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A B S T R A C T

The present work focuses on a non-local integro-differential model reproducing Cancer-on-chip experiments
where tumor cells, treated with chemotherapy drugs, secrete chemical signals stimulating the immune response.
The reliability of the model in reproducing the phenomenon of interest is investigated through a global
sensitivity analysis, rather than a local one, to have global information about the role of parameters, and
by examining potential non-linear effects in greater detail.
Focusing on a region in the parameter space, the effect of 13 model parameters on the in silico outcome is
investigated by considering 11 different target outputs, properly selected to monitor the spatial distribution
and the dynamics of immune cells along the period of observation. In order to cope with the large number
of model parameters to be investigated and the computational cost of each numerical simulation, a two-step
global sensitivity analysis is performed. First, the screening Morris method is applied to rank the effect of
the 13 model parameters on each target output and it emerges that all the output targets are mainly affected
by the same 6 parameters. The extended Fourier Amplitude Sensitivity Test (eFAST) method is then used to
quantify the role of these 6 parameters.
As a result, the proposed analysis highlights the feasibility of the considered space of parameters, and indicates
that the most relevant parameters are those related to the chemical field and cell-substrate adhesion. In turn, it
suggests how to possibly improve the model description as well as the calibration procedure, in order to better
capture the observed phenomena and, at the same time, reduce the complexity of the simulation algorithm.
On one hand, the model could be simplified by neglecting cell–cell alignment effects unless clear empirical
evidences of their importance emerge. On the other hand, the best way to increase the accuracy and reliability
of our model predictions would be to have experimental data/information to reduce the uncertainty of the
more relevant parameters.
1. Introduction

Mathematical modeling is a powerful asset to explore biological
phenomena and thus support advances, for instance, in medicine, biol-
ogy and biotechnology. Among the new technologies, an increasingly
important role is played by Organs-on-Chips (OoCs), see among oth-
ers [1–3]. OoCs are bio-engineered microfluidic chips designed to
simulate activities of an organ or an organ system, thanks to their par-
tition in different areas, called compartments, connected to each other
by micro-channels. Among OoC categories, Cancer-on-chips (CoCs)
are used to observe micro-environmental factors that influence tumor
cells in response to anticancer therapies [4–10]. In the last decades,
laboratory experiments based on these microfluidic devices generated
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an extensive collection of images and data. Some mathematical-based in
silico models have been then created to replicate these biological in vitro
experiments in order to gain more insights on cellular behaviors [11–
15].

In this context, the aspect of our interest is the dynamics of immune
cells (ICs) in response to chemical signals secreted by tumor cells (TCs),
accounting also for cell–cell and cell-substrate mechanical interactions.
With this aim in mind, the first in silico model developed by one of the
authors on CoC experiments is [16], where a mathematical model based
on reaction–diffusion equations with chemotaxis inspired by Keller–
Segel model [17] was proposed. Such a model describes cell death
processes, effects of chemoattractants, interactions, and competition
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between different cell species. In [18] techniques for estimating param-
eters in the model [16] have been proposed. A discrete-in-continuous
hybrid approach has also been formulated by the same author as a
PDE reaction–diffusion partial model for the evolution of the chemicals,
coupled with an ODE particle model for cell motion, see [19,20].
Well-posedness and asymptotic behavior of solutions for this class of
hybrid coupled system have been studied in [21–23]. Recently, the
mean-field limit of a general class of deterministic hybrid macro–micro
models was proposed in [24]. Successively, an agent-based model for
the chip environment dynamics based on cellular automata approach
was developed and the related sensitivity analysis of model parameters
was carried out in [25,26], respectively.

Despite the significant efforts in literature, an accurate model to
escribe the immune response in tumor microenvironment is still a
hallenge. One of the main aspects to face is the calibration of model
arameters, since they may be difficult to measure with precision, or
ven impossible to estimate in vitro. This may happen either due to
echnical issues or when model parameters do not represent measurable
hysical quantities. It is further worth mentioning that mathematical
odels implementing complex biological phenomena with intercon-
ected processes, possibly occurring at different time and spatial scales,
ay depend on a large number of parameters.

In this context, a proper sensitivity analysis (SA) of the mathemat-
cal model is crucial. It indeed evaluates the impact of variations in
he parameter values on the model predictions, and possibly highlights
ow different model components interplay [27,28]. SA thus provides
nsights about the accuracy of the model and the considered parameter

settings in reproducing the phenomenon of interest, stating therefore
both the robustness of the model and the reliability of the model cali-
bration. Moreover, SA outcomes can be used to identify possible model
improvements or simplifications; drive the calibration of the model in
different scenarios; or even suggest experimental research priorities to
reduce model uncertainty. In this perspective, the sensitivity analysis
should be part of the modelling process [29].

In this respect, in several of the above-cited works by Bretti et al. on
oCs [18,20,25], the proposed mathematical models have been coher-
ntly provided by sensitivity analysis to shed light on the role of the

parameters on in silico outcomes. However, they have always performed
a so-called local sensitivity analysis, i.e., they have investigated the effect
of small perturbations in the parameter values one at a time around
a fixed (nominal) setting. Although easy to use and demanding lim-
ited computational resources, local sensitivity analysis methods have
important limitations [30,31]. Being based on the assumption of inde-
endence between the model parameters, and the limited perturbation
f parameter values, they may lead to heavily biased results in the case
f nonlinear models. In addition, the importance of parameters will
e underestimated in the case of interactions between model param-

eters, i.e. if the effect of a parameter depends on the value of others
parameters and thus the parameter effects are not additive. A different
and more challenging approach is the so-called global sensitivity analysis
(GSA) [27,28,32]. On one hand, methods of GSA are based on the full
exploration of a given, even large or infinite, region of the space of
parameters, by means of proper sampling methods. On the other hand,
the effect of variations in each model parameter on the outcome is
regarded globally, i.e. averaged over variations of the other parameters.
In addition, GSA methods are able to deal with nonlinear effects and
ighlight interactions between the model parameters. In turn, GSA
ethods allow us to rank model parameters from the most to the least

globally affecting the evolution of the system, thereby pointing out the
ain factors/processes.

In this regard, in the present work we perform GSA of a slight vari-
ation on recent non-local integro-differential models proposed in [19,
20]. Our aim is to gain a more complete overview of the potentials and
ritical issues of this modelling framework in capturing the biological
OC experiments by Vacchelli et al. [7]. In particular, among their

experiments, we here focus on those performed with tumor cells that,
2 
having been treated with a chemotherapy drug, undergo apoptosis by
secreting chemical signals stimulating the response of immune cells.
rom a mathematical point of view, in [19,20], cells are described as

discrete point-wise entities, while a continuous approach is adopted
for the chemical signal. The latter evolves according to a reaction–
diffusion equation provided by a non-local source term related to the
position of TCs. For simplicity, the apoptotic cells are here assumed
static. The dynamics of ICs are conversely given by a second-order
ifferential equation including non-local terms implementing cell–cell
nd cell-chemical interactions. In the present work, inspired by [33], a

Cucker and Smale-like alignment term [34] is included in the equation
for ICs dynamics, as in [20].

The GSA is here applied to investigate the role of 13 model pa-
rameters, i.e. all those involved in the equations for either the ICs
r the chemical field apart from cell radii whose values are taken

from [35,36]. In order to study how these 13 parameters affect ICs
dynamics, our GSA is performed by focusing on a representative sce-
nario designed to mimic the experiments in [7], avoiding excessively
high computational costs. According to [19,20], the spatial domain
reproduces a small portion of the CoC device monitored in [7] and
proper boundary conditions for the chemical field reproduce chemical-
secreting TCs placed outside the domain. For simplicity, a randomly
enerated spatial distribution of the TCs inside the domain and an ICs
nflow consistent with data in [7] are fixed equal for all the simulations.

The range of values of the 13 model parameters investigated in our GSA
re defined on the basis of the pertinent biological and mathematical
iterature. The choice and the characterization of the outputs to be
nvestigated are crucial to perform a useful sensitivity analysis of a
odel. In this particular case, IC paths cannot be fully determined

y a small number of output values. For this reason, the temporal
volution of ICs distribution and dynamics are described through 11
istinct scalar measures, calculated over 3 disjoint sub-intervals of the
eriod of observation. Some of these measures have been inspired by
he statistical paper by Agliari et al. [37].

The GSA is here carried out in two-step in order to cope with
the large number of model parameters selected, the non-linearity of
the model, and the computational cost of each numerical simulation.
First, we apply the Elementary Effects method by Morris [38], in the
improved version proposed by Campolongo et al. [39]. It belongs to the
lass of screening methods, i.e., designs conceived to efficiently treat non-
inear models with tens or hundreds of parameters that return a rank

of the input factors in order of importance (qualitative information),
but do not quantify the effect of each parameter nor differentiate
among them [27]. The ranks obtained for each output quantity, over
each sub-interval, are compared by computing the Spearman’s rank
correlation coefficient. Interestingly, this allows us to extract a group
f 6 parameters mainly responsible for the variability of all the out-
ut quantities and investigate them with a more accurate, although
ore expensive in terms of required number of model realizations,
SA method. Specifically, we apply the variance-based method eFAST

Extended Fourier Amplitude Sensitivity Test) [40–44], which esti-
mates, by means of spectral analysis, the so-called Sobol sensitivity
indices/measures denoting the fraction of the output variance due
to each model parameter singularly (first order/main effects) or in
combination with other parameters (total effects).

As detailed in the following sections, the first step of our analysis
highlights that (i) the considered region in the 13-dimensional param-
eter space results in reliable in silico scenarios; and (ii) that both cell
dynamics and spatial distribution are mainly affected by parameters
regulating either the evolution of the chemical field, cell chemotactic
sensing/motion or their adhesion to the substrate. The second step of
our analysis conversely quantifies how the 6 most relevant parameters
affect the variance of the outcome quantities capturing different aspects
of system evolution (e.g. cell mean speed, cell clustering around tumor
cells and so on) as time goes by. In turn, these additional information

identify the parameters, and related processes, included into the model
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(i.e. chemotaxis, adhesion to the substrate, chemical sensing) that are
ainly responsible for the variability of system behavior over time.

n particular, it emerges that (i) all the monitored output quantities
re strongly affected by the chemical secretion rate and the diffusion
oefficient, while (ii) the decay rate has substantially negligible effects;
iii) cell substrate adhesion and chemical sensing have an important
ffect mainly on the initial evolution of cell distribution and mean
peed. On one hand, this approach therefore allows to validate the

proposed model in combination with the considered region of space
parameter. On the other hand, it suggests which parameter/processes
mainly require careful calibration.

It is finally worth clarifying that a two-step sensitivity approach
based on the application of the Morris method followed by the estima-
tion of the Sobol indices of the most important parameters is not new in
literature. For instance, it is nowadays a consolidated practice in agron-
my, to analyze complex crop models (see, among others [45–51]). On
he other hand, as far as we know, there are few works in literature

where GSA methods have been used to investigate the behavior of
mathematical models for spatial cell dynamics (see, for instance, [52,
53] for ABM models) or for other relevant biological phenomena (see
e.g. [54,55]). Regardless of cell dynamics, an example of application of
GSA methods is found in [56] where Sobol’s sensitivity indices are used
to identify non-influential parameters that can be fixed to reduce the
complexity of an ordinary differential equation model reproducing the
immune response to an S. aureus infection in mice. However, we have
not found works where the Morris method coupled with a variance-
based method has been applied to study mathematical models for
spatial cell dynamics or, more specifically, non-local integro-differential
models coupling continuous and discrete descriptions.

The rest of the manuscript is organized as follows. Section 2 is
devoted to summarize preliminary knowledge at the basis of our work
nd to define our two-step GSA approach. In detail, Section 2.1 in-

troduces the biological experiments inspiring the model in [19]. The
athematical model here analyzed is described in Section 2.2, while
etails on the applied numerical scheme are reported in Appendix A.

In Section 2.3 the case study and the parameter space to investigate
re introduced. Then, the output quantities used to characterize the

system dynamics are defined. The main aspects of the standard GSA
methods of Morris and eFAST, as well as our strategy to use them, are
delineated in Section 2.4 and in Appendix B. Section 3 is devoted to the
presentation of obtained results. First, in Section 3.1 a representative
numerical simulation, performed with a fixed parameter setting, is
described to help readers not familiar with the model to interpret the
forthcoming sensitivity analysis. The SA performed with the subsequent
application of the Morris and the eFAST methods are presented in
ections Section 3.2 and then discussed in Section 3.3. Conclusions and
uture perspectives of the work are highlighted in Section 4.

2. Materials and methods

2.1. The cancer-on-chip biological experiment

Biological phenomena inspiring the present work are described
in [7,10], where detailed laboratory settings of in vitro experiments
erformed on CoC are reported. The immune-oncology chip designed
or the experiments presents a complex geometry sketched in Fig. 1.

It is composed of cylindrical wells containing, separately, cell cultures
f TCs (red circles) or ICs (black circles). These wells are connected
y culture chambers (white areas) and microchannels (striped gray
reas). Microchannels, having a width and length of 12 μm and 500 μm,
espectively, allow both the flow of the chemical and the migration

of cells between the chambers. Biologists observed that this type of
configuration is able to reproduce quite realistically the physiochemical
environment and the mechanical stresses acting on the living cells in-
side it. It is worth noting that we reported the schematic representation

of the chip for the sake of completeness. However, video recordings of

3 
Fig. 1. Microfluidic chip environment. Schematic representation of the microfluidic
chip architecture.

the laboratory experiments only focus on the monitored area depicted
in blue in Fig. 1.

In particular, among the experimental settings proposed in [7], we
ocus on the case where TCs, having been treated with a chemotherapy
rug, are dying and secrete a chemical signal that acts as an attractant
or wild-type ICs. Being apoptotic, TCs are quasi-static, and thus, in ad-
ition to the cells placed in the TC wells, experimentalists also planted
ome cancer cells in the TCs chamber in adherence to the glass slide.
he immune population consists of peripheral blood mononuclear cells
PBMCs), i.e. any peripheral blood cell having a round nucleus. It is a
eterogeneous population including different cell species: monocytes,
endritic cells, and 𝑇 and B lymphocytes. However, a classification
f the experimental data with respect to the different IC types in the
BMC population is not provided. Note that PBMCs measure on average

about 8–10 μm of diameter [36], while TCs measure about 20 μm in
diameter [35].

The laboratory experiments in [7] last 48–72 h, and video frames
re acquired at a constant rate of 2 min. In detail, the area monitored
uring the laboratory experiments is a portion of the entire chip (see

Fig. 1) consisting of a rectangular area of size 1362 μm × 1702 μm,
hich includes part of the TC chamber and the central one, with the
icrochannels connecting them.

2.2. The mathematical model

The mathematical model derived from [19], which we will analyze
in the next section, is here reported. This model gathers the advantages
of both microscopic and macroscopic descriptions: cells are treated as
discrete entities, whereas the concentration of the chemoattractant is

odeled as a continuum, and with our approach we aim at describing
short-range interactions between TCs and ICs. It is worth noting that
the experiment in [7] involves 2D culture of immune cells in the liquid
with TCs adherent to the glass slide and mainly static, while ICs are
floating. The video footage of the experiment is recorded on a small
ortion of the chip and at fixed height, thus registering the dynamics of
Cs traveling towards TCs that are in adhesion with the slide. For these
easons, the third spatial dimension in our framework is neglected since
 2D mathematical model it is well-suited to describe the bidimensional
rajectories of ICs towards TCs observed in video recordings.

System evolution is then described on a bidimensional domain 𝛺
enoting either a portion or the entire complex geometry of the chip. In
articular, according to [19], we hereafter focus on a square region of

size 600 μm × 600 μm in the TCs chamber, see the blue area in the Panel
A of Fig. 2. This allows a detailed analysis of short-range interactions
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Fig. 2. Panel A: Schematic representation of the chip area monitored in the experiments by Vacchelli et al. [7]. The green square area is the computational domain considered
in the present work. For the sensitivity analysis, the domain is partitioned in 4 disjoint square areas: 𝛺𝑞 , with 𝑞 = 1, 2, 3, 4: i.e. 𝛺1 (North-West), 𝛺2 (North-East), 𝛺3 (South-West)
and 𝛺4 (South-East). The sides of the domain are denoted by 𝑁 (North), E (East), W (West), S (South). Panel B: Representation of cell morphologies and cell radii used to model
cell chemotaxis and cell–cell interactions.
and pattern formation in the chip environment. Furthermore, it reduces
the computational cost of numerical simulations.

Cells are described as point-wise particles characterized by their
positions: 𝐘𝑗 ∈ 𝛺 with 𝑗 = 1,… , 𝑁𝑇 for static treated TCs; and 𝐗𝑖(𝑡) ∈ 𝛺
with 𝑖 = 1,… , 𝑁(𝑡) for ICs. The number of ICs 𝑁(𝑡) actually present in
the domain varies in time due to a continuous inflow and outflow at
the boundary. Specifically, having in mind the experiments in [7], we
assume that ICs enter in the domain from the top side of the domain,
and definitively left the domain as soon as they reach the boundary.

The concentration of the chemical is represented through its spatial
distribution 𝜑 ∶  × 𝛺 ↦ R+, where  is the time interval [0, 𝑇 ], with
𝑇 > 0, denoting the period of observation. The temporal evolution of
the system is then given by

𝜕𝑡𝜑 = 𝐷 𝛥𝜑
⏟⏟⏟
diffusion

+ 𝜉 𝐹𝑆 (𝐘)
⏟⏟⏟
production

− 𝜂 𝜑
⏟⏟⏟

decay

in 𝛺 (1)

�̈�𝑖 = −𝜁 �̇�𝑖
⏟⏟⏟

substrate
adhesion

+ 𝛾 𝐅𝐶 (𝐗𝑖, 𝜑)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

chemotaxis

+𝐅𝑇 (𝐗𝑖,𝐘)
⏟⏞⏞⏟⏞⏞⏟

IC-TC
interactions

+ 𝐅𝐼 (𝐗)
⏟⏟⏟

IC-IC
interactions

+ 𝛽 𝐅𝐴(𝐗, �̇�)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

alignment

for 𝑖 = 1,… , 𝑁(𝑡)

(2)

where the vectors 𝐗 ∶= [𝐗1,… ,𝐗𝑁(𝑡)] and 𝐘 ∶= [𝐘1,… ,𝐘𝑁𝑇
] denote

the positions of ICs and TCs respectively; 𝐷 , 𝜉 , 𝜂 , 𝜁 , 𝛾 , 𝛽 are positive
constants; and 𝐹𝑆 , 𝐅𝐶 , 𝐅𝑇 , 𝐅𝐼 , 𝐅𝐴 are suitable functions defined below.
Specifically, in the reaction–diffusion equation (1), 𝐷 is the diffu-
sion coefficient; 𝜉 and 𝜂 are the default production and decay rate
of the chemical, respectively; while the function 𝐹𝑆 implements the
production of chemoattractant by TCs. In the second order differential
equation (2), 𝜁 is the damping coefficient due to cell adhesion to the
substrate. 𝐅𝐶 is the contribution in cell acceleration triggered by the
amount of chemoattractant sensed by the cell and 𝛾 is said coefficient
of chemotactic effect. 𝐅𝑇 and 𝐅𝐼 implement IC interactions with TCs
and ICs, respectively; while 𝐅𝐴 is related to IC mutual alignments and
𝛽 is the alignment coefficient. Hereafter we report the functional forms
of 𝐹𝑆 , 𝐅𝐶 , 𝐅𝑇 , 𝐅𝐼 , and 𝐅𝐴.

Chemoattractant secretion 𝐹𝑆 . In Eq. (1), 𝐹𝑆 implements the chemoat-
tractant substance constantly secreted by TCs through their membrane.
It is thus defined as

𝐹𝑆 (𝐘) =
𝑁𝑇
∑

𝑗=1
𝑓(𝐘𝑗 ,𝑅𝑇 )(𝐱), (3)

where 𝑅𝑇 is the radius of a TC (see Panel B in Fig. 2), (𝐲, 𝑟) denotes the
bidimensional ball with radius 𝑟 centered at 𝐲, and 𝑓 is the identity
function of the set .
4 
Chemotactic response 𝐅𝐶 . In Eq. (2), the chemotactic contribution 𝐅𝐶
depends on the chemoattractant sensed by the 𝑖−th IC in its neighbor-
hood. It is thus computed as a weighted average of the gradient ∇𝜑
over a ball centered at 𝐗𝑖 whose radius 𝑅𝐶 denotes the extension of
cell sensing extracellular molecules (see again Panel B in Fig. 2). Similar
non-local chemotaxis terms have been already proposed in literature,
see [57] for a review and references therein. Specifically, 𝐅𝐶 is assumed
as

𝐅𝐶 (𝐗𝑖, 𝜑) = 1
 ∫(𝐗𝑖 ,𝑅𝐶 )

𝑤𝑖(𝒙)𝜒(𝜑) ∇𝜑(𝒙, 𝑡) 𝑑𝐱, (4)

where the function 𝑤𝑖 ∶ R2 ↦ R+ is a truncated Gaussian weight func-
tion implementing the distribution of chemical receptors. It is defined
as 𝑤𝑖(𝒙) = 2(1−‖𝒙−𝐗𝑖‖∕𝑅𝐶 )2 when 𝐱 ∈ (𝐗𝑖, 𝑅𝐶 ) and null otherwise, so
that the value of  ∶= ∫(𝐗𝑖 ,𝑅𝐶 )

𝑤𝑖(𝒙)𝑑𝐱 is independent on 𝑖. It only
depends on the value of 𝑅𝐶 . Conversely, the function 𝜒 ∶ R+ ↦ R+,
also known as receptor saturation function, imposes a limitation on the
maximum chemoattractant local amount, hence reducing cell migration
in high concentration areas. According to [58], it is given by

𝜒(𝜑) = 𝑘1
(𝑘2 + 𝜑)2

, (5)

where 𝑘1 represents the cellular drift velocity, while 𝑘2 is the receptor
dissociation constant indicating how many molecules are necessary to
bind the receptors.

IC-TC interactions 𝐅𝑇 . The function 𝐅𝑇 in Eq. (2) implements a re-
pulsion effect affecting the dynamics of the 𝑖th IC whereas it collides
with some TCs, i.e. as the distance between their centers is less than
𝑅p,𝑇 ∶= 𝑅𝐼 + 𝑅𝑇 (see Panel B in Fig. 2). Assuming that the resulting
repulsion term is due to the superposition of pairwise isotropic metric
interactions, 𝐅𝑇 is defined as

𝐅𝑇 (𝐗𝑖,𝐘) = −𝜔rep,𝑇
∑

𝑗 ∶𝐘𝑗∈
(

𝐗𝑖 ,𝑅rep,𝑇
)

(

1
‖𝐘𝑗 − 𝐗𝑖‖

− 1
𝑅rep,𝑇

) 𝐘𝑗 − 𝐗𝑖

‖𝐘𝑗 − 𝐗𝑖‖
,

(6)
where 𝜔rep,𝑇 is said repulsion coefficient.

IC-IC interactions 𝐅𝐼 . The function 𝐅𝐼 in Eq. (2) includes attraction–
repulsion effects between ICs. In particular, repulsion occurs if the
distance between the centers of two ICs is less than 𝑅rep,𝐼 ∶= 2𝑅𝐼
(see Panel B in Fig. 2). Conversely, attraction, implementing adhesive
interaction between cells via filopodia, occurs if the mutual distance is
between 𝑅rep,𝐼 and 𝑅adh,𝐼 > 𝑅rep,𝐼 (see Panel B in Fig. 2). Assuming
again the superposition of pairwise isotropic metric interactions, 𝐅
𝐼
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writes

𝐅𝐼 (𝐗) =
𝑁(𝑡)
∑

𝑗=1
𝑗≠𝑖

(‖𝐗𝑗 − 𝐗𝑖‖)
𝐗𝑗 − 𝐗𝑖

‖𝐗𝑗 − 𝐗𝑖‖
, (7)

where, given positive constants 𝜔rep,𝐼 (repulsion coefficient) and 𝜔adh,𝐼
(adhesion coefficient), the function  is assumed as

(𝑟) =
⎧

⎪

⎨

⎪

⎩

− 𝜔rep,𝐼

(

1
𝑟
− 1

𝑅rep,𝐼

)

, if 𝑟 ≤ 𝑅rep,𝐼 ,

𝜔adh,𝐼
(

𝑟 − 𝑅rep,𝐼
)

, if 𝑅rep,𝐼 < 𝑟 ≤ 𝑅adh,𝐼 .
(8)

Note that for both IC-TC interactions in Eq. (6) and IC-IC interac-
tions in Eq. (7), repulsive kernels are assumed to go as 1∕𝑟, as proposed
in literature for cell–cell interactions for instance in [33,59].

Alignment 𝐅𝐴. In Eq. (2), the function 𝐅𝐴 implementing cell alignment
is defined as a Cucker and Smale-like flocking term [34]:

𝐅𝐴(𝐗, �̇�) = 1
𝑁𝐴(𝑡)

∑

𝑗 ∶ 𝑗≠𝑖
𝐗𝑗∈(𝐗𝑖 ,𝑅rep,𝐼 )

(

1 + ‖𝐗𝑗 − 𝐗𝑖‖
2

𝑅2
rep,𝐼

)− 1
2 (

�̇�𝑗 − �̇�𝑖
)

, (9)

where 𝑅rep,𝐼 has been chosen as a suitable radius of influence based
n [33], and 𝑁𝐴(𝑡) ∶= card{𝑗 = 1,… , 𝑁(𝑡) ∶ 𝑗 ≠ 𝑖, 𝐗𝑗 (𝑡) ∈

(𝐗𝑖, 𝑅rep,𝐼 )} is the number of ICs close enough to the 𝑖th cell to
llow alignment effects. We remark that the alignment term was first
ntroduced in [34] for birds and applied to morphogenesis in the setting

of conditional flocking, see [33]. In [20], this term has been added for
he first time to the model proposed in [19] in order to better mimic the

IC flocking movements observed in cancer-on-chip experiments and it
s explored in depth in through different scenarios showing the effect of

the alignment term coupled with the other effects, such as chemotaxis
and adhesion–repulsion terms.

The initial condition is given by the position and velocity of ICs
at the initial time 𝑡 = 0 h, i.e. 𝐗(0) = 𝐗0 and �̇�(0) = 𝐕0; together
with the distribution of the TCs 𝐘 and the initial concentration of the
chemoattractant 𝜑(𝒙, 0) = 𝜑0(𝒙).

As already anticipated, in order to reproduce the experiments de-
scribed in Section 2.1, an influx of ICs over time is required. For
implicity, given the inflow rate 1∕𝜏, at every instant time 𝑡′ equal to a
ultiple of 𝜏, a new IC is added to the system by increasing by one the

mount of 𝑁(𝑡′); selecting a position 𝐗𝑁(𝑡′)(𝑡′) over the top boundary
of the domain; and defining an inward directed velocity. On the other
and, since the boundary of the domain does not represent a physical
arrier, ICs are always allowed to trespass it and leave the domain. For
implicity, we assume that once they leave the domain, they will not

re-enter. In mathematical terms, if the 𝑖th IC enters the domain at time
instant 𝑡in and moves inside 𝛺 until 𝑡out, when it reaches the boundary,
i.e., 𝐗𝑖(𝑡) ∈ 𝛺 for any 𝑡 ∈ [𝑡in, 𝑡out) and 𝐗𝑖(𝑡out) ∈ 𝜕 𝛺, then we state that
𝐗𝑖(𝑡) ∉ 𝛺 for any 𝑡 > 𝑡out.

Due to the peculiarity of the chosen computational domain 𝛺,
we further assign a non-homogeneous Robin boundary condition to
reproduce the flow of the chemoattractant through the boundary:

𝐷
𝜕 𝜑
𝜕𝐧

+ 𝑎𝜑 = 𝑏, on 𝜕 𝛺 , (10)

where 𝑎 is the local rate of exchange of the chemoattractant with
he external environment, and 𝑏 is the outflow of the chemical. In
articular, labeling the four sides of 𝛺 by 𝑆 (South), 𝐸 (East), 𝑁
North), 𝑊 (West) (see Panel B in Fig. 2), the values assumed by 𝑎 and 𝑏
ver them are respectively denoted as 𝑎𝑆 , 𝑎𝐸 , 𝑎𝑁 , 𝑎𝑊 and 𝑏𝑆 , 𝑏𝐸 , 𝑏𝑁 , 𝑏𝑊 .

2.3. Case study and definition of the observable quantities

Case study and parameter space. Our sensitivity analysis is performed
by focusing on a representative numerical setting, denoted hereafter
s a case study, designed on the domain 𝛺 by fixing the period of
bservation , the initial condition, the inflow of ICs, and the Robin
5 
boundary conditions, to reproduce the experiments in [7] described in
Section 2.1.

Specifically, the period of observation is fixed to  = [0, 24] h
nd it represents the interval of time [24, 48] h in the experiment.
ndeed, this is the period presenting the more interesting dynamics,
ith ICs migrating towards the tumor chamber in the left compartment.
he initial condition for the chemoattractant is 𝜑0(𝒙) = 0 mol μm−2

or any 𝒙 ∈ 𝛺. A fixed number of TCs, given by 𝑁𝑇 = 35, are
andomly distributed in 𝛺 while no ICs are initially located within the
omain, i.e. 𝑁(0) = 0. The influx of ICs has been defined based on a
ualitative observation of the video footage of laboratory experiments
eported in [7], by focusing on the monitored area corresponding to

the computational domain and FPR1 CC cells, as well as the related
statistics reported in [4]. Specifically, ICs are assumed to progressively
enter the domain from the top side of the domain over the period of
time [0, 15] h, corresponding to the period [24, 39] h, with an inflow
ate of about 1 cell every 𝜏 = 6 min resulting into a total amount of
50 ICs. The positions over the boundary domain where the cells enter
he domain will be randomly selected only once and fixed for all the
orthcoming simulations. The velocity of the entering cells is always
ssumed downward directed with modulus equal to 0.03 μm s−1, i.e. the
ean value reported in [4].

Following preliminary results in [19], the Robin boundary condi-
ions in Eq. (10) are set with a uniform rate of exchange over the
ntire boundary, i.e. 𝑎𝑁 = 𝑎𝐸 = 𝑎𝑁 = 𝑎𝑊 = 105 μm s−1, and different

flux intensities on each side of 𝛺, i.e. 𝑏𝑆 = 2.2 mol μm−1s−1, 𝑏𝐸 =
1.2 mol μm−1s−1, 𝑏𝑁 = 0 mol μm−1s−1, 𝑏𝑊 = 1.8 mol μm−1s−1. In fact,
these values qualitatively well capture the experimentally observed
hemical distributions, which, in reality, are affected also by the TCs
laced outside the domain, i.e. in the rest of the TCs chamber and,
ainly, in the bottom TCs wells.

Remark. The effect of Robin boundary conditions in Eq. (10) on the
verall dynamics is strong, as shown in [19,20] and in the Supplemen-

tary Material S1. Indeed, such boundary conditions involving the values
of parameters 𝑎 and 𝑏, regulate the inflow/outflow of chemicals in the
bserved domain. Note that the numerical values here imposed allow us
o qualitatively reproduce the ICs dynamics observed in experimental

movies, but they do not correspond to reality. For the mentioned
reasons, here we keep them fixed in order to not affect the results of
the sensitivity analysis.

Concerning the space of parameter to investigate, it is first worth
oticing that the cell radii 𝑅𝑇 and 𝑅𝐼 can be easily measured in vitro.
𝑇 and 𝑅𝐼 are therefore hereafter fixed to 10 μm and 4 μm, respectively,
ccounting for the experimental measurements reported in Section 2.1.

In turn, 𝑅rep,𝑇 and 𝑅rep,𝐼 are consistently defined equal to 14 μm and
8 μm, respectively. Our sensitivity analysis therefore deal with the 13
model parameters listed in Table 1. Notice that this will highlight the
ole of the different features of the mathematical model. In fact, we

have: coefficients regulating the evolution of the chemical signal, i.e. 𝐷,
𝜉, 𝜂; the damping coefficient due to cell adhesion to the substrate 𝜁 ;
parameters characterizing ICs sensing of the chemical signal, i.e. 𝛾, 𝑅𝐶 ,
𝑘1, 𝑘2; and parameters linked to cell–cell interactions, i.e. 𝜔rep,𝑇 , 𝜔rep,𝐼 ,

adh,𝐼 , 𝑅adh,𝐼 , 𝛽. Specifically, taking into account either estimates in
literature and preliminary numerical simulations in [19], qualitatively
reproducing phenomena observed experimentally, model parameters
are assumed independent and uniformly distributed over the ranges
reported in Table 1.

Output quantities. A crucial point in performing a useful sensitivity
analysis is the choice of the output quantities to be considered. In
our case, on one hand, it is hard to characterize with a single scalar

easure the ICs dynamics arising from Eqs. (1)–(2). On the other hand,
s highlighted for instance by the several statistics reported in [4,37],

there are many relevant readouts and features of CoC biological ex-
periments to be considered: e.g. the clusterization of ICs around TCs,
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Table 1
Model parameters investigated in the GSA. For each parameter, we report a short description; the unit of measurements; a
range of values where the parameters are considered uniformly distributed used in our sensitivity analysis; a nominal value
used for the simulation in Section 3.1; references used to estimate the used values. In the last column ‘[–]’ means that the
values have been estimated through preliminary numerical simulations.
Par. Description Units Range Value Ref.

𝐷 Diffusion coefficient of the chemical μm2s−1 [1.5 ⋅ 102 , 1.5 ⋅ 103] 900 [60]
𝜉 Default production rate of the chemical μm−2 mol s−1 [5 ⋅ 10−7 , 10−5] 1.6 ⋅ 10−6 [–]
𝜂 Decay rate of the chemical s−1 [10−5 , 10−3] 10−4 [61]
𝜁 Damping coefficient (IC-substrate adhesion) s−1 [10−3 , 5 ⋅ 10−3] 2.1 ⋅ 10−3 [–]
𝛾 Coefficient of chemotactic effect μm−1 [5, 102] 2 ⋅ 10 [–]
𝑅𝐶 Detection radius of chemicals μm [5, 15] 7 [–]
𝑘1 Cellular drift velocity mol s−1 [10−9 , 10−8] 3.9 ⋅ 10−9 [60]
𝑘2 Receptor dissociation constant mol μm−2 [10−14 , 10−13] 5 ⋅ 10−14 [60]
𝜔rep,𝑇 Repulsion coefficient between ICs and TCs μm2s−2 [10−3 , 10−2] 8.5 ⋅ 10−3 [–]
𝜔rep,𝐼 Repulsion coefficient between ICs μm2s−2 [10−4 , 10−3] 5 ⋅ 10−4 [–]
𝜔adh,𝐼 Adhesion coefficient between ICs s−2 [10−8 , 10−6] 10−7 [–]
𝑅adh,𝐼 Radius of action of adhesion between ICs μm [9, 11] 10 [–]
𝛽 Alignment coefficient s−1 [5 ⋅ 10−2 , 5] 10−1 [33]
b
𝐗
b
t
t

the spatial distribution of ICs, as well as their speed and direction
of motion. In fact, from a biological point of view, the experimental
evaluation of these statistics may support the identification of how
possible manipulations of the scenario affect ICs dynamics. In this per-
spective, our sensitivity analysis deals with multiple model outcomes
(defined below) to highlight how the model parameters affect the
spatial distribution, the speed, and the direction of motion of ICs, in
the considered case study. In order to look at the temporal evolution of
the system, the observation period  is divided into three sub-intervals
ℎ = [𝑡ℎ−1, 𝑡ℎ], with ℎ = 1, 2, 3, with the same length. The symbol ⟨⋅⟩ℎ
then introduced to denote the time average of the quantity }} ⋅ ε over
the time interval ℎ, i.e,

⟨⋅⟩ℎ ∶= 1
(𝑡ℎ − 𝑡ℎ−1) ∫ℎ

⋅ 𝑑 𝑡. (11)

The decision to divide the observation period into three intervals is
based on preliminary studies of the experiment and numerical simula-
tions of cell dynamics, which highlighted three distinct cell behaviors
over time. During the first time interval 1 = [0, 8] h the few ICs present
in the domain are usually located in the top part of the domain. During
2 = [8, 16] h there still are ICs entering the domain and, depending on
the cases, the other ICs might either still move downwards following
the chemical field, cluster around a TC or leave the domain. During
3 = [8, 16] h no more cells are entering the domain, and enough time
has passed to observe the ICs’ final ‘destiny’, i.e. whether they leave
the domain or cluster around an encountered TC. These three time
intervals therefore allow to monitor possible variations in time of both
ICs dynamics and detect the role of the model parameters.

To monitor the spatial distribution of the ICs, the domain 𝛺 is
artitioned into 4 square disjoint subdomains 𝛺𝑞 , with 𝑞 = 1, 2, 3, 4,
.e. 𝛺1 (North-West), 𝛺2 (North-East), 𝛺3 (South-West) and 𝛺4 (South-
ast), as depicted in Panel A in Fig. 2. The spatial distribution of ICs

during each time interval ℎ with ℎ = 1, 2, 3, is then characterized by
he following quantities.

⟨𝑁⟩ℎ: the average number of ICs in the domain 𝛺 during the time
period ℎ, i.e. ⟨𝑁⟩ℎ ∶= ⟨𝑁(𝑡)⟩ℎ, being 𝑁(𝑡) the number of ICs
inside the domain at the instant of time 𝑡.

⟨𝑁𝑞⟩ℎ: the average number of ICs located in the portion of the domain
𝛺𝑞 , 𝑞 = 1,… , 4 during the period of time ℎ, i.e. ⟨𝑁𝑞⟩ℎ ∶=
⟨𝑁𝑞(𝑡)⟩ℎ being 𝑁𝑞(𝑡) the number of ICs such that 𝐗𝑖(𝑡) ∈ 𝛺𝑞 at
the instant of time 𝑡.

𝑝out(𝑡ℎ): the fraction of ICs that have left the domain 𝛺 before the
instant of time 𝑡ℎ. Specifically, it is defined as

𝑝 (𝑡 ) ∶= 𝑁out(𝑡ℎ) , (12)
out ℎ 𝑁in(𝑡ℎ)

6 
where 𝑁in(𝑡) and 𝑁out(𝑡) are the number of ICs that respectively
entered or exited from the domain 𝛺 over the period [𝑡0, 𝑡].
Notice that if 𝑁in(𝑡ℎ) = 0 then obviously also 𝑁out(𝑡ℎ) nullifies,
and it is then consistent to set 𝑝out(𝑡ℎ) = 0.

𝑝cl(𝑡ℎ): the fraction of ICs clustered around a TC at the instant time 𝑡ℎ,
i.e.

𝑝cl(𝑡ℎ) ∶=
𝑁cl(𝑡ℎ)
𝑁(𝑡ℎ)

, (13)
where 𝑁cl is the number of ICs sufficiently close to a TC to be
considered clusterized. Specifically, we assume

𝑁cl(𝑡) ∶= card
{

𝑖 = 1,… , 𝑁(𝑡) ∶ min
𝑗=1,…,𝑁𝑇

‖𝐗𝑖(𝑡) − 𝐘𝑗 (𝑡)‖ ≤ 𝑅cl

}

,

(14)
where 𝑅cl is set equal to 𝑅𝑇 + 3𝑅𝐼 . This value of 𝑅cl allows to
detect clusters constituted by at most two layers of ICs around
a TC. Also in this case, if the denominator 𝑁(𝑡ℎ) nullifies, then
also as also 𝑁cl(𝑡ℎ) = 0, and it is thus consistent to set 𝑝cl(𝑡ℎ) = 0.

Notice that the computation of the quantities 𝑝out and 𝑝cl is quite
expensive. Hence, they are not calculated as means on ℎ, but only at
the final instants of each time interval.

Concerning instead the dynamics of ICs, we hereafter distinguish
etween cell speed and direction of motion by writing IC velocities as
̇
𝑖(𝑡) = 𝑣𝑖(𝑡) (cos 𝜃𝑖(𝑡), sin 𝜃𝑖(𝑡)), where 𝑣𝑖 ∶= ‖�̇�𝑖‖, while 𝜃𝑖 is the angle
etween �̇�𝑖 and the direction 𝐧 = (0,−1) towards the bottom side 𝑆 of
he domain. Cell dynamics at each time interval ℎ with ℎ = 1, 2, 3, is
hus described by the following quantities.

⟨𝑣⟩ℎ: the time average over the time interval ℎ of the mean speed 𝑣(𝑡)
of the ICs located in the domain 𝛺 at 𝑡, i.e.

𝑣(𝑡) ∶= 1
𝑁(𝑡)

𝑁(𝑡)
∑

𝑖=1
𝑣𝑖(𝑡). (15)

⟨𝑣std⟩ℎ: the time average over the interval time ℎ of the standard
deviation 𝑣std(𝑡) of the speed located in the domain 𝛺 at 𝑡,
i.e. 𝑣ℎstd ∶= ⟨𝑣std(𝑡)⟩ℎ with

𝑣std(𝑡) ∶=
√

√

√

√

𝑁(𝑡)
∑

𝑖=1

(

𝑣𝑖(𝑡) − 𝑣(𝑡)
)2

𝑁(𝑡)
. (16)

ℎ
𝐧 : the correlation between cell direction of motion and the fixed

direction 𝐧. Specifically, it is defined as

ℎ
𝐧 = 1

𝑁(𝑡)

𝑁(𝑡)
∑

𝑖=1
⟨cos(𝜃𝑖(𝑡))⟩ℎ. (17)
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ℎ
𝐶 : the correlation between the direction of motion of ICs and the

gradient of the chemical cue sensed by cells. Denoting by 𝜙(𝐱)
the angle between the gradient of the chemical field ∇𝜑 at 𝐱 ∈ 𝛺
and the direction 𝐧, we define

ℎ
𝐶 ∶= 1

𝑁(𝑡)

𝑁(𝑡)
∑

𝑖=1
⟨cos(𝜙(𝐗𝑖(𝑡)) − 𝜃𝑖(𝑡))⟩ℎ. (18)

Notice that if ℎ
𝐶 ≈ 1 indicates that all individuals move accord-

ing to the chemical cue over the entire period ℎ.

2.4. Our GSA approach

Accounting for a large number of model parameters, the non-
inearity of the model, and the considerable computational cost of a
ingle in silico realization (see Appendix A for further details about the

numerical scheme), the GSA is performed in two successive steps. First,
he improved method of Morris is used to screen the model parameters
nd rank them according to their importance in affecting the model
utcome. Then the more computational expensive eFAST method is
sed to quantify the effect of only the few most important parameters
etected by the Morris method.

The improved Morris method. The screening method of the Elementary
Effects defined by Morris in [38], as well as its improved version
proposed by Campolongo et al. [39], are suited to efficiently treat
eterministic models with a large number 𝑑 of model parameters
utually independent, and/or fairly expensive to simulate. In [38], the

oncept of elementary effect associated with the 𝑘th model parameter on
 scalar target output 𝑄 is defined as

EE𝑘(𝐳) ∶=
𝑄(𝐳 + 𝛥𝐞𝑘) −𝑄(𝐳)

𝛥
(19)

where 𝐳 is a point in the region of interest  of the 𝑑-dimensional
parameters space; 𝐞𝑘 are the standard basis vectors in R𝑑 ; and 𝛥 is
such that (𝐳 + 𝛥𝐞𝑘) ∈ . The basic idea of the Morris method is to
characterize the distribution of EE𝑘, by randomly sampling different 𝐳
from , (see Appendix B or [39] for further details), and then use the
mean 𝜇𝑘 and the standard deviation 𝜎𝑘 of the sampled EE𝑘 as sensitivity
measures. However, as stated in [39], using the mean of the absolute
value of EE𝑘, said 𝜇∗

𝑘 rather than 𝜇𝑘, avoids possible cancellation effects
introduced by negative values. Specifically, 𝜇∗

𝑘 is an indicator of the
overall influence of the 𝑘th parameter on the output, thus providing the
ranking of model parameters by importance. Conversely, 𝜎𝑘 highlights
if the 𝑘th parameter has non-linear effects or interacts with other
parameters. An effective way to visualize the qualitative information
provided by the extended Morris method is to display model parameters
in the 𝜇∗

𝑘 − 𝜎𝑘 plane. This allows to identify three classes of model
parameters, as stated in [27,28,38,39]: negligible ones (low 𝜇∗

𝑘 and
𝑘, i.e. 𝜇∗

𝑘 , 𝜎𝑘 ≈ 0); important parameters with large linear effects
and no interactions (large 𝜇∗

𝑘 and small 𝜎𝑘, i.e. 𝜇∗
𝑘 > 𝜎); important

parameters with non-linear and/or interaction effects (large 𝜇∗
𝑘 and

large 𝜎𝑘, i.e. 𝜇∗
𝑘 ≤ 𝜎). In practice, negligible parameters appear in the

bottom left part of the 𝜇∗
𝑘 − 𝜎𝑘 plane while important parameters are

distributed on their right. In addition, important parameters located
largely below the 45-degree line has purely linear effects without and
o interactions, while those close or above the 45-degree line are
ffected by non-linear effects and/or interactions.

The eFAST method. The eFAST method is a variance-based GSA method,
.e. an approach suitable to study non-linear models, and based on
he ANOVA-like decomposition of the target output variance [40–44].

Denoting by {𝑍𝑘}𝑘=1,…,𝑑 , the 𝑑 model parameters, if they are mutually
independent, the variance of the output 𝑄 can be decomposed into
contributions related to either the single parameters or combinations
of them, i.e.

Var(𝑄) =
∑

𝑘=1,…,𝑑
𝐷𝑘(𝑄) +

∑

𝑘,𝑖=1,…,𝑑

𝐷𝑘𝑖(𝑄) + ... +𝐷12...𝑑 (𝑄), (20)
𝑘<𝑖

7 
where 𝐷𝑘(𝑄) ∶= Var[E(𝑄|𝑍𝑘)]; while 𝐷𝑘𝑖(𝑄) ∶= Var[E(𝑄|𝑍𝑘, 𝑍𝑖)] −
𝑘(𝑄) − 𝐷𝑖(𝑄) and so on. Then, the eFAST method returns, for each
th model parameter, the Sobol’ sensitivity indices [62] defined as

𝑆𝑘(𝑄) = 𝐷𝑘(𝑄)
Var(𝑄)

, 𝑆𝑇
𝑘 (𝑄) = 𝑆𝑘(𝑄) + ∑

𝑖=1,…,𝑑
𝑖<𝑗

𝐷𝑘𝑖(𝑄)
Var(𝑄)

+ ... +
𝐷12...𝑑 (𝑄)
Var(𝑄)

=
∑

𝑔∈#𝑘

𝐷𝑔 (𝑄)
Var(𝑄)

,

(21)

where #𝑘 denotes all the possible combinations from {1,… , 𝑑} contain-
ng 𝑘. In Eq. (21), the first-order indices 𝑆𝑘(𝑄) quantify the fraction of

the output variance due to changes in the 𝑘th model parameter only,
and are thereby also called main effects indices [43,44]. Conversely, the
o-called total effects 𝑆𝑇

𝑘 (𝑄), introduced in [41], assess the impact of
parameter 𝑘 including all possible interactions with the other factors. It
follows that the difference 𝑆𝑇

𝑘 −𝑆𝑘 represents the fraction of the output
variance due to interactions involving the 𝑘th parameter. Practical cri-
teria to interpret these quantities are provided in [63]: (i) the threshold
0.01 discriminates between negligible effects/parameters (affecting less
than 1% of the output variance) and relevant once; (ii) Sobol indices
above 0.1 identify the key parameters influencing more than the 10%
of Var(𝑄).

The general idea at the basis of the eFAST method for computing
irst-order and total-effect indices is reported in Appendix B. Refer

to [40] and references therein for a detailed description.

Two-step GSA. For each one of the output quantities introduced in
Section 2.3, the improved Morris method is first used to rank the
3 parameters in Table 1 according to their importance. Specifically,
he sampling method by Campolongo et al. [39] has been used and

allows us to identify 280 points in the 13-dimensional parameter space
(see Appendix B for further details about the Morris sampling). Each
one of these points identifies a parameter setting used to compute, by
numerically solving the model, the values of our 11 output quantities
over the 3 distinct time intervals, as detailed in Section 2.3. All these
alues are then used to estimate the elementary effects of the 13
odel parameters on each output quantity 𝑄. The relative sensitivity
easure 𝜇∗

𝑘, defined in [39] and recalled above, identifies for each
output quantity 𝑄 a parameters’ ranking of the 13 model parameter
by importance (i.e. by decreasing values of 𝜇∗

𝑘).
The resulting rankings are then compared two-by-two by using the

pearman’s Rank correlation coefficient to measure their degree of
similarity. High values of this coefficient,denoting by definition a strong
similarity, in fact indicate that the two compared output quantities are
mainly affected by the same model parameters. It therefore follows
hat, if all the Spearman’s Rank correlation coefficients are sufficiently
igh, it is possible to identify a single group of relevant parameters
ostly determinant for all the considered model outputs. Otherwise, it

could be necessary to consider different groups of relevant parameters
to study in the second step of our analysis or find other strategies.
Interestingly, as detailed in the next section, in our case, all the model
outputs of our interest are mainly affected by the same 6 parameters.

The eFAST method is then applied to investigate a smaller space of
parameters, obtained by fixing the parameters denoted as negligible by
the Morris method, equal to an arbitrary value in the range used for
the screening. The sampling method in [40] here results in a sampling
of 3000 points in the 6-dimensional parameter space (see Appendix B).

Notice that, despite the eFAST method has been here used to
investigate only 6 parameters, it requires approximately one order of
magnitude more than the Morris method to screen 13 parameters. Such
a different computational cost is intrinsically linked to the sampling
approach at the basis of each method, specifically designed to provide
either qualitative (Morris) or quantitative (eFAST) information about
the role of the model parameters. This underlines the computational
usefulness of coupling these two methods, instead of applying eFAST
to all the 13 model parameters.
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Fig. 3. Representative model realization. Eqs. (1)–(2) are solved by considering the case study scenario in Section 2.3, by fixing the 13 investigated model parameters equal to
the nominal parameters values in Table 1. The concentration of the chemoattractant 𝜑, with units mol, is plotted with 2D contour lines. Red dots represent the static 35 TCs
randomly distributed in the domain. Black dots denote the present positions of the moving ICs, and the black arrows their direction of motion. In Panel A, the names of the
subdomains 𝛺𝑙 , with 𝑙 = 1,… , 4 are reported.
Both Morris and Sobol analysis have been performed by using the
SALIB Python library [64,65].

3. Results

3.1. Representative numerical realization of the case study

This section is devoted to a representative numerical realization
of the model shown in Fig. 3, that has been obtained by considering
the case study scenario introduced in Section 2.3 (see, for instance,
the video footage of laboratory experiments Movie S13 and Movie
S14 in the Supplementary Material of [7]). The 13 investigated model
parameters are here fixed equal to the nominal values in Table 1,
within the ranges considered for the sensitivity analysis. The aim of
this simulation is to help readers not familiar with the model to better
appreciate the forthcoming sensitivity analysis.

As specified in Section 2.3, at the initial time instant 𝑡 = 0 h, there
are no ICs inside the domain, 𝑁𝑇 = 35 TCs are randomly distributed as
shown in Panel A (red dots), and the chemoattractant field is 𝜑0(𝒙) =
0 mol μm−2 for any 𝒙 ∈ 𝛺. Due to the presence in the reaction–diffusion
equation (1) of the non-local source term 𝐹𝑆 defined in Eq. (3), a
certain amount of chemical is progressively generated around the TCs
since the first time instant. At the same time, the chemoattractant
rapidly spreads across the domain driven by the diffusion and decay
terms in Eq. (1), in addition to the Robin conditions in Eq. (10), with
the values defined in Table 1 and Section 2.3, respectively. A feasible
chemical field consistent with experimental evidence in [7], see Panel
A in Fig. 3, is thus obtained before the first ICs enter the domain at
𝑡 = 𝜏(= 6 min). Specifically, the emerged chemical field is characterized
by higher concentrations at the bottom left of the domain by mimicking
the presence of chemical secreting TCs outside 𝛺, especially the large
number of them located in the bottom well, see Fig. 1. Such a chemical
pattern then drives first ICs entered in the domain, to move downwards
to possibly approach the TCs, see Panel B in Fig. 3. As time goes by,
see Panels C–D in Fig. 3, the chemical field gradually becomes more
homogeneous due to the diffusion and decay terms, in addition to
the boundary conditions defined above. Notice that ICs are coherently
mainly attracted towards the densest groups of TCs. However, during
the evolution of the system, some ICs reach the boundary and leave the
domain. The resulting reduction in the downward chemical gradient
is consistent with IC dynamics observed in [7]. Meanwhile, the ICs
continue to mostly move downwards following the chemical field, by
possibly temporarily clustering around the encountered TCs.
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3.2. Two-step global sensitivity analysis

3.2.1. First step: Morris sensitivity analysis
First, as described in Section 2.4, the improved Morris method is

applied to investigate the hypercube in the space of parameters defined
by the ranges in Table 1. Figs. 4–5 show the values of the output
quantities resulted by solving the model with each one of the 280
sampled parameter settings. It is remarkable that all the obtained values
are consistent with the experimental observations in [4,7,37]. This
confirms the feasibility of the space of parameters we are considering
and support our SA.

Referring to Panel A in Fig. 4, the ranges covered by IC speeds in the
three time intervals are in fact in accordance with the values reported
in Fig. 4 of [4]. All together Panels A–D in Fig. 4 show that, during the
first time interval 1, ICs dynamics is always characterized by a faster
motion directed towards the bottom side of the domain. Instead, during
2 and 3, both the mean and the standard deviation of their speed
decrease, and the directions of motion of ICs are more distributed, as
shown by the polar histograms in Panel C and D. This can be explained
by the fact that at time 2 and 3 ICs reach their targets and have
local interactions in all the directions. In addition, Panels E–F in Fig. 4
indicate that ICs over 1 mainly move towards the bottom side of the
domain following the chemotactic field, as 1

𝐧 and 1
𝐶 are both mostly

close to 1. Then, the alignment of ICs direction of motion to 𝐧 and to
the chemotactic field slightly decreases.

These first results suggest a system behavior similar to those ob-
served in the reference simulation in Section 3.1 is captured for all
the sampled parameter setting. In the first period 1, ICs dynamics are
mainly driven by the chemical field, which is characterized by a higher
difference in its concentration between the top and the bottom part of
the domain, where the concentration is higher, see Panels A–B in Fig. 3.
As time goes by, the chemoattractant diffuses inside and outside the
domain reducing the spatial differences in its concentration, see Panels
C–D in Fig. 3, while ICs have either left the domain or have approached
the TCs so that cell–cell interactions enter into play. This explains why
both the mean and the standard deviation of ICs speed decrease, while
the directions of motion of ICs are more sparse.

These considerations are also supported by Panels G–H in Fig. 4.
Panel G in Fig. 4 shows that the fraction of cells that reach the TCs
and cluster around them slightly increases in time. Indeed, as time
goes by, ICs entered in the domain progressively move downwards so
that a higher portion of cells falls close to the TCs. In addition, Panel
H in Fig. 4 shows that the portion of ICs that have left the domain
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Fig. 4. Dynamics of ICs in the model realizations considered for the Morris analysis. Each panel shows the values of an output quantity obtained over all the 280 parameter
settings constituting the Morris sampling. In all panels, data referring to three time intervals 1 = [0, 8] h, 2 = [8, 16] h, and 3 = [16, 24] h are respectively represented in green,
yellow, and red. Panel A: ⟨𝑣⟩ℎ vs. ⟨𝑣std⟩ℎ, see Eqs. (15)–(16). Circle markers denote the values obtained with the parameter settings identified by the Morris sampling. Square
markers refer to the representative simulation in Section 3.1. Panels B–C–D: Absolute frequency of the angles 𝜃𝑖 denoting the direction of motion of ICs over 1 (B), 2 (C), and
3 (D). Panel E: Distributions of the correlation between cell direction of motion and the fixed direction 𝐧, i.e. ℎ

𝐧 in Eq. (17). Panel F: Distributions of the correlation between
cell direction of motion and the gradient of the chemical field, i.e. ℎ

𝐶 in Eq. (18). Panel G: Distributions of the fraction of ICs clustered around a TC at 𝑡ℎ, i.e. 𝑝cl(𝑡ℎ) in Eq. (13).
Panel H: Distributions of the fraction of ICs that have left the domain at 𝑡ℎ, i.e. 𝑝out(𝑡ℎ) in Eq. (12). In Panels E–H, x-axis and y-axis denote the values assumed by the considered
quantity and relative frequencies, respectively; and dashed lines represents the values observed in Section 3.1.

Fig. 5. Number and distribution of ICs in the model realizations considered for the Morris analysis. Each panel shows the values of an output quantity obtained over all the
280 parameter settings constituting the Morris sampling. Panel A: Number of ICs in the domain ⟨𝑁⟩ℎ. Panel B–E: Number of ICs in the subdomains, i.e. in the North-West ⟨𝑁1⟩ℎ
(B); North-East ⟨𝑁2⟩ℎ (C); South-West ⟨𝑁3⟩ℎ (D); and South-East ⟨𝑁4⟩ℎ (E). In all panels, data referring three time intervals 1 = [0, 8] h, 2 = [8, 16] h, and 3 = [16, 24] h are
respectively represented in green, yellow and red; x-axis and y-axis denote the values assumed by the considered quantity and relative frequencies, respectively; and dashed lines
represents the values observed in the representative simulation in Section 3.1.
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Fig. 6. Distribution of the model parameters in the plane 𝜇∗∕𝜇∗
max − 𝜎∕𝜎max, according to the Morris sensitivity measures relative to the observables ⟨𝑁⟩ℎ with ℎ = 1, 2, 3, given in

Section 2.3, i.e. the mean amount of ICs in the domain over the time intervals 1 = [0, 8] h (A), 2 = [8, 16] h (B), and 3 = [16, 24] h (C).
before 𝑡1, 𝑡2, and 𝑡3, is substantially the same. This suggests that 𝑝out
is independent on where the ICs are mainly located (i.e., in the top or
bottom part of the domain) confirming that cells are allowed to trespass
the boundary with no limitations.

Fig. 5 provides information about the mean number and the spatial
distribution of the ICs coherent with the above considerations. Panel
A of Fig. 5 shows that over 1, in most cases, roughly 25–30 ICs are
present inside the domain with slight changes among the different
simulations. During 2 and 3, a greater and greater variability in the
average number of ICs inside the domain is observed. This is due to the
fact that, as time goes by, the Robin condition, mimicking the presence
of other TCs outside 𝛺, may attract some of, sometimes all, the ICs
outside of the domain. Concerning instead the spatial distribution of
the ICs in the domain portions 𝛺𝑞 , with 𝑞 = 1,… , 4, Panels B–C in
Fig. 5 show that the time evolution of both ⟨𝑁1⟩ℎ and ⟨𝑁2⟩ℎ, i.e. the
mean number of ICs in the upper parts of the domain, are qualitatively
similar to that observed over the entire domain, i.e. in Panel A of Fig. 5.
Conversely, Panels D–E in Fig. 5 highlight that only in a few cases all
the ICs reach the bottom part of the domain, indicating that they mainly
cluster around the TCs in 𝛺1 and 𝛺2, or leave the domain.

Once stated that the considered hypercube in the space of parameter
results in admissible system outcomes, i.e. consistent with the scenarios
observed in the experiments by Vacchelli et al. in [7], it is reasonable
to analyze the Morris sensitivity measures. As recalled in Section 2.4,
for each output quantity, the improved Morris method returns two
sensitivity measures 𝜇∗

𝑘 and 𝜎𝑘 for each model parameter 𝑘 = 1,… , 13,
i.e. the mean of the absolute value and the standard deviation of
their elementary effects. Recalling that these quantities provide only
qualitative information about the role of the model parameters, in
Fig. 6 and in Figs. S1–S4 of the Supplementary Material, the Morris
measures 𝜇∗

𝑘 and 𝜎𝑘 are scaled by the values 𝜇∗
max ∶= max

𝑘
(𝜇∗

𝑘) and
𝜎max ∶= max

𝑘
(𝜎𝑘), respectively.

The plots in Fig. 6 show that, despite small differences in their
order, the parameters mostly affecting the mean number of ICs in the
domain, over all the three time intervals, are 𝐷, 𝜉, 𝜂, 𝜁 , 𝛾, 𝑘1, while the
effect of the other model parameters results negligible. As a remark,
the first three parameters are the diffusion coefficient 𝐷, the growth
rate 𝜉, and the consumption rate 𝜂 defining the evolution equation (1)
for the chemical signal released by TCs. The latter are instead related
to the dynamics of ICs. The damping coefficient 𝜁 and the coefficient
of chemotactic effect 𝛾 appear in the evolution equation (2). The drift
velocity 𝑘1 is involved in the receptor saturation function 𝜒(𝜑) defined
in Eq. (5) and included in Eq. (4) to implement cell chemical sensing.

Interestingly, a similar result emerges also from the plots in Figs. S1–
S4 in the Supplementary Material for the other output quantities,
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i.e. ⟨𝑣⟩ℎ and ⟨𝑣std⟩ℎ (see Suppl. Fig. S1), ⟨𝑁𝑞⟩ℎ (see Suppl. Fig. S2),
𝑝out(𝑡ℎ) and 𝑝cl(𝑡ℎ) (see Suppl. Fig. S3), ℎ

𝐧 and ℎ
𝐶 (see Suppl. Fig.

S4). The consistency among the rankings resulted from the Morris
method by assuming the ranges of parameters in Table 1, is evaluated
through the Spearman rank correlation coefficients between any pair of
output quantities. All these coefficients are higher than 0.8 and thereby
allow us to neglect small differences among the rankings and state that
variations in all the outcomes of our interests are mainly regulated by
the same 6 parameters. In other words, both the spatial distribution and
the dynamics of ICs are thus mainly affected by the evolution of the
chemical signal, dictated by 𝐷, 𝜉, and 𝜂; cell sensing of and reactivity
to the chemoattractant, i.e. 𝑘1 and 𝛾; and cell adhesion to the substrate,
i.e. 𝜁 ,.

Lastly, notice that in all panels in Fig. 6 and in Figs. S1–S4 in the
Supplementary Material, the most influential parameters are mainly
distributed along the bisector of the plane. This suggests that there are
important non-linear and/or interaction effects, consistently with the
non-linearity of the analyzed model.

3.2.2. Second step: eFAST sensitivity analysis
Following the approach stated in Section 2.4, the second step of

our sensitivity analysis consists in focusing on the non-negligible model
parameters detected by the Morris method, by applying the eFAST
method. Having identified a small group of 6 relevant parameters
mostly responsible for the variability of all the output quantities of our
interest, the space of parameter to investigate here is defined by the
ranges of values of 𝐷, 𝜉, 𝜂, 𝜁 , 𝛾, 𝑘1 in Table 1. The other 7 negligible
parameters can be instead equivalently fixed equal to any value in their
ranges. In particular, we here set them as in the reference simulation in
Section 3.1, i.e. equal to the nominal value in Table 1. For each output
quantity, the eFAST method estimates the Sobol sensitivity indices 𝑆𝑘
and 𝑆𝑇

𝑘 of the 6 model parameters, i.e. the main and total effects
defined in Eq. (21). These are displayed in bar charts in Figs. 7–8.
Specifically, in order to highlight possible effects due to model non-
linearity and parameter interactions, for each time interval, the main
effect 𝑆𝑘 of each model parameter is plotted alongside the total effect
bar 𝑆𝑇

𝑘 , see again Eq. (21). In all panels, two dotted lines denote
the thresholds 0.01 (black) and 0.1 (red) defined in [63] to identify
non-influential and key parameters, affecting less than 1% or more
than 10% of the variance, respectively, see Section 2.4 and references
therein.

Panel A in Fig. 7 first highlights that the variance of the number
of ICs within the domain 𝛺 is mainly due to the source rate of the
chemical 𝜉 and the diffusion coefficient 𝐷, over the whole observation
period. Having fixed the inflow of ICs, this means that the mean number
of ICs remaining in the domain mainly depends on the strength of the
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Fig. 7. eFAST-estimated Sobol sensitivity indices in Eq. (21) of the output quantities ⟨𝑁⟩ℎ (A), 𝑝out(𝑡ℎ) (B), ⟨𝑁1⟩ℎ (C), ⟨𝑁2⟩ℎ (D), ⟨𝑁3⟩ℎ (E), and ⟨𝑁4⟩ℎ (F), with ℎ = 1, 2, 3, given
in Section 2.3. In all panels, filled bars represent the main effects 𝑆𝑘 while transparent bars denote the total effects 𝑆𝑇

𝑘 . Data referring to the three interval times 1, 2, and 3
are respectively displayed in green, yellow, and red.
gradient of the chemical and how fast it spreads over the domain. In
fact, the same results are obtained for the fraction of ICs 𝑝out(𝑡ℎ) that
have left the domain, see Panel B in Fig. 7. In both cases, the decay rate
𝜂 of the chemical always has negligible effects. Notice that it happens
for almost all the output quantities, see Figs. 7–8.

Focusing instead on each portion 𝛺𝑞 , with 𝑞 = 1,… , 4, of the
domain, see Panels C–F in Fig. 7, the eFAST analysis reveals that,
apart from 𝜂, all the other five relevant model parameters have a
key role on the variance of ⟨𝑁𝑞⟩ℎ, in terms of either main or total
effects. In particular, differences among the Sobol indices values shown
in Panels C–F of Fig. 7 suggest that the number and distribution of
TCs characterizing each 𝛺𝑞 (see Panel A in Fig. 3), as well as their
distance from the source of ICs have an important role on the local
cell dynamics. Comparing Panels C–F with Panel A, it also emerges
that parameters 𝜁 , 𝛾, and 𝑘1, involved in Eq. (2) for ICs dynamics,
have more important effects on the variance of ⟨𝑁𝑞⟩ℎ, i.e. the local
distribution of ICs, rather than on ⟨𝑁⟩ℎ, i.e. the mean number of ICs
within the entire domain. In addition, notice that in Panels C–F of Fig. 7
both the main and the total effects of 𝜁 , 𝛾 and 𝑘1 on ⟨𝑁𝑞⟩ℎ decrease in
time, while those of 𝜉 and 𝐷 increase and become the most relevant
parameters over the last time interval 3 (see red bars). It is further
remarkable that non linear/interaction effects have a higher influence
on the mean amount of ICs in the bottom of the domain, i.e. ⟨𝑁3⟩ℎ
and ⟨𝑁4⟩ℎ (see Panels E–F), rather than the mean amount of ICs in
the top of the domain, i.e. ⟨𝑁1⟩ℎ and ⟨𝑁2⟩ℎ (see Panels C–D). Such a
difference, can be related to the fact that regions 𝛺3 and 𝛺4 are more
distant from the inflow ICs boundary. For instance, according to the
considered parameter setting, it may happen that a very small portion
or even none of the entered ICs reach the bottom part of the domain.
The analysis of different ICs influx conditions may seed light on this
aspect, however this is out of the purpose of the present work.
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Concerning instead the observables introduced to monitor cell dy-
namics, due to the strong connection between cell displacement and
speed, the time evolution of the main effects 𝑆𝑘 observed in Fig. 7
appears also for the mean speed of ICs ⟨𝑣⟩ℎ, see Panel A in Fig. 8.
Over the first time interval 1, 𝛾, 𝑘1 and 𝜁 have key main effects on
the mean speeds (see green filled bars). As time goes by, these main
effects lose importance, until during the last time interval 3, 𝜉 and
𝐷 have the more relevant main effects on ⟨𝑣⟩ℎ (see red filled bars).
However, all the considered model parameters, apart from 𝜂, always
have relevant total effects (see the transparent bars). In fact, the model
non-linearity here results in important discrepancies between the total
𝑆𝑇
𝑘 and main effects 𝑆𝑘 affecting the mean ICs speed, which moreover

considerably increase in time. Notice that these variations in time of
the main and interaction effects lead to a remarkable increase in time
of the total effects 𝑆𝑇

𝑘 of the model parameters 𝜉 and 𝐷, denoting that
the influence of the underling chemical field on cell speed considerably
changes in time. At the beginning, 𝜉 appears among the key parameters
since the outgoing flux (i.e. the fixed Robin’s boundary conditions) can
generate a strong downward chemical gradient provided that the source
coefficient 𝜉 is sufficiently high. As time goes by, the value of 𝜉 and 𝐷
become more crucial with respect to the others, as the evolution of the
chemical gradient is dictated by how fast the chemical is released and
spreads over all of the domain. In addition, the damping coefficient
𝜁 always appears among the key parameters regulating the mean cell
speed. This is coherent both from a mathematical point of view, as it is
the damping coefficient in Eq. (2), and from a biological point of view,
since a higher/lower cell-adhesion to the homogeneous substrate have
a constant in time effect on cell speed.

Concerning instead the standard deviation ⟨𝑣std⟩ℎ of ICs speed, see
Panel B of Fig. 8, notice that also in this case the main effects of 𝜁 , 𝛾
and 𝑘 decrease in time while 𝜉 and 𝐷 increase. Moreover, there is a
1
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Fig. 8. eFAST-estimated Sobol sensitivity indices in Eq. (21) of the output quantities ⟨𝑣⟩ℎ in Eq. (15) (A), ⟨𝑣st d⟩ℎ in Eq. (16) (B), ℎ
𝐧 in Eq. (17) (C), ℎ

𝐶 in Eq. (18) (D), and 𝑝cl(𝑡ℎ)
in Eq. (13) (E), with ℎ = 1, 2, 3. In all panels, filled bars represent the main effects 𝑆𝑘 while transparent bars denote the total effects 𝑆𝑇

𝑘 . Data referring to the three interval times
1, 2, and 3 are respectively displayed in green, yellow, and red.
remarkable increase in the total effect of 𝜉 and 𝐷. Interestingly, all the
relevant parameters have a higher total effect on ⟨𝑣std⟩ℎ rather than on
⟨𝑣⟩ℎ, i.e. variations in the model parameters affect more the mean cell
behavior than discrepancies among the individual behaviors.

Dealing with ICs direction of motion, Panels C–D in Fig. 8 show the
effects of model parameters on ℎ

𝐧 and ℎ
𝐶 . On one hand, in Panel C,

ℎ
𝐧 , i.e. cell motion alignment to the downward direction 𝐧, is always

strongly affected by all the parameters (apart from 𝜂) with important
contributions due to the non-linearity of the model and interactions
among the parameters. Indeed, cell trajectories are quite tortuous since
they result from the interplay between the influence of the chemical
field pattern and cell–cell interactions. In Panel D, also the alignment
of cell motion to the gradient of the chemoattractant mainly depends
on the values of 𝜉, 𝛾 and 𝑘1, 𝐷 and 𝜁 , i.e. all parameters apart form
𝜂. However, in this case, important differences among total and main
effects appears only for 𝜉 and 𝐷 regulating the chemical field evolution.
These aspects are consistent and confirm the previous considerations
about the relation between cell dynamics and chemical field.

Lastly, Panel E in Fig. 8 shows that 𝑝cl(𝑡ℎ), i.e. cell clustering around
TCs is mainly regulated by the rate of chemical secretion 𝜉, the diffusion
coefficient 𝐷 and the coefficients 𝛾 and 𝑘1 in the chemotactic term.
In other words, this is coherently mainly related by the evolution of
the chemoattractant field and cell ability to locally detect the chemical
gradient.

3.3. Discussion

Summing up, our study first indicates that the proposed model,
by assuming parameter values within the ranges in Table 1, results
in feasible scenarios qualitatively in accordance with the experimental
results reported in [4,7].
12 
The improved Morris method then highlights that among the in-
vestigated 13 parameters listed in Table 1 only 6 of them are mainly
responsible for the variability in both spatial distribution and dynamics
of the ICs: the chemoattractant diffusion coefficient 𝐷; the chemical
source and decay rates 𝜉 and 𝜂; the chemotactic coefficient 𝛾; the
drift velocity 𝑘1; and the damping coefficient 𝜁 . Notice that parameters
related to cell–cell interactions thus result negligible with respect to
the influence of the chemical field and the substrate adhesion. Indeed,
consistently in CoC experiments in [7], ICs do not move compactly
but rather individually explore the domain by only accidentally and
temporarily interacting with the other cells, as shown in Fig. 3. From
a modeling point of view, the lack of parameters related to the cell–
cell alignment among the most influential ones denotes that this term,
at least as it is, is not fundamental in reproducing CoC experiments.
This suggests that the model could be simplified by removing this term
unless specific empirical observations strongly justify its presence and
possibly guide its re-calibration.

Focusing on the 6 non-negligible parameters, the eFAST method
further states that: (i) the secretion rate 𝜉 and the diffusion coefficient
𝐷 of the chemoattractant strongly affect all the monitored output
quantities (more than 10% of their variances over all the period or at
least over 2 and 3); (ii) the decay rate 𝜂 results substantially always
negligible; (iii) cell adhesion to the substrate 𝜁 and cell sensitivity to the
chemical, i.e. 𝛾 and 𝑘1, have constant relevant effects on the standard
deviation of cell speed and cell directions of motion, while they strongly
affect only the initial evolution of cell distribution and mean speed,
i.e. only over 1; lastly (iv) the coefficient 𝛾 is a key parameter also for
cell clustering.

In [25] a local sensitivity analysis on an agent-based CoC in-silico
model was performed by varying the parameters one factor-at-time
(OAT) in a range of ±20%. From the analysis carried out in [25], it
turns out that the model there proposed is most sensitive to a parameter
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regulating the threshold value of chemical density necessary to start
the migration of ICs towards the left chamber of the chip. Despite the
different approach with respect to the modeling here presented, the
tudy in [25] is substantially in accordance with our findings, since the
ost influential parameters result to be those linked to the chemical

radient.
However, due to the strong non-linearity of the model, it is not

possible to deeply understand and study the system behavior when
multiple parameters vary by changing one factor-at-time. In the present
work, since all parameters are varied simultaneously (some of them
in a wider range) and analyzed with GSA approach, we were able to
detect both nonlinear and interaction effects (total effects) in addition
to the individual role of the corresponding modeled phenomena. On
one hand, the results here obtained by GSA mostly confirm the insights
btained by local sensitivity analysis. As an example, we had the

confirmation that the alignment term changes very little the outcome
of the experiment (very low sensitivity) as it was hypothesized in the
previous work [20]. On the other hand, it is worth noting that here

e get conclusions that with simpler approach could not be deduced,
hanks to the observation of total effect of model parameters. See, for
xample, the extraordinary effect that 𝜉 and 𝜁 have on the velocities in
erms of total effect but not in terms of main effect, as shown in Fig. 8.

For instance, focusing on the damping parameter 𝜁 , we further
nvestigated system evolution in the case of an almost negligible inertia.
pecifically, considering the case study used in Section 3.2.1, the Morris

method has been performed assuming 𝜁 uniformly distributed within
he range [10−16, 2 ⋅10−16], while the other 12 parameters are uniformly
istributed within the ranges in Table 1. The obtained results show that
uring 1 and 2, the ICs move towards the bottom side of the domain
aster than in the control case so that in 3 almost all the ICs have

unrealistically left the domain. This suggests that, in order to reproduce
IC dynamics over a CoC by neglecting inertial terms, i.e., with a first-
rder ODE instead of Eq. (2), it is first necessary to properly revise the
alibration of all the other model parameters, for instance, by reducing
ell chemical sensing 𝜉 and reactivity 𝛾.

The Morris sensitivity measures can be used as indications about
hich parameters may be first considered in the re-calibration of the

model, being the most affecting ones. However, this approach requires
further investigations and analysis to be properly formalized.

Moreover, having observed in Fig. 7 that the distribution and num-
er of TCs have a relevant effect, a deep investigation of the role of
he initial condition is necessary. In this perspective, we have studied

whether and how TCs configuration influences the evolution of the
reference simulation in Section 3.1. Specifically, 1000 different model
realizations have been obtained by assuming the same settings used
n Section 3.1, apart from the number and distribution of TCs. These
ave been randomly generated for each model realization assuming
hat the number of TCs within each portion 𝛺𝑞 , with 𝑞 = 1,… , 4, of the
omain is uniformly distributed between 2 and 12. Interestingly, over
ll the three-time intervals, the obtained output quantities result more
ondensed around the values of the simulation reported in Section 3.1,

than in Figs. 4–5 resulting from the 280 realizations identified with
the Morris method. This suggests that the influence of the initial
distribution of TCs is somehow less impacting than the choice of the
model parameters.

4. Conclusions and future perspectives

The sensitivity analysis carried out in this work shows the effect
of almost all model parameters on the system behavior and highlights
that the model is able to describe the crucial role of tumor microen-
vironment on IC dynamics. To our knowledge, a GSA producing Sobol
indices identifying the role of parameters in CoC in silico realizations
represents an original contribution to the literature. We also believe
that a rigorous GSA including the initial distribution of TCs and/or the
13 
ICs inflow among the investigated parameters, requiring the identifica-
tion of a proper and sufficient samples, deserves to be investigated in
future works.

The indications provided by this type of analysis may drive a fine
tuning of the most influential parameters against available experimen-
tal data, in order to improve the in silico model in reproducing and
forecasting cell dynamics observed in CoC biological experiments. To
this aim, a large amount of information and data extracted from labora-
tory tests is necessary. A first attempt in this direction was made in [19]
where ICs velocity field was computed numerically and compared with
an interpolated synthetic dataset.

In order to get a higher adherence of the model to CoC biological
experiment it will be necessary to: (i) collect data from multiple realiza-
tions of the same biological experiment; (ii) extract more experimental
measures, such as:

• the localization of ICs in the microfluidic chip and in particular
around TCs across time in order to reconstruct the density in the
monitored domain;

• the identification of different cell species involved in the ICs
population;

• the death rate of TCs;
• the number of interactions between the two cell populations, in

order to evaluate the killing activity of ICs;
• the chemoattractant concentration in the microenvironment, pos-

sibly detected at different space and time points.

From a mathematical point of view, in order to set up a calibration
procedure against real data, it is recommended to extend the computa-
tional domain and avoid the artificial Robin condition used here for
numerical convenience. For instance, a multiscale model can be ob-
tained by combining our model with the macroscopic approach in [16],
in order to describe the overall dynamics in the entire CoC geometry
with a special focus on the tumor microenvironment represented by the
TC chamber. Having more specific data about chemical gradients will
allow us to set proper initial and boundary conditions, and possibly
consider space-dependent coefficients (e.g. for chemical diffusion or
cell-substrate adhesion). In addition, a further step to improve the in
ilico model of the CoC experiment is to include the death of TCs as
ither spontaneous (as a consequence of drug administration) and/or

induced by the activity of ICs.
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Appendix A. Numerical approximation of the model

We consider a square domain 𝛺 = [𝑥𝐿, 𝑥𝑅] × [𝑦𝐵 , 𝑦𝑇 ] with 𝑥𝐿 =
𝑦𝐵 = 0 μm and 𝑥𝑅 = 𝑦𝑇 = 600 μm, then it has horizontal and vertical
size 𝐿𝑥 = 𝐿𝑦 = 600 μm. The computational domain 𝛺 is depicted with
dotted blue line in Panel B of Fig. 1. We introduce a discretization on 𝐿𝑥
in 𝑁𝑥− 1 subintervals of length 𝛥𝑥 = 𝐿𝑥∕(𝑁𝑥− 1) and a discretization on
𝑦 in 𝑀𝑦 − 1 subintervals of length 𝛥𝑦 = 𝐿𝑦∕(𝑀𝑦 − 1). Time and spatial

teps are chosen, respectively, as 𝛥𝑡 = 10 s, i.e. representing 1∕12 of the
ideo footage timeframe (of 2 min) and 𝛥𝑥 = 𝛥𝑦 = 5 μm. A Cartesian
rid 𝛺𝛥 is created consisting of grid points (𝑥𝑛, 𝑦𝑚), where 𝑥𝑛 = 𝑥𝐿+𝑛𝛥𝑥,
or 𝑛 = 0,… , 𝑁𝑥 − 1 and 𝑦𝑚 = 𝑦𝐵 + 𝑚𝛥𝑦, for 𝑚 = 0,… , 𝑀𝑦 − 1, and
or the time interval [0, 𝑇 ], the 𝑘th temporal step 𝑡𝑘 is 𝑡𝑘 = 𝑘𝛥𝑡, for
= 0,… , 𝑁𝛥𝑡.

The simulations are performed over a number of frames equal to
640, corresponding to a final time 𝑇 = 86400 s (24 h) of observations.

Besides, since experimentally it was observed that ICs leave the
domain 𝛺, we added a ghost grid to 𝛺𝛥 in order to manage the entrance
nd exit of cells and avoid numerical instabilities. The ghost grid, where

the cells lie after having left the main domain, is defined as 𝛺𝛥∗ . The
extension of the numerical grid is obtained by discretizing the domain
[𝑥𝐿 − 𝐿𝑥∗ , 𝑥𝑅 + 𝐿𝑥∗ ] × [𝑦𝐵 − 𝐿𝑦∗ , 𝑦𝑇 + 𝐿𝑦∗ ] with the same discretization
step values 𝛥𝑥, 𝛥𝑦 already introduced for 𝛺𝛥. In our tests we assume
𝐿𝑥∗ = 𝐿𝑦∗ = 100 μm and the equations are solved on 𝛺𝛥∗ .

A.1. Discretization of the PDE in Eq. (1)

The parabolic Eq. (1) is composed of the diffusion term, the source
term, and the stiff degradation term −𝜂 𝜑. Then, the classical exponen-
tial transformation is applied: 𝜑(𝐱, 𝑡) = 𝑒−𝜂 𝑡𝑢(𝐱, 𝑡), which leads to the
diffusion equation with source for 𝑢(𝐱, 𝑡):

𝜕𝑡𝑢 = 𝐷 𝛥𝑢 + 𝑒𝜂 𝑡𝜉
𝑁𝑇
∑

𝑗=1
𝜒𝐁(𝐘𝑗 ,𝑅𝑇 ). (A.1)

For this equation we apply a central difference scheme in space, i.e. the
5-point stencil for the Laplacian, and the parabolic Crank–Nicolson
scheme in time.

Denoting with 𝑢𝑘𝑛,𝑚 the approximation of 𝑢 at the grid point (𝑥𝑛, 𝑦𝑚),
or any time instant 𝑡𝑘 the numerical scheme can be written as:

𝑢𝑘+1𝑛,𝑚 − 𝑢𝑘𝑛,𝑚
𝛥𝑡

= 𝐷
2

(

𝜕2𝑥𝑢
𝑘+1 + 𝜕2𝑦𝑢

𝑘+1
)

+ 𝐷
2

(

𝜕2𝑥𝑢
𝑘 + 𝜕2𝑦𝑢

𝑘
)

+ 1
2
𝑒𝜂(𝑘+1)𝛥𝑡𝜉

𝑁𝑇
∑

𝑗=1
𝜒𝐁(𝐘𝑘+1

𝑗 ,𝑅𝑇 )
+ 1

2
𝑒𝜂 𝑘𝛥𝑡𝜉

𝑁𝑇
∑

𝑗=1
𝜒𝐁(𝐘𝑘

𝑗 ,𝑅𝑇 )
,

where 𝜕2𝑥𝑢
𝑘 (and analogously 𝜕2𝑦𝑢

𝑘) is defined as the central difference:

𝜕2𝑥𝑢
𝑘 =

𝑢𝑘𝑛−1,𝑚 − 2𝑢𝑘𝑛,𝑚 + 𝑢𝑘𝑛+1,𝑚
𝛥𝑥2

.
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A.1.1. Boundary conditions
Using the exponential transformation above, the associated bound-

ry conditions rewrite as 𝐷 𝜕 𝑢
𝜕𝐧

+ 𝑎𝑢 = 𝑒𝜂 𝑡𝑏, that we rewrite as 𝜕 𝑢
𝜕𝐧

+ 𝑝𝑢 =

𝑞(𝑡), with 𝑝 = 𝑎
𝐷

and 𝑞(𝑡) = 𝑒𝜂 𝑡 𝑏
𝐷

eventually different on each side of
𝛺. For the discretization of the boundary conditions we use a central
finite difference scheme. At the bottom and top boundaries, i.e. 𝑦 = 𝑦𝐵
and 𝑦 = 𝑦𝑇 , we have:

𝜕𝑦𝑢
𝑘 + 𝑝𝑙𝑢

𝑘 − 𝑞𝑘𝑙 =
𝑢𝑘𝑛,𝑚+1 − 𝑢𝑘𝑛,𝑚−1

2𝛥𝑦
+ 𝑟𝑙𝑢

𝑘
𝑛,𝑚 − ℎ𝑙 , (A.2)

with 𝑙 = 𝑆 , 𝑁 , and we proceed analogously for the vertical conditions,
with the signs of 𝑟𝑙 and ℎ𝑙 depending on the incoming/outgoing flow.

A.2. Discretization of the ODE

As in [19], the equation of motion (2) is reduced to a first order
system with

�̇�𝑖 =
𝛾
 ∫𝐁(𝐗𝑖 ,𝐑0 )

𝜒(𝜑(𝐱, 𝑡))∇𝜑(𝐱, 𝑡)𝑤𝑖(𝐱)𝑑𝐱 +
∑

𝑗∶𝐘𝑗∈𝐁(𝐗𝑖 ,𝐑1 )∖{𝐗𝑖}
𝐾(𝐘𝑗 − 𝐗𝑖)

+
∑

𝑗∶𝐗𝑗∈𝐁(𝐗𝑖 ,𝐑4 )∖{𝐗𝑖}
𝐾(𝐗𝑗 − 𝐗𝑖) + 𝛽

𝑁𝑖

∑

𝑗∶𝐗𝑗∈𝐵(𝐗𝑖 ,𝑅3 )∖{𝐗𝑖}

(𝐕𝑗 − 𝐕𝑖)
(

1 + ‖𝐗𝑗−𝐗𝑖‖
2

𝑅2
3

)𝛼 − 𝜁𝐕𝑖,

(A.3)
̇
𝑖 = 𝐕𝑖, (A.4)

for 𝑖 = 1,… , 𝑁𝐼 . Eq. (A.3) is discretized with a one step IMEX
method, putting in implicit the term containing 𝐕𝑖 and in explicit the
other addends, and Eq. (A.4) is solved with forward Euler method.

he two-dimensional integral in Eq. (A.3) can be computed by a
2D quadrature formula, which due to the truncated Gaussian weight
unction 𝑤𝑖(𝐱) in Eq. (3), is reduced to a sum of the discretized in-

tegrand functions on the grid points belonging to the ball 𝐁(𝐗𝑖,𝐑0).
The two-dimensional integral in  in Eq. (3) is approximated by
̃ ∶=

∑

𝑛,𝑚 s.t.(𝑥𝑛 ,𝑥𝑚)∈𝐁(𝐗𝑘
𝑖 ,𝐑0)

(𝑤𝑖)
(𝑘)
𝑛,𝑚. The gradients of Eq. (A.3) are

approximated with first order differences

∇𝑛,𝑚𝜑𝑘 ≈
(𝜑𝑘

𝑛+1,𝑚 − 𝜑𝑘
𝑛,𝑚

𝛥𝑥
,
𝜑𝑘
𝑛,𝑚+1 − 𝜑𝑘

𝑛,𝑚

𝛥𝑦

)

, then Eq. (A.3)–(A.4) are
discretized as follows:
𝐕𝑘+1

𝑖 − 𝐕𝑘
𝑖

𝛥𝑡
=

𝛾

̃

∑

𝑛,𝑚 s.t.(𝑥𝑛 ,𝑥𝑚)∈𝐁(𝐗𝑘
𝑖 ,𝐑0)

𝜒(𝜑𝑘)(∇𝑛,𝑚𝜑
𝑘)(𝑤𝑖)(𝑘)𝑛,𝑚

+
∑

𝑗∶𝐗𝑘
𝑗 ∈𝐁(𝐗

𝑘
𝑖 ,𝐑1)∖{𝐗𝑘

𝑖 }

𝐾(𝐗𝑘
𝑗 − 𝐗𝑘

𝑖 ) +
∑

𝑗∶𝐗𝑘
𝑗 ∈𝐁(𝐘

𝑘
𝑖 ,𝐑4)∖{𝐘𝑘

𝑖 }

𝐾(𝐘𝑘
𝑗 − 𝐗𝑘

𝑖 )

+
𝛽
𝑁𝑖

∑

𝑗∶𝐗𝑘
𝑗 ∈𝐵(𝐗

𝑘
𝑖 ,𝑅3)∖{𝐗𝑘

𝑖 }

(𝐕𝑘
𝑗 − 𝐕𝑘+1

𝑖 )
(

1 + ‖𝐗𝑘
𝑗 −𝐗

𝑘
𝑖 ‖

2

𝑅2
3

)𝛼 − 𝜁𝐕𝑘+1
𝑖 ,

𝐗𝑘+1
𝑖 − 𝐗𝑘

𝑖

𝛥𝑡
= 𝐕𝑘+1

𝑖 .

Remark. On a laptop equipped with an Intel Core i7-1060NG7 pro-
cessor and 16 GB RAM each run of the numerical code, by considering
the case study scenario, given the time and spatial discretizations here,
takes around 15 min.

Appendix B. Additional details about GSA methods

B.1. The sampling strategy by Campolongo et al.

For readers’ convenience we here summarize the sampling strategy
t the basis of the improved version of the Morris method. It is first

worth to notice the approach is designed for 𝑑 model parameters
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assumed independent and uniformly distributed over [0, 1], so that
the region of interest in the space of parameter is the 𝑑-dimensional
unit hypercube. However, it is straightforward that different parameter
istributions can be easily reduced to this case through proper trans-
ormations. The region of interest is sampled following the optimized
trategy defined in [39]. The 𝑑-dimensional unit hypercube is first

discretized into a 𝑑-dimensional 𝑝-level grid, and a large number 𝑀 ≈
500 − 1000 of Morris trajectories is generated. Each Morris trajectory
starts from a randomly selected point of the 𝑑-dimensional 𝑝-level
grid, and is obtained by performing 𝑑 steps, one for each dimension,
by randomly defining both the direction of motion (random choice
without re-entry) and the length of each step (which is always a random
multiple of the grid size, i.e. 1∕𝑝). This way, the difference between
two successive points in a Morris trajectory is equal to 𝛥𝐞𝑘 where 𝛥 is a
multiple of the grid size 1∕𝑝. Then, the ‘best’ 𝑟 ≪ 𝑀 Morris trajectories
that maximize the coverage of the 𝑑-dimensional unit hypercube are
selected and actually used to rank the model parameters. The coverage
of the hypercube is estimated by evaluating the distance 𝐷𝑚𝑙 between
each couple of trajectories 𝑚 and 𝑙, defined in [39] as the sum of
he Euclidean distances between all couples of their points. The 𝑟
est Morris trajectories that maximize 𝐷𝑚𝑙 thus identify a sample of

𝑟(𝑑 + 1) points 𝐳 in the space of parameters. The model is then solved
𝑟(𝑑+ 1) times to compute the corresponding values of the target output
(𝐳) and estimate the elementary effects in Eq. (19). Notice that, by

onstruction, the EE𝑘 can be evaluated by considering only pair of
uccessive points in a Morris trajectory. This means that each Morris

trajectory gives 𝑘 elementary effect values, one for each parameter, so
that the sensitivity measures 𝜇∗

𝑘 and 𝜎𝑘 are evaluated on 𝑟 different
values of EE𝑘. Interestingly, the method is able to capture the same
qualitative information provided by the variance-based method [27]
regarded as good practice in sensitivity analysis) without requiring

large 𝑟, nor an extremely small grid size 1∕𝑝. In this respect, referring
to [39], we here always set 𝑝 = 4, 𝑀 = 500 and 𝑟 = 20, and
hus consider a sample of 280 points in the 13-dimensional space of
arameters.

B.2. Computing the first-order and total-effect indices with eFAST

The extended Fourier Amplitude Sensitivity Test (eFAST) method
roposed by Saltelli et al. [40], is an extended version of the FAST

method by Cukier et al. [42] able to estimate also the total effects
of the model parameters, rather than just the main effects. The basic
idea of these approaches is that periodic oscillations of relevant pa-
rameters propagate to the model output more than periodic oscillations
of non-influential parameters. Let us consider the model as a function
linking the parameters 𝐙 = (𝑍1,… , 𝑍𝑑 ) to the value of the output 𝑄,
i.e. 𝑄 = 𝑓 (𝐙). Assuming the model parameters are independent random
variables, the Sobol’ indices in Eq. (21) are estimated by using the
monodimensional Fourier decomposition along a so-called search curve
efined by the set of parametric equations

𝑍𝑘(𝑠) = 𝐺𝑘(sin𝜔𝑘𝑠), with 𝑘 = 1,… , 𝑑 . (B.1)

In Eq. (B.1), the transformation functions 𝐺𝑘 depend on the probabil-
ity distribution of each parameter. The frequencies 𝜔𝑘 are 𝑑 distinct
ositive integer frequencies chosen to satisfy several criteria given
n [40,42,66]. It follows that varying 𝑠, i.e. moving along the search
urve, all the model parameters change simultaneously, but each 𝑍𝑘
scillates periodically at the corresponding frequency 𝜔𝑘. As demon-
trated in [66], with integer frequencies, the search curve yields a
losed path entirely traveled as 𝑠 ∈ (−𝜋 , 𝜋). In turn, the output function
𝑓 , as a function of 𝑠, is such that 𝑓 (𝑠) = 𝑓 (𝑠 + 2𝜋) and can be Fourier
analyzed. It is worth to stress that assuming a distinct frequency for
each parameter allows to distinguish their effects during the Fourier
15 
analysis. Let us denote the Fourier coefficients of the output function
by

𝐴𝑗 =
1
2𝜋 ∫

𝜋

−𝜋
𝑓 (𝑠) cos(𝑗 𝑠) 𝑑 𝑠 𝐵𝑗 =

1
2𝜋 ∫

𝜋

−𝜋
𝑓 (𝑠) sin(𝑗 𝑠) 𝑑 𝑠 (B.2)

with 𝑗 ∈ Z; and the spectrum of the Fourier series expansion by
𝛬𝑗 = 𝐴2

𝑗 +𝐵2
𝑗 with 𝑗 ∈ Z. Noticing that 𝛬0 estimate the expected mean

f the output, while the second momentum is given by the sum of all
armonics, the total variance of the output writes

Var(𝑄) = 2
+∞
∑

𝑗=1
𝛬𝑗 . (B.3)

To estimate the main effect indices 𝑆𝑘(𝑄) in Eq. (21), the variance of
the output arising from the uncertainty of the 𝑘th parameter is given by
the spectrum of the frequency 𝜔𝑘 and its higher harmonics, see [42],
i.e.

𝐷𝑘(𝑄) = 2
+∞
∑

𝑝=1
𝛬𝑝𝜔𝑘

. (B.4)

The total-order sensitivity indices 𝑆𝑇
𝑘 in Eq (21) is estimated by the dif-

ference 1 −𝑆−𝑘(𝑄), where 𝑆−𝑘(𝑄) is the summed sensitivity index of all
parameters except 𝑘, obtained by using their identification frequencies
in Eq. (B.4), see [40].

From a computational point of view, to evaluate the above integrals,
 sample of points over the search curve is selected. Following the
mproved sampling approach described in [67], the analysis in Sec-

tion 3.2.2 is performed by considering a sample of 3000 different points
nto the 6-dimensional space of parameter.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.mbs.2024.109330.

Data availability

Data will be made available on request.
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