
The BRICKS Infrastructure - An Overview

Thomas Risse1, Predrag Knězevíc1, Carlo Meghini2, Robert Hecht3, and Fiore Basile4

1 Fraunhofer IPSI
Integrated Publication and Information Systems Institute

Dolivostrasse 15, 64293 Darmstadt, Germany
{risse|knezevic}@ipsi.fhg.de

2 CNR ISTI
Via G. Moruzzi 1, 56124 Pisa, Italy
carlo.meghini@isti.cnr.it

3 ARC Seibersdorf Research - Research Studios
Studio Digital Memory Engineering
Thurngasse 8, A-1090 Wien, Austria

robert.hecht@researchstudio.at
4 METAware S.p.A.

Via F. Turati 43/45, 56125 Pisa, Italy
f.basile@metaware.it

Abstract. The aim of the BRICKS project is to design, develop and maintain an
open user and service-oriented infrastructure to share knowledge and resources
in the Cultural Heritage domain. Typical usage scenarios are integrated queries
among several knowledge resource, e.g. to discover all Italian artifacts from re-
naissance in the European museums or to follow the life cycle of historic doc-
uments. These examples are specific applications, which are running ontop of
the BRICKS infrastructure. The BRICKS infrastructure will use the Internet as a
backbone and will fulfil the requirements of expandability, graduality of engage-
ment, scalability, availability, and interoperability.

In addition, the user community has the economic requirement to be low-cost.
This means (1) that an institution should be able to become a BRICKS member
with minimal investments, and (2) that the maintenance costs of the infrastruc-
ture, and in consequence the running costs of each BRICKS member, are min-
imised. Also, the BRICKS membership will be flexible, such that parties canjoin
or leave the system at any point in time without administrative overheads.

In order to fulfil these requirements the BRICKS architecture will be decen-
tralised, based on a peer-to-peer (P2P) paradigm, i.e. no central server will be
employed. Every member institution of a BRICKS installation is a node (a BN-
ode in the BRICKS jargon) of the distributed architecture. The foundation com-
ponents (bricks, in the BRICKS jargon) making up the BRICKS architecture are
Web Services, and provide functionalities for maintaining the system, for content-
and metadata management, or security. Applications are composed out of these
base components and can add new ones to provide additional functionalities.

1 Introduction

The aim of the BRICKS project [1] is to design, develop and maintain an open user and
service-oriented infrastructure to share knowledge and resources in the Cultural Her-
itage domain. The target audience is very broad and heterogeneous and involves cul-
tural heritage and educational institutions, research community, industry, and citizens.
Typical usage scenarios are integrated queries among several knowledge resource, e.g.
to discover all Italian artefacts from renaissance in the European museums. Another
example is to follow the life cycle of historic documents, whose manual copies are dis-
tributed all over Europe. These examples are specific application, which are running
on top of the BRICKS infrastructure. The BRICKS infrastructure uses the Internet as a
backbone and has to fulfil the following requirements:

– Expandability, which means the ability to acquire new services, new content, or
new users, without any interruption of service.

– Scalability, which means the ability to maintain excellence in service quality, as the
volumes of requests, of content and of users increase.

– Availability, which means the ability to operate in a reliable way over the longest
possible time interval.

– Graduality of Engagement, which means the ability to offer awide spectrum of
solutions to the content and service providers that want to become members of
BRICKS.

– Interoperability, which means the ability to make available services to and exploit
services from other digital libraries.

In addition, the user community has the economic requirement to be low-cost. This
means (1) that an institution should be able to become a BRICKS member with minimal
investments, and (2) that the maintenance costs of the infrastructure, and in consequence
the running costs of each BRICKS member, are minimized.

Interested institution should not invest much additional money in its already existing
infrastructure to become a member of BRICKS. In the ideal case the institution should
only get the BRICKS software distribution, which will be available for free, install it,
connect to the internet and become a BRICKS member. This willalready gives the
possibility to search for content and access some services.For sure, additional work
is necessary to integrate and adapt existing content and services to provide them in
BRICKS.

Also, the BRICKS membership will be flexible, such that parties can join or leave
the system at any point in time without administrative overheads. To minimize the main-
tenance cost of the infrastructure any central organization, which maintains e.g. the ser-
vice directory, should be avoided. Instead, the infrastructure should be self-organizing
in a way that the scalability and availability of the fundamental services, e.g. service
discovery or metadata storage, are guaranteed.

The paper is structured as follows. In the next Section we give details about the
overall architecture. Afterwards in Section 3 we describe our approach to handle data in
decentralized environments. Section 4 describes the content management of BRICKS.
The handling metadata will be described in Section 5. Afterwards in Section 6 we intro-
duce the BRICKS approach for personalized, cross-languageinformation access. The

Fig. 1.Decentralized BRICKS Topology

security architecture will be described in Section 7. Finally Section 8 gives conclusions
and outlook.

2 Overall Architecture

In order to fulfil these requirements the BRICKS architecture will be service-oriented
and decentralized. There are several reasons for the decentralization approach: Decen-
tralized architectures do not have a central points, which could stop or slowdown in
failure or overload situations. Instead of that, the decentralized architectures offer bet-
ter load-balancing, and a failure will not influence system availability in whole. Only
parts of the system might be affected. Furthermore, having central points (servers) lim-
its their scalability in a long-run. It is always a good idea to design a system in a way
that it is able to handle loads, which was not foreseen duringthe initial design phase.
For standard client-server the system load must be carefully estimated, e.g. by guessing
the maximum number of users. In open systems like BRICKS thisis not possible. Due
to the simplicity of joining the system the number of nodes can increase rapidly. Hence
upper limits can not be given. With the decentralization approach we can avoid single

Workstation

Workstation

Workstation

Workstation

BNode
Ufizzi

Workstation

Workstation

Workstation

Workstation

BNode
Austrian Library

BNode
Studio Azzuro

Workstation

Workstation

FhG IPSI

Request

R
equest

Request

R
e

q
u

e
st

Request

Fig. 2.Request routing in BRICKS

points of failure of core functionalities, e.g. service discovery, by completely distribut-
ing them.

Furthermore, the lack of central points removes the needs for centralized mainte-
nances. Important infrastructure functionalities are allimplemented in a self-organizing
way or using services which are implement in that way. That isa strong advantage of
the decentralized approach because a centralized administration costs additional money
and personnel must be dedicated for the tasks. BRICKS is going to be very heteroge-
neous system without a central body that will maintain the system. Also, our aim is to
make a system whose infrastructure costs are as low as possible, and a decentralized
architecture is good approach that has the necessary properties.

Figure 1 shows a possible topology of the future BRICKS system. Every node rep-
resents a member institution, where the software for accessing the BRICKS is installed.
Such nodes are called BNodes. BNodes communicate among each-other and use avail-
able resources for content and metadata management. Every BNode knows directly only
a subset of other BNodes in the system. However, if a BNode wants to reach another
member that is directly unknown to it, it will forward request to some of its known
neighbour BNodes that will deliver the request to the final destination or forward again.
This is depicted in Figure 2. It shows also that BRICKS users access the system only
through a local BNode available at their institution. Henceevery user request is first
sent to the institution’s BNode and then the request is routed between other BNodes to
the final destination. Search requests behave like that; theBNode will preselect a list
of BNodes where a search request could be fulfilled, and then the BNode will route it

there. When the location of the content is known, e.g. as a result of the query, the BNode
will directly be contacted.

3 Decentralized XML Data Management

It is very common in a system architecture to have a place where different sorts of
data are stored and later retrieved for a variety of purposes. Usually, such places are
centralised, i.e. there are one or many know servers and large number of clients that use
the storage.

One of important requirements of the BRICKS project is defining a completely
decentralised architecture, even for needed storages. Thus, we cannot apply standard
centralised approach, i.e. our storage that should be accessible by every BNode must be
decentralised as well. At the same time, usage of such storage must not be different from
the centralised approach, i.e. all additional complexity introduced by decentralisation
should be hidden in exposed application interface (API).

In order to fulfill the above requirements, we have designed aP2P datastore that
manages XML documents within a P2P community. The approach differs from the
current P2P datastores, where each peer makes their local files available for commu-
nity download. XML documents are split into finer pieces thatare spread then in the
community. The documents are created and modified by the community during system
run-time and they can be accessed from any peer in a uniform way, e.g. a peer does not
have to know anything about the data allocation.

The decentralized XML storage should be used for all data that must have very
high availability. Examples are service descriptions, administrative information about
collections, and annotations which need to be globally available during the whole life
of the system. Other sorts of data like descriptive metadataof content are not required
to be stored there, as they are kept locally under the controlof the owner.

Database Architecture

Within BRICKS we design and implement a decentralized/P2P datastore that manages
XML documents within a P2P community. The approach differs from current P2P data-
stores, like Gnutella or Kazaa, where each peer makes their local files available for
community download. In our approach XML documents are splitinto finer pieces that
are spread then in the community. The documents are created and modified by the com-
munity during system run-time and they can be accessed from any peer in a uniform
way, e.g. a peer does not have to know anything about the data allocation.

The proposed datastore mimics a subset of the Document Object Model (DOM) [2]
interface, which has been widely adopted among developers,and a significant legacy of
application is already built on top of the DOM. Therefore, many applications could
be ported easily to the new environment. XML query languageslike XPath [3] or
XQuery [4] can use the DOM as well, so they could be used for querying of the datas-
tore. Finer data granularity will make querying and updating more efficient.

The storage must be able to operate in highly dynamic communities. Peers can
depart or join at any time, nobody has a global system overview or can rely on any

P2P-DOM

DHT Abstraction Layer

Index Manager

DHT

Network Layers

Query Engine

Applications

Fig. 3.Peer-to-peer XML Storage Architecture

particular peer. These requirements differ significantly from those in the distributed
databases where node leaving is only due to some node failureand the system overview
is globally known.

Figure 3 presents the proposed database architecture. All layers exist on every peer
in the system. The datastore is accessed through the P2P-DOMcomponent or by using
the query engine. The query engine could be supported by an optional index manager
that maintains indices. Note, that the query engine and index manager for the XML
storage are different from those used to query metadata on a BNode (cf. Section 6).

P2P-DOM is the core system layer. It exports a large portion of the DOM interface
to the upper layers, and maintains a part of a XML tree in a local store (e.g. files,
database). P2P-DOM serves local requests (adding, updating and removing of DOM-
tree nodes) and requests coming from other peers through a Distributed Hash Table
(DHT) [5–7] overlay, and tries to keep the decentralized database in a consistent state.
In order to make the DHT layer pluggable, it is wrapped in a tiny layer that unifies APIs
of particular implementations, so the upper layer does not need to be modified.

4 Content Management

BRICKS decentralized architecture mandates that each BNode should take care of stor-
ing its locally produced content. Such content is organizedin a hierarchical way inside
the so calledphysical collections. Each content item is stored within one and just one
physical collection, inside a structure calledDLObject. The DLObject is the minimal
entity in the BRICKS information model. TheContent Management bricktakes care of
maintaining the physical collection hierarchy and DLObject stored inside it.

4.1 BRICKS DLObjects and the BRICKS Content Model

As one may easily imagine, digital objects play a key role in adigital library, therefore
one of the biggest challenges in defining the BRICKS architecture was to identify a
general model for the storage and handling of digital objects.

Each digital object must be able to hold structured textual and binary data, in order
to allow end-user applications to manage the complex data structures present in modern
cultural-heritage applications. Moreover digital objects must be easily imported and ex-
ported to and from the digital library, so it is necessary to support standard interchange
formats like XML.

For this reason, within BRICKS, digital objects are modeledthrough a meta con-
tent model, that allows to define, through a full type hierarchy and inheritance, complex
content type definitions. A BRICKS DLObject, uniquely identified by a URN [8], can
therefore be associated a specific type definition (which inherits from the basicDLOb-
ject type) and be composed according to this definition by a hierarchy of nodesand
propertiesof several kind (text, binary file, etc).

The type definition states which nodes and which properties are allowed to be
created under a specific DLObject, and can be created by importing a plain XML
Schema [9] file. This also implies a very strict mapping to an XML format representa-
tion of all BRICKS DLObjects, allowing easy import and export of content in BRICKS.

The meta content model definition is based on the Java ContentRepository (JCR) [10]
standard, which is also used as a basis for the Content Manager architecture and refer-
ence implementation, as described in the following section.

BRICKS provides a set of pre-defined content models, including FRBR [11]-inspired
by ECHO and DoMDL [12], MPEG-21 DIDL, TEI-Lite [13] and a subset of DocBook.
Additional content models will be added as new user applications are produced.

4.2 Content Manager Architecture

As all other BRICKS Foundation component the BRICKS ContentManager exposes a
web service API to be used by other components and by end-userapplications.

Such API closely mirrors the Java Content Repository (JCR),recently standardized
as JSR-170. Java Content Repository was defined as a common API for all Java-based
content management systems, able to act as glue between different vendor’s implemen-
tations, and allowing replacing one content management system with another without
necessarily rewriting all the content presentation code.

JCR defines both a meta content model and a full set of functionality for accessing
and manipulating content. The BRICKS Content Manager, based on the reference im-
plementation of the JCR standard, provided by the Apache Jackrabbit project, adds an
additional web-service layer on top of the JCR API, and provides a set of pre-defined
type definitions and utilities to allow easy integration of JCR within the BRICKS plat-
form.

Figure 4 illustrates the Content Manager architecture: theweb-service interface ex-
tends and uses Apache Jackrabbit over a set of several systemdata stores, that may
include file system, relational databases and XML storage facilities. Through configu-
ration files the BRICKS Content Manager allows the definitionof new types of DLOb-

� � � � � � � � � � � � � � 	 �
 � � � �
 � � � � �� � � � � �� � � � � � � �� � � � � � � �� �
 � � �
 � � � � � � � � � � � � !� � � � "
� $ � � �# � $ $ � % � � � � � � � � & � � � � � � � �
 � �' # � � (� �

 �) � � * � �� � �' # � $) � � * � �� � �# � � �+
 � � ! , ! � � �

- ! � � � � � � �
 � � � � � � � � � � � �' � ! . � � � � � � �)

Fig. 4.The BRICKS Content Manager Architecture

jects, all based on a common type, which defines basic properties such as the BRICKS
unique identifier.

In the future, an additional wrapper to the Content Manager web-service interface
will be provided, allowing user applications to use the standard JCR Java API instead of
the BRICKS web-service implementation, when writing Java software. This will allow
greater flexibility for developers to port their application from and to non-BRICKS
platforms.

4.3 Content Manager functionality

BRICKS Content Manager offers a great deal of functionality, thanks to the underly-
ing JCR engine. The BRICKS specific functionality includes the creation and man-
agement of Physical Collections and DLObjects, the lockingand versioning of DLOb-
jects, browsing of DLObject content, type and version hierarchy, the management of the
BRICKS unique identifiers (in the form of URNs). Advanced functionality like concur-
rent editing of same content items, staging of content, merging of different content
revisions is also offered through the BRICKS content manager API.

5 Metadata Management

The BRICKS Metadata Manager handlesdescriptiveMetadata, i. e. Metadata describ-
ing the contents of a document or resource. Descriptive Metadata for a text document
might include e.g. title, author, creation date, a set of keywords, publisher etc. Other

kinds of metadata are e.g. information on file size and format, access rights, intellectual
property rights etc. These Metadata are not managed by the Metadata Manager.

Descriptive Metadata are mainly used to find documents matching certain condi-
tions (see section 6), e.g. to retrieve all documents by a certain author or on a given
topic. In fact, for non-textual documents like pictures or audio files, the descriptive
Metadata are theonlybasis to find documents matching certain criteria. Therefore, they
play a key role in BRICKS.

5.1 Metadata Manager Architecture

The architecture of the Metadata Manager is shown in fig. 5. Itconsists of two layers:
the lower layer (RDF graph layer) uses the Resource Description Framework (RDF) [14]
as internal representation language. RDF models all data astriples of the formSubject
- Predicate - Object. For example the fact that a certain painting was created by Kaz-
imir Malevič would be modeled in RDF as triple“Black square” (Subject) - createdBy
(Predicate) - “Kazimir Malevǐc” (Object). Since the Object can be the Subject of an-
other triple, complex connected graphs can be built. Another way to view RDF triples
would be Attribute-Value-pairs: the subject can be thoughtof having a set of attributes
(the predicates of the triples) with given values (the objects).

The upper layer (presentation layer) of the Metadata Manager - its external interface
- summarizes triples that have the same subject into structures called Metadata Records.
The reason for this is that the RDF graph, while very useful for inferencing, can be
complex and confusing.

Furthermore, all metadata are required to conform to a givenMetadata Schema. In
the RDF graph layer, we use (a subset of) the Web Ontology Language (OWL) [15]
for the definition of Metadata Schemas. Metadata Schemas describing the most impor-
tant standards will be pre-loaded at the startup of the Metadata Manager. Additional
Metadata Schemas can be loaded at any time by submitting a filecontaining an XML
serialisation of the OWL ontology. We want to point out that a given Metadata Schema
mustbe loaded into the Metadata Manager before metadata using this schema can be
stored. In most cases, Metadata Schemas contain just a hierarchy of (ontology) classes
and a set of properties (attributes) defined on these classes. A Metadata Schema can im-
port an arbitrary number of other Metadata Schemas, but these have to be loaded before
the schema that imports them. The relation between the Metadata Schema (defined in
OWL) and the actual Metadata (defined in RDF) is similar to the relation of an XML
Schema definition and the corresponding XML File.

In the presentation layer, the contents of a Metadata Schemacan be retrieved, e.g.
it is possible to query for classes, attributes, etc. definedin the schema.

5.2 Functionality of the Metadata Manager

The Metadata Manager offers functionality to create, modify, and delete Metadata Records
and to load Metadata Schemas. Besides, it supports the QueryProcessor by allowing re-
trieving all Metadata Records that fulfill certain criteria, e.g. all documents by a certain
author. It should be pointed out that client applications should not use this functionality

Fig. 5.The BRICKS Metadata Model

directly, because the Metadata Manager resolves queries only locally (i.e. on the BN-
ode where it runs). This is because also the Metadata are stored only locally. To enable
resolving queries that affect several BNodes, the MetadataManager collaborates with
the Indexer component: whenever a Metadata Record is created, changed, or deleted,
the Metadata Manager propagates this information to the Indexer. The indexer is a dis-
tributed component which the Query Processor uses to resolve distributed queries.

6 Personalized, cross-language information access in BRICKS

The information access facility of the BRICKS architectureis based on the BRICKS
query language, which supports 3 types of searches on metadata:

– simple search,which is a full-text search on metadata records;
– advanced search,expressed in terms of a Boolean combination of simple (attribute

operator value) conditions, whereattribute is a field of a metadata schema;
– ontology search,expressed in terms of a complex query on an OWL DL ontology.

The latter two types of queries are expressed in the syntax ofSPARQL, an emerging
query language for RDF. The evaluation of each type of queries is based on a 2-level
architecture: TheQuery Mediator(QM) on the global level and thelocal query proces-
sors. The Query Mediator undertakes the query evaluation process, by appropriately us-
ing local query processors. At the local level exist a numberof local query processors,

each dedicated to a specific type of queries and a specific set of data. These processors
are not implemented by BRICKS: they are built by integratinginto the BRICKS archi-
tecture existing software components. Specifically we use Lucene5 for simple search,
and Jena6 for advanced and ontology search.

The BRICKS Query Mediator

Upon receiving a query, the QM performs the following operations.

1. The QM identifies the nodes of the network where the relevant data and processors
are placed; this operation may be complicated by the fact that the user has speci-
fied no collection in the query, thus all nodes are potentially relevant; since only a
limited number of nodes can be addressed, for efficiency reasons, the QM adopts a
suitablesource selection strategyto limit the search;

2. The QM breaks the given query into sub-queries, which are subsequently deliv-
ered to the appropriate nodes for evaluation. This operation may be complicated by
several factors.

– First, there may exist mappings defined on the terms used in the query to other
terms of a different ontology or metadata schema. In this case, the Ontology
Manager is invoked in order to re-write the query to take intoaccount such
mappings.

– Second, the user may have requested a personalized query evaluation. In this
case, the query needs to be re-written in order to take into account user prefer-
ences as represented in profiles.

– Third, the query may need to be expanded to take into account multi-linguism.
This possibility only exists for simple searches: the expansion concerns the
addition of the translations of the involved terms in the appropriate languages.

3. The QM collects the results and delivers them back to the users. This operation is
complicated by the fact that the size of the result may be verylarge, potentially as
large as the whole digital library. For this reason, the QM always requires the in-
voker to specify the desired portion of the result, which is considered to be linearly
ordered. Such portion is specified by 2 integers:

– maxBunch,giving the size of the desired portion (clearly, this must benot larger
than a prefixed parameter); and

– startingPosition,giving the relative position of the first desired item in the re-
sult.

In order to achieve scalability, the QM operates in a stateless way: it never caches
anything. It is the responsibility of the application to manage local caching, if re-
quired. For instance, a GUI application might ask 100 objects at a time to the QM
(e.g., maxBunch=100) but only display 20 of them to the user at any one time.

5 http://lucene.apache.org/java/docs/
6 http://jena.sourceforge.net/

7 Security

Security of a complex framework like BRICKS must cover a widearray of topics:
services like authentication, authorization, accounting, privacy, trust and digital rights
management have to be provided as a basis for building of baseservices and applica-
tions.

7.1 BRICKS Security features

Providing security in BRICKS, which is the basis for a trusted digital library framework,
requires a series of features which include:

– Asserting user identity, in order to guarantee secure operation on all the BNodes.
Moreover user identity must be federated, as each BNode maintains information
only on his registered users.

– Providing access control, to allow only authorized users toperform sensible oper-
ations on content and related structures. An additional required feature is to enrich
access control with dynamic, reputation-basedtrust information about the organi-
zation to which a user belongs.

– Logging and billing, as each user operation should be traceable and billable when
needed.

– Safeguard of intellectual property rights, to provide a trustful environment for con-
tent producers, where they could collect revenue and protect their rights while al-
lowing content to be distributed to final consumers.

– Providing interoperability with existing security infrastructures, as many organiza-
tion want to keep their investments in infrastructure and organization.

In order to offer these features BRICKS provides a modular security architecture,
described in the following section.

7.2 BRICKS Security architecture

BRICKS security architecture as shown in Figure 6 can be seenas a set of interoperable
modules that cooperate inside a BNode. Security is also based on external systems
such as user directories, external digital rights stores, organization accounting systems
and payment gateways, that interact with the security architecture each with their own
interface.

A service-oriented interface is available to application services and other BNodes.
Each service invocation must carry information about the user who is invoking the
service, the credentials provided, the security context onwhich the user wants to operate
and the name of the operation to be executed. TheSecurity Managementmodule obtain
these information and then uses the underlying modules as follows: User Management
module is used to verify the user identity, for example by checking the user-provided
signed certificate, and gathering which groups the user belongs to along with roles
associated to them.

� � � � � � � � � 	
 � � � � 	

 � � �� � � � � 	

 � � �� � � � 	
 � � � � � � � � 	� � � � � � � � � 	� � � � � � �
 � � � � � � � � 	� 	 � � � � � � � � � 	
� � � � � � � � � �

� � � � 	 � � �� � � � � � �� � � � � � � � � � � � 	 � � �
 ! � �
 � �� � � � � � �
 � �� � " �� � # � $

� � � � � � � � � �
� � � � � � 	 � � � % � � � � � � � �

�
 � � � 	 �� � �
� � � � 	 � � � � � �� � " � �
 � � 	 �� " � � & '�
 � (� � � �) � "$ � � � � � � �* � � 	 � � � � � � 	 � � � � 	 � � � * � � 	�
 	 � � � � 	 �$ � � �

� � (� 	 � � � � � �
Fig. 6.The BRICKS Security Architecture

The Digital Rights Managementmodule takes part to the process by checking if
the security context is protected by digital rights and which steps are required to obtain
digital rights clearance. The DRM module can deny the service invocation by providing
such instructions, or directly issue authorization and generating accounting events to be
handled by the Accounting Management module.

TheAccounting Managementmodule is used to check and handle accounting events
linked to the operation and the security context on which it has to be executed, generat-
ing one or more accounting events, for logging purposes or for billing. As already said
there is a strong dependency on the Digital Rights Management module, which is the
principal source of accounting events and which use accounting manager transactions
as conditions to obtain clearance for digital rights protection.

The BNode acts as a proxy to the BRICKS community on behalf of the user. As
the user requires to access a service offered by another BNode the service invocation
must be forwarded to the proper BNode via the Trust module. The Trust Management
module maintains structures that hold security information on the surrounding neighbor
BNodes. It forwards user and role information along the service request to the other
BNode service interface. The request, when received, is processed according to external
role and trust policies and the answers forwarded to the user.

7.3 Core security technologies

BRICKS makes use of several state-of-the-art standards andtechnologies in order to
implement a modern and robust security architecture.

In particular all web-service communication is secured through the WS-Security [16]
set of standards, which also include XML-Encryption [17] and XML-Signature [18].

The federated identity service is implemented by using the SAML (Security As-
sertions Markup Language) [19], while access control policies are defined via XACML
(eXtensible Access Control Markup Language). The Trust Management module is mod-
eled after a variant of the Poblano trust model. Finally the DRM module uses the widely
adopted MPEG-21 REL (Rights Expression Language) [20] for the definition of DRM
policies and licenses.

Other standards used include HTTPS, x509 [21] certificates,LDAP (to access ex-
ternal user directories) and ebXML (for integration with organization’s billing and ac-
counting systems).

8 Conclusions and Future Work

In this paper we presented the approach we have taken in BRICKS to address the prob-
lem of sharing knowledge and resources in the Cultural Heritage domain. The BRICKS
architecture is layered, Web-service-based and decentralized. The paper describes how
our approach is different from the existing ones in the Cultural Heritage domain, i.e. we
give details how some specific issues like content management, metadata management,
and security are handled in the decentralized system. The next steps are the implemen-
tation of the components and services of the BRICKS framework and the instantiation
of the infrastructure, by installing some BNodes at the partner organizations.

References

1. BRICKS Project: BRICKS - Building Resources for Integrated Cultural Knowledge Services
(IST 507457). (2004) http://www.brickscommunity.org/.

2. : Document Object Model. (2002) http://www.w3.org/DOM/.
3. W3C: XML Path Language (XPath) Version 1.0. (1999) http://www.w3c.org/TR/xpath.
4. W3C: XML Query. (2003) http://www.w3c.org/XML/Query.
5. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for

large-scale peer-to-peer systems. Lecture Notes in Computer Science2218(2001)
6. Aberer, K.: P-Grid: A self-organizing access structure for P2Pinformation systems. Lecture

Notes in Computer Science2172(2001)

7. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable Peer-To-
Peer lookup service for internet applications. In: Proceedings of the 2001 ACM SIGCOMM
Conference. (2001) 149–160

8. R.Moats: RFC2141: URN Syntax. (1997) http://www.ietf.org/rfc/rfc2141.txt.
9. W3C: XML Schema Part 0: Primer Second Edition - W3C Recommendation. (2004)

http://www.w3.org/TR/xmlschema-0/.
10. David Nuescheler, Day Software: JSR-000170 Content Repository for JavaTM technology

API. (2005) http://jcp.org/aboutJava/communityprocess/final/jsr170/index.html.
11. IFLA: Functional Requirements for Bibliographic Records. (1998)

http://www.ifla.org/VII/s13/frbr/frbr.pdf.
12. OpenDLib: DoMDL XML Schema. (2004) http://www.opendlib.com/resources/schemas/domdl.xsd.
13. Lou Burnard: TEI Lite: An Introduction to Text Encoding for Interchange. (2002)

http://www.tei-c.org/Lite/teiu5en.html.
14. W3C: Resource Description Framework (RDF). (2005) http://www.w3c.org/RDF.
15. W3C: OWL Web Ontology Language Reference. (2004) http://www.w3.org/TR/owl-ref/.
16. OASIS Web Services Security (WSS) Technical Committee: Web Services Security: SOAP

Message Security 1.0. (2004)
17. Draft, W.W.: XML Encryption Syntax and Processing. (2002)
18. Draft, W.W.: XML Signature Syntax and Processing. (2001)
19. OASIS Web Services Security (WSS) Technical Committee: Web Services Security: SAML

Token Profile. (2004)
20. ISO/IEC JTC1/SC29/WG11, N.: MPEG-21, Information Technology, Multimedia Frame-

work, Part 5: MPEG-21 Rights Expression Language. (2003)
21. S. Santesson et al. and R. Fielding and L. Masinter: Internet X.509Public Key Infrastructure

Qualified Certificates Profile (2000)

