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ABSTRACT The current trend in the literature on Time Series Classification is to develop increasingly
accurate algorithms by combining multiple models in ensemble hybrids, representing time series in complex
and expressive feature spaces, and extracting features from different representations of the same time series.
As a consequence of this focus on predictive performance, the best time series classifiers are black-box
models, which are not understandable from a human standpoint. Even the approaches that are regarded
as interpretable, such as shapelet-based ones, rely on randomization to maintain computational efficiency.
This poses challenges for interpretability, as the explanation can change from run to run. Given these
limitations, we propose the Bag-Of-Receptive-Field (BORF), a fast, interpretable, and deterministic time
series transform. Building upon the classical Bag-Of-Patterns, we bridge the gap between convolutional
operators and discretization, enhancing the Symbolic Aggregate Approximation (SAX) with dilation and
stride, which can more effectively capture temporal patterns at multiple scales. We propose an algorithmic
speedup that reduces the time complexity associated with SAX-based classifiers, allowing the extension of
the Bag-Of-Patterns to the more flexible Bag-Of-Receptive-Fields, represented as a sparse multivariate tensor.
The empirical results from testing our proposal on more than 150 univariate and multivariate classification
datasets demonstrate good accuracy and great computational efficiency compared to traditional SAX-based
methods and state-of-the-art time series classifiers, while providing easy-to-understand explanations.

INDEX TERMS Time series, classification, explainable AI, symbolic aggregate approximation.

I. INTRODUCTION
The availability of high-dimensional time series data has
significantly expanded across critical domains such as finance,
healthcare, and environmental science, capturing dynamic
changes over time and presenting both opportunities and
challenges for time series classification (TSC).
The current trend in this field, highlighted by the most

recent ‘‘bake-off’’ survey paper [1], is to discover increasingly
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better-performing algorithms. This is achieved through
various techniques, including combining multiple models in
ensembles [2], [3], [4], representing time series in expressive
feature spaces [5], [6], [7], and extracting features from
different representations of the same time series signal,
such as differencing and Fourier transform [8], as well as
autoregressive coefficients [9].

As a consequence of this accuracy arms race, currently, the
top-performing time series classifiers are black-box models.
These models lack interpretability either due to their inherently
complex structures, such as neural networks [10], or because,
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even when using relatively simple classifiers like tree
ensembles or linear models, they leverage an uninterpretable
feature space [3], [5]. Even the most well-known interpretable
models for TSC, such as shapelet and interval-based
algorithms [11], [12] rely on randomization to maintain
reasonable computational efficiency, which poses challenges
for interpretability as explanations can vary significantly
between different runs [13].
A classical interpretable and deterministic approach for

TSC is the so-called Bag-Of-Patterns (BOP) [14], analogous
to the Bag-Of-Words approach [15] in text analysis, adapted
for the time series domain. BOP utilizes the Symbolic
Aggregate approXimation (SAX) [16] with a sliding window
to transform time series data into symbolic subsequences,
also called words. The counts of these words serve as
input features for predicting categorical outputs. This
window-wise discretization enhances data representation
expressiveness [17], [18], [19], maintains interpretability, but
imposes higher computational demands [20], particularly for
longer sequences, thereby making it less feasible for very
large datasets. In summary, to the best of our knowledge,
the literature lacks a fast, interpretable, and above all,
deterministic time series classifier capable of achieving good
accuracy across a broad spectrum of tasks.
Given these challenges, our contributions are as follows.

First, we formalize window-wise SAX, a technique widely
adopted in experimental settings in the literature [17], [18],
[19], but lacking systematic presentation and definition.
We extend SAX with dilation and stride convolutional opera-
tors to extract receptive fields. Unlike standard subsequences,
receptive fields capture the temporal evolution of a time
series at multiple resolutions, emphasizing both local and
global characteristics. Dilation enables skipping points within
a subsequence, allowing for the detection of broader temporal
patterns without additional computational overhead, while
stride defines the overlap between consecutive receptive fields.
Second, we show that current Piecewise Aggregate

Approximation (PAA) [21] and SAX-based classifiers exhibit
quadratic worst-case time complexity with respect to the
number of observations in a time series. We propose a
deterministic speedup, enhancing the algorithm scalability
over long time series.
Third, leveraging this speedup, we introduce an efficient

and deterministic transform, named Bag-Of-Receptive-Fields
(BORF), capable of converting both univariate andmultivariate
time series datasets into a human-understandable tabular repre-
sentation. Unlike the original Bag-Of-Patterns approach [14],
BORF represents subsequence counts as a sparse multivariate
tensor rather than a dense matrix, offering greater flexibility
for handling multivariate data.

Finally, we demonstrate that the integration of convolutional
operators and multi-resolution symbolic patterns in BORF
achieves competitive accuracy in TSC, while our optimization
significantly enhances computational efficiency. We evaluate
BORF across the complete UEA and UCR machine learning
repositories, comprising over 150 datasets, benchmarking

against SAX-based methods initially and subsequently against
several state-of-the-art classifiers. To conclude, we assess
the interpretability of our proposed approach, which is a
combination of an interpretable feature space, i.e., the Bag-
Of-Receptive-Fields, paired with a simple linear classifier.
The rest of this paper is structured as follows: Section II

discusses related work and principal competitors, while
Section III provides a background overview of our proposed
methodology. The BORF approach is detailed in Section IV,
followed by experimental results and analysis in Section V.
Finally, conclusions are drawn in Section VI.

II. RELATED WORK
Time Series Classification (TSC) has been widely studied
in recent years, with several so-called ‘‘bake-offs,’’ [1], [20],
[22] i.e., survey papers benchmarking the performance of the
most famous time series classifier from different categories.
Our proposal belongs to the dictionary-based family, which
extracts features from time series by recording characteristics
of discretized subpatterns [20]. These methods segment time
series into subsequences, convert them into symbolic words,
and create histograms of feature counts [14]. For this reason,
they rely heavily on effective time series approximation
methods such as the Symbolic Aggregate approXimation
(SAX) [16] and Symbolic Fourier Approximation (SFA) [23].
SAX uses Piecewise Aggregate Approximation (PAA) [24]
for segmentation and binning, while SFA focuses on spectral
properties using Fourier coefficients [23].
SAX and SFA are often used in a window-based manner;

that is, they are not applied to discretize the entire time series,
but instead, a window is slid over the time series, converting
each corresponding subsequence into a distinct word. This
approach allows the extraction of scale-invariant local patterns
in the sequence, given that each subsequence is normalized
independently. The first method using this approach is Bag-
of-Patterns (BOP) [25], an unsupervised transformation that
uses SAX to generate discretized subsequences, counting
their frequency. Other methods rely on supervised techniques.
For example, SAX-VSM [17] introduces a tf-idf weighting of
features to improve classification accuracy. MR-SEQL [18]
uses the feature space of all subsequences in the training data
to find useful features within SAX or SFA words. It employs
greedy feature selection and a gradient bound to prune non-
promising features. To improve time efficiency, MR-SQM [19]
also concatenates multiple symbolic representations at
multiple resolutions, but uses a Chi-squared bound and
random sampling to filter subsequences extracted with SAX
and SFA. There are several issues with these approaches. First,
their performance is still subpar with respect to the state-of-the-
art [1], [20]. Second, their implementation does not consider
multivariate time series. Finally, as shown in Section IV, their
worst-case time complexity, is quadratic with respect to the
length of the time series, which negates the possibility of
using them for very long time series. Better results in terms
of accuracy are achieved by WEASEL, WEASEL+MUSE, and
WEASEL-V2 [8], [26], [27], which focus on the usage of SFA.
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However, although informative for certain applications, SFA
has higher computational complexity than SAX [19], [23],
also losing temporal information, which makes it difficult
to interpret from a human standpoint. The state-of-the-art for
dictionary-based approaches is a black-box called HYDRA [2],
which convolves the time series with kernels and organizes the
resulting activation maps into groups, counting the number of
best matches in terms of kernel activation with the time series.
The most famous interpretable TSC approaches are based

on shapelets [13]. Shapelet-based approaches focus on finding
subsequences that define a class independently of their
position [28]. The discriminative features are distances, which
can be used to convert the time series dataset into a tabular
one through the so-called shapelet transform [29]. These
approaches use different methods for extracting shapelets and
building the subsequent classifier [30], [31]. Until recently,
the Shapelet Transform (ST) [32] was the most accurate
shapelet approach, with the drawback of high computational
complexity resulting in rather long training and inference
times. However, according to [1], the newer Random Dilated
Shapelet Transform (RDST) achieves better performance at a
faster runtime, with the drawback of more randomness in the
approach, which can hinder its interpretability [13].
Interval-based classifiers, such as Time Series Forest

(TSF) [33] divide time series into random intervals and
extract summary statistics like mean, standard deviation,
and slope, training a random forest on the resulting dataset.
One of the most famous methods in this category is
the Canonical Interval Forest (CIF) [7] and its extension
(DRCIF), which use the CATCH22 feature set [34] on
randomly selected intervals from different transformations
of the original time series, training a tree ensemble on
this representation. The interpretability of these approaches
depends on the feature set used, and, in general, explanations
are in the form of highlighting the most relevant features
extracted from discriminatory intervals [12]. Similar to
the best-performing shapelet classifiers, these approaches
heavily rely on randomization, causing variations in the areas
of interest used by the classifier across runs. In contrast,
our proposal is entirely deterministic, generating simple,
repeatable representations.
As an interesting note, standard deep learning approaches

often fall behind in general time series classification
benchmarks [1], given that they usually require ad-hoc
fine-tuning, often dependent on the specific task and
dataset. An exception to this is H-INCEPTIONTIME [35],
an extension ofINCEPTIONTIME [10], which is an ensemble
of deep Convolutional Neural Networks (CNNs). According
to [1], it achieves state-of-the-art performance. Convolution
is also used in ROCKET [5] and its numerous variants [3],
[6], which are considered some of the best-performing
models in TSC. They generate many random convolutional
kernels to transform time series into feature maps, which are
pooled and used in a linear classifier. Even with large and
complex datasets, ROCKET often achieves high accuracy and
processing speed [1].

Finally, the absolute top-performing models in TSC
are ensemble hybrids of the aforementioned methods,
such as MULTIROCKET-HYDRA [2], HIVE-COTE-2 [4],
TS-CHIEF [36], and RIST [9]. By their nature, these models
are very complex and thus not interpretable from a human
standpoint.
In summary, the current trend in the literature is to build

increasingly complex and diverse feature spaces extracted
from the original time series signal and several signal
transformations, heavily relying on randomization to achieve
accurate and fast classification. With BORF, we go against
this trend by demonstrating that it is still possible to
build an efficient, completely deterministic, easy-to-interpret
representation grounded only in the time domain, while
achieving good classification performance.

III. BACKGROUND
This section provides all the necessary concepts to understand
our proposal. We begin by defining time series data.1

Definition 1 (Time Series Data): A time series dataset,
X = {X1, . . . ,Xn} ∈ Rn×c×m, is a collection of n time series.
A time series, X, is a collection of c signals (or channels),
X = {x1, . . . , xc} ∈ Rc×m. A signal, x, is a sequence of m real-
valued observations sampled regularly at equal time intervals,
x = [x1, . . . , xm] ∈ Rm.
When c = 1, the time series is univariate, for c > 1 it is

multivariate. Time series datasets can be used in a variety of
tasks. This work focuses on supervised learning, particularly
Time Series Classification (TSC), through a Bag-Of-Patterns
(BOP) representation [14].
Definition 2 (TSC): Given a time series dataset, X , Time

Series Classification is the task of training a model, f ,
to predict a categorical output, y, for each input time series,
X, i.e., f (X ) = [f (X1), . . . , f (Xn)] = y ∈ Nn.
Specifically, BOP tackles classification by extracting

symbolic patterns (or words) from the time series, converting
them into a tabular representation, where the rows represent
the time series, and the columns are the extracted patterns.
Values in this matrix correspond to the count of appearances
of each pattern in each time series. Formally:
Definition 3 (Bag-of-Patterns): Given a time series

dataset X and a set of p patterns, a Bag-of-Patterns is a
dataset Z ∈ Nn×p, where zi,j is the number of appearances of
pattern j in the time series i.

Any classifier can use this dataset for TSC. A common way
of building a Bag-Of-Patterns is by time series discretization,
which essentially converts signals into a symbolic form
by approximating both the time and value axes. One of
the most famous discretization algorithms is the Symbolic
Aggregate Approximation (SAX) [16]. SAX uses the
Piecewise Aggregate Approximation (PAA) [24] to segment a
time series signal into equal-sized segments and then compute
the mean value for each segment. Formally, the average of the

1A summary of the notation is available in Appendix VI.
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i-th segment is:

µi =
l
m

m
l i∑

j=m
l (i−1)+1

xj, (1)

where l is defined as the word (or pattern) length, and i ∈ [1, l]
[16]. Therefore, the transformed signal isµµµ = [µ1, . . . , µl ] ∈

Rl . This vector is then standardized intoµµµ∗, with each element
computed asµ∗

i = zscore(µi, µx , σ x ) = (µi−µx )/σ x , where
µx and σ x are the mean and standard deviation of the full
signal.
The last step in SAX is discretization through equal-

frequency binning. Values in µµµ∗ are quantized using a set
of breakpoints, b = [b1, . . . , bα−1], obtained on quantiles
of the standard Gaussian distribution, which bin values in
α ≥ 2 equiprobable symbols. The final SAX approximation
is stored in µ̃̃µ̃µ, where each element is computed as:

µ̃i = bin(µ∗
i , α,b) =


0 if µ∗

i ≤ b1,
k − 1 if bk−1 < µ∗

i ≤ bk ,
α − 1 if µ∗

i > bα−1.

(2)

Since each signal element is accessed once, the cost of
applying SAX to a time series signal of length m is O(m) [16].
However, several TSC algorithms in the literature [14],

[17], [18], [19] iterate the aforementioned process using a
sliding window, thus converting each time series signal into a
collection of SAX words, which become the patterns used to
build of a Bag-Of-Patterns.

IV. BAG-OF-RECEPTIVE-FIELDS
In this section, we present BORF, Bag-Of-Receptive-Fields,
our proposal to efficiently extract an interpretable feature
space that any machine learning classifier can use for TSC.
BORF extends the notion of Bag-Of-Patterns, representing
time series as a sparse multivariate tensor instead of a simple
matrix. We introduce here a connection between convolutional
operators and pattern extraction by generalizing the concept of
a window to that of a receptive field. In convolutional neural
networks theory, the receptive field refers to the spatial extent
of input data that influences the activation of a particular
neuron in the network [37]. Applied to our setting, a receptive
field can be viewed as a generalized time series subsequence.
Definition 4 (Receptive Field): Given a signal x, the

i-th receptive field of length w ≥ 1 and dilation d ≥ 1, is an
ordered sequence of values, [xi, xi+d , . . . , xi+d ·(w−1)].
The dilation, d , plays an essential role in convolution,

offering control over receptive field size and determining
the spacing elements, enabling the capture of long-range
dependencies and patterns. By introducing gaps between
observations, dilation expands the receptive field and
facilitates the incorporation of distant information. By iterating
over the signal x, v receptive fields can be extracted [37],
where:

v = 1 +

⌊
(m− w− (d − 1)(w− 1))

s

⌋
. (3)

In this formulation, the stride, s ≥ 1, is essentially the number
of elements skipped when iterating over the signal, i.e., the
distance between consecutive receptive fields. A receptive
field simplifies to a subsequence obtained via sliding window
when d = 1 and s = 1. Without loss of generality, we use
the terms receptive field, pattern, subsequence, and window
interchangeably.
In the following, first, we connect the notion of receptive

fields to SAX discretization, proposing a way to lower the
time complexity of extracting SAX words (Section IV-A).
Then, in Section IV-A, we introduce the Bag-Of-Receptive-
Fields, extending Definition 3, by considering receptive fields
instead of standard subsequences for extracting symbolic
patterns, and by building this representation as a sparse 3D
tensor, which is able to represent multivariate time series data.
This extension of SAX through dilation and stride allows
for building a representative feature space while maintaining
interpretability. In fact, dilation and stride only change the
shape of a subsequence, such as by skipping time series
observations, but they maintain their semantics. This ensures
that these generalized subsequences remain meaningful while
capturing different resolutions of the original time series data.
Finally, in Section IV-C to IV-E, we discuss the complexity
of the overall approach in detail and its applicability to TSC,
also from an interpretability standpoint.

FIGURE 1. Two receptive fields (blue and red) with a length of w = 9,
divided into segments of length q = 3. Dilation is the number of steps
between consecutive observations within the receptive field. d · q is the
segment hop, i.e., the number of steps between consecutive segments. The
parameter s = 5 is the stride, i.e., the distance between consecutive
receptive fields.

A. WSAX
Although window-wise PAA and SAX are used in many
works [14], [17], [18], [19], to the best of our knowledge,
the formulation of [16], reported in Equation (1), was never
formally extended for such a case. Thus, as a first step,
we formalize window-wise PAA (wPAA), also incorporating
stride and dilation operators. The output of wPAA can be
represented as a matrixM ∈ Rv×l , where the rows correspond
to the receptive fields, and the columns to the averaged
segments:

M =

µ1,1 · · · µ1,l
...

. . .
...

µv,1 · · · µv,l

 ∈ Rv×l, (4)
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with µi,j =
1
q

q∑
k=1

x1+(i−1)·s+(j−1)·d ·q+(k−1)·d , (5)

where q = w/l is the segment size and with i ∈ [1, v], and j ∈
[1, l]. In summary, a time series signal is divided into
(possibly) overlapping windows, which are then divided into
non-overlapping segments. wPAA takes the average of each
of these segments. In Figure 1, we show an example of a
receptive field of length w = 9, containing l = 3 segments of
length q = 3. Dilation, d = 2, is the number of steps between
consecutive observations in the receptive field. d · q is the
segment hop, i.e., the number of steps between consecutive
segments. Finally, the stride, s = 5, is the window hop, i.e., the
number of steps between consecutive receptive fields.

a: NAIVE APPROACH
With this formulation, it follows that the complexity of
computing M , by repeating Equation (5) for each cell, as is
currently done in the literature, is O(v · l · q) = O(v · w),
given that for each cell ofM , we have to aggregate q elements.
The highest number of receptive fields we can have is when
d = 1 and s = 1 [37]. Therefore, the complexity simplifies
to O((m − w + 1) · w). This is mostly fine while w ≪ m,
but, in the worst case, when w = (m+1)/2, the complexity is
O(m2), i.e., quadratic in the number of points of the time series
signal.2 This reduces the possibility of using bigger window
sizes, as the time series signal gets longer.
In the following, we propose a solution for this

long-standing problem regarding SAX-based methods and
show that it is possible to compute wPAA efficiently,
independently from the window size, with a complexity that
depends only on the word length. This opens the possibility
of using longer window sizes, which can capture long-range
patterns, thus increasing the expressivity of words in the Bag-
Of-Receptive-Fields.

b: SPEED UP
In Algorithm 1, we report the pseudo-code of wSAX
describing our proposed speed-up. Given q = w/l with
w ≡ 0 (mod l), i.e., with the window size divisible by the
word length, to optimize computation, we can precompute the
averages for all the segments in the time series in a moving
fashion ( line 1), storing the result for later. Formally:

µµµseg = ma(x, q, d) = [µseg1 , . . . , µ
seg
m+d−d ·q] (6)

with µsegi =
1
q

q∑
j=1

xi+(j−1)·d , (7)

where µi is the mean of a single segment in x, with i ∈ [1,m+

d −d ·q], where m+d −d ·q is the total number of segments.
The main advantage of this formalization is that we do not
have to independently calculate each µsegi from Equation (7).
Instead, we can employ moving algorithms, which compute
µµµseg in O(m) [38]. In this context, a simple moving average

2A more detailed proof is reported in Appendix VI.

Algorithm 1 wSAX
Input: x - time series signal, w - window size, q -

segment size, l - word length, α - alphabet size,
b - breakpoints, d - dilation, s - stride

Output: M̃ - A matrix of SAX words

1 µseg = ma(x, q, d); // Moving avg for
segments

2 µwin = ma(x,w, d); // Moving avg for
windows

3 σwin = mstd(x,w, d); // Moving std for
windows

4 init M̃ ∈ Nv×l ; // Initialize empty
matrix

5 for 1 ≤ i ≤ v do // For each window index
6 for 1 ≤ j ≤ l do // For each segment

index
7 µi,j = µ

seg
1+(i−1)·s+(j−1)·d ·q; // wPAA

8 µ∗
i,j = zscore(µi,j, µwini·s , σ

win
i·s );

// Standardize
9 µ̃i,j = bin(µ∗

i,j, α, b); // Discretize

10 return M̃

algorithm suffices, where:

µ
seg
i = µ

seg
i−d +

1
q
(xi−d+d ·q − xi−d ). (8)

The vector µseg contains all the information necessary for
wPAA. Instead of computing Equation (5) for each cell of M ,
we can iterate over i, j as in Algorithm 1 (lines 4-7), filling
each entry ofM as follows:

µi,j = µ
seg
1+(i−1)·s+(j−1)·d ·q (9)

In Figure 2, we report this step for the two receptive fields
depicted in Figure 1. Performing wPAA basically simplifies
to iterating over each cell ofM , collecting the pre-computed
moving averages, based on Equation (9). For example, the
blue receptive field is segmented into [µ1,1, µ1,2, µ1,3] =

[µseg1 , µ
seg
7 , µ

seg
13 ].

c: DISCRETIZATION
To compute wSAX, each segment average needs to be
standardized based on the window to which it belongs.
Therefore, we compute the mean of each window, µµµwin =

ma(x,w, d) similarly to Equation (6), and their standard
deviation (Alg. 1, lines 2-3):

σσσwin = mstd(x,w, d) = [σwin1 , . . . , σwinv ] (10)

with σwini =

√√√√ 1
w

w∑
j=1

(xi+(j−1)·d − µwini )2, (11)

which again, can be computed in O(m), using a moving stan-
dard deviation algorithm such as [39]. Then, standardization
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FIGURE 2. A simplified schema of Algorithm 2 for the two receptive fields
of Figure 1, extracted from signal xi,j . First, the moving average µseg is
computed. Values in µseg are used to fill M as in Equation (9). The two
receptive fields are then normalized, binned into the SAX words [0, 1, 0]
and [0, 1, 1], and hashed into the integers and respective counts 10, 1 and
11, 1. This allows the update of Z . E.g., for the red word, zi,j,11 = 1.

is applied to each element ofM (Alg. 1, line 8):

µ∗
i,j = zscore(µi,j, µwini·s , σ

win
i·s ) =

µi,j − µwini·s

σwini·s

. (12)

Finally, discretization is performed as described in
Equation (2): µ̃i,j = bin(µ∗

i,j, α, b) (Alg. 1, line 9). The
transformed segments, µ̃i,j, are collected in M̃ ∈ Nv×l , which
is the wSAX conversion of signal x. In Figure 2, the blue
and red receptive fields are converted into the word vectors
[0, 1, 0] and [0, 1, 1].

B. BAG-OF-RECEPTIVE-FIELDS
Once the SAX words are extracted, we store them in
our proposed Bag-Of-Receptive-Fields, as described in
Algorithm 2.
Definition 5 (Bag-Of-Receptive-Fields): Given a time

series dataset X ∈ Rn×c×m and a set of p patterns, a Bag-Of-
Receptive-Fields is a tensor Z ∈ Nn×c×p, where zi,j,k is the
number of appearances of SAX word k in the signal j of time
series i.

In summary, to build Z , we need to repeat wSAX for each
time series signal in our dataset (Alg. 2, lines 2-3), storing the
extracted words and respective counts. We view this problem
as a way of hashing the extracted word vectors into integers.
We propose an easy solution, which is to convert each row in
M̃ into an integer obtained through concatenating the SAX
symbols:

ki =

l∑
j=1

µ̃i,j · α
l−j, (13)

where α is the alphabe size. Thus, k = [k1, . . . , kv] (Alg. 2,
line 5). Given k, through a hashmap, we group-by and count
the appearance frequencies of each SAX word, i.e., k∗, a =

unique(k), where k∗ contains the unique hashed words, and
a contains their count (Alg. 2, line 6). Basically, SAX words
become integers, used directly as the feature indices in Z .
This operation is performed for each time series i, for each
signal j. Therefore, zi,j,k = a, where a represents how many

Algorithm 2 BORF
Input: X - time series dataset, w - window size, q -

segment size, l - word length, α - alphabet size,
b - breakpoints, d - dilation, s - stride

Output: Z - Bag-Of-Receptive-Fields

1 init Z ∈ Nn×c×p; // Initialize empty
tensor

2 for 1 ≤ i ≤ n do // For each time series
index

3 for 1 ≤ j ≤ c do // For each signal
index

4 M̃ = wSAX(xi,j,w, q, l, α, b, d, s); // wSAX
5 k = hash(M̃ ); // Hash SAX words
6 k∗, a = unique(k); // Group-by and

count
7 for (k, a) ∈ {(k∗, a)} do // For each

word,count
8 zi,j,k = a; // Store the word and

count
9 return Z

times the SAX word k was found in xi,j. In our example
in Figure 2, the discretized red receptive field, [0, 1, 1],
is converted to the integer 11 and appears only 1 time in our
series signal. Its value and count are therefore stored in Z ,
i.e., zi,j,11 = 1.

C. COMPLEXITY
a: TIME
The time complexity of computing the averages for the
segments and window means is O(m) and can be calculated
using moving average algorithms [38]. The same applies to
the moving standard deviation [39]. Once these quantities
are computed, they need to be accessed a number of times
equal to the dimension of M . Therefore, the complexity is
O(v · l) = O((m − w + 1) · l). The worst case would
be when l ∈ O(w) and w ∈ O(m), e.g., w = m/2, and
l = w/2, thus leading to an hypothetical overall complexity
of O(m2). However, it is important to stress that this becomes
a pathological parameter choice as the signal length increases.
In fact, in the literature of SAX-based predictors,w is increased
asm grows, whereas the word length, l, is always kept very low
to avoid the combinatorial explosion in possible words [18],
[19]. For this reason, compared to the naive one, the advantage
of our implementation is that, within a reasonable parameter
choice, the complexity does not increase with larger window
sizes. Hence, the final time complexity of repeating this
process for each time series signal in our dataset isO(n·c·m·l),
while the naive approach is O(n · c · m2). To further prove
this point, in Section V, we show that a word length of
8 is sufficient to achieve good classification performance,
comparable to the state-of-the-art, and empirically benchmark
the scalability of the approach.
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b: SPACE
Space complexity is tricky when dealing with SAX patterns,
as their number grows fast as the word length and alphabet
size increase. The complexity is dominated either by the total
number of theoretically possible words, or the number of
receptive fields, and is O(c · min(αl, n · m)). This seems to
require a lot of memory. However, in our case, Z is mostly
sparse, given that the majority of entries are 0, i.e., only a
few patterns appear in each time series. Choosing a sparse
coordinate format representation, where each entry in Z is
stored as a 4-valued tuple (i, j, k, a), the total complexity is
the number of non-zero elements in the sparse representation,
which can be represented as a function of the dataset size
(n · c ·m), but also depend on the intrinsic characteristics of the
data. We investigate this relationship in Section V, and provide
a heuristic for estimating the number of non-zero elements,
given the total dataset size.

D. TIME SERIES CLASSIFICATION
BORF is an unsupervised method, however we benchmark
it on Time Series Classification to assess its performance
in extracting meaningful features for this task. Given that
classification algorithms usually have a 2D input, the Bag-
Of-Receptive field can be reshaped naively by concatenating
the second and third dimension, leaving the first unchanged,
going from a tensor Z ∈ Nn×c×p to a standard matrix dataset
Z ∈ Nn×(c×p). Having previous knowledge of the dataset,
an alternative could be to sum the counts of patterns extracted
from different groups of time series signals. In general, the
flexibility in aggregation could be of great use when domain
experts know which signal to aggregate and which signal
to keep separate based on their semantics. We explore this
possibility in a case study in Section V.
As highlighted in many recent works [5], [18], [19],

building multiple representations of the same input data is
extremely important for classification performance. In our
setting, this is equivalent to building many Bag-Of-Receptive-
Fields, each generated with different parameters (e.g., dilation,
window size, word length), and then stacking each resulting Zi
horizontally: Z = [Z1|Z2|Z3| . . . ]. Any classification model
that takes sparse matrices as input can then use the resulting
dataset for training and inference.

FIGURE 3. Example instances from the three classes of the
‘‘Cylinder-Bell-Funnel’’ dataset.

E. EXPLAINABILITY
The interesting characteristic of a Bag-Of-Receptive-Fields is
that, contrary to many state-of-the-art time series classifiers,
the meaning of a feature value is very simple to interpret

from a human standpoint. Given zi,j,k = a, this simply
translates into ‘‘The pattern k is contained a times into signal
j of time series i’’. Therefore, paired with an interpretable
classifier, this feature space can provide easy-to-understand
explanations. Interpretability is achieved through both an
easily comprehensible feature representation and a simple
classifier that is utilized to perform predictions. For example,
using a decision tree, one could extract the decision paths,
i.e., rules with conditions based on the number of appearances
of discriminative patterns. However, in this work, we focus on
simple linear models, which are also used in many state-of-
the-art competitors as they achieve very good performance.
In particular, we pair a ridge classifier with SHAP [40]

to highlight the contribution, φi,j,k , of each pattern count,
zi,j,k = a, towards the classification. φi,j,k is called SHAP
value, and if positive indicates a contribution to the positive
class, a negative SHAP value contributes toward the negative
class (or, in general, all the other classes if the dataset is
multiclass), while a SHAP value close to zero indicates that
the feature value is irrelevant. Given this semantic, in a Bag-
Of-Receptive-Field, φi,j,k is the contribution of zi,j,k = a
toward a given class y, which translates to ‘‘The fact that
pattern k of signal j of time series i is contained a times,
pushes the classification toward class y’’. This allows for
building both global and local explanations, which can give
several insights into the classifier behavior. In the following
subsections, we show examples of these kinds of explanations
on the classical ‘‘Cylider-Bell-Funnel’’ (CBF) dataset [41],
containing time series having three distinct shapes, as shown
in Figure 3.

FIGURE 4. Local explanation for a Cylinder instance of the CBF dataset.
On the left, the original time series colored based on the saliency map,
highlighting the most relevant observations for the classification. On the
right, the medoid of the most important pattern that is not contained in
the time series. The grey area represents all the possible alignments of the
pattern ‘0,1,1,2’ found in the dataset.

a: LOCAL EXPLANATION
The local explanation can be built by treating the feature
importance of contained and not-contained patterns in
different ways. Given a time series, X ∈ Rc×m, its BORF
conversion, Z ∈ Nc×p, and a feature importance matrix,
8 ∈ Rc×p, obtained through some local explainer, such as
SHAP, we propose a way to build a saliency map, 9 ∈ Rc×m.
A single feature importance, φj,k , for a single SAX word, zj,k ,
can be mapped back to the original timesteps only if zj,k is
contained in the time series, i.e., zj,k > 0. If that is the case,
we can retrieve the set Tj,k = {(j, i1), (j, i2), . . . }, containing

VOLUME 12, 2024 137899



F. Spinnato et al.: Fast, Interpretable, and Deterministic Time Series Classification With a BORF

all the unique alignment indices3 for zj,k onX , and in particular,
on signal, xj. The saliency matrix is then defined as:

9 =

ψ1,1 · · · ψ1,m
...

. . .
...

ψc,1 · · · ψc,m

 ∈ Rc×m, (14)

with ψj,i =

p∑
k=1

φj,k · 1[(j, i) ∈ Tj,k ]. (15)

Basically, the importance of each pattern is ‘‘spread’’ on the
original indices from which it was extracted. For this reason,
the saliencymap has to be scaled, in order to sum to the original
contribution, and is therefore multiplied by a scaling factor:

9∗
= 9 ·

∑c
j=1

∑p
k=1 φj,k · 1[zj,k > 0]∑c
j=1

∑m
i=1 ψj,i

(16)

In practice, the sum of the saliency values is scaled to equal
the sum of the feature importances of contained patterns.
An example of these saliency maps can be viewed in

Figure 4 (left), plotted on a Cylinder time series. The more
important the observation, the more intense the color will be.
In this case, we can easily see that the classifier is ‘‘looking’’
mostly at the central part of the time series (from the 30th
to the 90th timestep). These are the most relevant parts of
the time series, as the extremes usually contain noise, and
thus tend towards a grey color. On the other hand, when
zj,k = 0, i.e., when pattern zj,k is not contained in the time
series, it cannot be mapped back to the time series. Therefore,
we show its general shape, by retrieving the indices Tj,k , and
its respective observations, XTj,k , from several time series in
the dataset. In practice, we use a background dataset of sorts
to map SAX words onto the time series to see the real shape
that these symbolic words assume in our dataset. In Figure 4,
we show the alignments of pattern ‘0,1,1,2’ with a light gray
color, and the medoid of these alignments is colored based on
its SHAP value. This pattern closely resembles the increasing
part of a Bell instance, and its absence is a strong indicator for
the model towards the Cylinder class.

In summary, the local explanation comprises a saliency map
explaining the contained patterns, and a feature importance
vector, explaining the contribution of not-contained patterns.

b: GLOBAL EXPLANATION
The local explanation highlights the importance of patterns
for single time series. However, it does not tell anything
about the general relevance of a given pattern. From the local
explanation, a natural question could arise, i.e., if the pattern
‘0,1,1,2’ is important in general or only for the given time
series. In general, the explanation that arises from the Bag-
Of-Receptive-Fields is the importance of frequency counts of
the extracted patterns. To find the most important patterns
in the dataset, we compute the average rank in terms of
absolute SHAP values, i.e., we highlight the patterns that are

3We take the unique indices, as zj,k can have overlapping alignments on
xj.

FIGURE 5. Global explanation for three of the most important patterns for
the CBF dataset. On the left, in dark gray, the medoid of all alignments of
the pattern in the CBF dataset. On the right, the count of appearances of
each pattern in each time series in the dataset, divided by label. The color
represents the importance of the pattern count in terms of SHAP values.

the most important for most time series. We summarize this
information for CBF in Figure 5 for three of the most relevant
patterns in this dataset: ‘0,1,1,2’, ‘0,2’, and ‘1,1,1,1’. On the
left, we depict their medoid in dark gray, while in light gray,
we depict all the possible mappings of the same word in the
given time series dataset. This part of the plot can help give an
idea of what the classifier considers the most important shapes
in our data. In our case, the first two patterns are increasing,
resembling a Bell instance of our dataset, while the latter is
flatter, more similar to a Cylinder instance.
In the right scatterplots of Figure 5, each point represents

a time series. Its x-axis position represents how many times
a given pattern is contained in that time series, the y-axis
position is the label of that time series, while the color is the
SHAP value: red if it contributes toward its own class, gray if
it is irrelevant, and blue if it contributes toward other classes.
With this plot, we can easily see in which kind of time series
the pattern is contained or not, and how many times, while
also assessing the importance of its presence/absence.
Let’s take, for example, pattern ‘0,1,1,2’ from Figure 5.

This pattern is contained in Bell time series many times
(more than 10), as shown by the cluster of red points on the
right. This translates to: ‘‘In general, the fact that pattern
‘0,1,1,2’ is contained many times in the time series pushes
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the prediction toward Bell.’’. This makes a lot of sense as
the pattern resembles the slowly increasing shape of a Bell.
‘0,1,1,2’ is sometimes also contained in Cylinder and Funnel
instances, but the importance is lower (more toward the gray
color), suggesting that if the pattern is contained only a few
times, it is not really discriminative toward the class. Finally,
there are a few bright red instances of the class Cylinder in
which this pattern is contained zero times, which translates to:
‘‘In general, the fact that pattern ‘0,1,1,2’ is not contained in
the time series pushes the prediction toward Cylinder.’’. The
instance depicted in the local explanation is one of them.

The blue points in Figure 5b are also very interesting, as they
indicate that ‘0,2’ has a somewhat peculiar behavior in some
instances. In fact, similarly to ‘0,1,1,2’, the ‘0,2’ pattern
is normally contained many times (more than 10) in Bell
instances. However, if ‘0,2’ is contained around 10 times,
this actually contributes toward the class Funnel. Therefore,
the blue point instances indicate that if ‘0,2’ is contained
around 10 times in Bell or Cylinder instances, this pushes the
prediction toward the class Funnel, i.e., the model recognized
that this pattern frequency is atypical in Bells and Cylinders.
Finally, pattern ‘1,1,1,1’ in Figure 5c represents a flat part

of the time series, that usually appear around 10 times in
Cylinder instances. The blue point represents an atypical
Cylinder instance, where ‘1,1,1,1’ is not contained given that,
in general, the model considers the absence of ‘1,1,1,1’ as a
strong indicator toward Bells or Funnels.

V. EXPERIMENTS
In this section, we benchmark BORF in terms of classification
performance and runtime against state-of-the-art baselines
on the UEA/UCR repositories [45], [46]. We provide a
comparison against different families of classifiers, also
studying in which kind of datasets BORF perform best.
Further, we assess scalability and provide an ablation study
to understand which parameters affect BORF more. Finally,
we show the flexibility of BORF for multivariate time series
on a case study, and address interpretability with qualitative
examples.

a: DATASETS
The UCR and UEA TSC repositories comprise 158 datasets,
128 univariate and 30 multivariate. Some datasets contain
time series with variable observations, and some contain
missing values. We apply missing value imputation by linear
interpolation and last value padding. Further, we concatenate
all signals in a single axis for algorithms that do not support
multivariate time series. For all tests, we adopt the default
training and test splits.

b: BORF HEURISTIC
Following the current trend in TSC [1], [20], [22], instead
of fine-tuning BORF to maximize performance for specific
applications, we propose a model that achieves good results
in a wide range of problems. Since several hyperparameters
exist, we provide a heuristic that computes a vector of

TABLE 1. List of competitor classifiers, divided by classifier family, with
information about feature space and classifier interpretability, and
stochasticity. Models that have an interpretable feature space and
classifier, and are also deterministic are highlighted in gray.

window sizes, dilations, and word lengths, as follows:
w = [22, 23, . . . , 2⌊log2 m⌋], d = [20, 21, . . . , 2⌊log2(log2 m)⌋],
l = [2, 4, 8], α = 3, s = 1. Each valid combination
of these parameters is used as a configuration of BORF,
resulting in a multi-resolution representation of the time series.
As commonly done in the literature [18], to avoid blowing
up noise with standardization, we set a minimum standard
deviation ratio θ = σwin/σ x , between the standard deviation
of a window, σwin, and the standard deviation of full signal,
σ x . If θ ≤ 0.15, we consider the window constant (all zeros).
Tuning is performed on the same 42 development dataset used
to tune ROCKET [5], and is discussed in the ablation study.
After the transformation, we apply an inverse hyperbolic sine
function element-wise and use an interpretable ridge classifier
as a predictive model.4

c: COMPETITORS
We compare BORF against several state-of-the-art approaches
presented in Section II. A summary of these baselines
is reported in Table 1. First, we assess the performance
of BORF against SAX-based methods, namely BOP [14],

4Code is available at: https://github.com/fspinna/borf
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SAX-VSM [17], MR-SQM [18], and MR-SEQL [19].
Subsequently, we evaluate the performance against many
different competitors. As a baseline, we use KNN with
DTW as the distance metric and a Sakoe-Chiba band
of 0.1 (KNN-DTW). For dictionary-based approaches,
we benchmark WEASEL+MUSE (W+MUSE) [27], Red-
Comets (REDCOM) [42], and HYDRA [2]. For interval-based
models, we compare Time Series Forest (TSF) [33], Random
Supervised Time Series Forest (RSTSF) [12], and the Diverse
Representation Canonical Interval Forest (DRCIF) [4]. For
shapelet-based classifiers, we assess the Shapelet Transform
(ST) [29] and its random dilated version (RDST) [11]. For
deep learning-based models, we compare with a standard 1D
Convolutional Neural Network (CNN), TAPNET [44], a multi-
channels deep convolutional neural networks (MCDCNN)
[43], and INCEPTIONTIME (IT) [10]. Additionally,
we evaluate ROCKET [5], MINIROCKET [6], and the current
absolute state-of-the-art in terms of accuracy/speed tradeoff,
Multirocket-Hydra (MR-HYDRA) [2].

All models are trained with the default library hyperparame-
ters or values proposed in the respective papers.5 Eachmodel is
allowed one day (1440 minutes) for training and inference on
each dataset and is allocated 32 cores and 64 GB of memory.6

A run is considered failed if it exceeds the maximum time
or crashes due to out-of-memory errors, and is assigned the
lowest rank.

d: CLASSIFICATION
In this section, we compare the predictive and runtime per-
formance of BORF against competitor approaches. We report
predictive performance in terms of accuracy, as it is the most
commonly used metric, and runtime performance as the sum
of training and inference runtime (in seconds). Performance in
terms of F1-measure is reported in Appendix VI, as it produces
results very similar to accuracy. Appendix VI also presents
the full accuracy table on all datasets for the top 13 best-
performing baselines.
To assess the statistical significance of these results,

in Figure 6, we first report the Critical Difference (CD) plot
comparing the pairwise rankings of all benchmarked methods.
Two methods are considered tied if the null hypothesis
that their performance is the same cannot be rejected using
the Nemenyi test at α=0.05. The best models are reported
on the right. In terms of accuracy (Figure 6a), BORF has
the 9th average rank and is statistically tied to the top-
performing models, such as ROCKET and MINIROCKET,
with the only statistically better methods being RDST and
MR-HYDRA. Regarding runtime, BORF has the 2nd best
rank, statistically tied with HYDRA. BORF and HYDRA are
statistically faster than all other approaches, with the closest
ones being MR-HYDRA and MRSQM. This plot shows that
our approach achieves good performance that is close to,

5We used the Python libraries pyts [47] for BOP and SAX-VSM, and
aeon [48] and sktime [49] for all the other methods.

6System: Lenovo SD650 nodes, with Intel Xeon Platinum 8268 CPUs.

FIGURE 6. CD Plots for all benchmarked methods. Best models to the right.

FIGURE 7. CD Plots for SAX-based, dictionary-based, and interpretable
methods. Best models to the right.

even if slightly below, the general state-of-the-art in terms
of accuracy, and state-of-the-art speed. As state-of-the-art
accuracy against all methods is not the claim of this work,
but rather competitive performance against SAX-based,
dictionary-based, and interpretable methods, we also report the
CD plots for subsets of models belonging to different classifier
families.

Figure 7a and 7b show a comparison against all SAX-based
methods. For this subset, BORF is the clear winner, both in
terms of accuracy and runtime, surpassing MRSEQL in terms
of accuracy, while being even faster than MRSQM. In Figure 7c
and 7d, we compare against dictionary-basedmethods.HYDRA
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is themost accurate model, but it is statistically tied withBORF.
W+MUSE and MRSEQL are close to BORF in terms of accuracy
rank, but they are significantly slower. Finally, in Figure 7e
and 7f, we compare BORF against interpretable approaches,
i.e., approaches that are widely regarded as interpretable or
discuss interpretability in their respective papers. For this
subgroup, BORF is still the fastest approach, while achieving
a 3rd rank in accuracy, behind RDST, and statistically tied
to RSTSF and ST. Note that RDST and RSTSF, while
considered interpretable, are not deterministic. Therefore,
while their predictions can be interpreted, they can also change
from run to run given the same exact hyperparameters. On the
contrary, BORF is interpretable and also stable across runs.
These experiments on subsets of classifier families show
that BORF is always first in terms of runtime, while being
the most accurate SAX-based approach and among the best
dictionary-based and interpretable models.

TABLE 2. Comparison Matrix between BORF and competitor approaches.
Models are sorted by median difference in accuracy with BORF. Wins, ties,
and losses are to be read ‘‘against BORF’’. Best models on top. Grey rows
are statistically tied with BORF using the Wilcoxon signed-rank test.

While the CD-plot is widely used for performance
comparison, it was criticized in [50] for being prone to
manipulation, as the average rank of a model depends
on the performance of other comparators. For this reason,
in Tables 2 and 3, we report the Comparison Matrices [50] in
terms of accuracy and runtime. This representation, proposed
in [50], computes the Wilcoxon Signed Rank Test, evaluating
the median difference by ranking absolute differences and
summing signed ranks. A significant p-value (≤ 0.01 or
≤ 0.05) indicates a statistically significant difference between
samples. We report both the mean and median difference,
as well as the number of wins, ties, and losses against BORF.
Models are ranked based on the median performance, with
the best models on top. Again, in terms of accuracy, BORF

TABLE 3. Comparison Matrix between BORF and competitor approaches.
Models are sorted by median difference in runtime with BORF. Wins, and
losses are to be read ‘‘against BORF’’. Best models on top. Grey rows are
statistically tied with BORF using the Wilcoxon signed-rank test.

has the 9th rank, statistically tied to RSTSF, IT, ST, and
W+MUSE. As for median runtime, BORF is the best model,
statistically tied to HYDRA. Against any competitor, BORF
wins more than 100 times out of the total, showing its superior
median runtime performance. However, the mean runtime
performance indicates that there are some outlier datasets in
which BORF does not perform as well. For example, BORF has
a median difference with ROCKET that is 42.2 seconds faster,
but 126.1 seconds slower on average. This difference is due
to only four losses overall, among which the only ones with
significant runtime deltas are on the ‘‘FaceDetection’’ and
the ‘‘InsectWingbeat’’ datasets. Discarding these two datasets
would improve the average runtime tenfold, from 298.7 to
only 27.9 seconds. ‘‘FaceDetection’’ and ‘‘InsectWingbeat’’
are highly multivariate (≥ 100 signals) and short (≤ 65 points)
datasets. We believe this difference in performance on these
datasets is due to two reasons. First, 1D convolution is
extremely well-optimized for multivariate time series datasets,
so models like ROCKET, MINIROCKET, HYDRA, and
MULTIROCKET-HYDRA greatly benefit from this. Second,
BORF is much more efficient on longer datasets, where l ≪ m,
i.e., when the word length is much lower than the number of
points of the time series.
We further prove this point in Figure 8. In Figure 8a,

we show median runtime performance against median
accuracy for all datasets. The best models are on the top left.
Again, BORF is in the top-10 regarding accuracy, while being
the fastest in terms of runtime, with the closest one being
HYDRA. In Figure 8b, we show the same plot, but on the
subset of 45 longest univariate datasets, having more than
500 observations. Overall, for this subset, BORF is in the top 5,
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FIGURE 8. Comparison of median accuracy performance against median
runtime (seconds). Best models are on the top left.

outperforming even MINIROCKET and HYDRA in terms of
accuracy and speed. This further proves that BORF tends to
be more efficient on longer datasets, which are arguably the
most common in real-world scenarios.

e: SCALABILITY
Given the state-of-the-art speed that BORF achieves, we specif-
ically analyze the impact of our proposed algorithmic speedup.
That is, we assess the scalability of wPAA against the
classical naive PAA (used by methods such as MRSQM and
MRSEQL), when varying the window size, w. First, in Figure 9
(left), we conduct experiments on randomly sampled signals,
by fixing their length to 1000, while varying the window size
from 8 to 1000 and measuring average runtime on 10 trials.
The word length is kept fixed at 8. The runtime of naive PAA,
as expected given its theoretical complexity of (m−w+1) ·w,
grows until w ≈

m+1
2 , and then decreases. Conversely, wPAA,

with the exception of a small overhead at the beginning due to
the moving average computation, constantly decreases as the
window size increases, and is superior to naive PAA at each
point of the curve. On the right, we generate random signals at
increasing lengths m, setting the window size at half the signal
length. This represents the worst-case scenario for PAA, and
its quadratic behaviour clearly evidences it. Meanwhile, the
runtime of wPAA increases very slowly, as the complexity
depends not on the window size but (almost) linearly on the
number of observations.

FIGURE 9. Runtime comparison between naive PAA and our proposal
(wPAA). On the left: runtime when changing the window size, and keeping
time series length fixed. On the right: runtime when changing the time
series length and setting the window size to half the number of points.

FIGURE 10. Space complexity. On the left: dataset size against the number
of extracted patterns. Each blue point represents the empirical number of
extracted features for each dataset, and each orange point is the upper
bound on the number of features for that specific dataset. On the right, the
dataset size against non-zero elements in Z and fitted log-log regression
line.

Regarding space complexity, in Figure 10, we compare the
dataset size (n · c ·m) with the number of extracted patterns
(left) and the number of non-zero elements in Z (right) for
all datasets in the repositories. Specifically, the plot on the
left displays the number of extracted features for each dataset
in blue, and the number of theoretically possible features in
orange. The upper bound, O(c ·min(αl, n ·m)), is significantly
higher than the number of extracted patterns, more than an
order of magnitude in most cases. On the right, we illustrate
the number of non-zero elements in Z , representing the
overall empirical space complexity of the algorithm against
the dataset size. A linear relationship between the dataset size
and the number of non-zero elements becomes evident when
visualizing this scatterplot on a log-log scale. To better assess
this relationship, we perform a linear regression analysis. The
result, nnz ≈ 5.74·(n·c·m)0.96, highlights a nearly proportional
relationship, suggesting that the non-zero elements scale
almost linearly with the dataset size.

f: ABLATION STUDY
We present here an ablation study on BORF to assess which
heuristic parameters affect most accuracy and total runtime.
Starting from our baseline configuration, we change one
parameter at a time. Specifically, we benchmarkBORFwithout
the parameter θ (w/o θ), without the inverse hyperbolic
sine function (w/o ash), and without performing dilated
discretization (w/o dilations). We then test by setting different
maximum word lengths, (max l = 2, max l = 4, max l = 16).
Additionally, we test limiting themaximum number of window
sizes (max l = 8, max l = 16, max l = 32).
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TABLE 4. Performance delta in median Accuracy (higher is better) and
median runtime (lower is better) for various alternative hyperparameter
configurations with respect to the BORF baseline heuristic presented in
Section V. The two best-performing models for each metric are in bold.

The results are reported in Table 4. On the top row, we report
the baseline’s median accuracy and median running time,
on the 42 development datasets [5]. In all other rows, we report
the performance delta between the alternatives and the
baseline. Regarding accuracy, almost all alternatives perform
worse than the baseline, with the exception of increasing
the word length to 16, which slightly improves accuracy.
However, we deemed the runtime increase to be too significant
to consider this configuration in the heuristic. Decreasing the
word length significantly impacts performance negatively;
accuracy decreases by 0.05 if we remove l = 8 and 0.185 if
we also remove l = 4, but it positively impacts runtime.
However, we believe the performance drop is too severe to
ignore. The parameter θ is particularly interesting because
its removal deteriorates both the accuracy and runtime. This
parameter impacts the unique function in Algorithm 1, which
receives fewer unique words to hash, while simultaneously
removing noisy subsequences. Overall, the proposed baseline
appears to be a good compromise between accuracy and
runtime performance. The inverse hyperbolic sine has limited
effect, but is still noticeable, at a very small performance
gap. The only parameter that could be worth limiting is the
window size (max l = 32). However, the performance drop is
still present, with minimal runtime improvement. Moreover,
the development datasets tend to be short in terms of length,
so we postulate we can obtain better generalizability with our
proposed heuristic.

g: CASE STUDY: FINGERMOVEMENTS
We showcase the explainability of the BORF representation
on the multivariate FingerMovements dataset [51]. This
dataset contains EEG sessions of a subject seated with their
arms resting on a table, fingers positioned on a keyboard.
The task required self-paced typing using the index and
little fingers in any chosen order. Each sample comprises
recordings from 28 EEG channels, representing signals from
distinct brain regions, as depicted in Figure 11. The goal,
as defined in the UEA repository, is binary classification:

FIGURE 11. Electrode locations based on the International 10-20 system
for encephalography recording. The FingerMovements dataset contains
recordings from the blue regions.

FIGURE 12. Local explanation for a Left-Hand instance of the
FingerMovements dataset. On the left, 12 out of the 28 signals of the
original time series colored based on the saliency map, highlighting the
most relevant observations for the classification. On the right, for each
signal, the medoid of the most important pattern that is not contained in
that signal of the time series.

0 for imminent Left-Hand movements and 1 for Right-Hand
movements.

For the local explanation, we choose the Left-Hand instance
reported in Figure 12. On the left side of the picture, we show
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FIGURE 13. Global explanation for four of the most important ‘2,0’
patterns for the FingerMovements dataset. On the left, in dark gray, the
medoid of all alignments of the pattern in the FingerMovements dataset.
On the right, the count of appearances of each pattern in each time series
in the dataset, divided by label. The color represents the importance of the
pattern count in terms of SHAP values.

12 of the most relevant signals out of the 28, colored based on
the importance of each observation toward the classification.
For this instance, the saliency map is mostly spread and does
not indicate that any part of the time series is particularly
important by itself for the classification. However, it is still
useful, as it highlights the most relevant signals with a more
intense color, in this case, CPz, CP2, and CP4 for positive
contribution and O2 for negative contribution. In this case,
the right plot, showing the most important not contained
patterns, is more interesting, as it shows that the most
relevant pattern is ‘2,0’ for half of the depicted signals. This
seems to be a very important shape for many signals in the
dataset.
Indeed, by using the global explanation, we can easily

see that ‘2,0’ is relevant for many instances of the
FingerMovements dataset, as shown in Figure 13. Analyz-
ing the explanation, it seems, however, that this pattern
behaves differently in various signals. For example, if this
pattern is not contained in the FCz, CP2, or FC3 signals,
it seems to push toward the Left-Hand class, while the
opposite is true for the ‘2,0’ pattern contained in the O2
signal.

In this sense, a significant advantage of BORF is the
flexibility, after transforming the time series, in decidingwhich
patterns have the same semantics, i.e., whether the counts of
patterns from certain channels should be summed together or
kept separate. In particular, after using BORF for transforming
the dataset intoZ ∈ Nn×28×p, we can ask ourselves if patterns
for certain brain regions should be summed together or not,
i.e., ‘‘Does it make sense to sum the frequency of pattern ‘2,0’
extracted from the occipital lobe with the same pattern ‘2,0’
extracted from the frontal lobe?’’. From the global explanation,
it seems like frequencies from some signals have the same
semantics and some do not.
Conventionally, pattern count in each signal is maintained

separately, i.e., BORF preserves the counts of each pattern
for each signal independently. In this setting, the accuracy
of BORF is 0.56, which ranks in the top 5 among the
competitor classifiers tested earlier. An alternative method
involves summing patterns across all channels, effectively
treating pattern frequencies from various parts of the brain
as semantically equivalent, obtaining Z ′

∈ Nn×1×p, where
z′i,1,k =

∑c
j=1 zi,j,k . This method has improved performance

on this dataset, achieving an accuracy of 0.58, which is the
best, tied with W+MUSE. With BORF, it is possible to supervise
pattern aggregation. For instance, as illustrated in Figure 11,
the two occipital regions O1 and O2 (at the bottom of the
picture) are spatially remote from the 26 recordings of the
parietal and frontal lobes, which cluster together in this dataset.
Therefore, we can sum pattern counts from these different
regions separately, i.e., z′′i,1,k =

∑26
j=1 zi,j,k (for the parietal

and frontal lobes), and z′′i,2,k =
∑28

j=27 zi,j,k (for the occipital
regions), obtaining Z ′′

∈ Nn×2×p. Using this dataset as
our classifier input, we achieve a superior accuracy of 0.61,
which is better than that of any classifiers tested earlier. This
experiment shows that the interpretability, paired with the
capability of defining aggregation after the Bag-Of-Receptive-
Fields transformation, offers many insights and substantial
flexibility, allowing an expert user to use the explanation
as a qualitative and quantitative tool to answer research
questions.

VI. CONCLUSION
In this work, we proposed BORF, a fast, interpretable, and
deterministic transformation for univariate and multivariate
time series data. We formalized the window-wise Symbolic
Aggregate Approximation (wSAX) and augmented it with
dilation and stride convolutional operators. Our approach
significantly reduces the computational complexity tradition-
ally associated with window-wise SAX-based classifiers and
extends the Bag-Of-Patterns framework to a more flexible
Bag-Of-Receptive-Fields. We have shown that the proposed
approach is statistically superior in runtime and predictive
performance compared to SAX-based methods while being
very competitive among dictionary-based and interpretable
classifiers. Moreover, the proposed heuristic is scalable both
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in time and memory, allowing the accurate analysis of long
datasets. We have assessed the interpretability and flexibility
of our approach in a case study, showcasing it as a very
promising tool for answering research questions.

A limitation of our proposal is that it is still subpar compared
to ensemble hybrids such asMultirocket-Hydra, which achieve
better predictive accuracy but are uninterpretable. Beating
these kinds of models was never the claim of this work, as they
use multiple algorithms and complex feature spaces to achieve
that level of performance. However, an interesting future
research direction would be to build a fast ensemble hybrid that
is also interpretable, combining, for example, the feature space
of BORFwith other interpretable approaches such as shapelets
or interval-based methods. Additionally, like all SAX-based
methods, BORF faces the challenge of managing longer word
lengths as the feature space expands rapidly. Our ablation study
indicates that this does not seem to be a problem for this set
of datasets; however, with very long time series, larger word
lengths would probably be needed. To address this, we plan to
hash the extracted patterns into a pre-fixed size, for example,
using Bloom filters, to mitigate this issue.

Finally, given that the BORF transformation is unsupervised,
we plan on tackling time series regression, forecasting, and
clustering to achieve fast and deterministic explanations in
different types of tasks.

APPENDIX A NOTATION
In Table 5, we summarize the main symbols used in the paper.

TABLE 5. Summary of notation.

FIGURE 14. CD Plots for SAX-based methods. Best models to the right.

FIGURE 15. CD Plots for dictionary-based methods. Best models to the
right.

APPENDIX B COMPLEXITY
Here, we show in greater detail that the worst-case complexity
of the window-wise naive PAA is quadratic. For each window,
for each segment, we need to average the values in each
segment, therefore Equation (5) is repeated vl times, for a
total of vlq iterations. Given that, by definition, ql = w,
it follows that vlq = vw. The highest number of receptive
fields is obtained when d = 1 and s = 1, i.e., when dilation
and stride are both absent, given that they reduce the number
of receptive fields by skipping some observations [37]. Thus,
the total number of iterations simplifies to:

vw =

(
1 +

⌊
(m− w− (d − 1)(w− 1))

s

⌋)
w

= (m− w+ 1)w = mw− w2
+ w,
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TABLE 6. Accuracy of the top 13 best-performing models on all datasets. Missing values are due to exceeded runtime limits or out-of-memory errors.
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TABLE 6. (Continued.) Accuracy of the top 13 best-performing models on all datasets. Missing values are due to exceeded runtime limits or out-of-memory
errors.
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with 1 ≤ w ≤ m. Given f (w) = mw − w2
+ w, we find the

critical point df
dw = m − 2w + 1 = 0, which indicates that

w =
m+1
2 is a local maximum, given that the second derivative

is negative. The maximum number of iterations is:

f
(
m+ 1
2

)
= m

(
m+ 1
2

)
−

(
m+ 1
2

)2

+

(
m+ 1
2

)
=

(m+ 1)2

4
.

Thus the worst-case complexity is O( (m+1)2
4 ) = O(m2).

APPENDIX C MORE EXPERIMENTS
In Figure 14 to 17, we report the CD plots from different
classifier families for the UEA and UCR repositories
separately, also showing performance in terms of F1 score.
Figure 18 shows a comparison between median runtime in
seconds and median F1 score against competitor models.
Figure 19 shows the boxplot of runtime performance (in
seconds). Finally, Table 6 reports the results in terms of
accuracy of the top-13 models.

FIGURE 16. CD Plots for interpretable methods. Best models to the right.

FIGURE 17. CD Plots for all benchmarked methods. Best models to the
right.

FIGURE 18. Comparison of median F1 performance against median
runtime (seconds). Best models are on the top left.

FIGURE 19. Runtime boxplots (seconds), Lower is better. BORF median and
interquartile range are highlighted in red.
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