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ABSTRACT 
The goal of this work was to understand the direction of the emerging web technologies and to 
evaluate their expected impact on satellite networking.  

Different aspects have been analysed using both real satellite testbeds and emulation platforms in 
different test sites in Europe. This analysis included an evaluation of those HTTP2.0 specifications, 
which were implemented and released as open source code in the experimental release of the SPDY 
protocol. SPDY performance were evaluated over satellite testbeds in order to understand the expected 
interaction with PEPs (including scenarios with a SPDY proxy at a satellite gateway), the impact of 
security, and the effect of satellite capacity allocation mechanisms. The analysis also considered the 
impact of application protocols and the delay induced by end-system networks, such as a satellite-
connected WiFi network. 

1. INTRODUCTION 
In the last ten years, the types of data exchanged using HTTP [1] have radically changed. Early web 
pages consisted of a few tens of kilobytes of data and were normally not frequently updated (static 
web). Today, typical web pages are far more complex, consisting of tens of elements, including 
images, style sheets, programming scripts, audio/video clips, HTML frames, etc [2]. Moreover, many 
web pages are updated in real time (e.g., when they are linked to live events or dynamic databases). 
Web interfaces are used in a wide range of non-browsing applications, e.g. to interact in real-time with 
distributed web applications, where both data and application reside on the remote side. 

Since today HTTP/1.1 is called to operate in a context different from the one it was originally 
proposed, some of the limitations of the HTTP model have become apparent. The original HTTP 
request/response model, where each web object is singularly requested, has been shown to not scale to 
modern complex web pages and introduces a significant amount of overhead at start-up. Also, HTTP 
has poor cross-layer interaction with the lower network layers (in particular the Transmission Control 
Protocol [3]), contributing to poor responsiveness for web applications. All of this occurred at a time 
when changing patterns of web use have raised concerns on performance. 

Several initiatives from private industry and standardisation bodies recently started a review of HTTP 
and the related protocol stack to make it more suited to the new web. SPDY (Speedy protocol) [4], 
QUIC (Quick UDP Internet Connections) [5] and Minion [6] are prototypal protocol implementations 
from different vendors that seek to make web applications more responsive, more network-friendly 
and more suitable to the new web design. These experimental protocols have been taken by the 
Internet Engineering Task Force (IETF) and Worldwide Web Consortium (W3C) as an input to the 
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definition of HTTP/2 [7], a new standard to improve HTTP performance using the experience 
cumulated in the last years with web traffic.  

• The security model in HTTP/2/SPDY is different from that in HTTP/1.1. Authentication and 
encryption are considered key elements both to protect users from malicious servers and to 
guarantee user privacy. This means that future web services will increasingly make use of 
security mechanisms, such as Transport Layer Security (TLS) [8] or Secure Socket Layer 
(SSL) [9], to protect their users. As a consequence, satellite operators will experience 
increasingly more difficulties in accessing HTTP headers to enforce policies or implement 
Performance Enhancing Proxies (PEPs) [10], such as HTTP accelerators. 

• Changes at the transport level can also impact the performance of HTTP. There is now a class 
of proposals for TCP modification designed to boost TCP performance at start-up. Some of 
these modifications, such as TCP Fast Open [11], require new TCP options. Satellite 
equipment needs also to evolve to be able to decode the new TCP headers, otherwise it may 
fail to benefit from the new performance improvements or even impair connectivity. 
HTTP/2/SPDY tries to multiplex as much as web page data as possible over a single TCP 
transport connection. This not only reduces the overhead of a HTTP stream but also improves 
the network friendliness of HTTP streams towards other traffic, avoiding disruptions in their 
performance. The use of a single connection has both pros and cons for satellite. On one hand, 
fewer longer-lived flows offer good performance requiring less state in the satellite system 
(especially smaller binding tables when network address/port translation is used). On the other 
hand, fewer flows could be more sensitive to the loss or delay of packets resulting in increased 
latency over poor quality links. 

• HTTP/2/SPDY can simplify the design of proxies. HTTP/2/SPDY takes care of data 
multiplexing, data compression and security, thus greatly simplifying the job of HTTP 
accelerators, which otherwise had to implement translators to perform many of these 
functions. In addition, HTTP/2/SPDY regulates the HTTP flow rate, taking into account the 
processing speeds of intermediary nodes. 

However, the change in security and transport models need to be considered as one of the updates that 
may demand changes in the satellite equipment. This need to update the equipment in order to follow 
changes in network protocols is not new. To avoid ossification (where parts of the network fail to 
support new performance improvements), satellite operators already need to be careful to update 
configurations/software as new network technologies emerge. Before exploring how to update a PEP 
(Performance Enhanced Proxies), it is important to understand whether and how HTTP/2/SPDY will 
benefit from satellite-specific protocol acceleration. 

This paper reports experimental results of a series of measurement campaigns with a set of features 
included in HTTP/2 but derived and implemented in SPDY. By now, we will refer to SPDY as the 
reference architecture and the experimental implementation of such features. SPDY protocol has been 
experimentally tested over satellite and compared to the present web architecture based on HTTP1.1. 
Such trials were conducted in the context of SatNex III NoE (http://www.satnex.org).  

In general, SPDY benefits the performance of web browsing via satellite by reducing latency and 
significantly lowering the overhead for several types of web pages. In particular, multiplexing a 
sequence of small web objects on a webpage onto a single connection enables significant gain and 
effectively reduces the HTTP overhead per object and per connection. The Server Push feature of 
SPDY, adds the ability for the server to send objects without explicit request, and was found 
particularly useful to reduce the download time. However, we also observed places where the tested 
implementations did not perform optimally, and were performance over satellite-connected WiFi 
networks was comparable with HTTP/1.1.  

This paper summarises the experience with HTTP/2/SPDY in the SatNex project and discusses 
benefits and challenges posed by the new techniques for web content delivery and their impact to the 
satellite networking. The paper introduces some of the novelties of HTTP/2, the new connection-
oriented framework for web applications and the transport layer enhancements respectively in Section 
2, 3 and 4. The experimental test setups are described in Section 5. Results are presented respectively 
in Sections 6, 7, and 8. In particular, Section 6 represents a performance comparison between 
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HTTP/1.1 and SPDY over the satellite link, Section 7 evaluates SPDY performance with respect to 
different BoD mechanisms and Section 8 shows results with real-time flows over satellite. A 
discussion on the implications of using SPDY is given in Section 9. Finally, Section 10 concludes the 
paper with recommendations for satellite operators and web protocol designers. 

 

2. AN INTRODUCTION TO HTTP/2 
 

It has been recognised that as network bandwidth increases, the greater obstacle to the performance of 
web technology is latency rather than scarcity of capacity. HTTP/2 [7] is a new protocol being design 
by the Internet Engineering Task Force (IETF) and World Wide Web Consortium (W3C) to address 
the limitations and lack of flexibility of the currently widely deployed HTTP/1.1 [1]. The origin of the 
emerging HTTP/2 standard may be traced back to a Google™ suite of protocols, called SPDY. 
Proposed modifications to HTTP/1.1 include suppression of unnecessary Round Trip Time (RTT) 
delays to request and deliver web objects, multiplexing of web streams into a single connection, 
removal of the head of line (HoL) blocking, more compact encoding of HTTP headers, server initiated 
transmissions (Server Push), a new security model, and an extensible design. 

HTTP/2 is expected to supersede HTTP/1.1 in all the user cases where HTTP/1.1 is currently 
employed. At the present time, the scope and content of the standards are being developed within the 
relevant working groups. There are, as yet, no formal standards, so this analysis is based on the 
available material only, i.e. is based on SPDY. 

2.1 Characteristics of SPDY 
The current HTTP specifications rely on multiple parallel connections to expedite webpage object 
download. In particular, HTTP/1.1 defines a transport mode called HTTP persistence, where the same 
TCP connection can be reused multiple times for subsequent HTTP request/response transactions. 

In recent years, the process of parallelisation of TCP flows carrying HTTP data has gone to the 
extremes. Domain sharding is a well-known practice to share content server load between multiple 
sites. It is sometimes used as a trick to induce browsers to open more parallel connections than they 
normally should to one site. The HTTP/1.1 specifications recommend using at most two connections 
per domain. However, browsers more frequently use four to six connections per domain [1]. Clearly, if 
objects are split across several domains, browser can open connections up to the number of domain 
multiplied by the number of connections per domain. Thus, browser can open tens of connections for 
the same web page. 

Domain sharding became necessary to compensate for the huge increase in the number of objects per 
page. This figure has more than tripled in the past decade now getting close to the hundreds of objects 
per page [12]. However, the multiplication of TCP connections per page has serious consequences: 

• First, the aggregate of connections behaves aggressively with respect to other traffic (ie. it 
behaves as an aggregate of TCP flow rather than a single flow). 

• Second, it increases the per-connection overhead, including the signalling to setup a 
connection and start-up latency.  

• Moreover, sharding increases the per-connection load to the network. This is an issue for 
intermediaries that need to monitor user traffic or track connection state, such as gateway or 
proxy, and need to track up hundreds of connections per user. Fewer longer-lived flows offer 
better performance anyway, and require much less state in the satellite system (especially 
smaller binding tables when Network Address port Translation, NAT is used). 

The answer of SPDY to this problem is to adopt the “Single Connection” paradigm. A single 
connection per domain should be sufficient to transport all the data for a web page, as long as multiple 
objects can be multiplexed onto the same flow. If a stream identifier is associated with a message, the 
server can insert more small messages into the same response. This reduces sensibly the packet 
overhead. In addition, this mitigates the "head of line blocking" (HoLB) problem with persistent 
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HTTP/1.1, in which more important objects for visualization may be queued behind blocked and less 
significant ones to the same TCP connections.  

The gain in multiplexing and prioritising objects of a web page is clearly dependent on the type of 
page. Web pages more fragmented will probably benefit more of serialising object into the same 
connection. However, the benefits of SPDY can be significant. Figure 1 shows the average completion 
time of the Flag Test web page, a sequence of small icons referred by a same index web page (see 
Section 5.1 for the details of the experimental setup). This experiment clearly highlights that the 
reduction in web page download time over satellite can be significant. 

 

 
Figure 1 – Multiplexing gain and number of connections with SPDY for the Flag test web page. 

 

2.2 SPDY Prioritisation mechanisms 

Introducing message identifiers in SPDY allows servers to implement a series of techniques. In reality, 
SPDY defines a hierarchy of identifiers differentiating between Stream and Requests. Roughly, 
Requests map to specific web resources and Streams are containers for Requests of similar type. This 
gives web servers higher flexibility to cover a wider range of use-cases: 

• While HTTP/1.1 decreases the webpage download time by using multiple connections, high-
priority resources might be delivered slowly due to concurrent delivery with some non-critical 
resource. SPDY Request Prioritisation allows a server to establish which resources are more 
important than others so to deliver them first over the same connection. The client may also 
help the server to take the right decision by indicating the objects it is able to receive and 
process. 

• SPDY offers a stream priority mechanism allowing the server to specify the relative Priority 
of each stream. Stream priority is used to inform the peer which streams are more important 



 

  5/20 

than others. In some cases, the browser may need to specify a preferential order for web 
objects if it cannot process some resources before other are received. 

The prioritisation mechanism aims to improve performance by anticipating the transmission of the 
most critical objects and defining critical paths. A client can ensure that resources needed immediately 
do not compete for bandwidth capacity with less important resources transfer. Requested resources 
with a lower priority are queued waiting to fill any spare bandwidth with useful data. This scheduling 
mechanism was not possible in HTTP/1.1 where any request, once issued, could not be rescheduled. 

Effective scheduling of web resources is a complex optimisation task that takes into account the 
structure of a web page. SPDY offers a way to indicate this structure. In other words, priorities can be 
used by each peer to signal the dependencies in a web page and receive the web objects in the correct 
order. 

2.3 Server Push of HTTP Objects 

HTTP/1.1 servers can send resources to the client only when they are explicitly requested. However, 
in most of the cases, the server can anticipate which resources the client is going to request. For 
example, if the client has requested an index page, it is very likely it will request the style-sheets and 
the code associated with that page the next RTT. 

SPDY proposes an optional Server Push that allows a server to deliver unrequested messages to the 
client. Server Push may save precious RTTs as the server can deliver a resource along with all the 
associated resources. Pushing data from server to client is also useful in the context of dynamic web. 
Servers can update dynamically client without explicit requests from their side. 

Server Push is particularly beneficial for satellite network due to the larger RTT. Also, it fits well the 
characteristics of a satellite channel. For example, future use of Server Push method could be 
associated with the broadcast/multicast capabilities of a satellite Forward Link (FL). In a scenario with 
many users accessing simultaneously (or within of a short time-range) to the same web resource (e.g, 
IPTV live event), browsers could receive pushed data from the server without explicit requests. 

The use of Server Push could be also used with Proxy Caches at the satellite gateway (or even at a 
terminal). This would avoid pre-fetching resources already Pushed by other terminals over the same 
satellite network. 

2.4 Open issues with HTTP/2 

At the time of writing, the HTTP/2 specification is far from finished and many points remain under 
discussion within the HTTPbis WG. This Section highlights some presently open issues expected to 
impact on satellite networks. 

Server Push is still a debated topic within the WG. Although it can be used to anticipate client 
requests, it could also transmit data that the client is not able to receive or use. Several people fear that 
Server Push may lead to large amounts of undesired data to the client. 

Since Server Push is a server-side optimisation, it assumes a server has good knowledge of the 
network characteristics and user expectations. In any non-cabled environment the path characteristics 
may be hard be to predict a priori, being a function of many parameters (propagation conditions, 
system load, SLA-enforcement, etc), and therefore different optimisations may be need when a path 
includes a satellite, cellular or wireless network. The way in which these impact the design and usage 
of Server Push will need to be determined before the effect on satellite networks can be fully 
understood. 

In addition, major server sites are keen to avoid accumulating state for inactive connections – both 
because it consumed memory and because it reduces the ability to perform server load balancing. 

Many satellite networks have deployed protocol enhancing proxies (PEPs) to perform TCP and 
HTTP/1.1 acceleration. These have often become regarded as essential components for satellite 
networks that support web access. In networking terms, these boxes are a proxy/middlebox that works 
as an intermediary between the content server and the client.  

Transport layer PEPs (e.g., split TCP) have been shown to work effectively with SPDY, and are hence 
expected to continue to work with HTTP/2 The main issue is that HTTP/2 has motivated changes in 
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the transport protocols, and that any future transport PEP needs to be able to accommodate these 
changes to avoid the pitfalls of ossification (i.e. down-grading the transport to an old version so that 
the PEP can accelerate the transport, whereas a native transport with no transport PEP would have 
achieved higher performance).  

The role of the intermediary in HTTP/2 and in particular how SPDY interacts with HTTP/1.1, still 
does need to be specified. The use of session encryption (TLS) ensures that a SPDY client and server 
explicitly acknowledge the presence of any intermediary that is allowed access and manipulates data 
transmitted between the server and the client. This form of middlebox interception is a much-
requested feature because many network administrators wish to protect their network and filter and/or 
disallow certain sites. However, defining the (trusted) interaction of HTTP behaviour with 
middleboxes creates a range of problems, such as how to ensure confidentiality while granting access 
to data to third parties and how to provide end-to-end control of a flow that needs to be operated from 
within the network.  

In present satellite systems, the interception of application layer protocols are a key function of 
application layer PEPs, and used by products such as TurboPage™ [13]. The use of intermediaries will 
need to be different, and this suggests that the currently combined role of applications and transport 
PEPs could be better viewed as two separate roles, with the possible use of a "standard" configured 
proxy for web acceleration. 

PEPs can also influence the quality of service requested in the lower layer satellite service, defining 
how flows are mapped to lower layer functions. Such PEPs need to be aware of flow traffic 
patterns/requirements. Present systems often rely on deep packet inspection. This could not be studied 
in the current project, but as the transport layer evolves (possibly away from TCP) and there is 
increased use of encryption (e.g. TLS used by SPDY) and automated compression, access to upper 
layer protocol headers will become impossible at a PEP. Satellite networks therefore need to 
differentiate traffic using other mechanisms, such as support of Differentiated Services packet 
marking. 

 

3. A NEW FRAMEWORK FOR s APPLICATIONS 
 

HTTP/2 architecture should be flexible enough to support the wide variety of devices and applications 
currently supported by HTTP/1.1. Recently, also wireless mobile applications have started to rely 
heavily on web resources generating even more use cases and interests in HTTP. According to [14], 
the new category of traffic has dramatically increased, almost doubling every year over the last two 
years, and it is currently accounting for almost one-fourth of the total web traffic. Wireless devices, 
however, have much more limited capability than other end-systems and require different 
functionalities. In other words, mobile web introduces constraints in web design that ultimately impact 
the traffic pattern seen on wire. 

Wireless devices may generate considerably different traffic profiles than wired end-hosts. For 
example, to save energy, bandwidth and the resources of mobile devices, web pages are often crafted 
to reduce the amount of wireless data and to fit the capabilities of small devices. Also, mobile 
applications seek to control the amount and the type of data received from the server to correspond 
their requirements. For example, mobile clients will try to inhibit “push” notification from the server 
or enable particular services, such as location-based services, if they can support them. 

To address mobile web specific problems, such as session management over wireless links, the IETF 
proposed WebSocket [15]. WebSocket guarantees the flexibility and control mobile application need. 
Unfortunately, a large part of deployed mobile-OS still lacks WebSocket support. This is the case for 
example of the widespread Android-2™, which does not support WebSocket, or Apple iOS-4™, 
which supports partially compatible versions of WebSocket. In addition, WebSocket deployment is 
sometimes impeded by intermediaries that reject non HTTP/1.1 conformant traffic. For example, some 
3G network operators are known to employ transparent proxies that block WebSocket traffic. 
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When WebSocket is not available, mobile devices need to resort to polling methods based on 
HTTP/1.1, such as Ajax Long-Polling (ALP) technique [16]. The initial lack of support for 
WebSocket was foreseen by the IETF WG that designed methods to probe for incompatible 
intermediaries. 

Another promising technology called Server-Sent Events (SSE) [17] was defined by W3C to address 
the needs of web real-time applications. SSE is also a part of the HTML5 specifications. SEE defines 
both a Javascript API and a data format to send data through a normal HTTP request. Unlike ALP, the 
response HTTP body is left open, so new events can be forwarded to the client. SSE is a backward 
compatible specification and most browsers implement this. 

Mobile OSes and software updates, however, are subject to faster upgrades than hardware and a rapid 
spreading of the Websocket is expected in near future [18]. As the benefits of the new protocol 
become apparent, new updates and software become available. As a part of their activity, the IETF 
WG promoted actions to quickly report situations of failure to work out quickly the causes of 
hindrance. Moreover, libraries implementing Websocket at the application layer can be used for 
specific applications when the OS support is lacking.  

Issues of mobile web are also relevant to the satellite community. A common scenario sees mobile 
devices connected to the Internet through a wireless-connected satellite terminal with a Satellite 
Return Access Link. Even though the terminals can be also identified as “mobile”, since the Operating 
System of an handheld device can be either Apple iOS™ or Google Android™, this common setup 
has a fixed satellite terminal. Understanding the problems of real-time web applications by means of 
functionality and performance test is therefore a critical investigation. 

4. SPDY AND THE TRANSPORT LAYER  
 

HTTP is normally layered on TCP using the reliable in-order socket interface. In practice, TCP is used 
with workarounds mostly because an application developer can rely on its presence in the majority of 
systems. In addition, TCP does not provide an adequate “service model” capable of dealing with proxy 
or firewalls. Recent proposals, such as Apple’s Minion [6] or Google’s QUIC [5], try to address this 
issue, and there is likely to be further development at the IETF to define a service model to be used for 
HTTP Transport. 

All transport protocols need to perform congestion control to prevent overwhelming a network path. 
The effort to improve TCP congestion control and make it more responsive for low-latency 
applications is a part of the remit of the IETF TCPM WG. The problem of latency was attacked from 
two different sides. On one hand, the WG is trying to standardise methods that allow a faster start of a 
connection, using Fast Open (TFO) [19] and larger Initial Window (IW10) [20], or quickly restart idle 
connections, using new-CWV [21] in combination with Pacing. The WG is also trying to make TCP 
more robust against packet losses, using Tail Loss Probe (TLP) [22] or RTO Restart [23]. On the other 
hand, there are proposals to better exploit Explicit Congestion Notification (ECN) with TCP, which is 
progressing as a WG item, together with formation of a new IETF WG on Active Queue Management 
(AQM), a method that is needed to deploy ECN. All current TCPM WG proposals require 
modifications only at TCP sender side and minor changes to the TCP stack. 

TFO and IW10 try to cut some RTTs at the beginning of a connection in order to make TCP more 
responsive. A study on IW10 [20] shows that larger IW is beneficial especially for high RTTs and 
BDP networks. The paper reports that IW10 reduces the completion time of Web Searches up to 
almost 20% compared with Standard TCP when the RTT is larger than one second. Unfortunately, 
IW10 also increases the amount of packet drops and retransmissions. The effect of packet drops on the 
average latency is limited. This is also because a larger IW permits a larger number of ACKs that can 
be used to detect and repair the losses in one RTT. However, a collateral damage may be caused on 
connections that share the same bottleneck. 

Experiments performed within our study have investigated SPDY performance using a satellite test-
bed and have showed that IW10 with SPDY did not lead to significant performance improvements. 
One of the reasons for the lower-than-expected performance could be the increase of cwnd during the 
few round-trip exchanges carrying security information before the actual data transfer starts. When the 
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server starts sending data the cwnd has already grown larger. For the typical persistent this case, IW10 
reduces the total download time by at most one RTT (i.e. 600ms), which is a modest gain for a overall 
completion time of 10 to 20 seconds. If multiple short connections are used (common in HTTP/1.1, 
and expected for some specific uses cases with SPDY), there will be significant gain. 

TLP is being specified to reduce the negative impact on latency of packets drops at the end of a traffic 
burst. When the last packet (or a sequence of packets) is lost at the end of the burst, TCP cannot 
receive ACKs triggered by packets sent after the last packet. This causes TCP to lose its self-clocking 
and to wait for the RTO to expire. Since the minimum RTO (specified as 1 sec) can be several times 
the connection RTT, waiting for a timeout delays significantly the retransmission of the last packet. 
The solution proposed by TLP is to keep repeating the last packet every two RTTs until the RTO 
expires in absence of returning ACKs. The disadvantage of TLP is that retransmissions can mask the 
last packet drop making appear as if it was correctly received. This affects the TCP congestion control 
in that TCP does not receive the congestion signal of a packet loss. Thus, TLP defines a sophisticated 
algorithm to evaluate if the last packet was effectively lost. RTO Restart [23] proposes a different 
approach to mitigate the performance issues of timeout, targeted at thin-stream TCP applications. RTO 
Restart refines RTO calculation reducing the timeout of up to one RTT. However, it is effective only 
with a small cwnd, while tail losses can happen also with large cwnd. Tail losses can significantly 
impact performance over long delay paths (such as satellite), where the time to recover lost segments 
using the RTO timer can be significant. 

A similar problem is encountered when any bursty TCP application encounters congestion. New-
CWV [21] proposes that a TCP sender can maintain the cwnd open across different bursts if no 
congestion signals are met. This method can also be used with persistent HTTP, as defined in SPDY. 

A possible mitigation to the bursts resulting with IW10 and newCWV is to pace packet transmissions 
within the RTT when TCP does not have packet in flight to “clock” its transmissions. However, this 
requires a cross-layer interaction to signal the network interface to send packets at regular, interval 
rather than in bursts. Recent work (e.g. work by Google presented at IETF-88 in November 2013) is 
exploring whether such pacing is practical in typical server protocol stacks. This may enable future 
changes to the way TCP operates, that can reduce collateral damage and hence reduce congestion-
based packet loss. This is important for satellite networks, where loss-recovery can incur appreciable 
delay. 

In summary, after many years of relatively little TCP standards development, there are now a number 
of on-going initiatives that are likely to significantly change the way TCP operates for HTTP. These 
updates are likely to be widely deployed and satellite intermediaries (TCP PEPs) will need to operate 
correctly with these updates and avoid ossification of the TCP part of the protocol stack. 
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5. SPDY PERFORMANCE EVALUATION OVER SATELLITE 
In order to evaluate HTTP/2, we considered the Google’s suite of techniques called SPDY. SPDY is a 
predecessor of HTTP/2, which was not initially intended to provide a new HTTP specification, but 
contained a set of design principles to guide web browsing improvement: 

i. The increasing volume of data requires increasing protocol efficiency by reducing overheads 
(eg compressing HTTP message header and body, eliminating inessential request/response 
delays). 

ii. In order to speed up the download process, the two end-points should be able to identify a 
stream of objects. In other words, streams should be given identifier so to implement out-of-
order delivery. 

iii. The “distributed” nature of web contents (i.e., data stored by different content providers) 
together with the need of persistent connections required more flexible policies. 

The effectiveness of SPDY over a satellite network was evaluated in a series of experiments 
conducted using both real satellite links and emulated satellite platforms. Although the tests focussed 
on HTTP performance over satellite, different aspects of the interaction between application layer, 
network layer and the satellite MAC have also been explored.  

This Section summarises the experimental platforms that were used.  

5.1 Hylas-I satellite network  

 
Figure 2 - Hylas-I satellite testbed for SPDY evaluation 

In England, the University of Aberdeen (UoA) and the University of Surrey (UoS) conducted 
experiments over the Hylas-I satellite network using Avanti terminals, based on the Hughes IPoS 
specification [24]. Figure 2 shows the experimental setup. Hosts at the UoA LAN could connect to 
other hosts over the same LAN through a path crossing the satellite hop provided by the Avanti 
terminal. 

To test different TCP/IP stack configuration two computers at UoA ran two different Linux kernels: 
Linux kernel 3.8 including the TFO and IW10 TCP modifications, and Linux kernel 2.6. Both 
computers were used as web server running Apache. The Apache servers [25] hosted a mirror of 
several popular Internet web pages with HTML modified to be static. 

This testbed supported a VPN (Virtual Private Network) that could be used to encapsulate/encrypt 
TCP packets and thereby disable any intermediary at the satellite terminal or at the gateway. This 
method to inhibit PEP processing was preferred to using the terminal interface to have maximum 
control of the PEP. 
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5.2 The CNR satellite field trial 

In Italy, the Institute of Information Science and Technologies (ISTI) and the Institute of Intelligent 
Systems for Automation (ISSIA) both of the National Research Council (CNR) ran a set of tests with 
SPDY over an Italian Internet Service Provider (ISP) satellite network, Link Telecomunicazioni2. A 
schematic of the testbed is depicted in Figure 3. The tests consisted in a set of web clients using 
Google Chrome requesting web pages to a proxy cache. 

A SPDY proxy/gateway running Linux implemented policies for relaying the traffic based on Node.js 
[26]. Web pages were cached at the gateway in order to avoid non-deterministic behaviours caused by 
dynamic contents and the effects of congestion over the path to the servers.  

The proxy/gateway could route the traffic over an emulated and a real satellite link. The emulated 
satellite link introduced an artificial delay 520ms or 720ms and constrained the bandwidth to 128Kb/s 
or 1Mb/s respectively. Also, in order to evaluate the impact of non-congestion losses on SPDY 
behaviour, the emulated link introduced random packet losses. The satellite link was accessed through 
an Evolution X3 Satellite Router equipped with PEPs providing HTTP acceleration and local DNS 
caching.  
This testbed also used a PEP to perform TCP acceleration; this was used with connection splitting to 
the Space Communications Protocol Specification-Transport Protocol (SCPS-TP). To access the 
satellite channel, a remote terminal located within the Provider’s Headquarter in Genoa was used; data 
was then routed to the Hub located in Lucca.  
 

 
Figure 3 –ISTI/ISSIA satellite field trial 

5.3 Simulated Satellite Environment with WiFi access at UoB 

The University of Bologna (UoB), in Italy, simulated the scenario of web browsing by means of 
wireless portable devices connected accessing the Internet through a WiFi linked to a satellite 
terminal. The satellite link, which plays the role of the access network, was emulated using Dummynet 
[27], to reproduce the typical delay and bandwidth values of a satellite link.   

The testbed (Figure 4) consisted of three parts:  

• Several Web clients running different browsers on different hardware platforms (e.g. a Nexus 7’ 
tablet, an iPad 2 tablet and a Mac OS X laptop). The mobile devices are connected through a 
dedicated Wi-Fi network. 

• A satellite gateway also emulating the GEO satellite link. This is emulated by inserting the typical 
propagation delay of GEO satel- lite (RTT=600ms) by means of the Dummynet [27]  emulation tool.  

• A benchmarking Web server, which is run by node.js3 (version 0.10.2). There are not intermediaries, 
such as Apache4, between the server and the client to achieve the least possible latency.  

                                            
3 https://nodejs.org 
4 http://httpd.apache.org 
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Figure 4 - Emulated Satellite Network with WiFi Access 

The goal of the experiments was to evaluate how the protocols and their different implementations 
perform in a GEO satellite scenario. In particular, this evaluated the different protocols and techniques 
for implementing real-time web applications (i.e. ALP, SSE and WS) in the presence of a satellite 
delay and to investigate testing both desktop and mobile devices. 

5.4 The Satellite Network Emulator Platform (SNEP) at UROME2 

The University of Rome2 (URome2), in Italy, analysed how SPDY traffic interacted with various 
Bandwidth on Demand (BoD) mechanisms and evaluated the efficiency of usage of satellite link 
resources. URome2 tests were based on the Satellite Network Emulation Platform (SNEP), developed 
at the University of Rome, which emulates a satellite DVB-RCS network [28]. In addition, URome2 
setup an Apache web server with SPDY to investigate the impact of server push. The web server was 
accessed through a Google Chrome web browser equipped with a page benchmark extension tool [29]. 

SNEP [28] is a satellite Virtual Network where the behaviour of components of a DVB-RCS network 
is emulated on a virtual environment managed by the WMware™ vSphere Hypervisor ESXi [30]. 
Each virtual node emulates a component of a VSAT network based on DVB-RCS [31]. The emulated 
components of SNEP are: the Gateway (access router), the Network Control Centre (NCC); the 
Satellite; the Satellite Terminals (ST); the User Terminals (UTs), connected to the STs through a 
LAN. Figure 5 shows the interconnections between emulated nodes in SNEP and real external nodes. 
Connection to external entities is required to test the interoperation of the DVB-RCS network with 
other systems. 

 

 
Figure 5 – URome2 SNEP (Satellite Network Emulation Platform) architecture 

 

6. PERFORMANCE COMPARISONS: HTTP/1.1 AND SPDY 

6.1 Comparisons between SPDY and HTTP/1.1 using a VPN connection 

Figure 6 compares the number of TCP connections required to download a web page with respect to 
the number of objects in three scenarios at UoA: via the satellite link, via the satellite network using a 
tunnelled connection (VPN), and by using a simulated delay of 600ms (Netem).  
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The results show that the number of connections is reduced to 1 or 2 by using SPDY with respect to 
ten-twenty by using HTTP/1.1. Also, the number of connections does not depend on the number of 
objects or the web page size, which is useful to reduce the per-connection burden at any intermediate 
nodes. 

  
Figure 6 - Number of TCP connections in HTTP/1.1 and SDPY (UoA testbed) 

In some cases, SDPY opened an extra connection to the server when the first connection became 
unresponsive. To explore this, the delay was artificially inflated by using Netem, showing that this 
could cause SPDY to open a new connection or fall back to HTTP/1.1. 

Lowering the number of connections did not increase the latency. On the contrary, the high level of 
multiplexing and the reduced overhead contribute to reduce significantly the page loading time (PLT) 
in many cases. Figure 7 shows that, when accessing the web server through the satellite, the delay 
increases up to 100% with two different kernel configurations. Tests with SPDY verified that a 
satellite gateway was not able to operate any HTTP acceleration as SPDY concealed the HTTP header 
using TLS. 

A configuration that used a VPN connection prevented TCP split-connections and hence eliminated 
the benefit of Transport PEP. The performance of SPDY and HTTP/1.1 degraded and SPDY was able 
to provide only marginal improvements with respect to HTTP/1.1 (Figure 8). This may indicate that 
the present design of SPDY is not designed for large RTTs and not yet able to effectively adapt to a 
large RTT. It does however confirm that Transport PEP has benefit for SPDY. 
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Figure 7 - Comparisons between HTTP/1.1 and SPDY in Hylas network (UoA) 

 
Figure 8 - Comparisons between HTTP/1.1 and SPDY over Hylas-I network using a VPN connection 

to inhibit TCP split-connection. 

6.2 Comparisons between SPDY and HTTP/1.1 using a Proxy/Gateway 

SPDY and HTTP/1.1 have been compared on the ISTI/ISSIA testbed platform based on an emulated 
link and a real satellite network, introducing 1% random losses over the terrestrial link. The emulated 
satellite RTT was varied from 520ms to 720ms. These are realistic figures for a satellite link (iDirect 
terminal) that introduced around 640 ms delay. Figure 9 plots the 95th percentile of webpage 
download times averaged over seven popular sites. The plot shows that a (transport) PEP can 
significantly reduce the web page loading both with and without errors. This results confirms the UoA 
results that end-to-end transport layer optimization is beneficial. 

SPDY and HTTP/1.1 achieve very similar results in this case, even if SPDY outperforms in terms of 
the smaller interval between the minimum and the maximum download time in the lossless scenario 
(left picture in Figure 9). This differs from UoA-UoS analysis. The reason is likely due to the 
difference between fetching from a native SPDY web server and passing through a SPDY-proxy. In 
fact, the HTTP proxy in this test when SPDY was disabled, simply mapped the incoming sockets with 
as many correspondent outgoing ones. Instead, a SPDY-proxy had a single incoming socket, from the 
SPDY client, but had to open many HTTP connections toward the HTTP content servers. With a 
native SPDY server, a single socket traverses the entire end to end path. Thus, passing from many 
parallel HTTP connections (between the HTTP web server and the SPDY proxy) into a single 
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“SPDY” TCP connection (between the SPDY proxy and the SPDY browser) introduces a multiplexing 
issue and a queuing problem that result in the differences from UoA-UoS analysis. 

Figure 9 also illustrates in the right picture the performance when SPDY is used over a lossy channel. 
In this case, it exhibits a slightly lower performance on average than HTTP/1.1 for a range of RTTs. 
The reason is that SPDY uses a single connection and therefore it is less robust to non-congestion 
losses than HTTP/1.1 that uses more parallel connections. Indeed, a random loss only affects one of 
the several parallel HTTP/1.1 transactions and is less likely to slow down the entire download process. 

  

Figure 9 - Effect of packet losses on minimum, maximum, and mean webpage download time 
(ISTI/ISSA testbed) 

Figure 10 shows a breakdown of the PLT with respect to the net page size (i.e., without HTTP 
overhead) for the set of investigated websites. There is no direct proportional relation between the 
amounts of data transferred and the PLT. The PLT is influenced by other factors, such as the page 
structure (ie the web of dependency between objects), the level of optimisation of Javascript code, and 
the distribution of data across different hosts. However, there is a trend of proportionality between 
webpage size and the PLT as spotlighted by the interpolating lines. This Figure shows that major 
differences in performance between SPDY and HTTP/1.1 occur for larger web page sizes when there 
are non-congestion losses (e.g. from a wireless link forming a part of the network path). Indeed, longer 
data transfers would benefit more from a larger cwnd, but random losses induce TCP to reduce cwnd 
so that more RTTs are needed to complete the transfer. 

  

Figure 10 - Comparisons of webpage load time per site over (ISTI/ISSIA) testbed in case of no added 
random losses (left fig) and with added losses (right fig). 

 

7. EVALUATING BOD MECHANISMS WITH SPDY 
Tests performed by URoma2 compared the performance of SPDY and HTTP/1.1 in different 
configurations using SNEP. The focus was on Bandwidth on Demand (BoD) mechanisms. The 
transmission of the first few segments from the web client BoD was particularly critical when a 
bandwidth allocation was not available for a terminal. In the following set of experiments, three BoD 
categories of DVB-RCS: Constant Rate Allocation (CRA), Rate Based Dynamic Capacity, and 
Volume Based Dynamic Capacity (VBDC) [31]. 
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(a)                                                     (b) 

Figure 11 – (a) PLT for different BoD methods with HTTPS, HTTP/1.1 no persistence, HTTP/1.1 
persistence, and SPDY (b) Amount of data sent by each protocol. 

The tests used a static web page with a large number of images (640 small images) stored at the server. 
Tests with this page highlight the poor performance of HTTP/1.1 over high RTT links and show how 
SPDY can offset performance using multiplexing, header compression, and server push. 

Figure 11 shows test results with the test webpage in terms of PLT, the number of connections and the 
amount of data sent in different HTTP configurations. It compares HTTPS, HTTP/1.1 with no 
persistent connections, HTTP/1.1 with persistent connections and SPDY. If HTTP/1.1 persistency is 
not used, every object requires establishing a new TCP connection resulting in huge latencies. The 
PLT is even larger with HTTPS where security exchanges take place with additional connection 
before every HTTP transaction. SPDY performs better than the other protocols in all cases, and the 
performance improvement increases at higher RTTs. Moreover, the best performance is achieved 
using a mixture of RBDC and VBDC. In this test, header compression in SPDY does not have much 
impact compared to HTTP/1.1. However, HTTP/SSL requires more bytes (870 Kbytes) due to the 
encryption and security handshaking. 

An important QoS parameter is the “Time of the First Paint”, i,e., the delay between a request and the 
start of web page rendering. In general, it was observed that HTTP/1.1 was able to render the page 
faster than SPDY. SPDY is indeed hindered by multiplexing, header compression, and framing 
operations. The time required by SPDY to start rendering is close to the time required by SSL, while 
the same time for the first paint in HTTP/1.1 pipelining is similar to the normal HTTP/1.1 (Figure 12). 

 
Figure 12 - Time of the First Pand for four HTTP configurations 
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Several tests considered SPDY with different percentage of pushed objects over different BoD 
settings. Results show that SPDY download time is quite independent upon the percentage of pushed 
objects. This is a server-side configuration choice. Still overall performance depends on the 
experienced RTT. As in other studies, a correctly configured CRA method was shown to outperform 
the other schemes since leading to an RTT close to the two-way propagation delay only, however 
over-allocation using CRA can result in poor satellite resource utilisation. On the other hand, VBDC 
provides the worst user performance due to an overall RTT of about 1.6 s, with the highest efficiency 
of satellite resource utilisation. Other mechanisms can be used to trade-off these efficiencies, but are 
beyond the scope of the current project. 

8. WEB REAL TIME APPLICATIONS OVER SATELLITE 
Tests at UoB examined three typical scenarios of real-time web applications over satellite: a server 
update, a client update, and a chat. Server and client updates consisted of a sequence of hundreds of 
small HTTP messages generated to update the server and client respectively. The chat scenario 
consisted in exchanging 100 messages in both directions. This scenarios were used to evaluate the 
different Real-Time Web configurations across the majority of mobile and desktop web browsers. The 
evaluated server/client configurations for web real-time apps with satellite delay are: the Ajax Long 
Polling (ALP), Server Sent Event (SSE), and WebSocket (WS). The evaluated browsers are: Google 
Chrome (version 27.0.1453), Firefox (version 21.0.0), Safari (version 6.0.4), iOS™ (mobile Safari 
version 6.0.0), Android™ (mobile Chrome version 18.0.1025). 

The bar charts in Figure 13 compare ALP, SSE and WS with different browsers; an emulated satellite 
introduced a delay of 600 ms. ALP takes always at least two RTTs (ie about 1.2 seconds) to complete 
an update. The largest delay and delay jitter are observed for mobile devices, iOS™ and Android™ 
OSes, due to the Wi-Fi access. 

WS outperforms SEE and ALP and exhibits a steadier and more uniform behaviour across different 
browsers. Indeed, the server update complete in one RTT with WS as opposed to two RTTs with SEE. 
In fact, the SEE performance was caused by a bad interaction with TCP Nagle’s algorithm in presence 
of large delays. (TCP Nagle is often disabled for interactive services.) 

These results highlight the importance of a bidirectional communication channel with predictable 
latency, such as the one provided by WS or SPDY. This is particularly important for mobile nodes that 
subject to larger delay jitter induced by the wireless access. 

 

 
Figure 13 - Comparisons of PLT with ALP, SSE, and WS in three scenarios: client update, server 

update, and chat. 

9. IMPACT ON THE SATELLITE NETWORKS 
Our experience with using SPDY over real and emulated satellite networks demonstrated that web 
performance can benefit from the advances offered by the new technologies, and we expect this also to 
be true for HTTP/2. Some pages will see more benefit with SPDY than others (e.g. the well-known 
flags page is known to particularly benefit from HTTP/2, a site bringing content from many origin 
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servers or using applications layered above the web may not show benefit). We expect these results to 
change in favour of HTTP/2 as the protocol implementations matures, and experience increases in 
hosting HTTP/2 servers. 

The research found that the use of Dynamic Bandwidth Allocation (DBA) did not play a major role in 
determining the download performance of HTTP in a satellite network. Indeed, when we disabled the 
PEP, it was found that the latency of the web page download was comparable to the performance of an 
emulated satellite delay (Netem). Since the experiments in Netem do not include BoD schemes, it was 
concluded that the delay usually met in satellite links (650 ms) is the major bottleneck for web page 
download and existing method make sufficient capacity available on the uplink to transport HTTP 
requests and TCP acknowledgments. Data upload functions are likely to be more influenced by the 
design of request/allocation methods. The Transport PEP (e.g. Split-TCP) benefits a SPDY session 
more than a HTTP/1.1 session. This was explored in experiments at UoA/UoS and ISTI/ISSIA 
connected a web client to a server through a satellite network with a PEP that used TCP-splitting.  

Some experiments inhibited Transport PEP using a tunnel (VPN experiments), which allowed an IP-
encapsulated connection between the client and the server. In this case, the performance gain of SPDY 
was much less evident across the entire set of web page lengths. A similar result was also found in 
other laboratory experiments were we artificially increased the RTT between client and server. When 
the RTT was increased to more than 200 ms, pages using SPDY tended to open more than one 
connection effectively behaving as HTTP/1.1. This is evidence that SPDY is not a simple transaction 
protocol, but is adaptive to the network path characteristics that it encounters. We concluded that 
current SPDY implementations are best tailored for short RTTs, and that results over the satellite can 
result in variable performance that can sometimes be hard to explain, but appears to result in different 
strategies for using the network (a simple example is using different numbers of TCP connections).  

Methods are needed to facilitate application-layer acceleration in PEPs where this is still needed. One 
solution could be to define a method to reveal to the end nodes the presence of intermediaries 
operating on an HTTP flow and to allow the end nodes explicit interaction with intermediaries, which 
requires a new approach. This and the use of Server Push are areas in which new specifications are 
likely to emerge. 

The work also noted the increase in the number of updates to TCP that are designed to enhance 
HTTP/2 performance. In considering this, we note that Transport PEP can result in ossification of 
equipment when the PEP is not continuously updated to support new transport options and hence 
forces receivers to revert to using older protocol features that rely on enhancement by the PEP. Future 
PEP designs need to cater for incremental evolution of the protocol stack – where some sites adopt 
new methods and some are still to do so, while some may not update their protocol stack. This will 
become more of an issue as a wider variety of transport protocol features become used across web 
server platforms.  

Two outcomes from evolution of TCP are possible:  

• Optimistic: In the long run, it may be possible that the enhancements to standard TCP 
accommodate better the fundamental issues posed by satellite networks. That is, large path 
delays, occasional packet loss and the variability presented by RRM protocols below IP. Split-
TCP is important now, but this view suggests that at some future time, Split-TCP will no 
longer be needed in a PEP, which would increase transparency of the satellite network to 
further evolution of the transport protocols. 

• Pessimistic: The changes driven by introduction of HTTP/2 could result in a lot of changes to 
transport behaviour that are targeted at commonly deployed web clients and which perform 
poorly in a satellite context. New protocols could be introduced (e.g. possibly encrypted 
protocols running over UDP) that may be difficult to intercept in the way that Split-TCP has 
accelerated TCP for HTTP/1.1. This will result in a need to design and deploy more 
intermediary functions within satellite networks, and will make the design of transport layers 
PEPs increasingly complex and difficult to sustain. 

A key challenge to achieving the optimistic conclusion for satellite networks is to track the 
developments being proposed in standards groups in both transport and applications space to ensure 
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that new changes are robust to the path delay and other characteristics presented by satellite links.  
Similar action is required to address the needs of cellular networks, but there are also differences in the 
way the networks operate that may require both communities to participate in the current standards 
initiatives.  

10.  CONCLUSIONS 
At the application layer, HTTP/2 changes many things. It will be much more adaptive and network 
friendly than current HTTP/1.1. We expect HTTP/2 to help reducing the HTTP overhead, and 
improving the performance for satellite. These gains come at a cost, since they impact the design and 
operation of satellite networks. 

HTTP/1.1 content delivery often employs sharding, where web objects are purposely distributed over 
multiple web servers, requiring many transport connections to retrieve a single page. SPDY instead 
can multiplex many objects onto a single connection. Sharding is therefore much less attractive. Other 
decisions on content placement are likely to evolve as SPDY is more widely deployed. From a satellite 
perspective, fewer concurrent connections reduces the state required when Network Address port 
Translation (NAT) is used, and eases classification of flows. 

While HTTP/1.1 is often seen as a simple get/response protocol, SPDY will be flexible enough to 
allow various forms of client/server optimization. With SPDY a sender not only can decide how to 
multiplex web objects onto the transport, but also how many parallel transport connections to use. As 
evidence of this tuning, we note that present versions of SPDY can lead to variable, sometimes 
unexpected performance over satellite networks. In addition, content placement and organisation may 
significantly impact SPDY performance. We expect HTTP/2 adaptation and tuning to evolve with 
time. There is a concern that the evolution of HTTP/2 could not accommodate the requirements of 
large delay networks (since these users represent a small proportion of the users of the general 
Internet).  This concern motivates a recommendation for satellite system operators and equipment 
manufacturers to track the standards evolution and actively engage in relevant discussions, in order to 
ensure the concerns of the satellite community are adequately represented. 

One important area of impact concerns the way satellite Performance Enhancing Proxies (PEPs) are 
designed and used. PEPs are widely deployed in present satellite networks. They have been crucial to 
providing acceptable performance using HTTP/1.1. To accelerate performance, a PEP operates at 
multiple layers influencing the lower layers (e.g. RRM), the transport (e.g. split-TCP) and applications 
(e.g. compression, pre-fetching, and http proxy). When thinking about SPDY and HTTP/2 it is 
important to differentiate the PEP functions into Transport, Application, and RRM mechanisms. This 
suggests that the currently combined role of applications and transport PEPs could be better viewed as 
two separate roles, with the future possible use of standard configured proxy for web acceleration. 

The use of a transport PEP has benefit for SPDY sessions and this is recommended for current use of 
HTTP/2. In the future, continued evolution of the transport protocol could reduce this need. Alternate 
transports for SPDY have been proposed that either update TCP or do not use TCP and it is likely that 
these cannot be accelerated using current PEPs. Transport support in PEPs therefore needs to track 
developments in the transport protocols and the way the transport is used. This is essential to ensure 
that satellite systems do not fall behind other network technologies. 

The use of Application PEP with HTTP/2 will require using a HTTP proxy. The use of proxies is 
different for SPDY because of its different security model. At present, intercepting application layer 
accelerators for web content, such as TurboPage, are not compatible with SPDY's current use of SSL. 
If these are not changed this could eliminate a useful set of opmitisation tools for the satellite 
community. Support for configured HTTP proxies is likely to have significant benefit for cacheable 
content. There is work to enable proxy functions in HTTP/2 that will need to be leveraged to enable 
satellite PEPs to intercept and forward HTTP/2 content. Server Push has many features in common 
with pre-fetching, but also differences. Future use of Server Push method could be associated with the 
broadcast/multicast capabilities of a satellite Forward Link (FL). 

Many PEPs are cross-layer devices and hence can also influence the use of the lower layer satellite 
service using dip packet inspection to classify flows and then match the flows to lower layer functions. 
Use of alternate transports, and encryption will require satellite networks to find other ways to identify 
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traffic requirements, e.g., use of Differentiated Services. Further research may be required to identify 
the implications of this change in the architecture. 

In conclusion, this work urges the satellite networking community to increase awareness of the 
development of the new HTTP technologies, and the implications this will place on the design of the 
higher layer packet processing. Furthermore, the new protocols are likely to continue to evolve and are 
expected to be deployed incrementally. Therefore, satellite systems need to plan for change and to 
understand the implications on satellite network design/configuration.  

There is also a need to influence the present development of standards at both the HTTP and transport 
layers to ensure that new specifications do not prejudice performance over long delay paths, and 
evolve in a way that ensures that satellite continues to offer high quality service comparable to 
terrestrial networks. This has implications on the design and evolution of satellite PEP to avoid 
performance problems when the new protocols are deployed. 
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