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Abstract: This paper explores the integration of advanced machine learning (ML) techniques within
simulation-based design optimization (SBDO) processes for naval applications, focusing on the
hydrodynamic shape optimization of the DTMB 5415 destroyer model. The use of unsupervised
learning for design-space dimensionality reduction, combined with supervised learning through
active learning-based multi-fidelity surrogate modeling, allows for significant improvements in
computational efficiency while addressing complex, high-dimensional design spaces. By applying
these ML techniques to both single- and multi-objective optimizations, aimed at minimizing resistance
and enhancing seakeeping performance, the proposed framework demonstrates its practical value
in hydrodynamic design. This approach provides a scalable and efficient solution, reducing the
reliance on high-fidelity simulations while accelerating the optimization process, without substantial
modifications to existing toolchains. A design-space dimensionality reduction of approximately 70%
is achieved, reducing the design variables from 22 to 7 while retaining 95% of the original geometric
variance. Additionally, computational cost reductions of 65% to 98% are observed, compared to using
the full design space and high-fidelity simulations only.

Keywords: simulation-based design; shape optimization; ship hydrodynamics; multi-fidelity;
surrogate modeling; dimensionality reduction; active learning; representation learning

1. Introduction

Hydrodynamic shape optimization plays a pivotal role in the design of ships and
in particular naval destroyers, where performance characteristics such as speed, maneu-
verability, seakeeping, fuel efficiency, and operational effectiveness are critical. Ship hy-
drodynamic efficiency significantly influences its operational capabilities, environmental
footprint, and overall cost-effectiveness. Thus, achieving optimal hull shapes can result in
significant fuel savings and reduce greenhouse gas emissions, a pressing concern in the
context of modern naval engineering [1].

A recent review [2] has highlighted a significant shift in the naval engineering sector,
which, for decades, relied predominantly on experimental campaigns and semi-empirical
approaches. Over the last twenty years, the industry has increasingly adopted simulation-
based design optimization (SBDO), aligning its methodologies with those used in the
aeronautical and automotive sectors. This transition marks a change of course from the
traditional design, build, and test approach toward more modern, simulation-driven
paradigms, where optimization plays a central role in improving performance while reduc-
ing costs and time-to-market.

Despite this “methodological revolution”, the adoption of advanced techniques re-
mains slower than expected. As shown in [2], the use of cutting-edge tools such as machine
learning (ML) in marine engineering is still limited compared to sectors like aerospace
engineering. The aeronautical industry, for instance, has embraced ML technologies [3] to
enhance the efficiency of optimization processes, particularly in handling complex, high-
dimensional design problems. In contrast, the naval sector has been more conservative in
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integrating these innovations into standard practices. Nonetheless, some recent examples
are also available in the marine sector, such as the use of neural networks for the prediction
of the resistance of containerships [4] and trimarans [5], ship motions [6], the power and
emission of different vessels [7], as well as mooring system dynamics [8].

The objective of this paper is to illustrate how ML techniques can be seamlessly in-
tegrated into SBDO processes for naval applications, enhancing the workflow without
requiring significant modifications to existing toolchains. Specifically, attention is focused
on two key ML approaches. First, unsupervised learning techniques, such as parametric
model embedding (PME) [9], are used to reduce the dimensionality of the design space
upfront. This addresses the well-known “curse of dimensionality” [10], a challenge that
severely impacts the performance and convergence of both surrogate models and optimiza-
tion algorithms as the number of design variables increases. By embedding the original
high-dimensional design space into a lower-dimensional representation, the most relevant
design features are retained, enabling a more efficient exploration of the design space
without disrupting the existing SBDO workflow. Second, supervised learning techniques
in the form of active learning-based multi-fidelity surrogate models [11] are integrated
into the optimization process. These models, designed to predict hydrodynamic perfor-
mance based on both low- and high-fidelity simulations, refine themselves selectively
during the optimization process. This approach minimizes the need for computationally
expensive high-fidelity simulations by leveraging active learning [12] to focus on the most
critical areas of the design space. Notably, these ML-driven surrogate models, herein based
on stochastic radial basis functions (RBF) [13] can be easily incorporated into the SBDO
process, improving the workflow by accelerating certain stages of optimization without
necessitating a complete overhaul of existing methods.

The test case considered focuses on the hydrodynamic shape optimization of a naval
destroyer, specifically the DTMB 5415 model. This benchmark model has been widely
used in international literature for experimental [14], numerical [15], and optimization [16]
studies. The application of both single- and multi-objective optimization techniques to this
test case aims to demonstrate how ML techniques can be effectively integrated into existing
SBDO toolchains, paving the way for broader adoption of these advanced methods in the
naval sector.

The remainder of this paper is organized as follows. Section 2 presents the hydro-
dynamic test case, focusing on the DTMB 5415 model, its specifications, and its role as
a benchmark for naval destroyer optimization. Section 3 outlines the formulation of the
hydrodynamic shape optimization problems, detailing both single-objective and multi-
objective approaches for minimizing resistance and improving seakeeping performance,
as well as, design parameterization and numerical solvers. Section 4 describes the ML
methods used in the optimization process, including PME for design-space dimensional-
ity reduction and active learning-based surrogate models for multi-fidelity optimization,
and illustrates how they can be easily integrated into existing SBDO workflows. Section 5
presents the results obtained using these techniques and, finally, Section 6 offers concluding
remarks, summarizing the key findings and potential future developments for the use of
ML in hydrodynamic shape optimization.

2. Ship Hydrodynamic Test Case

The DTMB 5415 model, derived from a series developed by the David Taylor Model
Basin (now known as the Naval Surface Warfare Center, Carderock Division), has long been
a cornerstone in naval architecture research. This model represents a destroyer-type vessel
and has been extensively utilized within both academic and practical settings to explore
and enhance ship hydrodynamics [17]. With its origins tracing back to the mid-20th century,
the DTMB 5415 model has provided a reliable platform for numerous studies, owing to its
well-documented hydrodynamic characteristics and performance in calm water and real
seas conditions [18].
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This model is particularly noted for its operational specifications, which are meticu-
lously designed to replicate the hydrodynamic behavior of full-scale DDG-51 vessels under
various conditions (see Figure 1, left). The model’s specifications, summarized in Table 1,
include a standard length of approximately 5.72 m, with a beam of 0.76 m, and a draft of
0.248 m, at nominal conditions. This scale model (λ = 24.8) is characterized by a specific
Froude number (Fr) of 0.28, making it ideal for studies focusing on calm-water resistance
and other hydrodynamic performances, such as seakeeping [19] and maneuvering [20].

Figure 1. Starboard bow view of the Arleigh Burke-class guided missile destroyer (DDG-51, left)
alongside its digital counterpart, the DTMB 5415 model (right).

Table 1. Key characteristics of the DTMB 5415 original hull and simulation parameters.

Quantity Symbol Unit Value

Displacement ∇ m3 0.549
Length between perpendiculars Lpp m 5.720
Beam B m 0.760
Draft T m 0.248
Longitudinal center of gravity LCG m 2.884
Vertical center of gravity VCG m 0.056
Bridge longitudinal location bx m 1.772 †

Bridge vertical location bz m 0.997 ‡

Flight deck longitudinal location dx m 5.317 †

Flight deck vertical location dz m 0.524 ‡

Roll radius of gyration Kxx – 0.40B
Pitch radius of gyration Kyy – 0.25Lpp
Yaw radius of gyration Kzz – 0.25Lpp
Water density ρ kg/m3 998.5
Kinematic viscosity ν m2/s 1.09 × 10−6

Gravity acceleration g m/s2 9.803
Froude number Fr – 0.280

† backward bow, ‡ above the keel.

In the scholarly domain, the DTMB 5415 has been employed as a fundamental test
case for a myriad of research initiatives [21]. It has significantly contributed to experimental
hydrodynamics and computational fluid dynamics (CFD) [22,23], serving as a reliable
benchmark for testing and validating new theories and computational models [24,25].
The literature cites its use in various contexts, including the verification of numerical
simulation techniques [26] and the development of new experimental methodologies [27,28].
More recently, the DTMB 5415 model has been at the forefront of advancing multi-fidelity
methods for ship design optimization [29,30] and used as so-called L2 and L3 sea benchmark
problems to develop and assess multi-fidelity optimization methods for military vehicle
design within the AVT-331 Research Task Group on “Goal-driven, multi-fidelity approaches
for military vehicle system-level design” [31].
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3. Hydrodynamic Shape Optimization Problems

The general framework for design optimization can be formulated as follows:

minimize fk(u) for k = 1, . . . , K
subject to hi(u) = 0 for i = 1, . . . , I

and gj(u) ≤ 0 for j = 1, . . . , J
ul ≤ u ≤ uu

(1)

where u ∈ RM represents the vector of design variables, with M denoting the number of
variables that govern the shape parameterization of the hull. The lower and upper bounds
on the design variables are denoted by ul and uu, respectively. The objective functions, fk,
address either a single-objective (k = 1) or multi-objective (k > 1) problem, depending on
the complexity of the desired optimization task. The equality constraints are represented
by hi, while the inequality constraints are described by gj. These constraints ensure that the
design remains feasible and adheres to the physical and engineering limitations imposed
by the problem.

In this study, two distinct optimization problems are addressed, considering two
operational scenarios: calm water and regular wave conditions. The design objectives
focus on two primary performance criteria: (i) resistance minimization in calm water and
in waves, and (ii) seakeeping performance, which evaluates the ship’s motion responses
under wave action. The hydrodynamic and seakeeping of the vessel are coupled through
physical models, accounting for rigid body motion only. The rigid body equations of
motion are used to compute the dynamic response of the vessel, while the hydrodynamic
models (such as potential flow or Reynolds-averaged Navier–Stokes—RANS) provide the
necessary force and moment inputs.

Herein, the problem formulation includes a set of equality hi and inequality gj con-
straints designed to ensure that the optimized hull configurations remain practical, as
specified in the following 

h1 = Lpp(u)/Lpp0 − 1
g1 = 1 −∇(u)/∇0

g2 = |∆B(u)|/B0 − 0.05
g3 = |∆T(u)|/T0 − 0.05
g4 = 1 − V(u)/V0

(2)

The length between perpendiculars is fixed as an equality constraint to ensure that the
optimized designs maintain the overall ship length. The inequality constraints pertain
to the vessel’s displacement, beam, draft, and sonar dome volume, ensuring that the
displacement is at least equal to that of the reference hull while allowing a permissible
variation in beam and draft of ±5%, as well as a minimum volume V0 within the bow
dome to contain the sonar. This variation enables flexibility in the design space without
sacrificing critical performance or stability requirements.

3.1. Single- and Multi-Objective Formulations

Problem 1 is formulated as a single-objective optimization problem (k = 1) aimed
at minimizing the total resistance (RT) of the ship in calm water at a Froude number of
0.28, which corresponds to a full-scale speed of 20 knots. The optimization objective is
expressed as

minimize f1(u) = RT(u) (3)

The objective function, RT(u), quantifies the resistance exerted on the ship. This problem
is particularly relevant for reducing fuel consumption and improving the overall energy
efficiency of the vessel.

Problem 2 is a multi-objective optimization problem (k = 2) designed to simultane-
ously reduce the resistance and enhance the seakeeping performance of the ship when
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operating in regular head waves. The Froude number remains fixed at Fr = 0.28. The two
objectives are defined as follows:

minimize f1(u) = R̄T(u) = 1
Te

∫ Te
0 RT(u, t)dt

minimize f2(u) = SMF(u) = 1
3

RMS(vd)
RMS(vd,0)

+ 1
3

RMS(ab)
RMS(ab,0)

+ 1
3

RMS(θ)
RMS(θ0)

(4)

In this case, R̄T(u) represents the time-averaged resistance over the encounter wave pe-
riod Te, where the resistance varies with time due to the dynamic nature of the wave
environment. The regular waves are characterized by a wavelength-to-ship-length ratio
λ/Lpp = 1.2 and a wave steepness H/λ = 1/30. The second objective, f2(u), is a seakeep-
ing merit factor (SMF), which evaluates the ship’s motion responses in waves, focusing on
three key metrics: the vertical velocity at the flight deck (vd), the vertical acceleration at
the bridge (ab), and the pitch angle (θ). Each of these metrics is normalized by their corre-
sponding values for the parent hull, denoted by the subscript ‘0’. The SMF is calculated as
the weighted average of the root mean square (RMS) values of these three responses, each
contributing equally to the overall seakeeping performance.

The multi-objective nature of Problem 2 inherently involves trade-offs between reduc-
ing resistance and improving seakeeping performance, as design changes that benefit one
objective may negatively impact the other. The use of a multi-objective framework allows
for the identification of a set of non-dominated, or Pareto-optimal, solutions where neither
objective can be improved without compromising the other. This approach provides greater
flexibility in selecting a hull design that balances operational efficiency and seakeeping
with onboard comfort and safety in rough seas.

3.2. Hull-Form Parameterization

Free-form deformation (FFD) [32] is utilized to generate design variations and modify
the corresponding computational grid. The control points, which act as lattice nodes, are
strategically placed to enable both local and global modifications of the hull geometry.
The selection of the number and positioning of these control points is informed by prior
research and practical experience [33], ensuring an effective and flexible design process.

The design space for the hull optimization is represented by a total of M = 22 design
variables. The demi-hull is embedded in a lattice structure composed of 9 × 3 × 3 nodes. It
is important to note that the FFD lattice is tailored to fit the maximum dimensions of the
demi-hull, allowing precise control over the shape modifications. Out of the total nodes,
21 are considered active (indicated by the blue spheres in Figure 2), each of which has
one degree of freedom (DoF), except for one node that possesses two DoF. The overall
shape modification is achieved by interpolating the control points’ displacements across
the lattice grid.

Figure 2. FFD parameterization.

This interpolation process can be executed using various polynomial bases. In this
work, a tensor product of trivariate Bernstein polynomials is employed, which allows
for smooth and continuous shape modifications. A detailed description of the degrees of
freedom and the associated design variables can be found in [9].
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This approach allows for a flexible and efficient design process, enabling the explo-
ration of both subtle and substantial modifications to the hull shape. The use of FFD in
conjunction with polynomial interpolation provides the necessary smoothness and conti-
nuity required for hydrodynamic optimization while maintaining computational efficiency.

3.3. Physical Models and Numerical Solvers

Several governing equations and computational solvers, each utilizing different grid
resolutions, are employed to support the multi-fidelity supervised learning approach used
in solving the design optimization problems. Each solver operates at a different fidelity
level, providing varying degrees of accuracy and computational cost. By integrating these
solvers within the multi-fidelity framework, it becomes possible to balance computational
efficiency with precision, leveraging both high-fidelity and low-fidelity models.

In the following, a brief overview of the models, codes, and computational setups
used in this multi-fidelity approach is provided. Each model and solver has been tailored
to address specific aspects of the problem, ranging from potential flow simulations for
rapid low-fidelity evaluations to more detailed RANS solvers for high-fidelity simulations.
This combination ensures that the most computationally demanding simulations are only
used where necessary, while less expensive solvers are employed for broader design
space exploration.

3.3.1. CFDShip-Iowa

Resistance and seakeeping performance at high fidelity (HF) are evaluated by the
CFDShip-Iowa V4.5 code [34], developed at the University of Iowa over the last three
decades. It is a specialized solver for incompressible URANS/DES equations tailored to
ship hydrodynamics. The equations are solved in an inertial reference frame attached to
the ship, assuming constant speed. The free surface is handled through a single-phase
approach, where only the water flow is simulated, with kinematic and dynamic boundary
conditions applied at the free surface. The software utilizes structured multiblock grids
and features overset grid capabilities.

Turbulence modeling is based on the blended Menter’s k-ω/k-ϵ model with shear
stress transport. A second-order upwind scheme is employed to discretize the convective
terms of the momentum equations. For pressure and velocity coupling, a projection
method [35] is applied. Additionally, the SUGGAR code [36] operates separately from
the main solver to compute interpolation coefficients for the overset grids, enabling the
simulation of 6DoF, with a motion controller active at each timestep.

Here, the computational domain consists of a background grid with 3.5 million points
and a boundary layer grid with approximately 1 million points, designed to exploit the
symmetry of the problem. The background grid extends from 0.5Lpp upstream to 2Lpp
downstream, and laterally to 2Lpp, while vertically it extends 1.7Lpp below the waterline
and 0.3Lpp above. The boundary layer grid is carefully refined to ensure y+ < 1, thereby
eliminating the need for wall functions. A detailed view of the computational grid is
presented in Figure 3 (left). Notably, the background grid is configured for seakeeping
simulations, as the seakeeping merit factors are evaluated after the calm-water solution
has converged. To achieve this, the grid discretizes both wavelength and wave height
into 100 points, and the computational time is divided into 256 steps to capture one full
encounter wave period.
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Figure 3. Computational grids used for the high-fidelity solver (left, CFDShip-Iowa with URANS)
and low-fidelity solver (right, WARP using potential flow).

3.3.2. WARP

Resistance value in calm water at low fidelity (LF) is evaluated by the wave resistance
program (WARP), a linear potential-flow (PF) solver developed at CNR-INM (previously
known as INSEAN). The computation of wave resistance is based on Dawson’s linearization
technique using the double-model approach [37], while frictional resistance is approximated
using a flat-plate model that incorporates the local Reynolds number [38]. The total
resistance is calculated by integrating pressure and friction forces over the surface of the
hull. The program achieves a steady-state solution for sinkage and trim (2DoF) through
iterative coupling between the flow solver and the equations governing the body’s motion.
Further details on the equations, numerical implementations, and validations of the solver
can be found in previous work [39].

Here, the computational domain includes a free-surface grid with 7600 points and a
hull surface grid with 9000 points, both leveraging the symmetry of the problem. The free-
surface grid extends 1Lpp upstream, 3Lpp downstream, and 1.5Lpp laterally, resulting in
a total grid resolution of 75 × 20 nodes. A detailed view of the computational grid is
provided in Figure 3 (right).

3.3.3. SMP

The seakeeping performance at low fidelity is evaluated using the standard ship mo-
tion program (SMP), developed by the David Taylor Naval Ship Research and Development
Center [40]. SMP employs a potential flow model that uses linearized strip theory to predict
ship motions in the frequency domain. The program calculates the 6DoF response of the
vessel, considering constant forward speed and arbitrary heading angles. It is capable of
simulating both regular waves and irregular sea conditions. The response data provided
includes longitudinal, lateral, and vertical motions at specific points on the ship, offering
insight into how the vessel behaves under various seakeeping conditions. SMP is widely
used for preliminary seakeeping analysis due to its ability to balance computational ef-
ficiency with reasonably accurate predictions, making it an effective tool for early-stage
design assessments where full-scale simulations would be too computationally expensive.

Simulations using the SMP code are carried out by utilizing the symmetry of the
hull. The hull is divided into 31 strips, with each strip further discretized into 10 nodes,
uniformly distributed along the curvilinear coordinate of the strip.

4. Machine Learning Methods

This section presents the two ML techniques employed in this work: unsupervised
learning through PME for reducing the dimensionality of the design space, and supervised
learning via active learning-based multi-fidelity surrogate modeling. Both approaches
integrate seamlessly into a traditional SBDO workflow, enhancing the process’s ability
to handle complex, high-dimensional design spaces while simultaneously reducing the
dependence on computationally intensive high-fidelity simulations. As shown in Figure 4,
a schematic comparison illustrates the differences between the standard SBDO approach
and the ML-enhanced shape optimization workflow.
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Figure 4. ML-based shape optimization flow chart compared to standard SBDO.

In contrast to the standard SBDO process, where the full design space is used through-
out the optimization, unsupervised learning via PME is applied upfront to reduce the
dimensionality of the design space. This step preserves a direct mapping to the original
parameterization (see later Equation (14)), ensuring that the critical features of the design
are maintained. By reducing the complexity of the design space before entering the opti-
mization loop, PME enables the continued use of the original shape modification methods,
such as FFD, but with a more efficient and manageable parameterization.

Once the design space is reduced, the optimization process in Equation (1) is solved in
the reduced design space using a multi-fidelity surrogate model f̂ (x) (see later
Equation (18)). This model integrates information from both low- and high-fidelity simula-
tions, starting with a few points from each fidelity level. Initially, only one high-fidelity
point is placed at the center of the design space, and the active learning procedure de-
termines both where to sample new points and which fidelity level to use. The decision
is guided by balancing the uncertainty of the predictions from each model against the
computational cost of the simulations. This approach significantly reduces the number
of costly high-fidelity evaluations needed by efficiently focusing computational resources
on the most critical areas of the design space [41]. The optimization is performed directly
on the surrogate model, which approximates the objective functions and constraints. Ac-
tive learning thus ensures that the optimization process remains efficient and accurate,
minimizing computational expense without sacrificing precision.

By fusing the strengths of PME for dimensionality reduction and active learning for
efficient sampling in multi-fidelity models, this approach offers a robust framework for
tackling complex hydrodynamic shape optimization problems. The result is a streamlined
and computationally efficient process compared to traditional methods, without sacrificing
the accuracy or robustness required in naval engineering applications.

4.1. Unsupervised Learning via Parametric Model Embedding for Design-Space
Dimensionality Reduction

PME [9] is a design-space dimensionality reduction method that extends the standard
principal component analysis (PCA) approach [42] by incorporating both shape deforma-
tions and design variables into a generalized feature space [43]. Specifically, PME applies
PCA to an augmented matrix that includes the discretized shape deformation vector d and
the original design variables u. This extension allows PME to directly map the reduced
design space back to the original design variables without the need for reparameterization,
which is typically required in standard PCA approaches. As a result, PME offers a more
robust and practical method for maintaining the integrity of the original design features
while facilitating effective shape optimization.

Consider a manifold G, which identifies the original/parent shape. This manifold
defines the geometric space in which the shape is parameterized by curvilinear coordinates
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ξ ∈ G. The coordinates of the original shape are represented by g(ξ) ∈ Rn with n = 1, 2, or
3. Assume that, for the purpose of shape optimization, g can be transformed to a deformed
shape/geometry g′(ξ, u) by

g′(ξ, u) = g(ξ) + δ(ξ, u) ∀ξ ∈ G (5)

where δ(ξ, u) ∈ Rn is the resulting shape modification vector, defined by arbitrary shape
parameterization or modification method (e.g., CAD parameterization, Bezier surfaces,
FFD, NURBS, etc.), and u ∈ U ⊂ RM is the design variable vector.

Discretizing G by L elements of measure ∆Gj (with j = 1, . . . , L), having d(ξ, u) as the
discretization of δ(ξ, u), sampling U by a statistically convergent number of Monte Carlo
realizations S, so that {uk}S

k=1 ∼ p(u), and organizing d̂ = d − ⟨d⟩ (with ⟨·⟩ the mean
value) in a data matrix D of dimensionality [nL × S]

D =



d̂1,ξ1(u1) d̂1,ξ1(uS)
...

...
d̂L,ξ1(u1) d̂L,ξ1(uS)

... . . .
...

d̂1,ξn(u1) d̂1,ξn(uS)
...

...
d̂L,ξn(u1) d̂L,ξn(uS)


(6)

where d̂j,ξk is the k-th component of the shape modification vector associated to the j-
th element, defining û = u − ⟨u⟩, the embedding is achieved defining the matrix P of
dimensionality [(nL + M)× S] as follows

P =

[
D
U

]
with U =

 û1,1 û1,S
... · · · ...

ûM,1 ûM,S

 (7)

where the matrix U is added to the data matrix D to which is associated a null weight Wu
such that

Wu = 0 and W̃ =

[
W 0
0 Wu

]
(8)

and so leading to a generalized PCA problem in the form

ÃG̃W̃Z̃ = Z̃Λ̃ with Ã =
1
S

PPT (9)

where

G̃ =

[
G 0
0 I

]
and Z̃ = [z̃1 . . . z̃S] with z̃k =

[
zk
vk

]
(10)

Here, zk and vk represent the eigenvector components associated to the shape modification
d and design variable u vectors, respectively. The matrix G = diag(G1, . . . , Gn) is block
diagonal and has dimensionality [nL × nL], with each [L × L] k-th block being a diagonal
matrix itself

Gk = diag(∆G1, . . . , ∆GL) (11)

containing the measure ∆Gj of the j-th element. Similarly, W = diag(W1, . . . , Wn) is
a block diagonal matrix of dimensionality [nL × nL], where each [L × L] k-th block Wk
(k = 1, . . . , n) is itself a diagonal matrix defined as

Wk = diag(ρ1, . . . , ρL) (12)



J. Mar. Sci. Eng. 2024, 12, 1979 10 of 18

Here, ρj (for j = 1, . . . , L) represents the arbitrary weight given to each element.
The solutions λk and z̃k of Equation (9) are finally used to construct the reduced dimen-

sionality representation of the original parameterization; defining the desired confidence
level l, with 0 < l ≤ 1, the number of reduced design variables N is chosen such that

N

∑
k=1

λk ≥ l
nL

∑
k=1

λk = lσ2 with λk ≥ λk+1 (13)

and the PME of the original design variables is finally achieved by using the eigenvector
components vk that embed (or contain) the reduced-order representation of the original
design parameterization u as follows

u ≈ ǔ = ⟨u⟩+
N

∑
k=1

xkvk (14)

To reconstruct at least all the samples in D, the coefficients θj, for j = 1, . . . , S, are
evaluated projecting the matrix P on Z̃′, that contains only the first N eigenvectors of Z̃,
retaining the desired level of variance of the original design space, as follows

Θ = PTG̃W̃Z̃′ (15)

with Θ = [θ1 . . . θS]
T. Consequently, the reduced design variables x = [x1 . . . xN ]

T can be
bounded such as

min
j

Θjk ≤ xk ≤ max
j

Θjk k = 1, . . . N. (16)

It may be noted that the overall methodology is independent of the specific shape
modification method, which is seen as a black box by PME.

4.2. Supervised Learning via Active Learning-Based Multi-Fidelity Surrogate Modelling

Having an arbitrary number L of fidelity levels and defining their training sets as
{Tk}L

k=1, with each Tk = {(x′j, fk(x′j))}
Jk
j=1, the multi-fidelity approximation f̂k(x) of f (x)

reads [30]

f̂k(x) := f̃L(x) +
L−1

∑
i=k

ε̃i(x), (17)

where f̃L is the single-fidelity surrogate model associated to the lowest-fidelity training
set, and εi(x) is the inter-level error surrogate with associated training set Ei = {(y, ϕ −
f̂i(y)) | (y, ϕ) ∈ Ti−1} [44].

In this context, the surrogate models are based on stochastic RBFs, whose details
can be found in [30]. These provide also the uncertainty associated with the prediction
of the lowest-fidelity U f̃L

and inter-level errors Uε̃i
. Assuming they are uncorrelated,

the multi-fidelity approximation f̂ (x) of f (x) and its uncertainty U f̂ read

f (x) ≈ f̂ (x) = f̃L(x) +
L−1

∑
i=1

ε̃i(x) U f̂ (x) =

√√√√U2
f̃L
(x) +

L−1

∑
i=1

U2
ε̃i
(x). (18)

The multi-fidelity surrogate model is refined by incorporating new training points
through an active learning process. These new points, denoted as x⋆, are sequentially
identified based on an acquisition function, which in this case is determined using the
lower confidence bounding (LCB) criterion [45]. The objective of this criterion is to locate
points with high prediction uncertainty and low objective function values. Once the new
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point x⋆ is identified, the fidelity level for sampling is automatically selected using a fidelity
selection vector, κ, defined as

κ ≡ {Uε̃1
/β1, . . . , Uε̃L−1

/βL−1, U f̃L
/βL}, (19)

where βi = ci/c1, i = 1, . . . , L, and ci represents the computational cost associated with
the i-th fidelity level. In the case of a non-nested training set, the fidelity level to sample is
determined by finding the maximum value in κ, as given by

k = maxloc(κ) with i = k (20)

4.3. Development and Integration Approach

The ML techniques were developed using in-house tools. No external machine learn-
ing libraries such as Scikit-learn, TensorFlow, or PyTorch were employed. The algorithms
were custom-built to meet the specific needs of the hydrodynamic shape optimization
process, allowing for greater flexibility and adaptability in handling the design space and
fidelity data. The software environment was designed to integrate seamlessly with the
existing optimization workflow, ensuring smooth implementation of the proposed methods.
Specifically, the integration between ML tools, optimization algorithms, and numerical
solver, is achieved through the exchange of data using ASCII-formatted output files. This
modular approach ensures that each component can be connected or disconnected as
needed, allowing for flexibility in the design and testing of the optimization framework.
This method also facilitates a smooth and straightforward integration between the various
solvers and optimization algorithms, ensuring efficient data exchange and communication
across the workflow.

Regarding the ML methods setup, it may be noted that the PME and multi-fidelity
surrogate model does not rely on traditional hyper-parameters like those found in neural
networks or other deep learning models. Instead, the key parameters are associated with the
dimensionality reduction process (level of variance to be retained and data set dimension)
and the active learning sampling strategy (kind of acquisition function).

5. Results

The multi-fidelity method is trained using CFDShip-Iowa as HF and WARP as LF
solvers to optimize resistance for both Problem 1 and Problem 2. For evaluating seakeep-
ing performance in Problem 2, CFDShip-Iowa and SMP are used as HF and LF solvers,
respectively. Details of the solver verification and validation can be found in [46]. The com-
putational cost ratio between HF and LF solvers is approximately 0.001, highlighting the
potential savings provided by the multi-fidelity approach. The active learning process,
using the LCB criterion, and the optimization of Problem 1 are handled by a memetic
single-objective deterministic particle swarm optimization (DPSO) algorithm [47,48], while
Problem 2 is addressed with a multi-objective DPSO algorithm [49].

Figure 5 provides a comparison of the wave elevation patterns and pressure fields
between the high-fidelity (URANS) and low-fidelity (potential flow) solvers for the original
hull. While the pressure distributions show reasonable agreement, the wave elevation
predicted by the potential flow model tends to under-predict diverging bow waves and over-
predict diverging stern waves. Despite this promising overall agreement for multi-fidelity
applications, potential flow models have inherent limitations in capturing performance
losses due to flow separation, which could occur in specific regions of the design space.
This presents a methodological challenge when using potential flow solvers in multi-fidelity
supervised learning frameworks, where accurate flow separation modeling is essential.
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Figure 5. Comparison of URANS (left) and PF (right) wave elevation pattern and pressure field
along the original hull in calm water.

The original FFD design space, consisting of 22 design parameters, undergoes di-
mensionality reduction via PME. The PME technique is trained using 1000 Monte Carlo
realizations, where each realization represents a modified hull configuration along with
the corresponding design parameters. The results demonstrate a dimensionality reduc-
tion of approximately 70%, reducing the design variables to seven while retaining 95%
of the original geometric variance, as shown in Figure 6. This reduction process ensures
that the design fidelity is maintained, meaning that the critical geometric features of the
original design are retained. Even with fewer design variables, the reduced representation
is capable of accurately describing the hull’s shape and ensuring its performance remains
consistent with the full, high-dimensional design space. This approach not only improves
computational efficiency but also allows for effective optimization without compromising
the overall quality or accuracy of the design.
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Figure 6. Result of the design-space dimensionality reduction using PME.

The optimization process is initialized with a training set comprising 15 LF and one
HF sample at the center of the design domain. Active learning then iteratively refines the
surrogate model, stopping once 15 HF samples have been added. Optima for both Problem
1 and Problem 2 are achieved with a total of 15 HF and 647 LF evaluations and validated
through a high-fidelity simulation. For Problem 1 (calm water), the optimization leads to a
5.8% reduction in resistance. In Problem 2 (regular waves), the optimization yields a 2.6%
reduction in resistance, accompanied by a 6.2% improvement of the SMF. These results are
particularly noteworthy, as previous studies [46] have not identified a compromise solution
that enhances both resistance and seakeeping performance simultaneously.

Figure 7 shows a comparison of the original hull stations with the optimized designs
for both problems. In Problem 1, the optimization primarily affects the stern, with minimal
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changes to the forward sections of the hull. The optimized stern geometry results in
improved pressure recovery and reduced diverging stern waves, as illustrated in Figure 8.
A further investigation of wave patterns is shown in Figure 9, where longitudinal wave cuts
at y = B, 2B, 3B, and 5B are depicted. While the optimized stern geometry has reduced the
diverging stern waves, the wave cuts indicate an increase in wave height, suggesting that
the optimization, while effective in reducing the total resistance, have shifted the energy
distribution in the wave system, leading to higher waves in some regions. On the contrary,
for Problem 2, the optimized hull exhibits significant modifications near the forward
perpendicular, including an enlarged bow dome, while the aft sections remain relatively
unchanged. The optimal hull for Problem 2 is selected as the best trade-off solution from
the non-dominated set, balancing the competing objectives of minimizing resistance in
waves and enhancing seakeeping performance, as shown in Figure 10 (left). The figure also
indicates the HF training points and validates the optimal solution. Figure 10 (center and
right) compares the heave and pitch motions between the original and optimized hulls.
While the optimization results in a minimal reduction in heave and a good improvement in
pitch at the center of gravity, the enlarged bow dome effectively breaks the incoming head
waves, leading to the desired reduction in resistance. Further investigation is needed to
better understand the impact of these modifications on the overall wave interaction and
dynamic stability of the vessel, as well as the complex interaction between the optimized
hull shape and resistance components.

Figure 7. Comparison between the original hull stations and the optimized designs for problem 1
(left, single-objective—best resistance in calm water) and problem 2 (right, multi-objective—best
trade-off between resistance in head waves and seakeeping merit factor).

Figure 8. Comparison between the original and optimized wave elevation patterns and pressure
fields along the hull for problem 1 obtained with URANS simulations.



J. Mar. Sci. Eng. 2024, 12, 1979 14 of 18

−0.005

0.000

0.005

η
/L

p
p

[-
]

(y
=
B

)

Original Optimized

−0.005

0.000

0.005

η
/L

p
p

[-
]

(y
=

2
B

)

−0.005

0.000

0.005
η
/
L

p
p

[-
]

(y
=

3
B

)

−0.5 0.0 0.5 1.0 1.5

x/Lpp [-]

−0.005

0.000

0.005

η
/
L

p
p

[-
]

(y
=

5
B

)

Figure 9. Comparison between the original and optimized longitudinal wave cuts at, from top to
bottom, y = B, 2B, 3B, and 5B for problem 1 obtained with URANS simulation.
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Figure 10. Non-dominated solution set for problem 2 (left) and comparison of heave (center) and
pitch (right) motions between the original and optimized hulls.

A final analysis of the active learning-based multi-fidelity optimization results has
been carried out to examine the correlation between the different information sources,
i.e., the relationship between the predictions provided by high-fidelity and low-fidelity
simulations in the multi-fidelity optimization process—each fidelity level represents an
information source, and their correlation indicates how well the low-fidelity simulations
approximate the results of the high-fidelity ones. Specifically, Figure 11 illustrates the
relative variation of the objective functions between the LF and HF training points for both
Problem 1 (left) and Problem 2 (right). For Problem 1 (calm water, Figure 11, left), the data
show a reasonably good correlation between the two information sources, as indicated
by the linear regression line, though not perfect (the black line represents an ideal corre-
lation), achieving a Pearson correlation coefficient r = 0.803. This suggests that, for this
specific problem, the potential flow model can be quite effective in predicting the objective
function when no flow separation occurs. However, large deviations in both under- and
overestimation of the objective function may occur, likely due to flow separation phenom-
ena, which the potential flow model cannot accurately capture. In Problem 2 (seakeeping,
Figure 11, right), two key observations emerge: (1) the correlation between LF and HF
sources is relatively strong for seakeeping performance (r = 0.854), indicating that strip
theory provides a reasonable approximation when compared to more complex URANS
simulations, although there is a slight underestimation of the objective function; (2) unlike
Problem 1, the relationship between the potential flow and URANS models tends to be
anti-correlated (r = −0.499), which suggests a more non-linear interaction between the in-
formation sources that is challenging for supervised learning methods to model accurately.
This anti-correlation is likely due to the inability of the potential flow model to account for
the added resistance component, which plays a crucial role in seakeeping performance.
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Figure 11. Correlation of objective functions between high-fidelity and low-fidelity numerical
solutions (problem 1 on left and problem 2 on right).

6. Conclusions

This paper demonstrates a novel yet practical integration of machine learning tech-
niques into simulation-based design optimization processes for hydrodynamic shape opti-
mization. The key contribution of this work lies in showing that advanced machine learning
methods—namely parametric model embedding (PME) for dimensionality reduction and
active learning-based multi-fidelity surrogate modeling—can be seamlessly incorporated
into existing optimization workflows without the need for significant modifications to the
toolchain. This ensures that these innovations can be adopted without disrupting current
design processes, providing an accessible path to significant improvements in efficiency
and performance.

Through the application of single- and multi-objective optimization techniques on the
DTMB 5415 model, it was shown that machine learning methods offer promising solutions
to the challenges associated with high-dimensional design spaces and the computational
costs of high-fidelity simulations. The use of PME, which extends the standard PCA
approach, enabled significant dimensionality reduction, addressing the curse of dimension-
ality while preserving the most relevant design characteristics. This is particularly valuable
as it facilitates optimization in reduced spaces without the need for complex reparameteri-
zations. The active learning-based multi-fidelity surrogate modeling, on the other hand,
enhances the optimization process by dynamically guiding both the sampling locations and
the fidelity level, balancing computational cost with prediction uncertainty. This approach
significantly reduces the reliance on high-fidelity simulations, providing an innovative yet
practical solution to the challenges posed by high-dimensional design spaces.

An estimated cost reduction between 65% and 98% was achieved by reducing the
design space from 22 to 7 dimensions using PME and constructing a multi-fidelity surrogate
model with 15 high-fidelity and 647 low-fidelity simulations, where the latter come at
0.1% of the cost of a high-fidelity simulation. The 65% cost reduction was calculated by
comparing the multi-fidelity approach, which used 15 high-fidelity points following a
2N + 1 rule (with N = 7 in the reduced space), to a scenario in the original design space
that would have required 45 high-fidelity points to achieve a similar sampling density.
The upper bound of 98% reflects the cost savings compared to a scenario using only
647 high-fidelity simulations. Without these techniques, significantly more high-fidelity
simulations would have been required to adequately explore the original high-dimensional
space, demonstrating the computational efficiency provided by this approach.

The results presented in this paper demonstrate the practical benefits of integrating
machine learning into hydrodynamic shape optimization, offering a path toward more
efficient and streamlined optimization processes. Beyond the computational savings, this
approach introduces a new methodology for tackling high-dimensional optimization prob-
lems, which are common in engineering design. By reducing the reliance on high-fidelity
simulations and accelerating the design process, the proposed framework offers a practical
and scalable solution for optimizing ship hydrodynamics. These advances are not only
relevant to naval applications but could also be extended to other fields such as aerospace
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and automotive engineering, where the optimization of complex geometries plays a central
role. Moreover, the framework aligns with the growing need for sustainable engineering
solutions by reducing computational resources and enabling faster design iterations, which
are critical for minimizing time-to-market and improving overall performance.

Future work should explore the extension of these techniques to more complex de-
sign scenarios and further investigate the application of machine learning for uncertainty
quantification in naval design.
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Nomenclature

f Objective function
f̂ Multi-fidelity surrogate model approximation
ε̃ Inter-level error surrogate
d Discretized shape modification vector
g, g′ Original and deformed geometry
u Vector of original design variables
x Vector of reduced design variables
vk PME eigenvectors associated to u
zk PME eigenvectors associated to d
P PME data matrix
W̃ PME weights matrix
Z̃ PME eigenvectors matrix
M Number of original design variables
N Number of reduced design variables
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