Consiglio Nazionale delle Ricerche

ST, EL. INF.
TBIBLIOTECA

Posiz. .Q“;}»Cﬁ“iﬁ_m

(-2

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

Algebraic Transformations
Verification of Basic LOTOS processes

Section 2.4 of "Correctness Preserving Transformation”
ESPRIT Project 2304 LOTOSPHERE

Rocco De Nicola, Paola Inverardi, Monica Nesi

Nota Interna B4-34
Agosto 1990

Lo/WP1/T1.2/N0020 WIS PHERs

2-28 ; Chapter 2. Algebraic LOTOS Transformations

oTCSPHERE Lo/WP1/T1.2/N0020

Section 2.4

Vertification of Basic LOTOS Processes

This section presents the approach to a verification environment which supports correctness
preserving transformations on terms of the Basic LOTOS process algebra based on
observational equivalence.

2.4.17 Motivations

The need for formal specifications of concurrent communicating systems and of their properties
is generally acknowledged. Together with it, automatic or semi-automatic tools for supporting
the analysis of concurrent systems are strongly advocated. This is, both to make analysis
possible and to ensure correctness of specifications.

LOTOS can be used to describe concurrent systems at different levels of abstraction. It is
equipped with a notion of equivalence, observational equivalence, and a notion of preorder,
testing preorder, which can be used to prove that two different LOTOS specifications are
equivalent when ignoring “uninteresting” details and to prove that a low level specification is a
satisfactory implementation of a more abstract one and thus to perform part of the analysis.

The formal semantics of LOTOS is defined in terms of labelled transition systems which are
factorized by observational equivalence or testing preorders. These relations give rise to a
series of interesting (in)equational laws which can be used to refine specifications or to
transform them without changing their semantics.

Our approach to the development of a verification system relies on the idea of taking advantage
of the axiomatic presentation of behavioural equivalences. It can be exploited in two different
ways. On one hand, the axiomatic presentation can be seen as an equational theory and its
associated canonical term rewriting system (which, if existing, can be obtained by means of a
completion algorithm [K87]) can be used to prove that two processes are equivalent by
checking whether they can be reduced to “similar” normal forms. On the other hand, the
axiomatic presentation can be used to perform elementary transformations, which are
guaranteed to be correct, by applying single axioms on demand. _

Given the axiomatic presentation for behavioural equivalences, the implementation of our

verification system relies on rewriting techniques. An equational approach to “execute” the = -

complete axiomatizations has been adopted and techniques borrowed from logic-functional

programming are used: both the operational semantics and the axioms for behavioural
equivalences are seen as Horn theories. This makes it possible to manage at metalevel (via
metaprogramming) the intertwining between operational semantics and behavioural

equivalences according to different user defined proof strategies. In this way we obtain those
functionalities that will be the basis for developing a language to define strategies.

Indeed, we think that users should have a high control over the verification process, i.e. a
verification system should allow users to perform their proof by using some automatic tools
and controlling their interactions in a flexible way. Thus, we aim at taking advantage of all
three views of specifications, namely the transitions, the operationally defined equivalences

Chapter 2. Algebraic LOTOS Transformations - 2-29

E
Lo/WP1/T1.2/N0020 W

and, whenever possible, the axioms which completely characterize the equivalences. This
would allow users to define their own verification strategies and move from one view to
another, to use each time the most convenient one. For example, we want to offer the
possibility of executing the operational semantics and reducing terms by means of behavioural
equivalences within a flexible and open-ended system, that makes tools and not policies
available to perform verificaton.

In general, it is not fruitful to rely on a completely automatic approach to verification, even in
the simple case of finite processes. A system which leaves some crucial decisions to the user is
preferable. The validity of a mixed approach to the analysis and verification of concurrent
systems has been confirmed by the experience we gained with CCS. In fact, before dealing
with LOTOS, we have experimented our ideas on a verification system for CCS specifications
which has been enriched with the complete axiomatizations of various behavioural equivalences o
[DINg9]. Several problems have been encountered when trying to execute the axiomatizations i
via the associated term rewriting system. In fact, the axiomatizations of well-known
behavioural equivalences, like observational and testing congruences [HM85, DH84], do not
lead to finite canonical rewriting systems, i.e. the completion process diverges while generating
an infinite set of rules. This is the main limit of a straightforward application of the term
rewriting system theory to the execution of behavioural axiomatizations.

As far as observational congruence of finite CCS is concerned, we have recovered from the
divergence of the completion process within the framework of term rewriting system theory
itself. We have defined a rewriting strategy [IN89] which is able to verify the observational
congruence of two finite CCS specifications without performing any completion.

Proving correctness of LOTOS processes

For a significant sub-calculus of LOTOS, we can single.out two sets of laws for the 1wo
behavioural relations included in the final text of the International Standard [B88], namely
observational equivalence and testing preorder. We can use these sets of laws as the basis for
an equational reasoning on LOTOS specifications of concurrent systems. -

We consider a subset of the axioms which have been defined for the observational congrueuce.
The subset under consideration represents a set of axioms which is able to rewrite a finite basic
LOTOS behaviour into an observational congruent one containing only occurrences of the
primitive LOTOS operators, namely “;”, “(]”” and “stop” and a set of axioms for the primitive
operators. This set of axioms is correct and fully characterizes observational congruence for
finite basic LOTOS; thus we can use CCS signature to interpret basic LOTOS and apply all

tools and strategies, at present available in the CCS verification system, to basic LOTOS
behaviours as well.

2.4.2 The LOTOS verification environment‘ :

The LOTOS verification system at present includes the following Prolog modules:

- aSyntax Analyzer which allows the user to input specifications according to the LOTOS
syntax; ‘

- amodule Operational Semantics that implements the inference rules of LOTOS interleaving
semantics and permits determining the sequences of actions a LOTOS behaviour may perform
and the behaviour into which the original one is rewritten after each sequence; n

- amodule Observational Axioms which can be used to apply, on demand, the axioms for
observational equivalence of finite basic LOTOS as single rewrite rules;

- amodule Observational Equivalence which implements a term rewriting system associated
to the axiomatic presentation of observational equivalence and permits several rewriting steps to
be applied automatically on a LOTOS behaviour.

The actual version of the system has been extended with two strategies for verifying
equivalences of recursive (finite state) LOTOS behaviours. It is worth noting that both

2-30 Chapter 2. Algebraic LOTOS Transformations

oICNPHERe Lo/WP1/T1.2/N0020

strategies permit dealing with recursive behaviours without using any rule for recursion, either
in the operational semantics or in the observational axiomatization. These two strategies
essentially apply the same rewriting process on a LOTOS behaviour and the following three
rewTiting steps can be performed by relying on the modules described above:

- single steps of the operational semantics are applied by using the module Operational
Semantics;

- intermediate behaviours are reduced by using the module Observational Equivalence;

- searches are performed for sub-behaviours which can be replaced by process identifiers
whenever these are associated to equivalent behaviours; this permits folding the current
behaviour and dealing with infinite terms.

These three steps are repeatedly performed till a stop condition is met. The used termination
condition of the rewritings above gives rise to the two strategies, which serve different
purposes. :

The first strategy, LOTOS Verification, can be used to verify that a behaviour B is a correct
implementation of a specification S. It applies the above steps till B has been reduced to a form
provably equivalent to S or till it proves that all possible transformations have been tried and
that the two behaviours are different.

The second strategy, LOTOS Reduce, can be used to explore the behaviour of a given
specification B and to transform it into a “minimal” one. The rewriting steps are applied until
only previously computed transitions can be executed.

Another, obvious, strategy can be obtained by combining the two strategies above.

Actual experimentation on the implementation of the LOTOS verification system in Quintus
Prolog on a Sun-3 Workstation is under way and the architecture of the actual version is shown
in Figure 2.4.2.1.

OPERATIONAL LOTOS LOTOS
SEMANTICS REDUCE VERIFICATION
OBSERVATIONAL OBSERVATIONAL

AXIOMS EQUIVALENCE

USER INTERFACE

QAENU

N
—] ANALYZER
LOTOS

Figure 2.4.2.1 - The architecture of the LOTOS verification environment

Chapter 2. Algebraic LOTOS Transformations 2-31

orCSPHE
Lo/WP1/T1.2/N0020

Basic axioms for LOTOS observational equivalence

In the following we briefly recall the definition of observational equivalence and we list the set
of axioms our system is based on.
Observational equivalence is based on the notion of bisimulation [HM85]. Loosely speaking,
two behaviours B1 and B} are considered as equivalent, written Bi= B2, if and only if there
exists a relation R, called bisimulation, which contains the pair <B1, B> and guarantees that
B1 and B7 are able to perform equal sequences of visible actions evolving to equal (up to R)
behaviours.
Hereto, we will use the following conventions to talk about sequences of actions and
sequences of visible actions:
« B =e=> B2, £ being the null string of (G L 8)*, stands for B1.—i— B2,n20;
« B1 =g*=> B2, stands for there exist B' and B" such that - '

B1 =g=> B'—g*— B" =¢=> B2;
« Bl=s=>Bp,s= g+1...§+n e (G u 8)*, stands for there exist B', 0 <i<n,

such that B] = B'g =gT1=> B'1 =g2=>...=g™n=>B'n = B2;

Definition (bisimulation and observational equivalence)
1. IfR is a relation over LOTOS behaviours, then ¥, a function from relatons to relations, is
defined as follows: <B1, B2> € ¥(R) if, for all s € (G U §)*,
i) whenever B1 =s=> B'] then there exists B'2, Bp =s=> B2 and <B'{,B2>e®R
ii) whenever B3 =s=> B'2 then there exists B'], B] =s=> B'] and <B'1, B'2>eR.
2. A relation R s a bisimulation if R ¢ W(R).
3. Relation =, defined as = = U R | R < W(R), is called observarional equivalence. 3

A correct, but not compiete, set of axioms of observational congruence for LOTOS has been
defined [B88]. In the foilowing we give a set of axioms that defines a rewriting process of
finite basic LOTOS behaviours into behaviours containing only occurrences of the primitive
LOTOS operators, namely “;” , “[]” and “stop”. Such rewriting process is correct and
complete with respect to observational congruence.

Exit
T1. exit = §; stop

Choice

Cl. B1[]B2=B2[]Bl

C2. B1[®B2(B3)=(®B1[]B2)[]B3
C3. Blstop=B

C4. B[B=B

Relabelling

R1. stop[S] = stop

R2. (B1[] B2)[S]=BI1[S] [] B2[S]
R3. (u*; B)[S] = S(u*); B[S]

Hiding (G2 A)
H1l. hide A in stop =stop
H2. hide A in Bl [] B2 = (hide A in B1) [] (hide A in B2)
put; (hide Ain B) ifpte A
H3. hideAinp*t B=
i; (hide A in B) ifpte A

Enabling
El. stop >> B =stop
E2. (BI[IB2)>>C=B1>C)[®B2>>0)

2-32 Chapter 2. Algebraic LOTOS Transformations

oS PHEr: Lo/WP1/T1.2/N0020

put; B>>C) ifpr=9d

E3. @%B)>>C=
i; C ifur =29

Disabling
D1. stop[>B=B
D2. (BI{IB2)[>C=@B1[>C)[1®B2[>0)
Cllut, B[>C) ifutr#d
D3. (W% B)[>C=

w5 BYC ifur =28

Parallel Composition

Notation: B [B2 (1 ..[0Bn=[1B1,....,Bn=[S where S = B1, ..., Bn. The behaviour
stop is denoted by means of empty summation (] .

Pl. IfB=(] pi*;Bj lie L, C=[] vj5CjljeJ and G2 A,
BILAIC = [Iui*; Bil[AIIC) Ipite AUS, iel
0 OviBIANG) Ivite AU, jel
0 Ouit BillAI G Iuit =vit, uite Aud,ielje]

Interleaving (A = @) Full Syncronization (A = G)
11. BIHIC=BI[]IC S1. BIUC=BIG]C

Observational Congruence Laws

Al. wi;B=w;B

A2. B[li;B=i;B

A3, W (BI[15B2) [B2=y; (B1[1i; B2)

2.4.3 Verification examples

Let us now show an application of the strategies mentioned above by means of two simple
examples. We will apply the first strategy to a LOTOS description of a simple reader-writer
problem, while the second strategy will be used to explore the behaviour of a LOTOS
description of a vending machine. While we report the whole terminal session for the first
example, we will only sketch the session for the second example.

The reader-writer problem

Given two processes Reader and Writer, we have to guarantee their mutual exclusive access to
a common resource. We use the gates xb, xe to denote (respectively) the beginning and the end
of the task of a process X. A mutual exclusive and nondeterministic access of processes X, Y
to a common resource can be defined by the following basic LOTOS specification:

process Spec[xb, xe, yb, ye] =
(i; xb; xe; Spec[xb, xe, yb, ye]) [J (i; yb; ye; Spec[xb, xe, yb, yel)
endproc

Let us now consider a possible implementation of the above specification. We introduce a
semaphore S to control access to the common resource and use the gates px, vx to denote
(respectively) a ‘p’ and a ‘v’ operation on S of the process X:

Chapter 2. Algebraic LOTOS Transformations 2-33

Lo/WP1/T1.2/N0020 OIS PHER:

process Impl[rb, re, wb, we] =
hide pr, vr, pw, vw in
(Sfpr, vr, pw, vw] I[pr, vr, pw, vw]i
(Reader{pr, vr, rb, re] it Writer[pw, vw, wb, we}))
where
process S{px, vx, py, vy] =
(px; vx; S[px, vx, py, vy]) [I (py; vy; S[px, vX, py, vy])
endproc
process Reader{px, vx, xb, xe] :=
px; xb; xe; vx; Reader{px, vx, xb, xe]
endproc
process Writer{py, vy, yb, ye] :=
py; Yb; ye; vy; Writer[py, vy, yb, ye]
endproc
endproc

Following the first verification strategy, we can prove that Impl is a correct implementation of
Spec with respect to observational equivalence (=), i.e. we can prove:

Implrb, re, wb, we] = (i; rb; re; Impl[rb, re, wb, wel) [] (i; wb; we; Impl[rb, re, wb, we})

Below, we report a sample of the interaction between the user (bold typed) and the system
- (plain fext), sometimes interrupted by few comments (written in italic), which leads to the
proof of our statement.

?- LOTOS verification.

[* The environment with the definitions of Impl, S, R, W and Spec is typed in */
Enter a process identifier: Impl

Enter a process: hide pr,vr,pw,vw in (S| ([pxr,vr,pw,vw]l| (RI]||[W})
Enter a process identifier: S

Enter a process: pr;vr;S{lpw,vw;S

Enter a process identifier: R

Enter a process: pr;rb;re;vr;R

Enter a process identifier: W

Enter a process: pw;wb;we;vw;W

Enter a process identifier: Spec

Enter a process: i;rb:re;Impl{li;wb;we;Impl

Enter a process identifiexr:

/* indicates that all the needed terms have been entered */

* we are prompted for two processes to be tested for equivalence */

Enter the first process: Impl

Enter the second process: Spec

Test of observational congruence: failed

Trying to transform Impl into Spec ...

Impl = hide pr,vr,pw,vw in (S| {pxr,vr,pw,vw]| (R}|[W))
Executing the operational semantics ...

Impl = (i;hide pr,vr,pw,vw in (vr;S|([pxr,vr,pw,vw]| (rb;re;vr;R|||W))
[} i;hide pr,vr,pw,vw in (vw:S|[pr,vr,pw,vw]| (R|||wb;we:vw;W)))

There are no reductions on Impl

Testing whether some subexpressions can be replaced by process identifiers

Chapter 2. Algebraic LOTOS Transformations

OO PHEr: Lo/WP1/T1.2/N0020

no subexpression has been found.
Test of observational congruence: failed

Executing the operational semantics ...

Impl = (4i;rb;hide pr,vr,pw,vw in (vr:Si{pr,vr,pw,vw]| (re;vr:R||]|W))
(1 i:wb;hide pr,vr,pw,vw in (vw;S|[pr,vr,pw,vw]| (Rl]iwe;vw:W)))

There are no reductions on Impl

Testing whether some subexpressions can be replaced by process identifiers
né.éébexpression has been found.

Test of observational congruence: failed

Executing the operational semantics ...

Impl = (i;rb;rerhide pr,vr,pw,vw in (vr;S|[pr,vr,pw,vw]| (VI:R]||W))
{] i;wb;we;hide pr,vr,pw,vw in (vw;S|[pr,vr,pw,vw]| (R} |[vw;W)))

There are no reductions on Impl

Testing whether some subexpressions can be replaced by process identifiers
né.éﬁbexpression has been found.

Test of observational congruence: failed

Executing the operational semantics .

Impl = (i;rbsre;i;hide pr,vr,pw,vw in (S|[pr,vr,pw,vw] | (
{1 i:wb;we;i‘hide pr,vr,pw,vw in (S| ([pxr,vr,pw,vw]| (

There are reductions on Impl

Impl = (i;rbsre:hide pr,vr,pw,vw in (S|([pr,vr,pw,vw]
{] i:;wb;we;hide pr,vr,pw,vw in (S| {px,vr, pw,vw]

Testing whether some subexpressions can be replaced by process identifiers

PRI

Réplaceable subexpressions have been found:

Impl = hide pr,vr,pw,vw in (S| [pr,vr,pw,vw]| (Rl||W))
Folding

Iﬁéi‘ = (i;rbsre;Impl[]i;wb;we;Impl)

Test of observational congruence: ok!

The processes you entered are observational congruent.

Chapter 2. Algebraic LOTOS Transformations 2-35

Lo/iWP1/T1.2/N0020 otCNPHER=

A candy machine

Let us now assume that we are provided with two machines: a Slot Machine and a Fair
Machine. They are defined in the following way. The Slot Machine takes as input a dime and
decides internally whether to return either the same dime or a quarter or a piece of paper with
“try it again, better luck next time” written on it. The Fair Machine returns a candy whenever it
receives a quarter as input, and returns a dime whenever a dime is input. Assume, you are
puzzled by the joint behaviour of the two machines, namely by what happens whenever you
connect them via the gates which are used by the Slot Machine to return the coins and by the
Fair Machine to input the coins. This welding gives rise to what we call a Candy Machine; our
verification system gives you a hand in understanding its behaviour.

We will provide the system with the two specifications of Slot and Fair Machines and we will
get back the nondeterministic behaviour of the Candy Machine. We use the following names
for the actions of our machines:

- id, the Slot Machine receives a dime (input dime);

- od, the Slot Machine returns a dime (owtpur dime);

- 0g, the Slot Machine returns a quarter (outpur quartery),

- try, the Slot Machine returns a written piece of paper (¢ry it again);

- vd, the Fair Machine receives a dime (vending for a dime);

- vg, the Fair Machine receives a quarter (vending for a quarter);

- bd, the Fair Machine returns a dime (back dime);

- bc, the Fair Machine returns a candy (back candy).

process Candy[id, &y, bc, bd] =
hide eq, ed in (Slot[id, try, ed, eq] !{eq, ed]! Fair{bc, bd, ed, eq])
where
process Slot[id, try, od, oq] :=
id; ((; wy; Slot[id, try, od, oq]) (] (i; od; Slot[id, try, od, oq])
(1 Gi; og; Slot(id, try, od, oq]))
endproc
process Fair{vd, vq, bc, bd] :=
(vg; be; Fair[vd, vq, be, bd]) (] (vd; bd; Fair[vd, vq, be, bd])
endproc
endproc

By following the second verification strategy, we can execute the process Candy and derive its
behaviour which can be described by means of the following action-tree:

Candy
id
P2 ; P1 '
H 1
oy PS5 ' Pé6
Candy id bd . be .
. id
1
i bd Candy
1 . b Candy
oy - i i .
. P1 \
PS5 P2 oC Ty b D D
Ps P6
P2
Pé PS5 P6

Figure 2.4.3.1 - The behaviour of a Candy Machine

2-36 Chapter 2. Algebraic LOTOS Transformations

oS PHER Lo/WP1/T1.2/N0020

Thus, Candy may be seen as a correct implementation of a specification Spec whose behaviour
is the following one:

process Speclid, try, bx, by] :=
id; P1[id, try, bx, by]
where

process P1{id, try, bx, by] =

(i; P2[id, wy, bx, by])] (i; P[id, my, by, bx]) {1 (i; P[id, wy, bx, by])
endproc

process P2[id, try, bx, by] :=

try; Spec[id, try, bx, by]
endproc

process P[id, try, bx, by] :=

(id; ¢ (i; ((ry; Pid, try, bx, by]) [(bx; P2[id, try, bx, by])))
[l (; bx; Pfid, ry, bx, by])
{1 @; bx; P[id, try, by, bx])
(1 (bx; P1[id, try, bx, byl)))
(1 (bx; Speclid, wy, bx, by])
endproc
endproc

A sketch of the intcraction between the user and the system is as follows:

2- LOTOS reduce
/* The environment with the definitions of Candy, Slot and F air is typed in */

Enter a process identifier: Candy
Enter a process: hide eq,ed in (Slot|[eqg, ed] |Fair)
[*Omissis ... Slot and Fair are entered, then we are prompted for the process to be transformed */
Enter the process to be reduced: Candy
Trying to transform the process ...
Candy = hide eq,ed in (Slot| [eq, ed]|Fair)
Executing the operational semantics .
*Omissis ... few steps expanding terms according to the operational semantics are performed */
Candy = id:(i:;try:hide eq,ed in (Slot| [eq, ed] |Fair)
[]1(i;i;hide eq,ed in (Slot| [eq, ed] |bd;Fair)
[lJi;i;hide eqg,ed in (Slot| [eq,ed] |bc;Fair)))
There are reductions on Candy
Candy = 4id; (i:try:;hide eqg,ed in (Slot| [eq, ed] |Fair)
[1(irhide eqg,ed in (Slot| [eq,ed] |bd;Fair)
[lishide eq,ed in (Slot][eq,ed] |bc;Fair)))
Testing whether some subexpressions can be replaced by process identifiers
Replaceable subexpressions have been found:

Candy = hide eq,ed in (Slot| [eq, ed]|Fair)

Folding

Chapter 2. Algebraic LOTOS Transformations 2-37

Lo/\WP1/T1.2/N0020 OTONPHEze

Candy - = 1id:; (i;try:Candy
[l (irhide eg,ed in (Slot][eg,ed] |bd:Fair)
{li:hide eq,ed in (Slot| [eqg,ed]|bc;Fair)))

[*Omissis... additional steps expanding rerms according 10 the operational semantics are performed*/
Executing the operational semantics ...

Candy = id; (i:;try:Candy
[1(i:(id; (i: (tryshide eqg,ed in (Slot| [eq,ed] {bd;Fair)
[lbd:hide eq,ed in (try;Slot| [eq,ed] |Fair))
. [1(i:ba:hide eq,ed in (ed;Slot|[eq,ed] |Fair)
{1 (i;bd:;hide eq,ed in (eq:;Slot|{eq,ed]|{Fair)
(lbd:P1)))
[1bd;Candy)
[1i; (id:; (i; (try:;hide eq,ed in (Slot] [eqg,ed] |bc;Fair)
[lbc;hide eq,ed in (try:Slot|[eqg,ed]|Fair))
[](i;bc:hide eq,ed in (ed;Slot] [eq,ed] |Fair)
[1(i:bcrhide eq,ed in (eqg;Slotl|{eg,ed] {Fair)
[lbc:P1)))
{l1bc;Candy)))

There are no reductions on Candy
Testing whether some subexpressions can be replaced by process identifiers

Replaceable subexpressions have been found:

PS5 = hide eq,ed in (Slot![eq,ed]|bd:Féir)

P2 = hide eqg,ed in (try:Slot| [eqg,ed] |Fair)
P5 = hide eqg,ed in (ed:;Slot]| [eqg,ed]|Fair)

P6 = hide eqg,ed in (eq;Slot| [eq,ed]|Fair)

P6 = hide eq,ed in (Slot]| [eqg,ed] |bc;Fair)

Folding

Candy = id; (i;try:;Candy

[1(i:; (id; (i; (try:PS5{1bd;P2) [] (1;bd;P5(] (i:bd:P6[]bd;PL)))
[1bd; Candy)
[1i: (id; (i; (txy:;P6[]1bc;P2) [(i:bc;PS(] (17bc;P6[1bc;PL)))
[(lbc:Candy))) -
Executing the operational semantics .
[* Only previously computed transitions can be executed */
The reduced form of the input process is the following:
[*Omissis ... the above reduced form of Candy is printed with the bindings of identifiers P1 ... P6*/
This concludes our session. An alternative way of looking at this example is to prove that the

original specification of the parallel composition of Slot and Fair Machines is observational
equivalent to the behaviour described by Figure 2.4.3.1.

2-38 Chapter 2. Algebraic LOTOS Transformations

»

E
wICSPHER Lo/WP1/T1.2/N0020

2.5 Existing or Potential Tool Support

Besides the tool described in section 2.4, there are already a few environments which support
verification of concurrent systems properties: Concurrency Workbench [CPS88], TAV
[GLZ89], Auto [V86] and Squiggles [BC89]. They can be used to verify behavioural
equivalences of specifications and to decide whether a specification satisfies a logical (modal)
property. In performing verification, most of these systems follow an approach which is based
on a finite state machine representation of terms and makes use of a generalized partitioning
~algorithm. The only exception is the TAV system, directly based on the definition of
bisimulation.
Verification systems based on finite state machines have two main disadvantages.
First, when verifying equivalence of two given specifications, most of the time these systems
deliver a yes/no answer and the answer is often no. In this case the user has not sufficient
control over the verification process to get suggestions about what went wrong and where,
within the specification, the error is located.
Second, when dealing with interleaving descriptions of concurrent processes these systems
lead very quickly to state explosion and the user has no way of controlling the flow of the
proof which would allow him to prune the state space.
To this respect the tool described in section 2.4 follows a different approach that, on one side,
tries to overcome some of those disadvantages and, on the other side, proposes an open ended
environment in which the user can define his own strategies. -

Chapter 2. Algebraic LOTOS Transformations 2-39

E
Lo/WP1/T1.2/N0020 IU[CSH{ER

2-40 -~ Chapter 2. Algebraic LOTOS Transformations

orCSPHER Lo/WP1/T1.2/N0020

[Bau 85}

[Bau 87]

(BB 87]

[BD 77]

[Br 88]

[(BW 84]

[BC 89]

[BW 87]

[Cl1 88]

[CPS 88]

References

Bauer et al: The Munich Project CIP. Volume I: The Wide Spectrum Language
CIP-L. LNCS 183, Springer (1985)

Bauer et al: The Munich Project CIP. Volume II: The. Program Transformation
System CIP-S. LNCS 292, Springer (1987)

T. Bolognesi, E. Brinksma: Introduction to the ISO Specification Lan"‘guage
LOTOS. Computer Networks and ISDN Systems 14, (1987), 25-59.

R. M. Burstall; J. Darlington: A Transformation System for Developing Re-
cursive Programs. Journal of the Association of Computing Machinery, Vol.
24, No. 1, (1977) 44-67

E. Brinksma (ed.): Information processing systems — open systems "inter-
connection — LOTOS. A formal description technique based on the temporal
ordering of observational behaviour. International Standard, 1ISO 8807

F. L. Bauer; H. Wossner: Algorithmische Sprache und Programmentwicklung.
Springer (1984)

T. Bolognesi, M. Caneve: Squiggles - A Tool for the Analysis of LOTOS Spe-
cifications. in Formal Description Techniques (K. Turner, ed.), North-Holland,
(1989), 201-216

L. G. Bouma, H. R. Walters: Implementing Algebraic Specifications. Report™

P8714, University of Amsterdam, Department of Mathematics and Computer.
Science, Programming Research Group (1987)

Ingo ClaBen: Algebraische Grundlagen der Termersetzung mit bedingten Glei-
chungen. Bericht-Nr. 88-04, TU Berlin, Fachbereich Informatik, (1988).

R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: Operating
Instructions. Tech. Note 2/88, University of Sussex, (October 1988)

Chapter 2. Algebraic LOTOS Transformations 2-41

Lo/WP1/T1.2/N0020 LUICSH{ERE

{Ehr 89]

[EKMP 82]

[EK 83]

[DH 84]

[DIN 89]

[FH 88]

[Ga 88}

[GLZ 89]
[HM 85]
[HL 79]
[HO 82]
[IN89]

[KB 70]

K1 87]

[NO 86]

H. Ehrig: Concepts and Compatibility Requirements for Implementations
and Transformations of Specifications. EATCS-Bulletin, Algebraic Specifi-

cation Column Part 6, July 1989, see also LOTOSPHERE working paper
Lo/WPI1/TI2/TUBINOOO3

H. Ehrig; H.-J. Kreowski; B. Mahr; P. Padawitz: Algebraic Implementation
of Abstract Data Types. Theoretical Computer Science 20, (1982) 209-263

H. Ehrig; H.-J. Kreowski:Compatibility of Parameter Passing and Implemen-
tation of Parameterized Data Types. Theoretical Computer Science 27, (1983)
255-286

R. De Nicola, M. Hennessy: Testing Equivalences for Processes. TCS 34,
(1984), 83-133.

R. De Nicola, P. Inverardi, M. Nesi: Using the Axiomatic Presentation of
Behavioural Equivalences for Manipulating CCS Specifications. o appear in
Proc. Workshop on Automatic Verification Methods for Finite State Systems,
LNCS, Springer Verlag, (1989).

A.J. Field; P.G. Harrison: Functional Programming. International Computer SRR

Science Series, Addison Wesley (1988)

H. Ganzinger: A Completion procedure for conditional equations. LNCS 308,
Proc. 1st Int’l Workshop on Conditional Term Rewriting, Orsay 1987 Springer
(1988).

J.C. Godesken, K.G. Larsen, M. Zeeberg: TAV Users Manual. /nternal Report,
Aalborg University Center, Denmark, (1989)

M. Hennessy, R. Milner: Algebraic Laws for Nondeterminism and Concur-
rency. Journal of ACM, 32, No. 1, (1985), 137-161.

G. Huet, J.-J. Levy: Call by Need Computations in Non-Ambiguous Linear
Term Rewriting Systems. Technical Report 359, INRIA (1979).

C. Hoffmann, M. O‘Donnell: Pattern matching in trees. Journal of the ACM,
68-95 (1982).

P. Inverardi, M. Nesi: A Rewriting Strategy to Verify Observauonal Congru- RERS

ence. I.LEI. Internal Report Nr. B4-38, Pisa, (August 1989)

D. Knuth, P. Bendix: Simple Word Problems in Universal Algebras. in J. -
Leech, ed., Computational-Probiems in Abstract Algebra Pergamon Press, ="
‘Oxford, UK (1970).

Jan W. Kloop.: Term Rewriting Systems: A Tutorial. EATCS Bulletin No: 32+ - -

(June 1987).

M. Navarro and F. Orejas: Proof Rules for Conditional Equations. Res. Rep.,
Facultat & Informatica de Barcelona, (1986).

2-42

Chapter 2. Algebraic LOTOS Transformations

woICSPHERs Lo/WP1/T1.2/N0020

[Pad 88]

[Sch 88]

[ST 88]

[St 89]

(VG 86]

[WB 89]

[Wo 89]

P.Padawitz: Computing in Horn Clause Theories. Springer EATCS Monogra-
phs on Theor. Com. Sci., 1988

M. Schmitz: Bedingte Termersetzungssysteme. Interner Bericht Fachbereich
Informatik, Universitit Kaiserslautern, Projektarbeit SS 88 (1988).

D. Sannella; A. Tarlecki: Toward Formal Development of Programs from

Algebraic Specifications: Implementations Revisited. Acta Informatica 25,
(1988) 233-281

R. Strandh: Classes of Equational Programs that Compile into Efficient Ma-
chine Code. LNCS 355, Proc. Rewriting Techniques and Applications, 3rd
International Conference, Chapel Hill, USA, Springer (1989).

D. Vergammi: Verification bz means of observational equivalence on automata.
Rapports de Recherche, INRIA Nr. 501, INRIA, (1986)

D. Wolz, P.Boehm: Compilation of LOTOS Data Type Specifications. Proc. of
the IFIP TC6-WG 6.1, 9th International Symposium on Protocol Specification,
Testing and Verification (ed. E.Brinksma,G.Scollo,C A.Vissers) ,1989

D. Wolz: Theoretische Grundlagen der Corripilation algebraischer Spezifika-

tionen und Termersetzungssysteme. Bericht-Nr. 89-xx, Technische Universitit
Berlin, Fachbereich 20 (1989).

Chapter 2. Algebraic LOTOS Transformations : 2-43

