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Abstract

The breakup of inertial, solid aggregates in an incompressible, homogeneous and isotropic three-dimensional
turbulent flow is studied by means of a direct numerical simulation, and by a Lagrangian tracking of the ag-
gregates at varying Stokes number and fluid-to-particle density ratio. Within the point-particle approximation
of the Maxey-Riley-Gatignol equations of motion, we analyse the statistics of the time series of shear and drag
stresses, which are here both deemed as responsible for particle breakup. We observe that, regardless of the
Stokes number, the shear stresses produced by the turbulent velocity gradients similarly impact the breakup
statistics of inertial and neutrally buoyant aggregates, and dictate the breakup rate of loose aggregates. When
the density ratio is different from unity, drag stresses become dominant and are seen to be able to cause to
breakup of also the most resistant aggregates. The present work paves the way for including the role of inertia
in population balance models addressing particle breakup in turbulent flows.
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1. Introduction

Breakup of particles dispersed in a fluid flow is found at the core of many natural and engineering
processes. For instance, in aquatic systems, the breakup of plastic waste governs the rate of microparticle
production and, as such, plays a key role on the microplastics rate of release in the ocean (Garvey et al.,
2020; Poulain et al., 2018; Brouzet et al., 2021). In some pharmaceutical applications, active particles are in
need to be reduced in size before administration can take place (Capecelatro et al., 2022; Sabia et al., 2022;
Vasquez Giuliano et al., 2022), and in polymer compounding processes, controlled breakup and redistribution
of filler agglomerates is used to produce composites with enhanced mechanical and/or thermal properties
(Frungieri et al., 2020b, 2022).

The breakup of dispersed particles is determined by a number of phenomena that challenges simple
modelling approaches (Bäbler et al., 2008). The origin of this complexity relies on few main features: the
first is the multi-scale nature of the problem, with relevant spatial scales ranging from the micron size of the
particles to possibly hundreds of meters (the integral scale of the flow); the second is associated to the way
aggregates spatially sample the flow, and the third depends on the complex interplay between fluid-induced
stresses and inter-particle cohesive forces, which eventually governs the aggregate breakup dynamics.

Depending on the application of interest and degree of insight needed, different methods can be deemed as
suitable to model breakup, and they can be mainly differentiated on the basis of the treatment of the dispersed
and dispersing phase and in themechanism taken into account to predict breakup (e.g. viscous shear, turbulent
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fluctuations, wall impact, drag or rotary stress (Breuer & Khalifa, 2019)). On the scale of the aggregate,
detailed predictions can be obtained by first principle structural mechanics (Zaccone et al., 2009; Conchúir &
Zaccone, 2013; Jiang et al., 2020) or by Stokesian dynamics (Brady &Bossis, 1988), with the latter that, when
coupled with models for the inter-particle interactions, is able to fully characterize the breakup occurrence in
terms of critical stress and fragment size distribution. By such an approach, for instance, Harada et al. (2006)
studied the effect of the internal connectivity on the aggregate breakup. Similarly, Harshe & Lattuada (2012)
computed breakup rates and fragment size distribution in linear flows, and Frungieri & Vanni (2021) studied
the particle size distribution and the morphological evolution of a population of colloidal particles at varying
shear stress intensity and physico-chemical properties (Frungieri & Vanni, 2017; Frungieri et al., 2020a).

On the macro-scale (i.e., the scale of the equipment), where flow field heterogeneities and boundary layer
phenomena affect the evolution of the dispersed phase, so called Eulerian-Eulerian approaches, especially
when coupled with population balance models (Marchisio et al., 2006), are of particular interest, as they can
be conveniently used to promptly compute the breakup dynamics and the particle size distribution. By such
an approach a number of systems of practical relevance have been investigated, such as emulsions (Lebaz
et al., 2021), bubbly flows (Syed et al., 2018; Zhang et al., 2021; Maluta et al., 2021; Lehnigk et al., 2022)
and particle synthesis processes (Schikarski et al., 2022). However, despite the wide range of applications,
such approaches still rely on empirical correlations, generally assuming a single phenomenon (e.g. viscous
shear, turbulent fluctuations, surface instability) to be responsible for breakup, with the overall robustness of
the approach still often in need to be checked against dedicated experimental campaigns.

More recently, approaches aimed at linking small scale and large scale phenomena have emerged, most
of which adopted an Eulerian-Lagrangian simulation strategy. By such an approach, it is possible to study
complex flow fields and treat in a more detailed way the dynamics of the dispersed phase, especially when the
back-reaction of the particles on the flow is relevant. In this framework, Chen & Li (2020), considering an
homogeneous isotropic turbulent flow, computed breakup rates in the early stage of an agglomeration process
between adhesive particles, and single events such as restructuring and breakup by turbulent stresses were
also studied (Ruan et al., 2020; Yao & Capecelatro, 2021). However, due to the high computational burden,
this approach is limited to short simulated physical time, low level of turbulence (small turbulence Reynolds
number Reλ) and aggregates made by a small number of primary particles compared to what is typically
observed in experiments (Saha et al., 2016).

Turbulence affects particle motion in a distinctive manner, in particular in the case of inertial particles
(Brandt & Coletti, 2022). Inertia arises when particles have a finite size, and/or a density mismatch with the
suspending medium. Because of inertia, particles show complex behaviours that notably affect their spatial
distribution (Wang & Maxey, 1993; Bec et al., 2007) and their relative velocity and acceleration statistics
(Falkovich & Pumir, 2007; Bec et al., 2011; Scatamacchia et al., 2012). In particular, strong inhomogeneities
in the particles spatial distribution emerge, an effect that is maximal when the Stokes number is of order unity,
and becomes negligible in the limits of both small and large inertia. Moreover, in the case of large inertia,
heavy particles move almost independently of the fluid, hence they may collide with a large relative velocity.
These events – dubbed caustics – can cause an substantial increase in the collision rate (Pumir & Wilkinson,
2016).

An attempt to understand how the properties of turbulence affect breakup was undertaken by Guseva &
Feudel (2017) by evolving a population of particles of variable size in a synthetic turbulent flow. However,
such a simulationmethod does not account for turbulence intermittencywhich is responsible for the generation
of intense hydrodynamic stresses able to break also the strongest aggregates (Bäbler et al., 2015). In this
context, Bäbler et al. (2012) computed the breakup rate of tracer-like aggregates at varying internal strength in
a homogeneous isotropic turbulent flow, assuming particles to break under the action of the turbulent viscous
dissipation only. Similarly, De Bona et al. (2014), by combining a DNS of the turbulent flow with a Discrete
Element Method based on Stokesian dynamics, estimated the rate of breakup of aggregates addressing at the
same time size and distribution of the formed fragments.

In this work, we study the fragmentation of inertial heavy and light aggregates in a turbulent flow
by combining a direct numerical simulation of the turbulence with a Lagrangian tracking of the particles,
perfomedwithin the point-particle approximation of theMaxey-Riley-Gatignol equations ofmotion. Likewise
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to our previouswork (Bäbler et al., 2012), we neglect the internal structure of the aggregates, the hydrodynamic
interactions between them (Zahnow et al., 2011) and the accumulation of stresses on their structure (Marchioli
& Soldati, 2015), and we assume breakup to occur whenever the local instantaneous hydrodynamical stresses
acting on the aggregate exceeds a critical value (Bäbler et al., 2012; Breuer & Khalifa, 2019). We focus in
particular on the role of the Stokes number and of the particle buoyancy on both shear and drag stresses and
we evaluate the rate of breakup occurrence at varying aggregate strength.

The paper is organised as follows: in Section 2, we introduce the equation of motion for the inertial
particles and the turbulent flow and we provide some details about their numerical integration; in Section 2.2,
we present different approaches to measure the breakup rate. Results are discussed in Section 3, which are
followed by the concluding remarks in Section 4.

2. Methodology

We consider a dilute suspension of aggregates described as point-like spherical particles, which have no
feedback on the flow in which they are suspended, and which have no hydrodynamical interactions between
them. Aggregates have sizes smaller or comparable to the Kolmogorov scale of the flow η = (ν3/〈ε〉)1/4,
where ν is the kinematic viscosity of the fluid and 〈ε〉 is the mean rate of energy dissipation. Both the particle
Reynolds number, defined as Rep = 2R vp/ν, where vp is a typical particle velocity and R the particle radius,
and the particle Reynolds number based on the relative particle-fluid velocity, 2R|vp − u f |/ν, are small.

Aggregate trajectories are obtained by evolving a minimal formulation of the original Maxey-Riley-
Gatignol equations of motion (Maxey & Riley, 1983; Gatignol, 1983) in which the pressure force, the added
mass and the Stokes drag are kept into account, and which has been frequently used to describe the motion
of small, rigid, spherical particles in unsteady flows (Bec et al., 2010). Such equations read as:

dX
dt

= V(X, t) , (1)

dV
dt

= β
Du(X, t)

Dt
+

u(X, t) − V(X, t)
τp

, (2)

where V is the particle velocity, X is the particle position and u is the undisturbed fluid velocity at the particle
position. It is apparent that only two dimensionless parameters govern the particle motion: the density ratio
β defined as β = 3ρ f

ρ f +2ρp where ρp and ρ f represent the particle and fluid density, respectively, and the
Stokes number St = τp/τη , where the particle relaxation time is defined as τp = R2/(3βν), being R the
particle radius. The Kolmogorov time scale of the flow, entering the definition of the Stokes number, is
τη = (ν/〈ε〉)

1/2. From the definition of β, it is clear that neutrally buoyant particles have β = 1, extremely
light particles have β → 3, while heavy particles have β → 0. We track the motion of particles at varying
inertia, by changing both their buoyancy parameter and their Stokes number as schematically illustrated in
Fig. 1.

The fluid velocity u is evolved according to the incompressible Navier-Stokes (NS) equations reading as:

∂u
∂t
+ u · ∇u = −

∇p
ρ f
+ ν∇2u + F, ∇ · u = 0 . (3)

A steady, statistically homogeneous and isotropic turbulent flow is obtained by adding to the NS equations
a forcing term F injecting energy in the first low-wave number shells and keeping constant their spectral
content (Bec et al., 2010). The kinematic viscosity is chosen in such a way that the Kolmogorov length
scale equals the grid spacing η ' δx. By doing so, a good resolution of the small-scale velocity fluctuations
is obtained. At the steady state, the energy input balances the mean kinetic energy dissipation such that
〈F ·u〉 ' 〈ε〉. The Navier Stokes equations are solved on a 5123 cubic grid with periodic boundary conditions
and a TaylorâĂŞReynolds number Reλ ' 185. In Table 1 the main characteristics of the flow are reported.
Further numerical details on both the Eulerian and Lagrangian approaches can be found in the work by Bec
et al. (2010).
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Figure 1: Parameters space of the particles used in our numerical experiments. The red line represents the locus of constant R/η. We
analyzed 128k trajectories per each single (β, St) choice. Tracers are represented by the black dot. Trajectories were evolved using a
second order algorithm, with a time step dt such that τη ' 100dt.

Table 1: Parameters of the DNS simulation. Microscale Reynolds number Reλ , root-mean-square velocity urms, mean energy dissipation
ε, kinematic viscosity ν, Kolmogorov scale η = (ν3/〈ε〉)1/4, integral scale L, Eulerian large-eddy turnover time TE = L/urms,
Kolmogorov timescale τη = (ν/〈ε 〉)1/2, grid spacing ∆x, number of grid points N , simulation time ts.

Reλ urms ε ν η L TE τη ∆x N3 ts
185 1.4 0.94 0.00205 0.010 π 2.2 0.047 0.012 5123 13.2
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Figure 2: Schematic of the total hydrodynamic stress along a particle trajectory. The particle is released at time t0 and breaks up at time
t1. The time-lags τσcr and Tσcr are the exit time and the diving time, respectively.

2.1. Hydrodynamic stresses
Once a statistically steady state condition in the flow is reached, particles are released at random in the

fluid, and the time-series of the hydrodynamic stresses acting on them is tracked. We assume aggregates to
be brittle objects that instantaneously respond to the external stress and that undergo breakup as soon as their
critical resistance is exceeded by the total fluid dynamic stress acting on them.

Following Kusters (1991) and Breuer & Khalifa (2019)), two hydrodynamic stresses are deemed as
responsible for the breakup of the aggregate, namely the shear stress σε , due to the fluid velocity gradients at
the particle position, and the drag stress σSt , due to the slip velocity between the particle and the underlying
flow. The first is evaluated along the particle trajectory X as:

σε(X, t) = µ
√

2
15

ε(X)
ν

, (4)

where µ = νρ f is the dynamic viscosity of the flow, and where the local turbulent dissipation rate was
computed as ε = 2νei jei j , being ei j = 1/2(∇jui + ∇iu j) the symmetric part of the velocity gradient tensor
∇jui .

The drag stress is instead evaluated as:

σSt (X, t) = µ
3|u(X) − V(X)|

2R
. (5)

where we have assumed, as above, that the stress is isotropic and that the aggregate has a spherical shape (see
also Breuer & Khalifa (2019) for a discussion). Therefore the drag stress acting on an aggregate can be simply
computed as the ratio between the drag force 6πµR|u − v| and the surface area 4πR2. Following Kusters
(1991), the two stresses are added up linearly σtot = σSt + σε , thus assuming that the two stresses propagate
instantaneously across the aggregate bond network and that their load on the structure can be superimposed.

2.2. Breakup rate measurements
Our work is aimed at evaluating particle breakup rates at varying inertia. In our model, an individual

aggregate undergoes breakup instantaneously when the total hydrodynamic stress acting on it exceeds a
critical threshold value σcr , representing the aggregate mechanical strength.

Figure 2 illustrates the simple modeling framework we use. The aggregate is released at a random time t0
and samples the flow until it experiences for the first time a hydrodynamic stress exceeding its resistance σcr

(this, in the schematics of Fig. 2, occurs at t1). The time-lag between release at t0 and breakup at t1 identifies
the exit time τσcr . The breakup rate is therefore calculated as the inverse of the mean exit time, i.e., as:

fσcr ≡
1
〈τσcr 〉

. (6)
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Notice that within this modelling framework, situations where the hydrodynamic stress exceeds the critical
stress already at the point of release are ignored when computing the average in Eq. (6). The reason for this is
that breakup events that occur right at the point of release would be governed by the frequency of aggregate
release and not by the timescale of the turbulent fluctuations.

The picture presented in Fig. 2 can be used to identify a second time scale. For this, we notice that the
hydrodynamic stress experienced by the aggregate during its lifetime is part of the Lagrangian time series of
a particle with the same kinematic characteristics (Stokes number and density parameter) as the aggregate.
Since this Lagrangian time series exists throughout the lifetime of the flow, the hydrodynamic stress can
also be traced backwards in time, as depicted in Fig. 2. Hence, by considering the Lagrangian time series
of which the aggregate released at t0 sampled the segment between t0 and t1, we can identify a new time
scale, called diving time Tσcr , as the time-lag between the last down-crossing of σcr before t0 and the first
up-crossing of σcr after t0. This time scale Tσcr allows us for deriving a few additional relationships to
express or approximate the breakup rate. At first, it can be shown that for a statistically stationary flow the
breakup rate defined in Eq. (6) can also be expressed through the variance of the diving time as (Bäbler et al.,
2012):

fσcr =
2〈Tσcr 〉

〈T2
σcr
〉

(7)

Moreover, we can define a proxy-breakup rate by using the diving time instead of the exit time. The
proxy-breakup rate simply reads as:

f̃σcr =
1

〈Tσcr 〉
(8)

For a stationary stochastic process, the above can be calculated by the frequency of upward-crossing of the
the threshold σcr divided by the fraction of time the trajectory stays below the threshold. The former can
be expressed by means of the Rice theorem, whereas the latter follows from the probability density function
(PDF) of σtot (t) (Lindgren, 2019). By doing so, the proxy-breakup rate can be computed as:

f̃σcr =

∫ ∞
0 d Ûσtot Ûσp2(σcr, Ûσtot )∫ σcr

0 dσtot p(σtot )
(9)

where p2(σtot, Ûσtot ) is the joint PDF of the total stress and of its time derivative, and where p(σtot ) is the
PDF of σtot . Approximating the breakup rate using the Rice formula was first proposed by Loginov (1986).
Accordingly, Eq. (9) is referred to as Loginov’s approximation.

For large values of the threshold σcr , the proxy-breakup rate based on the diving time (Eq. (8)) approaches
the exact breakup rate based on the exit time (Eq. (6)):

〈τσcr 〉 ∼ 〈Tσcr 〉 for σcr � 〈σtot〉 (10)

To understand this, let us consider a long timeseries of length tL , with tL being much larger than the large
eddy turnover time TE . Along this time series, the threshold σcr is crossed N-times in the upward direction.
Since the threshold is very large, the total time the timeseries spends above σcr is negligible and the mean
diving time follows as 〈T〉 = tL/N . To connect this to the exit time, we assume that the up-crossings of
σcr are distributed randomly along the trajectory. Considering that the timespan between two consecutive
upcrossings is large compared to the large eddy turnover time TE , this assumption is reasonable.

Next to the N upward-crossing events along the trajectory, there is now also another event i.e., the release
of the aggregate at a random time t0, such that in total there are N + 1 events along the trajectory. Thus,
the mean exit time follows as 〈τ〉 = tL/(N + 1). For a stationary flow, the length tL and the number of
upward-crossings N are large such that tL/N ≈ tL/(N + 1), finally rationalizing the result of Eq. (10).
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Figure 3: Time series of the shear stress σε (top panel) and drag stress σSt (bottom panel) for a sample aggregate with Stokes number
St = 1.64 and buoyancy parameter β = 3. The x axis is normalized by the Kolmogorov time scale of the flow. The y-axis is normalized
by the average shear stress σ0 experienced by tracer particles (β = 1, St = 0).
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Figure 4: Probability density function of the shear stress at varying particle inertia. The red dotted line represents a log-normal
distribution P(σ0, 0.55σ0), with σ0 being the average σε experienced by tracer particles.

3. Results and discussion

3.1. Hydrodynamic stress statistics
To study the statistics of the hydrodynamic stresses experienced by inertial aggregates, we start by consider

them as infinitely strong and moving in the flow field without undergoing breakup. Figure 3 shows the time
series of the shear stress σε and of the drag stress σSt , recorded along the trajectory of a heavy aggregate with
inertia values β = 0.5 and St = 1.64. We observe that both stresses exhibit strong fluctuations, each with its
own dynamics. Indeed, the first is determined by the way the particle sample the different regions of the flow,
whereas the second comes from the fluid-particle slip velocity. For the chosen set of inertia parameters, we
also observe that the drag stress dominates over the shear stress along the whole particle trajectory. Figure 4
reports the probability density function of the shear stress for two buoyancy parameters (β = 0.5 and β = 3.0,
corresponding to heavy and light particles, respectively) and for the smallest and largest Stokes values here
investigated. The plot also reports the distribution of the shear stress experienced by tracer particles, for
which β = 1 and St → 0. It is apparent that, for all combination of β and St, the curves are very similar
and, more remarkably, regardless of their inertia, all particles sample the shear stress field exactly as tracer
particles do, as it is made apparent by the fairly good overlap of the distributions within the whole stress range.
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Figure 5: Probability density function of the fluid dynamic stresses for heavy and light particles at varying Stokes number. Panel a) and
b) report the PDFs of the drag stress. In panel c) and d) the same PDFs are rescaled by St0.4. Panel e) and f) report the total stress
distributions. In these two panels, the black dotted line is the PDF of the shear stress experienced by tracers.

Furthermore, the shear stress σε appears to be well fitted, at least for the central part of the value range, by a
log-normal distribution peaking at the average value of the shear stress σ0 experienced by tracers.

Figures 5a) and b) show the PDF of the drag stress for heavy and light particles, respectively, at varying
Stokes number. In these two panels the PDFs are shown in dimensionless coordinates, without scaling. The
average values of the drag stress for a larger set of particle properties are shown in Fig. 6a), where it is apparent
that the average drag stress increases with the Stokes number. To better understand the general behavior, we
recall that the drag stress is proportional to the slip velocity |u − V| (see Eq. (5)).

In Fig. 6b), we show the normalised average slip velocity as a function of both the Stokes number and the
buoyancy parameter: at small Stokes number, we observe that the mean slip velocity scales linearly for all
the investigated buoyancy parameters, in agreement with the Maxey approximation for weak inertia (Maxey,
1987). Indeed, starting from Eq. (2), in the limit of St → 0, the slip velocity becomes:

u − V ≡ τp (dV/dt − βDu/Dt) ' τp(1 − β)a f , (11)

where we have assumed that in the limit of small Stokes numbers the aggregate acceleration and the fluid
acceleration along the aggregate trajectory are equal, i.e., dV(X)/dt ' Du(X)/Dt ' a f (X). Hence, in the
weak inertia limit, 〈|u − V|〉 ∝ St (Boffetta et al., 2007) as shown by the dotted line in Fig. 6b.

However, we also observe that the mean slip velocity can be described fairly well by the power-law scaling
〈|u −V|〉 ' Stα, with α = 0.9: in other words, an effective and empirical exponent, α, can be introduced that
models the slip velocity behaviour over a wide range of Stokes numbers (up to St ∼ O(1)). Such an exponent
is found to be independent, or weakly dependent, on the buoyancy parameter. Recalling that the drag stress
σSt ∝ |u − V|/R, and that R ∝ O(St1/2), we finally obtain that σSt ∝ St0.4. If we apply this scaling to the
probability distribution functions of the drag stress of Figs. 5a,b), we observe that the distributions collapse
onto a single curve for both light particles (up to St ≈ 1.64) and heavy particles (up to St ≈ 4.11) over a
quite wide range of σSt (see Figs. 5c,d). We also note that the left tail of the drag stress is well described by
a χ2 distribution with 3 degrees of freedom. We consider this an outcome of the Gaussian dynamics of the
smallest stress contributions. To summarise, the collapse of the left tails of the PDFs is clearly a consequence
of the fact that small fluctuations of the slip velocity are proportional to the first moment of the distribution,
as expected; moreover, these small fluctuations occur in the smooth regions of the flow.

The panels e) and f) in Fig. 5 show the probability distribution functions of the total stress for heavy and

8



0 1 2 3 4

St

0

2

4

6
〈σ
S
t
〉/
σ

0

〈σε〉/σ0

a)
β = 0.5

β = 1.0

β = 1.5

β = 3.0

10-1

100

101

 0.1  1

b)

<
|u

 -
 V

|>
 (
τ η

/η
 )

St

β=0.5
β=1.5
β=3.0

Figure 6: a) Drag stress for various β values as a function of St . The dotted line reports the average σε experienced by tracers. b)
Log-log plot of the fluid-particle slip velocity as a function of the Stokes number, for various β values. The slip velocity is made
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dashed line shows the scaling 〈 |u − V | 〉 ∝ St0.9.

light particles. The distribution of the shear stress experienced by tracers, which, as already discussed, is very
similar to the one of the other particle families, is also reported for comparison. The shifting of the curves
towards the right at increasing St makes it apparent that, as inertia is increased, particles experience larger
drag stresses. However, at Stokes number ≈ 4, a drop down in the probability of the largest stresses can be
observed, especially for light particles.

Even if particles experience the shear stress space in a way similar to the one of tracers, when looking
at the statistics of the experienced flow topology, important differences emerge. We characterize the flow
topology along particle trajectories according to the mixing index λ, defined as:

λ =

√
I IE∞

√
I IE∞ +

√
I IΩ∞

(12)

where I IE∞ is the second invariant of the rate-of-strain tensor E∞ and where I IΩ∞ is the second invariant of
the vorticity tensor Ω∞ = 0.5

(
∇u∞ − ∇u∞,T

)
. The mixing index has a 0–1 range, with 0 indicating a pure

rotational motion, and 0.5 and 1 indicating pure shear and pure elongational flow, respectively. Figure 7a)
reports the average mixing index λ seen by the aggregates for different Stokes numbers and buoyancy
parameter β. The black dot at λ = 0.55, St = 0 indicates the behavior of tracers. The plot makes apparent
that, regardless of the β parameter, small Stokes aggregates behave very similarly to tracer aggregates with an
average mixing index fairly close to 0.55. However, as the Stokes number increases, qualitative differences
can be observed. Neutrally buoyant aggregates (β = 1) keep behaving as tracer aggregates, with the average
λ almost constantly equal to 0.55 at increasing St. On the contrary, heavy and light aggregates show two
different behaviors: the heavy aggregates (β = 0.5) present a maximum in 〈λ〉 for St ≈ 1 and converge to the
tracers behaviour again as Stokes increases.

Light aggregates (β = 1.5 and β = 3), on the contrary, have a minimum 〈λ〉 at St ≈ 1, which is kept
almost constantly up to St = 4. This confirms what already pointed out by other researchers (Calzavarini
et al., 2008b,a), who observed that light aggregates preferentially sample the vortical regions of the flow (i.e.,
lower λ regions), whereas heavy aggregates are ejected from vortical regions and tend to sample the higher
strain regions (larger λ). This behavior, referred to as turbulence induced segregation, is here observed to be
particularly important at St ≈ 1, in line with what reported by Bec et al. (2005). Finally, to make this behavior
more apparent, Fig. 7b) reports the joint probability distribution functions of the mixing index and turbulent
dissipation rate ε for two different aggregates classes, with same Stokes number (St ≈ 1) and different β
parameters, and for tracers. It is again apparent that all aggregates sample almost equally the ε space, but
quite differently the λ space: heavy aggregates experience the larger values of the λ range and behave more
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Figure 7: a) Average mixing index seen by aggregates as a function of both St and β. The black circle indicates the tracer behavior.
b) Bivariate distribution function of the turbulent dissipation rate and mixing index for heavy aggregates (β = 0.5), light aggregates
(β = 3) and tracers. Stokes number is approximately equal to 1 for both the light and the heavy aggregate class.

similarly to tracers, except for the lower amplitude of the fluctuations in the λ direction; light aggregates
(β = 3) sample the lower value range of the mixing index and experience smaller fluctuations. This confirms
that are more preferably trapped in the vortical regions of the flow.

3.2. Breakup statistics
Figure 8 shows the breakup rate as a function of the threshold stress for two particle families with same

Stokes number (St = 4.11) and different buoyancy parameters, namely β = 0.5 (panel a) and β = 3 (panel
b). The threshold stress on the horizontal axis is normalized by the mean shear stress σ0 and the breakup
rate is normalized by the Kolmogorov time scale τη . Although the data shown refers to particle families on
the outskirts of our dataset (see Fig. 1), the graph reflects the general trend of the breakup rate and allows
us for discussing its characteristics and the different approaches used for measuring it. As the total stress
is calculated from the three components of the slip velocity and from the spatial derivatives of the fluid
velocity, that are both quantities that fluctuate along a particle trajectory, the exit time has to be considered
as an outcome of a combination of random variables. For small threshold values, this combination leads
to a breakup rate following a power-law behavior: in this regime, in fact, breakup events are controlled by
hydrodynamic stresses that are close to the mean stress and occur in the smooth regions of the flow, where
the stress statistics are Gaussian distributed.

However, as the threshold increases, the breakup rate has a sudden super-exponential drop-off. This
behaviour is the consequence, on the contrary, of the rare turbulent events that are vigorous enough to break
strong aggregates, whose occurrence is controlled instead by turbulent intermittency.

Regarding the different approaches for measuring the breakup rate, it is observed that for small threshold
values the exact breakup rate based on the exit time (square symbols) is very close to the proxy-breakup rate
based on the diving time, that in Fig. 8 is shown by both its discrete measurement (star symbols) and its
analytical extension provided by the Loginov’s formula (line). To understand this similarity we analyze the
PDFs of the exit time and of the diving time. Figure 9a) shows the PDF of the diving time for the same particle
family as shown in Fig. 8a) and for two threshold values. We observe that the PDF has a sharp decrease
for small diving times followed by a well developed exponential tail. The presence of the exponential tail
implies that the realization of diving events whose duration exceeds the correlation time of the hydrodynamic
stress can be described as a Poisson process, where individual diving events are independent of each other.
Moreover, an exactly exponentially distributed diving time would lead to an equivalence of the mean diving
time and the mean exit time, i.e. 〈T〉 = 〈τ〉 (this follows from using p(T) ∼ e−t/〈T 〉 in Eq. (7)). However,
the deviations from the exponential distribution for short diving events, that are particularly pronounced for
the intermediate values of the threshold shown in Fig. 9, result in the diving time being different from the
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Figure 8: Breakup rate versus the threshold stress for aggregates with St = 4.11 and (a) β = 0.5 and (b) β = 3 measured by the exact
expression based on the exit time (square symbols) and the approximations based on the diving time (star symbols), broken clusters
(triangles) and the Loginov formula (lines). The horizontal axis is normalized by the mean shear stress σ0, whereas the vertical axis is
normalized by the Kolmogorov time scale τη . For the sake of clarity, error bars are shown for few data points only.
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Figure 9: Probability density function for aggregates with St = 4.11 and β = 3 of (a) the diving time and (b) the exit time at two critical
stress values. The dashed lines in (b) show exponential distributions with an expected value equal to the mean exit time for the given
threshold. The insets show the normalized second order moment of the diving time and the exit time as a function of the critical stress.

12



exit time. These deviations for short diving times reflect the correlation of short-lived turbulent fluctuations,
i.e. the burst in turbulent intensity which often come with multiple spikes in the stress intensity, as visible
in Fig. 3. To quantify the deviation from an exponential distribution we report in the inset of Fig. 9a) the
moment ratio 〈T2〉/(2〈T〉). For an exponential distribution, this moment ratio has a value of unity. As it can
be seen, the moment ratio for the diving time is larger than one. This has indeed to be ascribed to the sharp
drop of the diving time PDF for short diving times.

Returning to Fig. 8, we note that for large thresholds values, for which breakup is governed by the rare
and intense turbulent events, there are not enough statistics to measure the mean exit and mean diving time
with confidence. In other words, the length of exit and diving events becomes comparable or larger than the
run-time of our simulation. This causes the data for the breakup rate based on the exit time (solid squares)
and on the diving time (star symbols) to level off or even to increase. Inspection of the underlying PDFs
reveals that this is an artefact caused by the finite run time of our simulation. In comparison, the Loginov’s
formula (solid line) keeps on decaying, thus giving the more realistic picture.

To independently estimate the breakup rate for large threshold values (and thus to validate the Loginov
formula) we make use of another routine. This consist of releasing a large number of aggregates at the
beginning of the simulation and monitoring the decay of their number concentration as breakup events occur.
From the temporal evolution of the number of aggregates N(t) we can estimate the breakup rate assuming a
first-order process as:

dN
dt
= − f̂σcr N (13)

On the basis of Eq. (13), the proxy breakup rate can be determined from the slope of a plot of ln(N/N0)
versus t. The first order process given by Eq. (13) assumes that the events that cause breakup (i.e. the
intense fluctuations in the hydrodynamic stress) are independent from each other. Moreover, the dynamics
underlying Eq. (13) is equivalent to an exit time that has an exponential distribution. This is explored
in Fig. 9b) that shows the PDF of the exit time for two threshold values. It is seen that the exit time is
approximately exponentially distributed, with small deviations at short exit times, and at small threshold
values for large exit times. To assess the deviations from exponential distribution in the inset of Fig. 9b) we
show the normalized second order moment of the exit time, i.e 〈τ2〉/(2〈τ〉), as a function of the threshold
stress. For an exponential distribution, the normalized second order moment has a value of unity. As it
can be seen, at increasing threshold stress, the normalized second order moment approaches one, implying
that the exit time PDF comes closer to an exponential distributions and hence, the dynamics proposed by
Eq. (13) become more accurate. This latter observation is also confirmed by the breakup rate in Fig. 8.
The open triangle symbols show the estimate based on the Eq. (13), from which see that, for intermediate
threshold values, for which both the exit time measurement and the concentration decay can be measured
with confidence, we find good agreement between the two. Moreover, for large threshold values the estimate
based on the concentration decay (open triangles) is in agreement with the Loginov’s formula (lines), a result
which is in line with Eq. (10). Based on these findings, in the following, we will report the breakup rate in
terms of the exact expression based on the exit time for small and intermediate thresholds, that is for breakup
rates fσcr τη > 0.01, whereas for large thresholds we will report the estimate from the decaying particle
concentration of Eq. 13.

3.3. Breakup rate of inertial aggregates
Figure 10 shows the breakup rate as a function of the threshold stress for neutrally buoyant aggregates

with varying Stokes number. Lines refer to the proxy-breakup rate based on the Loginov’s formula of Eq. (9),
whereas symbols refer to direct measurements based on the exit time (Eq. (6); square symbols) and on the
concentration decay (Eq. (13); triangle symbols). The data shows a clear shift in the breakup rate, i.e., we
observe a transition from a shear dominated breakup mechanism at St = 0 to a drag dominated one as St
becomes large. Shear stresses are relatively weak and, accordingly, only weak aggregates are broken down
by shear. This is the reason why an early drop-off of the breakup rate occurs for tracer-like aggregates. For
instance, this makes a tracer-like aggregate of strength σcr ∼ 10σ0 very hard to break.
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Figure 10: Breakup rate as a function of the threshold stress for β = 1 and three different Stokes numbers measured by the exact
expression based on the exit time (square symbols) and on the broken cluster approach (triangles). Solid lines report the breakup rate
measured by the Loginov’s formula. The dashed line shows the fitted power-law expression fσcr ∼ σ

−k
cr , with k = 1.46 ± 0.04. The

inset shows the breakup rate compensated by the power-law expression.

As the Stokes number increases, the slip velocity grows and gives origin to an additional drag stress acting
on the aggregate. This stress causes a shift of the drop-off of the breakup rate towards larger threshold values,
such that in this case an inertial aggregate with strength 10σ0 has a substantial breakup frequency, as made
apparent by the two non-tracer curves in Fig. 10.

It is interesting to notice that despite the additional contribution of the drag stress, the power-law part of the
breakup rate is not affected by inertia, i.e., for small threshold stresses, the breakup rates for neutrally buoyant
aggregates collapse to a single master curve following a power-law of the form fσcr /τη = 0.090 (σcr/σ0)

−k ,
where k = 1.46 ± 0.04, as shown by the dashed curve in Fig. 10. The inset of Fig. 10 shows the breakup rate
compensated by this power-law expression, underlining the quality of the power-law master curve.

The breakup rate for heavy and light aggregates is shown in Fig. 11. For these aggregates, the drag stress
is dominant and causes a shift of the breakup rate towards higher threshold stresses at already small Stokes
number. For instance, at the smallest Stokes number reported (St = 0.31) drag stresses already exceed the
shear stresses by an order of magnitude, thus determining the observed shift of the breakup rate towards the
right. As the Stokes number further increases, the breakup rate for both heavy and light aggregates saturates.
For heavy particles (β = 0.5, Fig. 11a)) the breakup rate reaches an apparent maximum. This maximum
(made apparent by the overlap of the curves for St = 1.64 and St = 4.11 in Fig. 11a) follows again a power-law
for the small threshold values and has a sharp super-exponential cut-off at larger thresholds. For light particles
(β = 3, Fig. 11)) the overlap at large Stokes numbers is less pronounced and we even observe a reduction in
the breakup rate for large threshold stresses and large Stokes numbers. This sharper drop-off at St = 4.11
well agrees with the PDFs of the total stress reported in Fig. 5f). Careful inspection of the PDFs reveals
in fact a slightly wider right tail at intermediate Stokes numbers (i.e. St = 1.64) compared to the largest
Stokes number studied in our work (St = 4.11). This implies that large excursions of the total stress are more
frequent for intermediate Stokes numbers than for large Stokes numbers, i.e., light particles with large Stokes
number exhibit a mild filtering effect that prevents them from experiencing high drag stresses, thus causing
the sharper cut-off of the breakup rate for St = 4.11 visible in Fig. 11b.
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Figure 11: Breakup rate for varying particle critical stress. Data refer to heavy aggregates with β = 0.5 (a) and light aggregates with
β = 3.0 (b).
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4. Conclusions

In this work we have studied the stress and breakup statistics of inertial aggregates in homogeneous
isotropic turbulence, at varying fluid-to-particle density ratio and Stokes number. We have solved the flow
dynamics by a direct numerical simulation and tracked the particles trajectories by evolving a minimal
formulation of the Maxey-Riley-Gatignol equation. We have deemed both shear stress and drag stress as
responsible for the particle breakup and we have assumed breakup to occur in a brittle manner, i.e., aggregates
break instantaneously when they experience a fluid dynamic stress larger than their mechanical resistance.
We have devised and tested different approaches for measuring the breakup frequency, discussing in detail
their theoretical foundations and limitations.

Two distinct breakup regimes exist, depending on the aggregate mechanical strength. Loose aggregates
have large breakup frequencies and are broken down in the smooth regions of the flow, where the stresses are
Gaussian distributed, thus making the breakup frequency to follow a power-law behaviour with the aggregate
strength. Conversely, strong aggregates have lower breakup rates and are broken down by the burst of the
hydrodynamic stresses, which are dictated by the turbulent intermittency.

Results have also shown that inertial effects have a major role in determining breakup rates. When
inertial effects are limited (i.e., for neutrally buoyant particles with small Stokes number), particles behave
very similarly to tracers: they similarly sample the flow topology and their breakup is mostly dictated by the
shear stress statistics. However, as soon as deviations from neutral buoyancy occur, inertial effects become
dominant even at small Stokes numbers and have been seen to be able to cause the breakup of even the most
resistant aggregates. A characterization of the flow topology seen by particles has also been conducted, and
it agrees quantitatively with previously reported data for turbulence induced segregation.

Our investigation puts the basis for further developments for the measure and modeling of breakup due
to shear and drag stresses. In fact, it can be considered as a first step towards the development of breakup
kernels for inertial brittle aggregates. Laboratory and numerical investigations aimed at assessing the outcome
of breakup events in terms of the fragment size distribution would complement our findings, and provide
the full information needed for calibrating macroscopic population balance models addressing breakup in
homogeneous solid-liquid turbulent flows.
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