The BRICKS Infrastructure - An Overview

Thomas Rissk Predrag Knievic!', Carlo Meghint, Robert Hecht, and Fiore Basilé

L Fraunhofer IPSI
Integrated Publication and Information Systems Institute
Dolivostrasse 15, 64293 Darmstadt, Germany
{ri sselknezevi c}@psi . f hg. de

2 CNRISTI
Via G. Moruzzi 1, 56124 Pisa, Italy
carlo.meghini@sti.cnr.it

3 ARC Seibersdorf Research - Research Studios
Studio Digital Memory Engineering
Thurngasse 8, A-1090 Wien, Austria

robert. hecht @esearchstudi o. at

4 METAware S.p.A.
Via F. Turati 43/45, 56125 Pisa, Italy
f.basile@etaware. it

Abstract. The aim of the BRICKS project is to design, develop and maintain an
open user and service-oriented infrastructure to share knowledgeesources

in the Cultural Heritage domain. Typical usage scenarios are integratates
among several knowledge resource, e.g. to discover all Italianastifeom re-
naissance in the European museums or to follow the life cycle of historic doc
uments. These examples are specific applications, which are runnitogp arf

the BRICKS infrastructure. The BRICKS infrastructure will use the im¢@as a
backbone and will fulfil the requirements of expandability, gradualitynafasye-
ment, scalability, availability, and interoperability.

In addition, the user community has the economic requirement to be Istv-co
This means (1) that an institution should be able to become a BRICKS member
with minimal investments, and (2) that the maintenance costs of the inftastru
ture, and in consequence the running costs of each BRICKS menéeniia-
imised. Also, the BRICKS membership will be flexible, such that partiegaian

or leave the system at any point in time without administrative overheads.

In order to fulfil these requirements the BRICKS architecture will be dece
tralised, based on a peer-to-peer (P2P) paradigm, i.e. no centval séll be
employed. Every member institution of a BRICKS installation is a node (a BN-
ode in the BRICKS jargon) of the distributed architecture. The foundatom c
ponents (bricks, in the BRICKS jargon) making up the BRICKS architecine
Web Services, and provide functionalities for maintaining the systemofaeat-

and metadata management, or security. Applications are composetitbase
base components and can add new ones to provide additional functianalitie

1 Introduction

The aim of the BRICKS project [1] is to design, develop andntan an open user and
service-oriented infrastructure to share knowledge asdurees in the Cultural Her-
itage domain. The target audience is very broad and heteeogs and involves cul-
tural heritage and educational institutions, researchngonity, industry, and citizens.
Typical usage scenarios are integrated queries amongaséwewledge resource, e.g.
to discover all Italian artefacts from renaissance in theogean museums. Another
example is to follow the life cycle of historic documents,agk manual copies are dis-
tributed all over Europe. These examples are specific agjait, which are running
on top of the BRICKS infrastructure. The BRICKS infrastiuuet uses the Internet as a
backbone and has to fulfil the following requirements:

— Expandability, which means the ability to acquire new ss¥sj new content, or
new users, without any interruption of service.

— Scalability, which means the ability to maintain excellemtservice quality, as the
volumes of requests, of content and of users increase.

— Availability, which means the ability to operate in a relalwvay over the longest
possible time interval.

— Graduality of Engagement, which means the ability to offevide spectrum of
solutions to the content and service providers that wantetmime members of
BRICKS.

— Interoperability, which means the ability to make avaiabérvices to and exploit
services from other digital libraries.

In addition, the user community has the economic requireneeme low-cost. This
means (1) that an institution should be able to become a BBI@Kmber with minimal
investments, and (2) that the maintenance costs of thestnficture, and in consequence
the running costs of each BRICKS member, are minimized.

Interested institution should not invest much additionahey in its already existing
infrastructure to become a member of BRICKS. In the idead ¢hs institution should
only get the BRICKS software distribution, which will be @eble for free, install it,
connect to the internet and become a BRICKS member. Thisalvélady gives the
possibility to search for content and access some senkagssure, additional work
is necessary to integrate and adapt existing content angcegrto provide them in
BRICKS.

Also, the BRICKS membership will be flexible, such that gstcan join or leave
the system at any point in time without administrative oeadis. To minimize the main-
tenance cost of the infrastructure any central organigatitich maintains e.g. the ser-
vice directory, should be avoided. Instead, the infrastmecshould be self-organizing
in a way that the scalability and availability of the fundarta services, e.g. service
discovery or metadata storage, are guaranteed.

The paper is structured as follows. In the next Section we dgmtails about the
overall architecture. Afterwards in Section 3 we descritbeapproach to handle data in
decentralized environments. Section 4 describes the momanagement of BRICKS.
The handling metadata will be described in Section 5. Afeeds in Section 6 we intro-
duce the BRICKS approach for personalized, cross-langirgemation access. The

Fig. 1. Decentralized BRICKS Topology

security architecture will be described in Section 7. Hin&kection 8 gives conclusions
and outlook.

2 Overall Architecture

In order to fulfil these requirements the BRICKS architegetwill be service-oriented
and decentralized. There are several reasons for the dalization approach: Decen-
tralized architectures do not have a central points, whamhldcstop or slowdown in
failure or overload situations. Instead of that, the deediaed architectures offer bet-
ter load-balancing, and a failure will not influence systemilability in whole. Only
parts of the system might be affected. Furthermore, havéngral points (servers) lim-
its their scalability in a long-run. It is always a good ideadesign a system in a way
that it is able to handle loads, which was not foreseen dutiegnitial design phase.
For standard client-server the system load must be cayefstimated, e.g. by guessing
the maximum number of users. In open systems like BRICKSishist possible. Due
to the simplicity of joining the system the number of nodes icerease rapidly. Hence
upper limits can not be given. With the decentralizationrapph we can avoid single

e
i Workstation
Workstation Austian Library

=

D 3 =
~ \>Q,
BNode Workstation

o)
Workstation Q< Ufizzi

|

Workstation

Request

FhG IPSI

[—]
Workstation Workstation

Fig. 2. Request routing in BRICKS

points of failure of core functionalities, e.g. serviceatigery, by completely distribut-
ing them.

Furthermore, the lack of central points removes the needediatralized mainte-
nances. Important infrastructure functionalities arénafilemented in a self-organizing
way or using services which are implement in that way. That $$rong advantage of
the decentralized approach because a centralized adrafitistcosts additional money
and personnel must be dedicated for the tasks. BRICKS igygoilbe very heteroge-
neous system without a central body that will maintain th&ey. Also, our aim is to
make a system whose infrastructure costs are as low as |gpsasilol a decentralized
architecture is good approach that has the necessary pesper

Figure 1 shows a possible topology of the future BRICKS systevery node rep-
resents a member institution, where the software for aowetise BRICKS is installed.
Such nodes are called BNodes. BNodes communicate among#eaatand use avail-
able resources for content and metadata management. EMedesknows directly only
a subset of other BNodes in the system. However, if a BNoddsaarreach another
member that is directly unknown to it, it will forward reques some of its known
neighbour BNodes that will deliver the request to the finatishation or forward again.
This is depicted in Figure 2. It shows also that BRICKS useress the system only
through a local BNode available at their institution. Hemesery user request is first
sent to the institution’s BNode and then the request is tbbedween other BNodes to
the final destination. Search requests behave like thaBMwde will preselect a list
of BNodes where a search request could be fulfilled, and the®Node will route it

there. When the location of the content is known, e.g. as & @he query, the BNode
will directly be contacted.

3 Decentralized XML Data Management

It is very common in a system architecture to have a place evbdferent sorts of
data are stored and later retrieved for a variety of purpddssally, such places are
centralised, i.e. there are one or many know servers ane tangber of clients that use
the storage.

One of important requirements of the BRICKS project is daefina completely
decentralised architecture, even for needed storages, Weicannot apply standard
centralised approach, i.e. our storage that should be sibteeby every BNode must be
decentralised as well. At the same time, usage of such gtonagt not be different from
the centralised approach, i.e. all additional complexitydduced by decentralisation
should be hidden in exposed application interface (API).

In order to fulfill the above requirements, we have design&®?RB datastore that
manages XML documents within a P2P community. The appro&frsifrom the
current P2P datastores, where each peer makes their l@sahbfibilable for commu-
nity download. XML documents are split into finer pieces theg spread then in the
community. The documents are created and modified by the cmityrduring system
run-time and they can be accessed from any peer in a unifogneag a peer does not
have to know anything about the data allocation.

The decentralized XML storage should be used for all datarthsst have very
high availability. Examples are service descriptions, mistrative information about
collections, and annotations which need to be globallylalke during the whole life
of the system. Other sorts of data like descriptive metadfatantent are not required
to be stored there, as they are kept locally under the cooftitble owner.

Database Architecture

Within BRICKS we design and implement a decentralized/P&fastore that manages
XML documents within a P2P community. The approach diffeostcurrent P2P data-
stores, like Gnutella or Kazaa, where each peer makes it files available for
community download. In our approach XML documents are it finer pieces that
are spread then in the community. The documents are creadadedified by the com-
munity during system run-time and they can be accessed frgnpeer in a uniform
way, e.g. a peer does not have to know anything about the tiatation.

The proposed datastore mimics a subset of the Document Qijet=| (DOM) [2]
interface, which has been widely adopted among developedsa significant legacy of
application is already built on top of the DOM. Therefore,npapplications could
be ported easily to the new environment. XML query languddes XPath [3] or
XQuery [4] can use the DOM as well, so they could be used foryjug of the datas-
tore. Finer data granularity will make querying and updatimore efficient.

The storage must be able to operate in highly dynamic contieaniPeers can
depart or join at any time, nobody has a global system owsraeiecan rely on any

Applications

Query Engine

P2P-DOM ||—_|| Index Manager

| DHT Abstraction Layer |

| DHT |

Network Layers

Fig. 3. Peer-to-peer XML Storage Architecture

particular peer. These requirements differ significantnt those in the distributed
databases where node leaving is only due to some node faildrthe system overview
is globally known.

Figure 3 presents the proposed database architecturaygld exist on every peer
in the system. The datastore is accessed through the P2Pda@idonent or by using
the query engine. The query engine could be supported by @onapindex manager
that maintains indices. Note, that the query engine andximadagnager for the XML
storage are different from those used to query metadata dfoa®(cf. Section 6).

P2P-DOM is the core system layer. It exports a large portidhe@DOM interface
to the upper layers, and maintains a part of a XML tree in allstare (e.g. files,
database). P2P-DOM serves local requests (adding, ugdatith removing of DOM-
tree nodes) and requests coming from other peers througistaibied Hash Table
(DHT) [5-7] overlay, and tries to keep the decentralizedibase in a consistent state.
In order to make the DHT layer pluggable, it is wrapped in @ layer that unifies APIs
of particular implementations, so the upper layer does aetirio be modified.

4 Content Management

BRICKS decentralized architecture mandates that each BNlbduld take care of stor-
ing its locally produced content. Such content is organinehierarchical way inside
the so calleghysical collectionsEach content item is stored within one and just one
physical collection, inside a structure callBdlObject The DLObject is the minimal
entity in the BRICKS information model. THeéontent Management bri¢kkes care of
maintaining the physical collection hierarchy and DLObgored inside it.

4.1 BRICKS DLObjects and the BRICKS Content Model

As one may easily imagine, digital objects play a key role dhgital library, therefore
one of the biggest challenges in defining the BRICKS architecwas to identify a
general model for the storage and handling of digital olsject

Each digital object must be able to hold structured textndlzinary data, in order
to allow end-user applications to manage the complex datetates presentin modern
cultural-heritage applications. Moreover digital obgetust be easily imported and ex-
ported to and from the digital library, so it is necessaryupport standard interchange
formats like XML.

For this reason, within BRICKS, digital objects are modettesbugh a meta con-
tent model, that allows to define, through a full type hielngrand inheritance, complex
content type definitions. A BRICKS DLObiject, uniquely idéied by a URN [8], can
therefore be associated a specific type definition (whickritdfrom the basi©LOb-
ject type) and be composed according to this definition by a hibgaof nodesand
propertiesof several kind (text, binary file, etc).

The type definition states which nodes and which propertiesaiowed to be
created under a specific DLObject, and can be created by imgoa plain XML
Schema [9] file. This also implies a very strict mapping to adLformat representa-
tion of all BRICKS DLObjects, allowing easy import and expofcontent in BRICKS.

The meta content model definition is based on the Java CdrRépusitory (JCR) [10]
standard, which is also used as a basis for the Content Maaegjetecture and refer-
ence implementation, as described in the following section

BRICKS provides a set of pre-defined content models, inolyéRBR [11]-inspired
by ECHO and DoMDL [12], MPEG-21 DIDL, TEI-Lite [13] and a suliof DocBook.
Additional content models will be added as new user apptinatare produced.

4.2 Content Manager Architecture

As all other BRICKS Foundation component the BRICKS Conldahager exposes a
web service API to be used by other components and by endappécations.

Such API closely mirrors the Java Content Repository (J@REnNtly standardized
as JSR-170. Java Content Repository was defined as a comnidar/siit Java-based
content management systems, able to act as glue betweerediff’endor’s implemen-
tations, and allowing replacing one content managememé¢sywith another without
necessarily rewriting all the content presentation code.

JCR defines both a meta content model and a full set of furaditgrior accessing
and manipulating content. The BRICKS Content Manager, dasethe reference im-
plementation of the JCR standard, provided by the Apachedllit project, adds an
additional web-service layer on top of the JCR API, and ptesia set of pre-defined
type definitions and utilities to allow easy integration @RI within the BRICKS plat-
form.

Figure 4 illustrates the Content Manager architecturewtble-service interface ex-
tends and uses Apache Jackrabbit over a set of several sgstanstores, that may
include file system, relational databases and XML storagiétfas. Through configu-
ration files the BRICKS Content Manager allows the definitbnew types of DLOb-

Built-in Content models

Gy T

Content Manager Web Service API

JCRAPI

JCR Reference Implementation
(Jackrabbit) Other Other

CMS o
(Filesystem) (JDBC)

(CR)
Fig. 4. The BRICKS Content Manager Architecture

jects, all based on a common type, which defines basic piepatich as the BRICKS
unigue identifier.

In the future, an additional wrapper to the Content Managa-gervice interface
will be provided, allowing user applications to use the d&d JCR Java APl instead of
the BRICKS web-service implementation, when writing Jasfveare. This will allow
greater flexibility for developers to port their applicatifrom and to non-BRICKS
platforms.

4.3 Content Manager functionality

BRICKS Content Manager offers a great deal of functionatianks to the underly-
ing JCR engine. The BRICKS specific functionality includae treation and man-
agement of Physical Collections and DLObjects, the lockind versioning of DLOb-
jects, browsing of DLODbject content, type and version higrg the management of the
BRICKS unique identifiers (in the form of URNSs). Advanced dtionality like concur-
rent editing of same content items, staging of content, mgrgf different content
revisions is also offered through the BRICKS content manAdg.

5 Metadata Management

The BRICKS Metadata Manager handtsscriptiveMetadata, i. e. Metadata describ-
ing the contents of a document or resource. Descriptive dédtafor a text document
might include e.qg. title, author, creation date, a set ofwkayls, publisher etc. Other

kinds of metadata are e.g. information on file size and forawtess rights, intellectual
property rights etc. These Metadata are not managed by thedista Manager.

Descriptive Metadata are mainly used to find documents rivggatertain condi-
tions (see section 6), e.g. to retrieve all documents by @iceauthor or on a given
topic. In fact, for non-textual documents like pictures odi files, the descriptive
Metadata are thenly basis to find documents matching certain criteria. Theegfiiey
play a key role in BRICKS.

5.1 Metadata Manager Architecture

The architecture of the Metadata Manager is shown in fig. &orisists of two layers:
the lower layer (RDF graph layer) uses the Resource Demiptamework (RDF) [14]
as internal representation language. RDF models all datépées of the formSubject

- Predicate - ObjectFor example the fact that a certain painting was createddst K
imir Malevi¢ would be modeled in RDF as triptBlack square” (Subject) - createdBy
(Predicate) - “Kazimir Malev” (Object). Since the Object can be the Subject of an-
other triple, complex connected graphs can be built. Arrotfay to view RDF triples
would be Attribute-Value-pairs: the subject can be thoughtaving a set of attributes
(the predicates of the triples) with given values (the otsjec

The upper layer (presentation layer) of the Metadata Mandtgeexternal interface
- summarizes triples that have the same subject into stestalled Metadata Records.
The reason for this is that the RDF graph, while very usefulifiéerencing, can be
complex and confusing.

Furthermore, all metadata are required to conform to a ditetadata Scheman
the RDF graph layer, we use (a subset of) the Web Ontology wasgey (OWL) [15]
for the definition of Metadata Schemas. Metadata Schemasiblieg the most impor-
tant standards will be pre-loaded at the startup of the Metgatlanager. Additional
Metadata Schemas can be loaded at any time by submitting @ofitaining an XML
serialisation of the OWL ontology. We want to point out thativeeg Metadata Schema
mustbe loaded into the Metadata Manager before metadata ussgdhema can be
stored. In most cases, Metadata Schemas contain just adiigief (ontology) classes
and a set of properties (attributes) defined on these clasdédstadata Schema can im-
port an arbitrary number of other Metadata Schemas, bug thege to be loaded before
the schema that imports them. The relation between the Metg&thema (defined in
OWL) and the actual Metadata (defined in RDF) is similar to #lation of an XML
Schema definition and the corresponding XML File.

In the presentation layer, the contents of a Metadata Sclvtamée retrieved, e.g.
it is possible to query for classes, attributes, etc. definglde schema.

5.2 Functionality of the Metadata Manager

The Metadata Manager offers functionality to create, modifid delete Metadata Records
and to load Metadata Schemas. Besides, it supports the Quergssor by allowing re-
trieving all Metadata Records that fulfill certain critergag. all documents by a certain
author. It should be pointed out that client applicationsusth not use this functionality

Presentation Layer

bricks:bnode1:pic1 bricks:bnode1:pic2
title: Mona Lisa title: Last Supper
creator: Leonardo da Vinci creator; Leonardo da Vinci
type: Image type: Image

RDF Graphg' Layer

{ Leonardo da Vinci

creafor

H :bnode1:pic2
| creator

bricks:bnode1ipic1

. title
Mona Lisa Last Supper
e o

Fig. 5. The BRICKS Metadata Model

directly, because the Metadata Manager resolves querlgdomally (i.e. on the BN-
ode where it runs). This is because also the Metadata aedsboty locally. To enable
resolving queries that affect several BNodes, the Metaldiatiaager collaborates with
the Indexer component: whenever a Metadata Record is dreztanged, or deleted,
the Metadata Manager propagates this information to thexiexd The indexer is a dis-
tributed component which the Query Processor uses to res@tributed queries.

6 Personalized, cross-language information access in BRICK

The information access facility of the BRICKS architectisédased on the BRICKS
query language, which supports 3 types of searches on ntetada

— simple searchyhich is a full-text search on metadata records;

— advanced searclexpressed in terms of a Boolean combination of simateibute
operator valug conditions, wherattributeis a field of a metadata schema,;

— ontology searchexpressed in terms of a complex query on an OWL DL ontology.

The latter two types of queries are expressed in the synt&PARQL, an emerging
query language for RDF. The evaluation of each type of gaégsidased on a 2-level
architecture: Th&uery MediatolQM) on the global level and thecal query proces-
sors The Query Mediator undertakes the query evaluation peptgsappropriately us-
ing local query processors. At the local level exist a nundfdéocal query processors,

each dedicated to a specific type of queries and a specifi¢ datan These processors
are not implemented by BRICKS: they are built by integraiimg the BRICKS archi-
tecture existing software components. Specifically we useehe® for simple search,
and Jend for advanced and ontology search.

The BRICKS Query Mediator
Upon receiving a query, the QM performs the following opiera.

1. The QM identifies the nodes of the network where the reledara and processors
are placed; this operation may be complicated by the fattthigauser has speci-
fied no collection in the query, thus all nodes are potentiglevant; since only a
limited number of nodes can be addressed, for efficiencyreashe QM adopts a
suitablesource selection stratedy limit the search;

2. The QM breaks the given query into sub-queries, which absequently deliv-
ered to the appropriate nodes for evaluation. This operatiay be complicated by
several factors.

— First, there may exist mappings defined on the terms use@igubry to other
terms of a different ontology or metadata schema. In thig,cie® Ontology
Manager is invoked in order to re-write the query to take iatcount such
mappings.

— Second, the user may have requested a personalized quéurgtaa In this
case, the query needs to be re-written in order to take irdowatt user prefer-
ences as represented in profiles.

— Third, the query may need to be expanded to take into accoultitimguism.
This possibility only exists for simple searches: the exgi@m concerns the
addition of the translations of the involved terms in therappate languages.

3. The QM collects the results and delivers them back to tieesu3 his operation is
complicated by the fact that the size of the result may be lage, potentially as
large as the whole digital library. For this reason, the QMagis requires the in-
voker to specify the desired portion of the result, whichdesidered to be linearly
ordered. Such portion is specified by 2 integers:

— maxBunchgiving the size of the desired portion (clearly, this mushbtlarger
than a prefixed parameter); and

— startingPosition giving the relative position of the first desired item in tlee r
sult.

In order to achieve scalability, the QM operates in a stagelgay: it never caches
anything. It is the responsibility of the application to rage local caching, if re-
quired. For instance, a GUI application might ask 100 obkjetta time to the QM
(e.g., maxBunch=1Qut only display 20 of them to the user at any one time.

Shttp://1ucene. apache. or g/ j aval/ docs/
Shttp://jena. sourceforge. net/

7 Security

Security of a complex framework like BRICKS must cover a witeay of topics:
services like authentication, authorization, accountprigyacy, trust and digital rights
management have to be provided as a basis for building ofsssees and applica-
tions.

7.1 BRICKS Security features

Providing security in BRICKS, which is the basis for a trastiggital library framework,
requires a series of features which include:

— Asserting user identity, in order to guarantee secure t¢iparan all the BNodes.
Moreover user identity must be federated, as each BNodetamasninformation
only on his registered users.

— Providing access control, to allow only authorized usengeidorm sensible oper-
ations on content and related structures. An additionalired feature is to enrich
access control with dynamic, reputation-basedt information about the organi-
zation to which a user belongs.

— Logging and billing, as each user operation should be tldeemnd billable when
needed.

— Safeguard of intellectual property rights, to provide atful environment for con-
tent producers, where they could collect revenue and grdtew rights while al-
lowing content to be distributed to final consumers.

— Providing interoperability with existing security inftagctures, as many organiza-
tion want to keep their investments in infrastructure arghaization.

In order to offer these features BRICKS provides a modulausty architecture,
described in the following section.

7.2 BRICKS Security architecture

BRICKS security architecture as shown in Figure 6 can be as@set of interoperable
modules that cooperate inside a BNode. Security is alsodbaseexternal systems
such as user directories, external digital rights storgmrization accounting systems
and payment gateways, that interact with the security tachire each with their own
interface.

A service-oriented interface is available to applicatiervices and other BNodes.
Each service invocation must carry information about ther wgho is invoking the
service, the credentials provided, the security contexttuich the user wants to operate
and the name of the operation to be executed.Séwmurity Managememhodule obtain
these information and then uses the underlying modulesllas/fo User Management
module is used to verify the user identity, for example byckimeg the user-provided
signed certificate, and gathering which groups the usembsldo along with roles
associated to them.

AAAA

BNODE Security Services External
Payment
Gateway

Web Services

HTTPS
Security Manager Organization
Accounting
Di
EoxmL — | R
DRM Manager —
Mpeg 21

| Rights Markup __|
Language External DRM

Repository

Accounting Manager

User Manager

Trust Manager

T))))
_— — U J J

External User
Directory

BNode Trust + WSS

BNode

Bnode

BNode BNode

Other BNodes

Fig. 6. The BRICKS Security Architecture

The Digital Rights Managementnodule takes part to the process by checking if
the security context is protected by digital rights and \ktgteps are required to obtain
digital rights clearance. The DRM module can deny the serivigocation by providing
such instructions, or directly issue authorization andegating accounting events to be
handled by the Accounting Management module.

TheAccounting Managementodule is used to check and handle accounting events
linked to the operation and the security context on whicla# to be executed, generat-
ing one or more accounting events, for logging purposesrdrifing. As already said
there is a strong dependency on the Digital Rights Managemedule, which is the
principal source of accounting events and which use acomuntanager transactions
as conditions to obtain clearance for digital rights protec

The BNode acts as a proxy to the BRICKS community on behalhefuser. As
the user requires to access a service offered by another &tedservice invocation
must be forwarded to the proper BNode via the Trust module.Triist Management
module maintains structures that hold security infornratino the surrounding neighbor
BNodes. It forwards user and role information along the iservequest to the other
BNode service interface. The request, when received, tegs®d according to external
role and trust policies and the answers forwarded to the user

7.3 Core security technologies

BRICKS makes use of several state-of-the-art standardsestahologies in order to
implement a modern and robust security architecture.

In particular all web-service communication is secureduiyh the WS-Security [16]
set of standards, which also include XML-Encryption [178§ia¢ML-Signature [18].

The federated identity service is implemented by using tAMIS (Security As-
sertions Markup Language) [19], while access control pediare defined via XACML
(eXtensible Access Control Markup Language). The Trustadg@ment module is mod-
eled after a variant of the Poblano trust model. Finally tiRMDmodule uses the widely
adopted MPEG-21 REL (Rights Expression Language) [20]Herdefinition of DRM
policies and licenses.

Other standards used include HTTPS, x509 [21] certificatB&P (to access ex-
ternal user directories) and ebXML (for integration witlyanization’s billing and ac-
counting systems).

8 Conclusions and Future Work

In this paper we presented the approach we have taken in BRiGléddress the prob-
lem of sharing knowledge and resources in the Cultural Bigeidomain. The BRICKS
architecture is layered, Web-service-based and decizetiallhe paper describes how
our approach is different from the existing ones in the Galttleritage domain, i.e. we
give details how some specific issues like content managemetadata management,
and security are handled in the decentralized system. Thiesteps are the implemen-
tation of the components and services of the BRICKS framkwaod the instantiation
of the infrastructure, by installing some BNodes at thergarorganizations.

References

1. BRICKS Project: BRICKS - Building Resources for Integrated Cultkireowledge Services
(IST 507457). (2004) http://www.brickscommunity.org/.

: Document Object Model. (2002) http://www.w3.0rg/DOM/.

W3C: XML Path Language (XPath) Version 1.0. (1999) http://www.eBP TR/xpath.
W3C: XML Query. (2003) http://www.w3c.org/XML/Query.

Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized tdbjeation, and routing for
large-scale peer-to-peer systems. Lecture Notes in Computer S22h8€2001)

Aberer, K.: P-Grid: A self-organizing access structure for P@Pmnation systems. Lecture
Notes in Computer Scien@172(2001)

abrwn

o

(o]

10.

11.

12.
13.

14.
15.
16.
17.
18.
19.
20.

21.

. Stoica, I., Morris, R., Karger, D., Kaashoek, F., BalakrishifanChord: A scalable Peer-To-

Peer lookup service for internet applications. In: Proceedings ofadd& ACM SIGCOMM
Conference. (2001) 149-160

. R.Moats: RFC2141: URN Syntax. (1997) http://www.ietf.org/rfc/ifé2.txt.
. W3C: XML Schema Part 0: Primer Second Edition - W3C Recommendaf?004)

http://www.w3.org/TR/xmlschema-0/.

David Nuescheler, Day Software: JSR-000170 Content ReppéitodavaTM technology
API. (2005) http://jcp.org/aboutJava/communityprocess/final/jsr170{ihtfal.

IFLA: Functional Requirements for Bibliographic Records. (2998
http://www.ifla.org/VII/s13/frbr/frbr.pdf.

OpenDLib: DoMDL XML Schema. (2004) http://www.opendlib.comineces/schemas/domdl.xsd.
Lou Burnard: TEI Lite: An Introduction to Text Encoding for Inteamge. (2002)
http://www.tei-c.org/Lite/teiuSen.html.

W3C: Resource Description Framework (RDF). (2005) http://wvBe.arg/RDF.

W3C: OWL Web Ontology Language Reference. (2004) http://wwvagBT R/owl-ref/.
OASIS Web Services Security (WSS) Technical Committee: Welicgsr@ecurity: SOAP
Message Security 1.0. (2004)

Draft, W.W.: XML Encryption Syntax and Processing. (2002)

Draft, W.W.: XML Signature Syntax and Processing. (2001)

OASIS Web Services Security (WSS) Technical Committee: Welicgsr&ecurity: SAML
Token Profile. (2004)

ISO/IEC JTC1/SC29/WG11, N.: MPEG-21, Information Technalddyltimedia Frame-
work, Part 5: MPEG-21 Rights Expression Language. (2003)

S. Santesson et al. and R. Fielding and L. Masinter: Internet)26bBc Key Infrastructure
Qualified Certificates Profile (2000)

