

2210 15^1;2^3 2327 1732 9^1;2^2 3532 

2329 19^1;2^3 4911 1774 5^2;2^1 4893 

2335 30^1;2^2 5576 1811 2^4 73830 

2394 2^6 115000 2016 28^1;2^1 3467 

2435 8^1;2^4 29590 2019 5^1;2^3 49480 

2477 8^2;2^2 1969 2057 20^1;2^2 7067 
2B2 2A2 

Energy of the 0-0 transition 10.6887 eV 
 

Energy of the 0-0 transition: 11.3739 eV 

 

0 0 729 0 0 3616 

1196 25^1 2717 746 7^1 7965 

1343 7^2 2066 1227 21^1 3274 

1868 25^1;7^1 8230 1492 7^2 7794 

2392 25^2 6302 1630 11^1;7^1 2706 

2540 25^1;7^2 11630 1728 13^1;7^1 4224 

2978 25^1;21^1;7^1 4932 1973 21^1;7^1 6423 

3064 25^2;7^1 18790 2238 7^3 4491 

3211 25^1;7^3 10150 2376 11^1;7^2 2383 

3336 25^1;10^1;7^2 2672 2474 13^1;7^2 6334 

3502 25^2;21^1 2688 2663 29^1;7^1 4833 

3589 25^3 7213 2719 21^1;7^2 5585 

3650 25^1;21^1;7^2 6613 2857 21^1;11^1;7^1 3295 

3736 25^2;7^2 16880 2955 21^1;13^1;7^1 5686 

3860 25^2;10^1;7^1 5025 3200 21^2;7^1 3613 

3883 25^1;7^4 6098 3220 13^1;7^3 3682 

4007 25^1;10^1;7^3 2440 3409 29^1;7^2 6804 

4033 25^2;18^1;7^1 2943 3465 21^1;7^3 5155 

4174 25^2;21^1;7^1 7845 3603 21^1;11^1;7^2 3244 

4260 25^3;7^1 21770 3644 29^1;13^1;7^1 4391 

4321 25^1;21^1;7^3 5451 3701 21^1;13^1;7^2 5010 

4408 25^2;7^3 14910 3890 29^1;21^1;7^1 5677 

4532 25^2;10^1;7^2 7299 3946 21^2;7^2 3508 

4699 25^3;21^1 4404 4155 29^1;7^3 4234 

4705 25^2;18^1;7^2 4311 4390 29^1;13^1;7^2 3743 

4785 25^4 8079 4447 21^1;13^1;7^3 2580 

4846 25^2;21^1;7^2 10640    

4932 25^3;7^2 30650    
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(2.) Quadricyclane. We find the AIE1 for QC at 7.671 eV, and assign it to the 2B2 state. Our 

calculated vibration frequency for this  state is 663 cm-1. A weak vibrational progression of 9 

or more members, with vibration frequency decreasing from 703 to 660 cm-1is evident on the 

leading edge of  IE1 of QC in Figure 5, but with a clearly different vibrational separation from 

another series on the trailing edge. Thus the minor contamination of the QC sample by NBD, 

makes it clear that the 2 sets of vibrations are unrelated. We have enhanced the differences by 

peak fitting and subtracting broad Gaussian peaks from the IE1 band in Figure 5, and processing 

the resulting regular residuals from the subtraction, as seen in Figure 10. A summary of the 

calculated a1 vibration frequencies and leading terms in the Franck-Condon analyses for the 

2B2 state, are given in Tables VIII and IX respectively. 

The full Franck-Condon analysis is superimposed on the initial band of the QC PES in Figure 

11. The calculated envelope gives a realistic account of the leading edge of the spectrum.  

Figure 10. The resulting regular residuals after a best fit asymmetric gaussian 

function to the QC PES first band. The previously mentioned minor contamination of 

the sample by NBD is seen on the trailing edge with a quite different vibrational 

appearance occurring on the leading edge. 
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Table VIII. The a1 harmonic frequencies including their sequence numbers for the 

ground and ionic states for quadricyclane determined at the TZVP level. The full 

sequences are shown in the supplementary material as SM6. The modes labelled in 

ascending frequency are the same as the Franck-Condon profiles of active modes shown 

in Table IX.  

X1A1 
2B1 

2B2 
2A1 

2A2 

6 2 5 7 6 

744 716 663 714 732 

8 7 8 9 9 

825 782 765 797 830 

12 8 12 12 15 

932 870 898 870 974 

15 13 13 15 17 

975 885 946 931 993 

17 17 18 17 18 

1022 1005 1066 1006 1035 

22 19 20 23 22 

1112 1055 1092 11511096 1190 

28 23 28 27 25 

1290 1220 1354 1284 1273 

29 26 29 28 29 

1381 1303 1397 1307 1379 

31 29 31 31 30 

1509 1409 1511 1484 1517 

32 29 32 32 31 

3085 2936 3127 3062 3110 

35 36 35 37 36 

3237 3256 3260 3273 3249 

39 39 39 39 38 

3270 3269 3290 3288 3258 

 

Table IX. Vibrationally excited states for the 2B2 state of quadricyclane using Franck-

Condon methods. Energy of the 0-0 transition:  60422 cm-1. The modes excited shown 

here are the a1 frequencies for the ionic state shown, together with the number (n) of 

quanta excited as ‘^n’. binary and higher combination bands are separated by semi-

colons. 

 

 

Energy 

 cm-1 

Modes excited 

+quanta 

Relative 

intensity 

Energy 

 cm-1 

Modes excited 

+quanta 

Relative 

intensity 

0 0 897 2393 18^1;5^2 2526 

663 5^1 2513 2460 12^2;5^1 13640 

765 8^1 287 2494 18^1;8^1;5^1 340 

898 12^1 2604 2561 12^2;8^1 1350 

1066 18^1 276 2627 18^1;12^1;5^1 3461 

1327 5^2 5187 2654 5^4 6118 

1354 28^1 243 2681 28^1;5^2 1884 

1428 8^1;5^1 1285 2695 12^3 2598 

1562 12^1;5^1 10640 2724 29^1;5^2 549 

1663 12^1;8^1 690 2729 18^1;12^1;8^1 280 
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1729 18^1;5^1 1214 2755 8^1;5^3 3634 

1797 12^2 3374 2779 5^3;1^2 306 

1964 18^1;12^1 795 2782 28^1;8^1;5^1 322 

1990 5^3 6721 2795 18^2;5^1 229 

2017 28^1;5^1 985 2856 8^2;5^2 487 

2061 29^1;5^1 273 2862 18^1;12^2 1023 

2092 8^1;5^2 2725 2889 12^1;5^3 24790 

2116 5^2;1^2 241 2916 28^1;12^1;5^1 2594 

2193 8^2;5^1 221 2959 29^1;12^1;5^1 670 

2225 12^1;5^2 20520 2990 12^1;8^1;5^2 6434 

2252 28^1;12^1 647 3014 12^1;5^2;1^2 580 

2296 29^1;12^1 159 2393 18^1;5^2 2526 

2326 12^1;8^1;5^1 3065 2460 12^2;5^1 13640 

2351 12^1;5^1;1^2 291 2494 18^1;8^1;5^1 340 

 

Figure 11. The quadricyclane IE1 
2B2 state PES with calculated Franck-Condon cold band 

structure  superimposed.  

 
The next two ionzations for QC are the strongly overlapping doublet, centred on 10 eV, which 

we attribute to 2A2 ≤ 2B1. We have performed a fit of the observed PES, using two separate 

Gaussian functions, as shown in the supplementary material under SM3(c).  The difference 

between the fitted functions and the PES is very small, and largely confined to the onset and 
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trailing edges. This is where spectral interactions with adjacent peaks become relevant, and 

also where the anharmonicity of the PES states is neglected in the fit. The two ionizations are 

separated, experimentally for VIE and theoretically for 00 bands, by 2726 cm-1 and 2904 cm-1 

respectively. The Gaussian simulation widens the VIE to  9.73± 0.05  and 10.25 ± 0.05 eV, a 

separation of 4194 cm-1.  A summary of the lowest calculated vibrational states, given in Table 

X, is superimposed on the two simulations. Those shown in red, have half-widths at half-

maximum (bandwidths) of  10 cm-1. In both spectra, there are no vibrational spectral features 

visible. The Tables show that several vibrational states are present in this small interval, making 

recognition of features in the spectrum impossible at this resolution. We have noted 

previously,87 that when two or more PES ionizations overlap, the effect is to degrade the 

spectral resolution of the higher energy one(s), owing to interference between the vibrational 

wave-trains of the lower IE on the higher IE. In short, the two ionic states are strongly coupled, 

and conical intersections lie between their minima, an observation first made by Baldea et al88,89 

in a study of the PhF ionic states. Without directly including the inter-state vibronic coupling 

in our previous simulations, we found that the smaller the separation of two ionic states, the 

larger the bandwidth of the fitting functions to the vibrational states necessary to achieve a 

match to experiment.87  The bandwidth used in Figure 12, has been widened to HWHM of 400 

cm-1 in blue, to match the nearly featureless IE. 

 

Table X. The low-lying vibrationally excited states of the 2A2 and 2B1 ionic states for 

quadricyclane. The modes excited shown here are the a1 frequencies for the ionic state 

shown, together with the number (n) of quanta excited as ‘^n’. binary and higher 

combination bands are separated by semi-colons. 

 
2A2 Energy 0-0 transition:  75188 cm-1 2B1 Energy 0-0 transition:  78092 cm-1 

Energy 

 cm-1 

Modes excited 

+quanta 

Relative 

intensity 

Energy 

 cm-1 

Modes excited 

+quanta 

Relative 

intensity 

0 0 14110 0 0 99620 

486 1^2 1032 657 1^2 1054 

556 2^2 225 716 5^1 13670 

732 5^1 25510 736 2^1;1^1 610 

830 8^1 1092 782 8^1 808 
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974 14^1 1937 815 2^2 5577 

993 16^1 14220 870 11^1 95800 

1190 21^1 13070 885 13^1 27880 

1217 5^1;1^2 2528 947 3^2 283 

1273 24^1 1820 1005 17^1 4522 

1288 5^1;2^2 512 1055 19^1 33310 

1463 5^2 18700 1078 7^1;1^1 732 

1478 16^1;1^2 977 1220 23^1 16060 

1549 16^1;2^2 215 1303 26^1 17950 

 

Figure 12.  The combined quadricyclane 2A2 (A)  and 2B1 (B) states, separated by two 

Gaussian fits. These two  bands strongly overlap in the observed PES, and their 

separation is discussed in the text. The cold band structure calculated by Franck-Condon 

methods is shown in red; the individual lines which have Half-Widths at Half-Maximum 

of  10 cm-1 have been widened to HWHM of 400 cm-1 in blue.  

 

  
 

IV. CONCLUSIONS 

Our synthesis of QC showed that the previously accepted 1H NMR coupling constants27-31 

could not interpret the 300 MHz spectrum; revised values  were obtained by GIAO methods 

which show backwards compatibility with both 60 and 100 MHz spectra. The QC spectrum at 

300 MHz shows 2nd order effects are still present for both NBD and QC, but especially for QC. 

We have determined theoretically the spin-spin coupling constants for QC in which all 1H 

nuclei are coupled, and the spin coupling constants for symmetry related atoms are determined. 

These expose the weakness of simple (1st order) analyses, where only coupling between 

chemically distinct atoms is considered and evaluated; this leads to the observed 1st order 

coupling constants being sums of constants rather than individual values.31 
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Our synchrotron-based photoelectron spectra of NBD and QC show vibrational structure on 

the lowest IE in each case. NBD shows a vibrational progression of 18 members where the 

vibration frequency () declines from 390 to 340 cm-1 with energy increase. Similarly, the 

lowest PES band for QC shows a vibrational progression of at least 9 members, but with 

 decreasing from 703 to 660 cm-1.  

The lowest AIEs of each symmetry were determined by MP4(SDQ) methods for each 

molecule. The adiabatic IE for NBD is assigned to the 2B1 state with a1 symmetry calculated 

frequency (381 cm-1). In contrast for QC it is assigned to the 2B2 state; here the a1 symmetry 

vibration frequency is calculated at 663 cm-1. The AIE sequences are NBD: 2B1 < 2A1 < 2A2 < 

2B2 and QC: 2B2 < 2A2 < 2B1 < 2A1. The symmetry sequences of ionic states are the same for 

MP2 and  MP4 methods for the respective molecules.  

For both NBD and QC, the overall PES vertical ionization energy (VIE) profiles from onset to 

20 eV for both compounds were closely reproduced by Tamm-Dancoff approximation (TDA) 

both in energies and intensities.  

The vibrational structure within the lowest AIE for each of NBD and QC, determined by 

Franck-Condon methods, gave a good account of the observed spectra. However, the observed 

multiplets for IE1 in both cases, show that the envelope consists of a complex set of vibrations, 

rather than as single progressions.We have presented theoretical PES envelopes which include 

vibrational states for some higher ionizations, but the prospects for detecting these 

experimentally, will require a different technique than conventional PES, since there is 

substantial overlap between states of different symmetry, especially for QC. We have fitted 

two Gaussian functions to the combined 2A2 + 2B1 states observed as a strongly overlapping 

doublet. The separated fucntions, after allowance for the lack of anharmonicity, and the effects 

of nearby ionizations on the leading and trailing edges, give a reasonable interpretation of the 

band. We are unable to perfrom the Franck-Condon analysis on the separate 2A1 state PES 
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band, since the software available to us is limited to a single negative vibration frequency. At 

both the MP2, MP4 and MP4(SDQ) levels, the 2A1 state generates three such values. 

SUPPLEMENTARY MATERIAL  

See the supplementary material for additional information on each of the following: 1. 

Synthesis of quadricyclane. 2. The GAIO calculated 1H and 13C magnetic shielding and spin-

spin coupling constants. 3. Fits to the lowest two ionization energies for norbornadiene and 

quadricyclane and the combined 3rd state of QC. 4. The ground state equilibrium structures of 

NBD and QC. 5.  Vibration frequencies of the ground and ionic states. 6. Comparison of the 

molecular structures of NBD and QC with experimental microwave and other spectral data.  7. 

Bond and ring critical points.  
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APPENDIX 

A comparison  of the experimental  rotational constants with the present study is shown in 

Appendix Tables APP.I and APP.II. Rotational constants (A, B, C), give a relative measure of 
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the overall shape, via the moments of inertia. The CCSD(T) data shows very close RC values 

for both NBD68 and QC,71 which differ from the MW data by less than 1%.  The results from 

the MP4(SDQ) ground state calculations, differ from the experimental data by a further small 

amount. The ground state structures of both NBD and QC determined by CCSD(T) procedures 

were very similar to those from 4th order Møller-Plesset perturbation theory, which included 

single double and quadruple excitations (MP4(SDQ)). Fortunately, both were very similar to 

those from 2nd order MP2 theory. In the case of NBD there is a further close structural similarity 

with calculations which included triples (MP4(SDTQ)) but these calculations38 appear to be 

more demanding than the CCSD(T) method itself.  

In all our methods, the rotational constants, centrifugal distortion constants and dipole 

moments, are very close to microwave values. We believe that this is not accidental, but 

demonstrates the quality of the studies; this leads to confidence in the ionic state study.   

Table APP.I A comparison of the microwave substitution structure for norbornadiene, 

rotational constants (A,B,C) with the X1A1 equilibrium structure and with the lowest 

ionic states of each symmetry for NBD, determined at the MP4(SDQ) level. 

 
Norbornadiene 

 X1A1 X1A1 X1A1 2B1 2A1 2B2 2A2
 

Method MW65 CCSD(T) MP4(SDQ) MP4(SDQ) MP4(SDQ) MP4(SDQ) MP4(SDQ) 

Energy / eV   0.0 8.185 9.183 10.607 10.998 

Bond C1-C2/ Ǻ - 1.5387 1.5387 1.5202 1.5072 1.5284 1.6083 

Bond C2=C3/Ǻ - 1.3368 1.3367 1.3770 1.3633 1.3315 1.2999 

Bond C1-C7/Ǻ - 1.5520 1.5520 1.5443 1.6154 1.6527 1.5417 

A/MHz 4273.628(1) 4279.484 4315.7355 3988.6715 4410.9638 4233.4797 4137.4251 

B/MHz 3610.300(1) 3611.745 3617.8461            3849.1624 3654.6405 3406.5428 3493.2552 

C/MHz 3186.437(1) 3182.315 3184.0941 3473.6487 3024.1345 3190.4099 3186.4828 

 

 

 

Table APP.II. Structural details of QC in the ground X1A1 equilibrium structure and 

first ionic states of each symmetry, calculated rotational constants (A,B,C), determined 

at the MP4(SDQ) level.  
 

Quadricyclane 

 X1A1 X1A1 X1A1 2B2 2A2 2B1
 2A1

 

Method MW67 CCSD(T) 
 

MP4(SDQ) MP4(SDQ) MP4(SDQ) MP4(SDQ) MP4(SDQ) 

Energy /eV   0.0 7.482 9.185 9.757 10.634 
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Bond C1-C2/ Ǻ  - 1.5217 1.5143 1.4977 1.5993 1.5421 1.4846 

Bond C2-C6/Ǻ  - 1.5187 1.5458 1.4756 1.5059 1.6462 1.6015 

Bond C1-C7/Ǻ  - 1.5149 1.5139 1.5356 1.5027 1.4836 1.5509 

A/MHz 4408.2184(2) 4406.271 4426.9300 4384.8284 4492.9622 4381.1570 4575.2727 

B/MHz 4345.5142(2) 4347.729 4368.0907 4260.3649 4216.3741 4321.8614 4059.4725 

C/MHz 3256.2893(2) 3256.391 3267.6349 3427.2813 3161.8450 3123.9866 3266.8885 
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