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Abstract—We propose a prior robustness approach for the

Bayesian implementation of the fault tree analysis (FTA). FTA
is often used to evaluate risk in large, safety critical systems but
has limitations due to its static structure. Bayesian approaches
have been proposed as a superior alternative to it, however,
this involves prior elicitation, which is not straightforward. We
show that minor mis-specification of priors for elementary events
can result in a significant prior mis-specification for the top
event. A large amount of data is required to correctly update
a mis-specified prior and such data may not be available for
many complex, safety critical systems. In such cases, prior mis-
specification equals posterior mis-specification. Therefore, there
is a need to develop a robustness approach for FTA which can
quantify the effects of prior mis-specification on the posterior
analysis.
Here, we propose the first prior robustness approach specifically
developed for FTA. We not only prove a few important mathe-
matical properties of this approach, but also develop easy to use
Monte Carlo sampling algorithms to implement this approach
on any given fault tree with AND and/or OR gates. We then
implement this Bayesian robustness approach on two real life
examples: a spacecraft re-entry example and a feeding control
system example. We also provide a step-by-step illustration of
how this approach can be applied to a real life problem.

Index Terms—TFault tree analysis, prior elicitation, distorted
band of priors, Bayesian robustness, Bayesian networks.

NOMENCLATURE
AHP Analytic Hierarchy Process.
BN Bayesian Networks.
FT Fault Tree.
FTA Fault Tree Analysis.
TE Top event.
w.I.t. with respect to.
I. INTRODUCTION
TA is often used to quantify the probability of

occurrence of an undesirable event, namely the TE.
FTs are constructed in a top-down fashion from the TE to
their causes - represented by the intermediate and elementary
events in the tree. The relationship between the events and
the causes is represented using logical gates, most commonly
AND and OR gates. The basic assumptions of the standard
FTA are: (i) events are Bernoulli trials e.g. either happen
or do not happen; (ii) events are statistically independent;
(iii) the relationship between events are represented using
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logical AND and OR gates and (iv) the root of the FT is the
undesirable TE to be analyzed [1].

A. FTA and Bayesian Networks

One of the common criticisms [2] of the FTA is that the
events are considered independent of each other, which can
be an unrealistic assumption. BN have been recommended
as a way to incorporate local dependence between events, as
well as providing a framework for both forward (prediction)
and backward (inference) analyses; see for example [1], [2]
and [3]. An FTA can be directly mapped into a BN and that
permits the assumptions (i) - (iii) to be relaxed under the BN
formalism [1]. Additionally, BN can model uncertainty in an
outcome - instead of the deterministic outcomes implied by
the logical gates in an FTA. In other words, BN can be seen
as a natural extension of FTA [3].

However, BN have their own drawbacks: (1) the typical
BN approach requires specifying exact prior probabilities (not
just the prior distributions) of the elementary events and (2) it
also requires specification of all the conditional probabilities
in the system. In many cases, especially when designing new
systems, sufficient prior information is not available and hence
it may not be possible to even specify exact prior probabilities
let alone all the conditional probabilities accurately. As the
number of nodes and the dependency structures increase,
specifying the information needed by BN accurately becomes
increasingly unrealistic. FTA is relatively easier to implement.
Also, in many cases (including the Examples IV-B and IV-
C in this paper), the flexibility offered by BN is not needed.
Unrelated events may be independent and hence dependence
structures may not be required. Similarly, when the TE oc-
curs for sure (deterministically) once the required elemen-
tary/intermediate events have occurred, modeling uncertainty
in the outcomes is not necessary. Another disadvantage of BN
is that incorporating a previously unknown part of the network
becomes computationally very expensive as the size and the
complexity of the network grows (see, for example, [4]). On
the other hand, this is relatively easily done for FTA.

B. Fully Bayesian implementation of FTA

For these reasons, when the system satisfies the assumptions
(1) - (iv) for FTA, it may be better to analyze it using a
fully Bayesian treatment of the FTA. This way, one does not
need to specify the exact prior probabilities and conditional
probabilities, but at the same time, can incorporate the
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uncertainty in the prior knowledge which can not be done
in the typical FTA. Another advantage of the Bayesian
generalization of FTA is that it permits uncertainty in and
learning about the event probabilities to be incorporated.
Prior distributions on the probabilities of elementary events
are elicited and then the logic of the fault tree can be used to
derive the prior of any intermediate event and the TE. These
distributions are updated on observation of the TE or other
events through Bayes law. Further, the posterior uncertainties
can be easily integrated out by finding the posterior summary
statistics such as a posterior mean or a posterior credible
interval for the probability of the TE.

This approach was applied in [5], who described a process
to elicit Beta distribution priors on the elementary event proba-
bilities, and used simulations to derive the prior distribution for
the probability of the TE from those of the elementary events.
[5] also described a method for updating these distributions
in light of observation of any event or combination of events
in the fault tree and applied this approach to the spacecraft
re-entry problem (see Section IV-B).

C. Prior elicitation for FTA

Eliciting prior distributions for the elementary events by
quantifying expert opinion is usually not straightforward.
Unfortunately, this area has received very little attention
relative to modeling and the practicalities of implementing
Bayesian inference. The few papers that do propose Bayesian
elicitation methods for FTA such as [5], [6] and [7] propose
moment matching approaches. The moment matching
approach is one of the most common prior -elicitation
approaches (see, for e.g. [8]) and relies on elicitation of a
small number of statistics. A prior distribution is then elicited
by finding the parameter values for which the population
moments match very closely with the elicited moments. For
an accurate elicitation of the prior distribution, the number of
statistics must be at least equal to the number of unknown
parameters of the distribution. A typical choice of statistics
includes measures of the central tendency as well as measures
of the variability/spread. The exact choice of statistics often
depends on the information available (i.e what can be elicited)
as well as the distribution concerned. Since we are concerned
with FTA where, typically, each event is a binary event, a
standard choice for the prior distribution would be the Beta
distribution. In Examples IV-B and IV-C we illustrate how
Beta distribution priors can be elicited in different ways.
In Example IV-D we illustrate how the moment matching
approach can be used to elicit Gamma distribution priors.

Another important approach to prior elicitation that has been
used (see, for example [5]) in risk assessment is the use of
pairwise comparisons. The prior for the probability of one
event is elicited. For other events, their relative chance in
comparison to this event is then elicited, and that is used to
construct their prior distributions. Other pairwise comparisons
may be made to validate the elicitation. The idea is that
comparisons are the easiest judgment to make and so the
process is simplified, see [9], [10].

D. Bayesian robustness for FTA

Both Bayesian approaches - the BN as well as the fully
Bayesian FTA require specification of priors. As [5] points
out for the spacecraft re-entry example though, for complex
systems with very little data, getting experts to elicit even
a mean value (for the probability of occurrence for an
elementary event) could be an uphill task simply because
of the lack of information. As a result, it is likely that the
elicited priors are not entirely accurate. The prior probabilities
can be updated using the Bayes theorem. However, if they
are incorrectly specified then it can take a lot of data to
update the prior probabilities in any meaningful way. Such
a data may not be available firstly, since the TE often being
an undesirable event, is designed to be highly unlikely to
occur and secondly, because the data collection may be very
complex and expensive. As we illustrate in Section IV,
even the relatively small errors in prior elicitation of the
elementary events can snowball into large distortions to the
prior distribution of the TE, especially for fault trees with a
series of OR gates or with multiple elementary events feeding
into an OR gate. Erroneous priors can lead to an erroneous
analysis which is particularly undesirable considering the
applications for which FTA is typically used.

Therefore, it is important to develop Bayesian robustness
approaches for BN and for the fully Bayesian implementation
of the FTA. Bayesian robustness approaches can quantify the
changes to the posterior distribution (or its functionals) given
the changes to the prior distributions or to the data. Thus,
it enables the computation of the distortion to a posterior
distribution (or its functionals) as a result of any distortions
to the prior distributions.

In this paper, we develop a Bayesian robustness approach
for the fully Bayesian implementation of FTA. We use
the new class of priors called the distorted band of priors
developed by [11]. This class is based on stochastic ordering
and distortion functions. The rest of this paper is organised
as follows. In Section II, we provide a brief introduction to
Bayesian robustness, describe the distorted band of priors
and prove a few important properties of the distorted band
obtained using power functions. We develop the robustness
approach for analyzing the fault trees in Section III. In
Section IV we illustrate the application of this approach to
challenging real life problems. We close this paper with a
summary and future work in Section V.

II. BAYESIAN ROBUSTNESS AND CLASS OF PRIORS

Bayesian robustness is the study of how sensitive the
results of a Bayesian analysis are to its inputs, namely,
the prior, data and the likelihood [12]. Often, a Bayesian
robustness approach would be concerned with only one of
the inputs. In this paper, we discuss robustness of a Bayesian
implementation of the FTA w.r.t. the specification of its prior
distributions. When studying the robustness w.r.t. the prior
distribution, the assumption is that the subjective elicitation
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of any single prior is in practice impossible and instead a
class of priors is the natural alternative [13]. A class of priors
can be defined in many ways. In this paper we propose to use
the class of priors called the distorted band of priors [11]. We
use this class because it is readily applied to the FTA, is easy
to interpret and is also computationally easy to implement
using the rejection sampling algorithms we develop in Section
III-C. The distorted band of priors is described below. For a
general introduction and details on Bayesian robustness, the
reader is referred to [14].

A. The distorted band of priors

Before defining the distorted band of priors, we need to
define a few related concepts. A distortion function h is a
non-decreasing continuous function & : [0,1] — [0,1] such
that h(0) = 0 and h(1) = 1. When h is used to transform the
distribution function F,

Fi(X) = ho F(z) = h[F(x)

represents a perturbation of F' in order to measure the un-
certainty about it. Note that Fj(X) is also a distribution
function for a particular random variable denoted by X and
the distorted density is given by

fn(X) = W[F(@)] - f(2).

Random variables can be assigned ordering in different ways.
For two random variables X and Y, X is said to be smaller
than Y in the stochastic order sense (denoted by X <., Y )
if

Fx(t) > Fy(t), Vt € R.

For absolutely continuous [discrete] random variables X and
Y with densities [discrete densities] fx and fy, respectively,
X is said to be smaller than Y in the likelihood ratio order
sense (denoted by X <;. Y) if

f—Y increases over the union of the supports of X and Y.

X

A desirable choice for distortion functions is to consider
convex and concave functions. This is because it can be
shown [11] that, if 7 is a specific prior belief with distribution
function F); and h is a convex (concave) distortion function
in [0, 1], then m <;. (>-)mp. Thus, if the decision maker is
able to represent the changes to a prior belief 7 by a concave
distortion function h; and a convex distortion function hs,
then it leads him to two distorted distributions 7, and 7,
such that m,, <;. m <;, mp,. This defines the class of priors
called the distorted band of priors I'y,, , » as

Chy by = {7 i 7hy <itr @ <y Ty} (D

It is evident that w € I'y, p, ». Therefore the distorted band
can be seen as a particular “neighbourhood” band of 7. A
popular choice for distortion functions h; and ho are power
functions given by

hi(z) =1— (1 —2)® and hy(z) =z, Va > 1. (2)

Note that if we take « = n € N in (2), then
Foo(0) = 1— (1 F(0)" and Fr,, = (Fo(0))"
which correspond to the distribution functions of the
minimum and the maximum, respectively, of an i.i.d. random
sample of size n from the baseline prior distribution 7.

While the distorted bands obtained using (2) are
centered around the prior belief 7, the parameter «
controls the width of the interval. Increasing « not only
monotonically increases the width of the distorted bands but
a distorted band obtained using a smaller a is completely
contained inside the band obtained using a larger «.
Here, we prove this intuitive but important property. Let
X ~ F(z), Xp,(aq) and Xp, (1) be the random variables
corresponding to Fp, o, (x) = 1 — [1 — F(z)]** and
Fp, o, (x) = [F(x)]** respectively. Similarly, let X, (a2)
and Xj,(a2) be the random variables corresponding to
Fhyas(@) = 1= [1 = P(2)]° and Fhy o, (2) = [F(x)]?
respectively. Also, let fr, (%), frs.01(Z), fhy,a0(z) and
Jha a0 () be the corresponding densities.

Lemma IL1. Given 1 < a1 < ag = Xp, (1) <st Xp,(a2)
and Xp, (1) >st Xn, (a2).

Proof. 1 < a3 < g = [F(a)] > [F(x)]* =
X,y (1) <st Xp,(a2). Also, [1—F(z)]* > [1-F(z)]*? =
LS = P < 1- [ - F@)* = Xa (1) >a
Xhl(ag). O

It is well known that
X< Y=X<4Y.

See for example [11], [15] and [16]. However, we will show
here that when the distortion funtions are defined as in (2),
the relationship between the likelihood ratio order and the
stochastic order also holds in the other direction.

Lemma IL2. Given 1 < ag < ag, Xp, (1) <st Xp,(a2) =
Xno (1) <ip Xno(o2) and Xp, (1) >4 Xp,(a2) =
Xn, (1) > X, (a2).

Proof.
fhl’o‘l (l‘) _ alf(x)[l — F(x)]al_l Yy )] —az
fhl,a2 (.I) B an(af)[l — F($)]0‘2—1 - as []‘ F( )] s

which is an increasing function in = and hence Xj, (a1) >
X, (a2). Similarly,
fhmozz(m) _ %[F(‘T
fh?ual ('7;) Qi
which is an increasing function in = and hence X, (a1) <,
Xy (2). O

e,

Theorem I1.1. When the distortion functions are defined as in
(2, ()X <aY =X <Y, (i)l <o Sag =Ty, Clg,
and (iii) To, = F(z) as o | 1.

Proof. (i) From Lemma II.2. (ii) From Lemma II.1 and
Lemma I1.2.
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(iii) By extending Theorem II.1 (ii) as a continuous function
of o and that
lim 1—(1—-F(z))* = F(x), lim F(x)® = F(x).

a—1t a—1t

O

A very useful consequence of the likelihood ratio definition
is that, if the two prior distributions are ordered in the <;,.
sense, then the corresponding posterior distributions are also
ordered in the same sense, see [17]. That is, given two prior
distributions 71 and 7y such that 1 <;,. 79, the corresponding
posterior distributions also satisfy w1, <, mo,. Similarly, for
all 7 € 'y, hy.n, We obtain that mp,, <jp 7l <jp Thyy. That
is, the posteriors of the lower and upper bound of the prior
distortion band are also the lower and upper bounds for the
family of all posterior distributions, I';, in the <;. sense.
I'; can be considered as the distortion band of the posterior
belief for some particular concave and convex functions.

B. Measuring uncertainty using a metric

Various distance measures can be used to compare the
original prior and its distortions and also the original
posterior and its distortions. The preference towards the use
of a particular metric is usually based on their mathematical
tractability and interpretation. It is for these reasons, that
here, we prefer to use the Kolmogorov metric. It has a very
practical interpretation and a concise mathematical formula
that enables elicitation of « (see Section III-A).

The Kolmogorov metric measures the maximum absolute
difference between the two distribution functions and is de-
fined by

K(X,Y) =sup|Fx(z) — Fy (x)|. 3)
z€R
It can be shown that if A is a differentiable (concave or convex)
distortion function, then the Kolmogorov distance between 7
and 7, is given by

K(m,m,) = supl|Fr(x)— Fr, (z)]
z€R
_ Jpo—nh(po), if his convex, @
h(po) — po, if h is concave,

where po satisfies h'(pop) = 1 and the argument of the

maximum is achieved at 6 = F-(pg). Further, it can also be

shown that if the distortion functions are defined as in (2) then,

the Kolmogorov metric is given by the following expression:
a—1

a—l/aa :

III. BAYESIAN ROBUSTNESS APPROACH FOR FAULT TREES

K(m,mp,) = K(m,7h,) = (5)

Given that a prior distribution has been elicited for each of
the elementary events (for the probability of the occurrence
of that event/ probability of failure of that component),
we propose the following approach to implement Bayesian
robustness methods on fault trees. The details of how some
of these steps can be achieved are discussed in the remainder

of this section.

Bayesian robustness for FTA - an outline

« Build a distorted band of priors for each event - see III-A.

« Simulate through the FT using algorithms Al - A4 (see
III-B and II-C) to find the prior distribution and the
distorted band of priors for the intermediate events and
the TE.

« Find the posterior distribution for the TE given the prior
distribution and the data.

o Find the lower and the upper distortion bands for the
posterior distribution of the TE given the distorted bands
for the prior and the data.

A. Use of the Kolmogorov metric

We propose to build the distorted band of distributions
using the power functions described in (2). In practical
applications, the main question is how to correctly choose
the value of a. The Kolmogorov metric between the original
distribution and the upper and the lower bounds of the
distorted band obtained by the power function is given by (5).
The value of o can be elicited by inverting this relationship.
The Kolmogorov metric measures the maximum absolute
discrepancy between any given pair of distributions. After
having elicited the prior distribution, the expert may be
prepared to guess how far off this prior distribution could
be from the truth. For example, the expert may say that she
expects the prior to be no more than 10% off the mark.
This implies that K(m, m,,) = K(m, m,) < 0.1 (since
0 < F(z) < 1). Thus, 0.1 would be a conservative estimate
of K. Using a computer program, it is now possible to find
the value of « that yields K = 0.1 using (5).

Alternatively, a rough estimate of o can be obtained using
the following approximation. Let K (7, m,,) = K(m,7p,) =
K. Then,

a—1
K =
*Vax
~ —~ assuming “Va® ~ a
= ! ©)
(6% ~ I a————
1-K

Note that this estimate of « obtained using (6) will be an
optimistic estimate for a given value of K. In our case though,
since the value of K itself was conservatively chosen, the
estimate of a should be reasonably accurate. For example,
suppose the maximum 10% discrepancy occurs when F'(z) =
0.6 (in reality this would not be known beforehand), meaning
that the true ' = 0.06. The corresponding true value of «,
obtained using a computer code is 1.175, whereas by using
the conservative estimate K = 0.1 in (6) gives o = 1.1111.

K represents how far off the elicited prior is likely to be
in the worst case and it is difficult to imagine how this could
be more than a 100%. Therefore K will take values < 1.
In most cases, however, K is likely to take smaller values,
say, between 0.05 to 0.3 corresponding to between 5% and
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30% deviation from the true prior. (6) can be used as long as
0 < K < 1. and (5) is valid for any K > 0 in principal.

B. Distortion bands for intermediate and top events

One important question that we want to possibly answer is
that given the distortion bands for the elementary events what
can we say about the distortion bands for the intermediate
and the top events? Consider two simple fault trees illustrated
in Fig. 1. Each one has three elementary events X7, X5 and
X3 and a top event Y. The difference is that in tree [a],
the elementary events are linked to the top event using an
OR operation whereas in [b] they are linked using an AND
operation.

Assuming that each X; ~ Bernoulli(d;) and
Y ~Bemoulli(f), where 6; = P(X; = 1), and
6 = P(Y = 1), then § = 1 — Hle(l — 0;) for [a]

and 0 = H?:1 0; for [b]. Let m;(-) be the prior distribution
on 6;, i = 1,2,3, and 7(-) be the prior distribution on
0. Let T'; = (mp,,,Thy;) be the distortion band for ; and
T’ = (wp,, Th, ), the distortion band for 7.

a [b]

Fig. 1. Two simple fault trees (a) using an OR operation and (b) using an
AND operation.

Then we have that

T@=71)= / 71 (1) (m2)m3(73) dridradrs,  (7)
Q@

where Q0 = {1, € [0,1],i=1,2,3:1 - [[°_,(1 =) = 7}
for the OR operation, and

w0 =7 = [ mmmlmm() dndndn, 6

where Q4 = {r; € [0,1],i = 1,2,3 : H?Zln = 7} for the
AND operation. Extending the logic, we would like to assume
that for the distorted band of priors the following holds:

T (0 =7) = /O Thyy (T1)Thyo (T2)Thy 5 (T3) dT1dT2dTs, (9)
Q

b

and

Thy (0 = 7) = /O Thay (T1)Thas (T2) Thys (T3) dT1dT2dTs,
97

(10)

From Equations 7 and 8 it is clear that the prior 7(-) for an
intermediate or a top event will seldom be available in closed
form. Mostly, the only way to obtain 7 will be by simulation.
Similarly, the only way to obtain the distortion bands for the

intermediate and the top events will be by simulation. Below
we present algorithms to do these. For the purposes of the
following algorithms, let # denote the probability of failure.
Also, we assume that there are K elementary events in the
fault tree.

Algorithm Al: to simulate prior distributions for inter-

mediate and top events

1) Sample 6;; ~ m;(0;), j=1,...,N,i=1,..., K .

2) For each j, run through the whole tree to find the
probability of failure 6 at the intermediate and the top
events.

3) This generates the empirical prior distributions for the
intermediate and the top events.

Algorithm A2: to simulate distortion bands for the prior

distributions for intermediate and top events

1) Sample 8;; ~ m,,(0;), 5=1,...,N,i=1,..., K.

2) For each j, run through the whole tree to find the
probability of failure 6 at the intermediate and the top
events.

3) This generates the empirical prior distributions mp,, for
the intermediate and the top events.

4) Repeat steps 1 — 3 for mp,,, = 1,..., K to obtain the
empirical prior distribution 7y, .

Note that A2 assumes that it is sufficient to sample from
Th,, S to obtain 7y, and to sample from 7p,,’s to obtain 7y, .
We’ll now prove that this assumption is indeed valid. To do
this, we define a (1 — §) probability interval for each 6, as
IZ((S) = (GiL,HiU) such that P(QZL S 01 S QZU) =1- 5, for
0 <6 < 1. Z;(9) represents the interval we can sample from
with probability (1 —¢). Let events Ey, ..., Ex be connected
to an event E through an OR gate, that is £ = UX | F; and
let Z(§) = (01, 0y) represent the (1 — §) probability interval
for E. Then, we can prove the following.

Theorem IILL. ¢, =1 TE,(1-6,,), 0y =1-T[<,(1—
0i,) and 0, <1 —T[;_,(1 —0;) < 8y for any 6;, <6, <
Oir, -
Proof. Suppose, on the contrary that, for every i, 36, > 0;,
such that §;, =1 — Hfil(l —0;). But

K K
0, <0, = J[a—-6:)>][1-6)(0<6;, <0;<1)

K K
= 1-JJa-6,)<1-J]a-6) =06
K
< 1-JJa-e).
i=1
Similarly, we can show that 1 — Hfil(l —0;) < by. O

Now, suppose that events Fjq, ..., Ex are connected to an
event F through an AND gate, that is £ = ﬂiKzlEi. Then, we
can prove the following.

Theorem IIL2. 6, = Hfi1 0;,, Ou = Hfil 0;, and 0p, <
15,0, < 0y for any 6;, < 6, < ;.
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Proof. Similar as above. O

Note that in general, F}, <o F <g Fp, = Onh1 <
0, < Op,r and Op,v < Oy < Op,u. When defining
distortion functions using (2), this ordering is also implied by
Thy, <ir ™ <ir Th, because of Theorem II.1. In fact, one can
see that 0,(0y) is a decreasing (increasing) function of «
and that for 1 < a1 < ag, Zy, (6) C Zy,(9). Theorems III.1
and III.2 imply that in order to obtain the distorted lower
(upper) bands for the intermediate/top event by sampling
from them, it is necessary and sufficient to sample only from
the respective lower (upper) bands of the elementary events.
In Section IV-A we use simulation to illustrate this property.
Further we also show that sampling through the distorted
bands of the elementary events obtained using a smaller o will
generate the distorted bands for the intermediate/top events
that are contained within the distorted bands corresponding
to a larger a.

C. Sampling from the distorted priors

Lower distortion band Upper distortion band

~ 0.0030

0.0020
0.0020

0.0010
0.0010

0.0000
0.0000

Fig. 2. Beta(2,5) (continuous). Left The true distorted lower band for
a = 1.25 obtained using the concave function h; (long-dashed) against the
lower band obtained by sampling using Algorithm A3 (dotted). Right The
true distorted upper band using the convex function ho (long-dashed) against
the upper band obtained by sampling using Algorithm A4 (dotted).

Algorithm A2 requires sampling 6;; ~ 7p,,, and ;5 ~ mp,,
respectively. However, mp,, and 7p,, may not be available
in closed form and hence sampling from them may not be
straightforward. We show that it is possible to sample from
Th,, and mp,, using a rejection sampling scheme.

Note that
d d ,
Thy, = cTHiFh“(ei) = T&hl [Fi(0:)] = mi(0:)hi[Fi(6;)]

< m(6:)hi[0], (11)
since hy is concave and therefore h} is decreasing (Arias-
Nicolas et al. (2015)). This implies that

Ty _ Ti(0:)h [F(05)]
hy[0]m; mi(6:)h4[0] T
Similarly, since hsy is convex and therefore h/, is increasing,
it can be shown that

Thyy < mi(0:)h5[1].

12)

Using these inequalities, and based on Arias-Nicolds et
al. (2015), we propose the following rejection sampling'
algorithms to sample from 7, and mp,,, respectively.

Algorithm A3: to simulate from 7, , for h,; concave
1) Sample §;; ~ m;(6;), j=1,...,N,i=1,2,3 and u; ~
U(0,1) independently.
2) For each j, check if u; < %
o If this holds, accept 0; as a realisation of ;.
« If not, reject the value 6;;.
Algorithm A4: to simulate from 7, for hy; convex
1) Sample Hij ~ m(ﬁi), _j = 1,...,N, 1=1,2,3 and Uj ~
U(0,1) independently.
2) For each j, check if u; < %
« If this holds, accept 0; as a realization of mp,,.
« If not, reject the value 6;;.
Note that when using power functions described in Equation
),
rall - F()]o!

ﬂ—hl,; a—1
= =[1-F(
o — [1-FE)e,
Tha; ,’TOZ[F(')]ail a—1
= = F N . 13
i — [F () (13)
Therefore, for u; ~ U(0, 1), we accept 6;:
in Algorithm A3 if: u; < [L—F(-)]* !,
in Algorithm A4 if: u; < [F(-)]* % (14)

Fig. 2 compares the true (mathematically obtained) distortion
bands for a Beta(2,5) distribution against the bands obtained
by sampling using algorithms A3 and A4. It illustrates
that algorithms A3 and A4 can sample from the distorted
distributions quite accurately.

IV. APPLICATIONS
A. Example: distortion bands for simple fault trees

Consider the two simple fault trees in Fig. 1. We now
illustrate how the prior distributions and the distorted
bands for the prior distributions can be obtained for the
intermediate/top events. Assume that the prior distributions
for the probabilities 61,60, and 63 of the elementary events
X1, X5, X3 are Beta(1,10), Beta(2,10) and Beta(3,20)
respectively for both the trees. The prior distribution for
probability 6 of the TE Y is obtained by algorithm Al. See
Fig. 3.

Algorithms A3 and A4 were used to sample from the
distorted priors (lower and upper, respectively) for 61,65 and
03. Then the distorted bands for the prior distribution for 6
were obtained using algorithm A2 for fault trees [a] and [b].
These are shown in Fig. 4 along with the original priors. Fig.
4 also illustrates that I'y, C I'y,, when 1 < a3 < o holds
even for the distorted bands of the intermediate/top events.

IRejection sampling is a Monte Carlo sampling method to enable sampling
from distributions which are not available in closed form or are otherwise
difficult to sample from. See, for example, [18] for details.
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Priors for 04,05,03 Prior for 6 OR gate Prior for 6 AND gate
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Fig. 3. Left Priors for 01 (continuous), 02 (dashed) and 63 (dot-dashed).
Centre Prior distribution for 6 for the fault tree [a] and Right for fault tree
[b].
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Fig. 4. Prior for the probability 8 of the TE Y (continuous), the distorted
bands using o = 2 in long-dashed lines for the fault tree [a] (top most) and
fault tree [b] (second from the top). Distorted bands obtained using o = 1.8
are shown in dotted lines. Corresponding distribution functions are shown for
the fault tree [a] (third from the top) and fault tree [b] (bottom most).

B. Spacecraft re-entry example

Risk elicitation in complex systems is challenging,
especially when there are multiple elementary events and the
observed data is rare/sparse. One such example is that of a
spacecraft re-entering the earth’s atmosphere. A Bayesian
approach to elicit the risks during a spacecraft re-entry was
recently developed by [5]. Their approach uses a fault tree

Event | Description

TE Explosion of the spacecraft

FEaq Chemical reaction of propellant and air

FEoo Burst of pressure vessel

Eoa3 Chemical reaction between hypergolic propellants
Foy Burst of battery cell

F11 Sudden release of propellant (due to burst of pressure vessel E22)
FEi2 Slow release of propellant

FEo1 Valve leakage

FEo2 Tank destruction

FEos3 Pipe rupture

FEi3 Chemical reactions

FE14 Over pressure

FEi5 Short circuit

FEig Corrosion

Ei7 Over charge

Fis Over discharge

FEi9 Over temperature

F110 Cell degradation

TABLE T
DESCRIPTION OF EVENTS FOR THE SPACECRAFT RE-ENTRY EXAMPLE

to model the probability of an explosive break-up of the
spacecraft during the re-entry process. The elementary events
in this case are the (assumed independent) causes that can
eventually lead to the explosive break-up. Eliciting priors
required interviewing several experts because the causes
are varied and no one individual was an expert on all of
them. Since access to the experts was time limited, typically,
information was sought from an expert to elicit prior for one
of the elementary events he/she was an expert on. The expert
was then asked to make a pairwise comparison between the
events under their expertise in terms of which of the events
are more likely. The Analytic Hierarchy Process (AHP) [19]
was used to derive weights to the remaining events to elicit
a prior distribution for these events. These priors were then
used to determine the prior distribution of the top event
(explosive break-up) and eventually to find the posterior
distribution of the top event given observation of elementary
or intermediate events.

For applications such as the spacecraft re-entry example, we
want to highlight the following important points.

1) Prior elicitation is prone to multiple errors
2) Erroneous prior = erroneous posterior analysis.

We elaborate on these points below.

Eliciting prior probabilities on elementary events is subject
to errors from multiple sources. Firstly, the elicitation is
subject to higher uncertainty in the absence of enough prior
data/knowledge. Secondly, it is subject to the errors made
in eliciting a prior distribution based on the information
provided. This could either be because the expert was not
able to provide information on the minimum number of
parameters necessary to elicit a unique distribution or because
the information provided was not accurate. For example,
this could be either because the expert was only able to
elicit a mean value, which does not lead a to unique Beta
prior or because the values cited by the expert were not
accurate. Then, it is also subject to the errors introduced by
the methods used to elicit a prior distribution. For example,
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the errors introduced by the AHP used in the spacecraft
example and also by the accuracy of the computer code used
to match the Beta distributions to the parameters elicited by
the expert. Finally, it is influenced by the subjectivity/bias of
the experts. This is especially true in situations where only
one expert is consulted for eliciting a particular prior - which
was the case for the spacecraft re-entry example. Seeking
opinion from multiple independent and impartial experts can
reduce this error - but this may not be possible in many cases
due to the time and resource constraints.

In Bayesian analysis it is well known that, if only a small
amount of data is available then the posterior distribution
is likely to be dominated by the prior distribution. For a
complex and highly expensive system such as a spacecraft
used for re-entry, the data available is sparse at best and no
more than a very few observations are available. This means
that, in practice, the posterior will be nearly identical to
the prior distribution. This is illustrated in Fig. 5. The prior
distribution indicates the prior uncertainty around a spacecraft
break-up event. In this case, the prior distribution has a mode
just below 0.3. It takes the data on 10 identical re-entries with
1 break-up event (indicating the true probability of break up
to be around 0.1,) for the posterior to be noticeably different
to the prior distribution. Even then, the posterior is only
slightly different than the prior. Note that for a spacecraft
re-entry application, one is most likely to have only one
or two observations on identical systems, not ten. For this
reason, the prior and the posterior distributions will be nearly
identical, as can be seen in Fig. 8. In other words, any errors
made while eliciting the prior information will be directly
transferred to the posterior distribution.

Therefore, it is vitally important to assess the robustness of
the Bayesian procedure with respect to the mis-specification
of the prior. We will now apply the robustness approach
developed for the fault trees in Section III to determine the
robustness of the Bayesian approach proposed by [5].

n=3

0.006
0.006

0.004
0.004

0.002
0.002

0.000
0.000

Fig. 5. Prior distribution for 81 g (continuous) contrasted against its posterior
(long-dashed) distribution. Left n = 3 and one break-up is observed. Right
n = 10 and one break-up is observed. Note that for n = 3, the prior and the
posterior are almost identical.

The fault tree used to model the spacecraft re-entry problem
is shown in Fig. 6 [a]. The description of the events is detailed

E21 EZZ E23 E24

A
] ] o] (o) [ o] ]

[b] A
(o] (o] o] ) (2] [eo] (2] ] ][] o) ) el

Fig. 6. [a] The fault tree used to model the spacecraft re-entry problem and
[b] the simplified fault tree in minimum cut-set representation.

in Table I. Since the event Ej; is equivalent to the event
Es, and all the gates in the tree are OR gates, there are 13
minimal cut sets each consisting of exactly one elementary
event. Therefore, the simplified version of the tree consists
of only thirteen elementary events all connected by a single
OR gate as shown in Fig. 6 [b]. Note that the representation
[a] is still relevant since, in practice, we may observe one
or more of these intermediate events while other elementary
events or the top event are unobservable (see [S] for details).
An event F; can only take two values: 1 (event occurs) or 0
(event does not occur) and hence the events were modeled as
E; ~ Bernoulli(f;) and the priors as g(8;) ~ Beta(a;, 35)
for V4. For prior elicitation, the events were divided into three
groups:

Group Gl = {EQQ, E23},

GI'Ollp G2 = {EOla EOQ, E03} and

Group G3 = {E13, Ev4, E1s, Ev6, E17, E1s, Evg, E110}-

We assume that the priors were elicited for the event Foo
in group G1, event Ey; in group G2 and event Fy3 in group
G3. This was done by matching the central 95% probability
interval specified by the expert with the 2.5!" and the 97.5!"
percentiles of a Beta distribution and identifying the values of
the parameters « and (3 (using a computer code) that provide
the closest match. The AHP was then used to quantify the
expert opinion on how likely the remaining events in each
group were compared to the one already elicited. The AHP
matrices thus obtained are as follows:

1 s 1 3 1
G1 {1/5 1], G2 = 1/3 1 1/3| and
1 3 1
1 --- 1
G3 = : RPN
1 --- 1

Note that all events in group G3 were deemed equally
likely and hence matrix G3 is a matrix of 1’s. The weights
derived using these AHP matrices were then used to elicit
priors for the remaining events using a method described
in [5]. The weights and the elicited priors are listed in Table II.
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Event | Weight Range Elicited prior
Eos | 0.83333 (0.01, 0.05) Beta(6.3,233) *
Es3 | 0.16667 (0.002,0.01) Beta(6.4,1214)
Eo1 0.42857 (0.01, 0.04) Beta (8.3,360)*
Eoa 0.1428 | (0.0033,0.0133) | Beta(8.3,1104)
Eoz | 0.42857 (0.01,0.04 ) Beta(8.3,360)
FEi3 0.125 (0.014, 0.055) | Beta (8.4,261)*
E4 0.125 (0.014, 0.055) Beta (8.4,261)
Eis 0.125 (0.014, 0.055) Beta (8.4,261)
Eie 0.125 (0.014, 0.055) Beta (8.4,261)
En7 0.125 (0.014, 0.055) Beta (8.4,261)
Eig 0.125 (0.014, 0.055) Beta (8.4,261)
Eig 0.125 (0.014, 0.055) Beta (8.4,261)
FE110 0.125 (0.014, 0.055) Beta (8.4,261)

TABLE IT
ELICITED PRIORS OBTAINED USING THE AHP PROCESS. * INDICATES
THAT THE PRIOR WAS ELICITED USING THE RANGE PROVIDED BY THE
EXPERT

The top event (TE) corresponds to whether the spacecraft
exploded or not during the re-entry. Thus, TE can only take
two values: 1 (exploded) or O (did not explode). It can be seen
that TE ~ Bernoulli(6rg), where Orp =1 — [],(1 — 0;).
Thus, if the data was obtained from n identical spacecraft
re-entries then TE ~ Binomial(n,frg). We assume that
only the top event is observed and that none of the elementary
events are directly observed.

Our synthetic data is obtained from the re-entry of 3
spacecrafts under identical conditions. The three observations
are considered independent. Without loss of generality, we
assume that the spacecraft exploded only during the second of
the three re-entries. Thus, the observed data for TE is {0, 1, 0}.
The likelihood is therefore given by:

L(TE|ors) = (3

1>9TE(1 —0rp)’. (15)

The prior distribution for 6rp is obtained by sampling
from the prior distributions of the elementary events and
simulating through the fault tree (algorithm A1l). The
posterior distribution is obtained using the importance
sampling? approach described in [5]. The prior and posterior
distributions for TE are plotted in Fig. 8.

Distortion bands were constructed for the priors of all
the elementary events using the power functions defined
in Equation 2. We assume that K = 0.15, that is, each
elicited prior distribution could be at most 15% off the mark
and obtain @ = 1.51 using Equation 5. The priors and
the distortion bands obtained for each of them are shown
in Fig. 7. The distortion bands (lower/upper) for the prior
distribution of f7 were obtained by first sampling from the
distorted priors (lower/upper) using Algorithms A3/A4 and
then using algorithm A2. The posterior distribution of Orp
were obtained for both the lower distortion band as well as
the upper distortion band of the prior distribution of 67 . The

2Importance sampling is a weighted sampling method of Monte Carlo
integration which samples from a candidate density for the sake of efficiency
and computes a modified weighted integral which converges to the given
integral. See, for example, [18] for details.

posterior distributions were obtained using the importance
sampling method described in [5]. These are plotted in Fig.
8.

Beta(8.3,360)

Beta(8.3,1104)

0.020

0.008

0.015

— Prior
--- Lower distortion band
— Upper distortion band

Fig. 7. Each of the unique priors (continuous) for the spacecraft example
and the distorted bands obtained - lower band in dotted and upper band in
long-dashed.
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Fig. 8. Left The prior distribution of 07 and its distortion bands. Right The
posterior distribution of 67 g and its distortion bands: lower band (dotted) and
upper band (long-dashed).

Fig. 8 illustrates two very important points.

1) Even minor mis-specifications in the prior distributions
of the elementary events can result in a significant
mis-specification of the prior distribution for the TE.
Observing the distortion bands for the individual priors
(Fig. 7) may lead one to conclude that such minor mis-
specification in prior for each of the elementary events
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will have a minor effect on the prior distribution of O75.
However, Fig. 8 (left) illustrates that this is not the case
and that the distortions in the prior distribution for the TE
are quite significant - the mode shifting by about 0.05 in
each direction.

2) When the data is sparse, prior mis-specification =~ pos-
terior mis-specification. As seen in Fig. 5, when the data
is sparse (n = 3), the posterior distribution is almost
entirely governed by the prior. Fig. 8 (right) highlights
that in this case the mis-specification in prior distribution
results in an almost identical mis-specification in the
posterior distribution. So much so that both the figures
look identical.

Thus, Fig. 8 vividly illustrates why studying the robustness of
the prior distribution in the Bayesian implementation of the
FTA is essential. The methods developed in this paper enable
us to do that.

C. Feed Control System

We now consider a safety analysis example discussed
by [2]. This concerns the performance of a feeding control
system used to transfer propane from a propane evaporator
to a scrubbing column. Here, an improper control of the
feeding system is the TE and all components are assumed
binary (work/fail). The list of components, their description
and the prior probabilities (of their failure) are listed in Table
III. The fault tree used to model this problem is shown in
Fig. 9 [a]. Since there is an AND gate at the top of the
fault tree, there are 10 minimal cut sets each consisting of
one of the components Fsq, Fos and one of the components
E()l, EOQ, E127 E24, E25. The 51mp11ﬁed fault tree is shown in
Fig. 9 [b].

The first step in implementing FTA using a fully Bayesian
approach is to specify priors for each of the elementary
events. For this example, we know the prior probabilities as
reported in [2]. We can consider these values as the mean
values for the corresponding probability parameters 6; and try
to find the parameters «; and j3; of Beta(a;, §;) whose mean
is closest to the given probability value for each event Fj;.
Note that for a Beta distribution, the mean is u = «/(a+ 3),
which implies § = a(1 — p)/p. That is, for a given pu there
are infinitely many solutions of « and S. Therefore, we need
to match one more statistic to find a unique combination of
parameters. Here, we assume that the variance for each event
is 0.03 and use a computer code to find the unique Beta
distribution which matches the given mean and the variance.
The prior distributions thus elicited are also listed in Table III.

We use algorithm Al to sample N = 20,000 from the
prior distribution of the TE. The mean of the sampled
values is 0.2720, which matches the prior probability of
the TE obtained by [2] using the standard FTA and the
BN approaches. The distorted band of priors were obtained
by assuming that K = 0.2 (which yields = 1.75 using
Equation 5) and by sampling using algorithms A3 and A4.
The original priors and the distorted band of priors obtained

E32
A

Fig. 9. [a] The fault tree used to model the feeding control system and [b]
the simplified fault tree.

are shown in Fig. 10. The distorted band of priors for the
TE were obtained using algorithm A2 and are shown in
Fig. 11. The mean of the sampled values for the distorted
lower and the upper bands of distributions are 0.13 and 0.4
respectively. Here too, one can see that small distortions to
the prior distributions of the elementary events have resulted
in significant distortion to the prior distribution of the TE.

Here, we have improved the analysis performed by [2] in
two distinct ways. Firstly, we implement the fully Bayesian
implementation of FTA as proposed by [5] and are therefore
able to quantify the uncertainty around the prior probability of
TE. For example, we can now say that while the mean prior
probability of TE is 0.2720, the median is 0.2480 and the
95% probability interval is (0.0365, 0.6247). This immediately
highlights the fact that the prior probability of failure could be
as high as more than 0.6. A simple BN or a simple FTA can not
provide this information. Secondly, we have implemented the
prior robustness approach developed in this paper to determine
the upper and lower distortion bands of the prior distribution of
the TE. These bands account for the errors in eliciting prior
distributions for elementary events and provide the possible
worst case scenarios. While the mean prior probability of TE
is only 0.1147 for the lower distortion band, it is as high as
0.4070 for the upper distortion band. It may be possible that
the mean prior probability of failure to be as high as 0.4 is
considered unacceptable. Recall that this robustness analysis
was performed assuming that the priors elicited for each of the
elementary events can each be at most 20% off the mark. This
could easily be the case for many complex systems when very
little to no prior information is available. The 95% probability
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Event | Description Probability Elicited prior

TE Feed system improper control AND gate NA

FE31 Manual valve improper control OR gate NA

FE3o Automatic valve improper control OR gate NA

FE2q Manual valve mechanical failure 0.1393 Beta (0.4,2.4715)

FE22 Human failure in operating manual valve 0.2696 Beta (1.5,4.0638)

FEa3 No signal received by actuator OR gate NA

Foy Actuator mechanical failure 0.2015 Beta (0.9,3.5665)

FEas5 Automatic valve mechanical failure 0.3403 Beta (2.2,4.2648)

E11 No signal received by pressure controller OR gate NA

F12o Pressure relay failure 0.1538 Beta (0.5,2.7509)

FEo1 Pressure transmitter failure 0.1647 Beta (0.6,3.0429)

FEoo Pressure controller failure 0.2818 Beta (1.6,4.0777)

TABLE TIT
DESCRIPTION OF EVENTS FOR FEED CONTROL SYSTEM EXAMPLE ALONG WITH THE PRIOR PROBABILITY AND THE CORRESPONDING ELICITED PRIOR
DISTRIBUTION

o Beta(0.6,30429) o Beta(1.6,4.0777) TE Prior TE Prior distribution function
S ) e-
o o

5 0. 0.2 0.4 0.6 0.8 5 0.0 0.2 0.4 06 0.8

Prior
Lower distortion band
= Upper distortion band

Fig. 10. Each of the unique priors (continuous) for the feed control system
example and the distorted bands obtained - lower band in dotted and upper
band in long-dashed.

interval for the upper distortion band is (0.1160, 0.7430). Only
the prior robustness analysis proposed in this paper allows one
to discover that in fact that the mean prior probability of failure
could be as high as 0.4 and that the prior probability of failure
can be as high as 0.74. This information can have significant
implications on the perceived reliability of a system.

D. Triple Modular Redundancy

The methodology proposed in this paper is applicable to
events following virtually any distribution. Here, we illustrate
how this works in a more general case. We do so by providing
a step-by-step guide to implementing our method.

0.004 0.006

04 06 08

, 0.002

0.2

0.000
0.0

Fig. 11. Left The prior distribution of 67 g and its distortion bands obtained
using a = 1.75 lower band (dotted) and upper band (long-dashed). Right
Corresponding distribution functions are also shown.

Consider the simple FT in Fig. 1 [a], but now assume
that variables X;,7 = 1,2,3, denote time to failure and
are therefore modeled as Exp(1/X;), A; being the survival
parameter. This FT represents a triple modular redundancy
system where the system will fail only if all three of the
modules fail.

Step I: Elicit prior distributions for elementary events:

Let g;(\;) be the prior distribution for A; and G;(\;)
be the corresponding distribution function. Since A;’s are
survival parameters, a natural choice for g;(A;) could be
the Gamma distribution. The first task then is to elicit prior
distributions. As described in Section I-C, this is often done
using the moment matching approach. Examples IV-B and
IV-C illustrate how this can be done in two different ways
for the Beta distribution priors. Here we illustrate this for
Gamma distribution priors.

We’ll use a Gamma(a;, b;) prior for \;. The mean p; and
the variance o? for the Gamma random variables are p; =

a;/b; and o? = a;/b?. This gives
2 )
a; =20 and b; = £ (16)
a; i

Thus, prior distributions can be elicited using Equation (16)
by eliciting the expected time to failure and the variance
for each X;. Suppose that each of the modules X; have
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an expected lifespan of 10 but because they are each made
using different designs or materials, the expert believes
that their variances are 1, 2 and 4 respectively. That is,
the expert considers X; to be the most consistent and
X3 the least. Using Equation (16) gives us the following
priors: A1 ~ Gamma(100,10), Ay ~ Gamma(50,5) and
Az ~ Gamma(25,2.5).

Step II: Priors for intermediate events & TE:

Given the prior distributions for the elementary events,
we now need to compute the prior distributions for the
intermediate events and the TE. As explained using Equations
7 and 8, the priors for intermediate events or the TE will
seldom be available in closed form. We’ll obtain these
priors by simulation. This involves sampling from the prior
distribution of each of the elementary events and simulating
through the FT using algorithm Al.

We first sample N = 20,000 X\; ~ g¢;(.) for i = 1,2,3,
and then simulate a failure time for each of them. We now
have N instances of the failure times for each of the three
modules. This allows us to compute the failure time for the
TE, namely the maximum of the three failure times. This
gives us a sample of size N for the failure times for the TE
from which the prior distribution of the TE can be calculated
using kernel density estimation.

Step III: Quantify & account for errors in prior elicitation:

Continuing the example, suppose that the expert believes
that the elicited priors for the elementary events are each at
most 20% off the mark. Using Equation (5) and a computer
code, this gives a; = a2 = az = 1.735. We pass the NV
samples simulated in Step II through Algorithms A3 and A4
to generate samples from g;p, and g¢;n,. In this case, the
acceptance rate was about 57%, so we end up having about
11,500 samples from the distorted band of each of the prior
distributions. The priors and their distorted bands are shown
in Fig. 12.
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Fig. 12. Left The elicited prior and the distortion band for A\; using a1 =
1.735. Centre For A2 using acx = 1.735. Right For A3 using aez = 1.735.

Step IV: Distortion bands for intermediate events & TE:

Using the accepted samples, and similar to Step II,
we can find the distortion bands for the intermediate events
and the TE by simulating through the FT using Algorithm A2.

Once the priors for the elementary events have been elicited,
we need to quantify the errors made in eliciting them and
obtain a distorted band of prior distributions for each of them
to account for these errors. The width of the distortion band
is governed by the power function parameter o as described
in Equation (2). Higher value of a leads to wider distortion
bands indicating greater uncertainty/error in the elicited prior.
As described in Section III-A, the expert is asked to quantify
how far off can their prior be from the truth in percentage
terms. This quantification gives the Kolmogorov distance K.
« can then be elicited using Equations (5) or (6).

This gives wus the distorted band of priors
(Giny (M), Giny (A;)) around the elicited prior G;(A;), where
Gin, (Ai) = 1= (1= Gi(Xi))™ and Giny (Ai) = (Gi(Ai))™.

Note that the corresponding distorted probability
densities are g;n, (N;)) = a;gi(M\)(1 — Gi(N\))*~ ! and
Gin,(Ni) = a;g;(A\)(Gi(\))¥ . In most cases, the

distortion bands for the elementary events, g¢;p, and gip,
won’t be in the form of standard statistical distributions. As
a result, drawing samples or computing probabilities won’t
be straightforward. Therefore, we use Algorithms A3 and
A4 to draw samples from these distorted distributions. For
uj ~ U(0,1), we accept 6; using Equation (14):

[1—Gi()]™ T,
[Gi())* (17)

For standard distributions, this can be easily done using
any statistical programming package.

in Algorithm A3 if: u;

<
in Algorithm A4 if: u; <

We have (about 11,500) samples of \; from each of the
distorted bands g¢;;, and g;p, for each of the priors g;. As
we did in Step II, we now simulate the failure times for each
instance of \; and then compute the resulting failure time for
the TE. This gives us a sample (of about 11,500) from the
lower and the upper distortion bands for the prior distribution
of the TE. The distortion bands can now be computed using
kernel density estimation as in Step II. These are plotted in
Fig. 13.
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Fig. 13. Top The resulting prior density and the distortion bands for the TE
Bottom Corresponding distribution functions.

Step V: Posterior distribution & its distortion bands:
The previous steps compute the prior distributions.

These are helpful in the risk assessment before conducting

trials/experiments to collect data. Once the data is collected,




SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY

the final step is to calculate the posterior distribution for the
TE and the distortion bands of the posterior distribution for
the TE. This allows one to update the risk assessment post
observing the data. Posterior distributions and their distortion
bands can also be obtained for any of the intermediate events
or indeed the elementary events. Sampling based methods
such as importance sampling or Approximate Bayesian
Computation (ABC) can be used to compute the posterior
distributions.

This was demonstrated in Example IV-B, where importance
sampling was used to calculate posterior distribution of the
TE. See [5] for details on this approach.

V. SUMMARY AND FUTURE WORK
A. Why Bayesian prior robustness?

In order to improve on the static nature of the FTA,
Bayesian approaches have been proposed. This includes the
BN approach as well as a fully Bayesian implementation
of the FTA. Bayesian approaches enable updating the prior
beliefs based on the observed data using the Bayes theorem.
While BN allows for dependency between events, it has some
important drawbacks as highlighted in Section I-A. One of
the main drawbacks of BN is that it requires specification
of exact prior probabilities and can not account for any
uncertainty around the specified values. This is an unrealistic
requirement since often the prior information may be subject
to uncertainty. A fully Bayesian implementation of FTA
has an advantage over the BN in that it accounts for the
uncertainty in the prior value by specifying a prior distribution
for each of the elementary events.

In many complex applications though, eliciting priors on
elementary/intermediate events is not straightforward for a
number of reasons. Firstly, eliciting prior distributions can
be subject to errors from multiple sources as discussed in
Example IV-B. Secondly, for complex systems with very
little prior data, getting experts to accurately elicit even a
mean value can be challenging simply because of the lack of
information.

Further in some applications, actual observed data is
scarce at best. This implies that the posterior beliefs are
nearly identical to the prior beliefs. This also implies that
the mis-specifications to the prior distributions are also the
mis-specifications to the posterior. Therefore, prior robustness
analysis is essential.

One of the goals of this paper was to warn engineers about
the potential pitfalls around the unique specification of prior
distributions when employing a fully Bayesian approach to
the FTA - namely, the various types of errors that can be
made and the resulting uncertainty around the true priors.
Here, we provide a way to model such uncertainty and
evaluate the consequences.

B. Methodology proposed in this paper

In this paper, we develop a prior robustness approach
for the fully Bayesian implementation of FTA. This now
provides a way to model the uncertainties around the prior
specifications and to quantify the effect these uncertainties
have on the perceived reliability of the system. A prior
robustness approach to Bayesian FTA has not been developed
before.

Our approach is based on a new class of priors called
the distorted band of priors [11] which are obtained by
using convex and concave power functions. We develop the
computational algorithms needed to implement this approach
on Bayesian FTA. We also mathematically prove that these
algorithms will always work and will accurately generate the
distortion bands needed. Our mathematical contribution is
detailed below.

We prove some important properties related to the distorted
band class of priors. In particular we have shown that
the lower/upper bounds of the distorted bands for the
intermediate/top events can only be obtained by using the
lower/upper bounds of the distorted bands for the elementary
events. This property is important since it implies that it
is sufficient and also necessary to sample only from the
lower/upper bounds of the distorted bands for each of the
elementary events in order to obtain the distorted bands for
the intermediate/top events. If this property was not true,
then one would have to sample from all the (infinite number
of) distributions that are members of the distorted band of
priors for an elementary event in order to obtain the accurate
distorted bands for the intermediate/top events.

An important problem while working with the distorted
band of priors is to be able to correctly elicit the power
function parameter «. The value of o determines the width
of the distortion band and thus quantifies the uncertainty
around the specified prior distribution. The correct elicitation
of « is therefore vital to be able to accurately estimate the
uncertainty around the reliability of the system. Yet, there
was no guidance on how to do this. We show how the power
function parameter « can be elicited through the expert
knowledge. We provide both an exact equation that can be
solved using a computer code and also an approximation that
does not require using a computer code.

Finally, we provide a step-by-step illustration of how this
methodology can be implemented on a real life example.

C. What difference does it make?

We consider two real life examples: a spacecraft re-entry
example discussed by [5] and a feeding control system
example discussed by [2]. Since eliciting prior distribution is
so critical, we illustrate how prior distributions can be elicited
in different ways using these two examples. We also illustrate
how the distorted prior and posterior bands can be obtained
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for the top event. We use these examples to illustrate that
minor distortions in the prior/posterior distributions of the
elementary events can result in significant distortions to the
prior/posterior distributions of the top event. These distortions
can change the perceived reliability of the system highlighting
the need for this kind of analysis to be implemented when
using the fault tree approach to model complex events.

The two key messages here are: 1. A practical warning to
the engineers that, wherever possible an extra effort should
be placed on eliciting prior distributions with more precision
so as to reduce the uncertainty in prior specification. 2. A
prior robustness approach such as the one developed here
should be employed to quantify the uncertainty around the
Bayesian analysis so as to get a more realistic model of the
reliability of the system.

We also show that this methodology can be just as easily
applied for non-Bernoulli data by illustrating its use to model
time to failure in a triple modular redundancy system. Indeed,
the distortion bands can be obtained for any distribution using
the algorithms described in this paper.

An important point to note is that the use of the distorted
band class of priors actually relaxes the distributional
assumptions made when eliciting a prior distribution (whether
it is Beta or Exponential or any other). This is because the
class will contain (infinitely many) distributions which will
not follow the form of the original prior. Therefore, the
resulting analysis can be considered to be largely independent
of any distributional assumptions made.

D. Future work

The spacecraft re-entry example discussed also uses the
AHP to elicit priors for some of the elementary events. The
AHP itself is also subject to errors due to mis-specification.
The approach proposed here assumes that the distortions
due to the mis-specification in the AHP are also taken into
account while eliciting the power function parameter o. A
robustness approach to explicitly quantify the distortions to
AHP will be an important future contribution.

BN have been shown to be a superior alternative to FTA,
especially when the independence assumption is not met.
However, BN not only require specification of exact prior
probabilities but also the conditional probabilities to define
dependencies between events. As the number of nodes and
dependencies increase, the BN require an increasingly large
amount of prior specification. The BN outcome is therefore
subject to the mis-specification of not only the priors but also
of conditional probabilities. An important future contribution
would be to develop a Bayesian prior robustness approach for
BN.
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