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A new study by Longo, Roy et al. has solved the structure of the

RAD51C-XRCC3 (CX3) heterodimer with a bound ATP analog, identify-

ing two main structural interfaces and defining separable replication fork

stability roles. One function relates to the ability of RAD51C to bind and

assemble CX3 on nascent DNA, with an impact on the ability of forks to

restart upon replication stress. The other relates to effective CX3 heterodi-

mer formation, required for 50 RAD51 filament capping, with effects on

RAD51 filament disassembly, fork protection and influencing the persis-

tence of reversed forks.

RAD51C has long intrigued cancer biologists. Com-

prehensive analyses of breast and ovarian cancer pedi-

grees and patients with Fanconi anemia, a rare disorder

characterized by hematological and developmental

defects, pinpointed RAD51C as a cancer predisposition

gene [1,2]. This finding was independently confirmed by

sequencing of cancer genomes, where variants of

unknown significance (VUS) mapping throughout the

protein sequence could not be ignored [3].

Functional inquiries on RAD51C have been going

on for decades. This is due to its role in interacting

and assisting RAD51’s recombinase function [4], cen-

tral to our understanding of homology-directed repair

(HDR) of double-strand breaks and homologous

recombination-mediated replication initiated by and

potentially helping replication problems [5,6]. RAD51C

is one of the central members of the RAD51 paralog

family of proteins, sharing similarity with RAD51 and

having critical functions in RAD51-mediated reactions.

Similar to RAD51, Walker A/B ATP binding motifs

are present in RAD51C, in addition to a putative Hol-

liday Junction resolvase activity residing within its N-

terminal region [7]. However, the precise function of

RAD51C has remained enigmatic.

Two main complexes of RAD51 paralogs are known,

with RAD51C being common to both [8]. In one of

them, RAD51C binds XRCC3 to form a heterodimer

known as CX3 [9], and in the other one, RAD51B com-

bines subsequently with RAD51D-XRCC2 to yield a

hetero-tetramer, BCDX2, where all paralogs except

RAD51B are considered essential. The paralogs have

incompletely understood functions in RAD51 loading

and filament stabilization, resembling those of BRCA2

[10], and further functions in mitigating replication

stress, including roles in replication fork protection

and restart [5,11]. These functions of RAD51 and the
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paralogs are broadly divided into HDR and replication

stress response. However, mechanistically, they likely

converge into aspects of RAD51 loading, assembly and

disassembly that are critical for the ability of cells to

complete replication without accumulating DNA dam-

age that can predispose the organisms to cancer. How-

ever, some key questions remain: What are these

functions and why do certain RAD51C mutations have

a much more severe phenotype than others?

Important insights on these topics came recently

through the teamwork of several groups, combining

structure elucidation of the CX3 complex with func-

tional studies of specific cancer variants [12]. Ingenuity

was required at several steps during this work. The

first technical challenge was related to the ability to

purify an active complex, a task that the team could

successfully accomplish using thermostable and highly

conserved RAD51C and XRCC3 proteins from Alvi-

nella pompejana (ap), an extreme metazoan living in

deep-sea waters. Leaving out a small, resolution limit-

ing N-terminal domain (NTD) of RAD51C and using

a non-hydrolyzable ATP mimic bound in the active

sites of both RAD51C and XRCC3, the authors

solved high-resolution crystal structures of the CX3

heterodimer. This revealed extensive contacts between

the RAD51C C-terminal domain (CTD) and XRCC3

NTD and CTD, with these subdomains connected by

a linker polymerization motif (PM) of XRCC3.

Although similar to RAD51 structures in terms of

ATP binding [13], the CX3 structure revealed a unique

positioning of the XRCC3 NTD, rotated about 90

degrees compared to RAD51-RAD51 interactions,

enabled by the unique XRCC3 linker PM. This struc-

ture resembles the one of a clamp with an NTD inter-

face (NTDi) established by the XRCC3 NTD facing a

surface of RAD51C, and a CTD interface (CTDi),

established by the XRCC3 and RAD51C proximal

CTD domains around the ATP-binding sites. Using

several approaches and algorithms, the authors infer

that the obtained structure is generally representative

of the evolutionarily conserved CX3 complex.

Relying on the 3D representation of the CX3 hetero-

dimer, the authors noticed that the cancer and patient

mutations can be largely segregated in the two distinct

interaction regions, CTDi and NTDi [1,2,14]. Moving

on, the authors aimed to probe the significance of muta-

tions that previously remained obscure, due to a lack of

overt defects in HRD proficiency [1,2]. They chose to

showcase mutations proximal in 3D to ones previously

demonstrated to be defective in HDR. The approach

taken, however, was not trivial as RAD51C is essential.

While previous studies used overexpression of RAD51C

variants in cells with RAD51C knockdown, the authors

decided to bypass the potential confounding effects of

that approach. Instead, authors used CRISPR-Cas9 edi-

ted haploid HAP1 cells with endogenously expressed

RAD51C selected variants, affecting either CTDi or the

NTDi. They chose A126T to inquire about the CTDi

function, as this residue neighbors a deleterious G125V

mutation, proximal to both the ATP binding site and an

XRCC3 binding interface [15]. Regarding the NTDi, they

chose the G264S mutation, located on an alpha-helical

patch in proximity to the previously characterized delete-

rious R258H mutation [1]. The HAP1 cells expressing

patient mutations were viable and lacked HDR defects,

but impaired proliferation and showed increased micro-

nuclei, suggesting unresolved replication stress.

What is the nature of the persisting replication stress?

A126 is located on the P-loop required to bind the ATP

phosphate and is capable of disrupting the CX3 inter-

face. Indeed, while the G125V mutation greatly impacts

the structure and causes loss of interaction with XRCC3

as observed by two-hybrid, the A126T mutation reduces

the interaction with XRCC3 upon replication stress, as

measured by proximity ligation assays or by co-

immunoprecipitation. While the G264S mutation does

not destabilize the interaction with XRCC3, it greatly

reduced the interaction of RAD51C with nascent DNA

at stalled forks as revealed by in situ protein interaction

with nascent DNA replication forks (SIRF). Besides this

separation of function, the authors attempted to predict

hCX3-RAD51 complexes using AlphaFold2. In this

way, they realized that XRCC3, but not RAD51C,

interacts with RAD51 [4] and inferred that CX3 blocks

RAD51 filament growth and disassembly on the 50 end.
Further using SIRF assays at different times upon expo-

sure to replication stress, they showed that A126T

causes faster RAD51 disassembly from stalled forks,

while the G264S mutation prevents efficient assembly of

RAD51 upon replication stress. These results further

correlate with A126T having strong defects in fork pro-

tection, but not fork reversal, which appears increased,

and with G264S having severe defects in fork restart.

Thus, CX3 plays important hitherto unappreciated

roles during DNA replication stress, using different

interfaces to facilitate fork restart or to protect forks

and resolve emerging reversed forks. This work creates

the foundation to study the multiple CX3 functions

relevant to cancer biology at the nexus with replication

stress response.
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