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ABSTRACT
In previous work, we have shown that ambiguity detection in re-
quirements can also be used as a way to capture latent aspects of
variability. Natural Language Processing (NLP) tools have been
used for a lexical analysis aimed at ambiguity indicators detection,
and we have studied the necessary adaptations to those tools for
pointing at potential variability, essentially by adding specific dic-
tionaries for variability. We have identified also some syntactic
rules able to detect potential variability, such as disjunction be-
tween nouns or pairs of indicators in a subordinate proposition.
This paper describes a new prototype NLP tool, based on the spaCy
library, specifically designed to detect variability. The prototype
is shown to preserve the same recall exhibited by previously used
lexical tools, with a higher precision.
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1 INTRODUCTION
Ambiguity defects in requirements may in some cases give an indi-
cation of possible variability, whether in design, implementation
choices or configurability aspects. In fact, the ambiguity defects
found in a requirements document may be due to references, inten-
tional or unintentional, made in the requirements to problems that
can be solved in different ways, perhaps by imagining a family of
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different products rather than a single product. Variability in a re-
quirement represents the "ability" of the requirement to correspond
to more than one possible configuration and to be modified or ex-
tended according to the specific context in which it is instantiated.
Below we present a classification of those ambiguity defects that
indicate potential points of variability.

• Vagueness: the requirement contains words that do not have
an uniquely quantifiable meaning. Vague words are: accept-
able, bad, clear, clearly, difficult, easy, good, hard, important,
inefficient, irrelevant, significant, simple, strong, unfair...

• Weakness: the requirement contains a ’weak’ verb, that
makes the sentence non-imperative. Words that detect sub-
jectivity are can, could, may...Weakness is directly classifiable
as a variability when it introduces a possible choice in the
configuration of the system or the optionality of a feature.

• Passive form: a sentence in passive form is considered am-
biguous if there is no indication of the agent performing the
action (the by is missing). If different product variants are
envisaged for different agents (subjects of the active form),
then there might be a variation point.

• Optionality: the requirement contains an optional part, a
part that may or may not be considered. The words identify-
ing optionality are: eventually, if needed, optionally, possibly,
probably... Optionality is directly classifiable as a variability
when it introduces a possible choice in the configuration of
the system, i.e. a possible presence/choice of the characteris-
tic in a given instance of the system.

• Multiplicity: the requirement does not refer to a single object,
but addresses a list of objects, typically using disjunctions
or conjunctions (and, or, and/or,. . . ), and this is a well known
source of ambiguity. In particular, conjunction or disjunction
of noun phrases (NP multiplicity) likely highlights a range
of features.

• Variability Escape Clauses: These are subordinate clauses
containing both a conjunction if, where, when, whether, ... and
a verb like available, provided, implemented, as for instance
in the requirement "If run-time diagnostics are implemented,
all failures should be available to be recorded in a train-
borne recorder". Variability Escape Clauses clearly reveal a
variation point.
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This paper describes the tool support provided by a new pro-
totype NLP tool, based on the spaCy library (https://spacy.io/),
specifically designed to detect variability. The prototype demon-
strated better performance than the results obtained with the tool
QuaRS previously used to the same purpose.

2 SPACY
In order to provide a performing implementation to new syntactic
rules able to detect potential variability, such as disjunction between
nouns (instead of disjunction tout-court), agentless passive voices,
or pairs of indicators in a subordinate clause we propose a new NLP
tool, based on spaCy, specifically designed to detect variability.

spaCy is an open-source library designed to help build tools for
natural language processing (https://spacy.io/). The library, written
in Python and Cython, is licensed byMIT and currently implements
statistical neural network models in a large number of natural lan-
guages, e.g, English, German, Spanish, Portuguese, French, Italian,
Dutch, Greek... spaCy supports deep learning-based analysis, al-
lowing the use of statistical models trained using machine learning
libraries such as TensorFlow, Keras, Scikit-learn and PyTorch. In
addition, spaCy’s machine learning library, called Thinc, is available
as an open source library for Python.

spaCy typically requires the loading of trained pipelines, to de-
fine linguistic annotations - determining, for example, whether a
word is a verb or a noun. A trained pipeline typically consists of
a few components that use a statistical model trained on labelled
data. The trained pipelines for various languages can be installed
as individual Python modules. We have used the en_core_web_sm
pipeline package for English, which exhibits the best tradeoff be-
tween dimension/execution speed and accuracy.

The main features of spaCy that have been used are: Tokeniza-
tion, Part-of-speech (POS) Tagging, Dependency Parsing, Lemmati-
zation, Sentence Boundary Detection (SBD), Rule-based Matching.
spaCy provides a library called Displacy which displays the syn-
tactic derivation tree and the names assigned to each unit (see fig.
1

Figure 1: Syntactic derivation tree represented by DisplaCy

2.1 Usage
To use the spaCy library in Python, after downloading and installing
a trained pipeline a model can be loaded using the instruction:

nlp=spacy.load(’en_core_web_sm’)
This assigns to nlp an object of type Language containing all the
components and data needed to process the text string, called "text".
Calling the nlp object on a text returns a document (doc):

ex_doc = nlp(’this is the text to be processed’)
When nlp is invoked on a text, spaCy first tokenizes the text to
produce a Doc object. The document is then processed in several
steps: this is also called a "processing pipeline". Trained pipelines are
normally composed of a POS tagger, a parser, a Sentence Recognizer,
an Attribute Ruler and a Lemmatizer. To implement our tool we
have defined a pipeline composed, after the Tokenizer, of a Tagger,
a Parser and a Lemmatizer, as shown in Figure 2.

The final result will be the document containing all the generated
information, in a single object that is usually called doc.

Figure 2: spaCy pipeline used in the tool

3 RUNNING EXAMPLE
To describe the components of the tool, we consider, as a running
example, the following requirements document describing an e-
shop.
R1 The system shall enable user to enter the search text on the screen.
R2 The system shall display all the matching products based on the search.
R3 The system possibly notifies with a pop-up the user when no matching

product is found on the search.
R4 The system shall allow a user to create his profile and set his credentials.
R5 The system shall authenticate user credentials to enter the profile.
R6 The system shall display the list of active and/or the list of completed

orders in the customer profile.
R7 The system shall maintain customer email information as a required

part of customer profile.
R8 The system shall send an order confirmation to the user through email.
R9 The system shall allow an user to add and remove products in the

shopping cart.
R10 The system shall display various shipping methods.
R11 The order shall be shipped to the client address or to an associated

store, if the “shipping to store” service is available.
R12 The system shall enable the user to select the shipping method.
R13 The system may display the current tracking information about the

order.
R14 The system shall display the available payment methods.
R15 The system shall allow the user to select the payment method for

order.
R16 After delivery, the system may enable the users to enter their reviews

and ratings.
R17 Shipping time should be as fast as possible.
R18 The system must report the available products, if the availability of

these are less than 10% the system should show a pop-up.

4 DESIGN AND PROTOTYPE
IMPLEMENTATION

We present here the architecture and prototype of the spaCy-based
tool for NL analysis towards variability elicitation.

Once the language model (trained pipeline) has been applied to
the requirements document, the process of identifying linguistic
ambiguity indicators is divided into two steps: lexical analysis and
syntactic analysis.
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4.1 Lexical Analysis
The lexical analysis is carried out by means of a lexical parser and a
Rule-Based Matcher (Python’s Phrase Matcher). The variability in-
troduced by the characteristics such as vagueness, optional choices
and weakness described in the qualitative model are easy to identify
since it is sufficient to detect whether or not the sentence under
examination includes a term contained in the respective dictionary.

4.2 Syntactic Analysis
The syntactic analysis is based on the application of rules to the
document processed by the spaCy pipelineThrough syntactic anal-
ysis we are able to localize: passive voices in which the agent is not
indicated; variability escape clauses; NP multiplicity.

The analysis exploits the annotations of a dependency parser
together with some spaCy methods.

To illustrate how the prototype works we examine 4 require-
ments inspired by the e-shop example: one in non-passive form,
two in passive form without the presence of the word "by" and one
in passive form with the presence of the word "by".

(1) The order shall be shipped to the client address.
(2) The order shall be delivered to the customer’s address by

courier company.
(3) Payment systems should be displayed.
(4) The system shall send an order confirmation to the user

through email.

We expect the analysis to signal requirements 1) and 3).
The parser returns the number of matches found and then, for

each match, the verb in passive form and the matching requirement.

The result is as expected, namely the printing of the two require-
ments in passive form for which the agent is not specified. Here,
to explain the rule, we have used four requirements inspired by
e-shop, in Section 5 we provide the outcome of the application of
the passive-form parser to the actual case study.

5 APPLICATION OF THE TOOL TO THE
E-SHOP EXAMPLE: THE FULL PICTURE

We now show how to use the outcome of the tool for constructing
a feature diagram (FD).

We have discussed in Section 1 which form of variability can
be hidden behind each of the ambiguity defects and syntactical
construct considered, providing a mapping from linguistic aspects
to variability points. The representation of variability in a FD fol-
lows the standard [7]. The direct mapping from linguistic defect to
relations in a FD can be found in previous work [5]. In the following
of the section we summarise the output of each analysis, and build
the corresponding partial trees, then we glue all them together.

Lexical Analysis. : The tool found 7matches, out of which 5 highlight
a variability and 2 are just ambiguities. Requirements to consider
for variability are the following:

R3 The system possibly notifies with a pop-up the user when no
matching product is found on the search.

R10 The system shall display various shipping methods.
R13 The system may display the current tracking information

about the order.
R16 After delivery, the system may enable the users to enter their

reviews and ratings.
R18 The system must report the available products, if the avail-

ability of these are are less than 10% the system should show
a pop-up.

In these requirements there is a vagueness (various), an option-
ality (possibly), and some weak verbs (may, should).

Optionalities and weak verbs are all modelled with optional
features (See Figure below). In the case of R16 a fictitious feature,
Feedback, is needed to abstract reviews and ratings. The vagueness
must be resolved asking the e-shop application commissioner which
are the shipping methods to be offered, then it is modelled with an
abstract feature ShippingMethod having the identified sub-features
as children. For now, we use placeholders Sh_m1, . . . Sh_mn for them
and assume they are in or relationship. Then the commissioner may
refine this relation and tell that some or all are mandatory or that
they are mutually exclusive.

Passive form. : 1 match found for this indicator:
R11 The order shall be shipped to the client address or, if the

“shipping to store” service is available, to an associated store.
The ambiguity here is related to not having specified who is respon-
sible for sending, and the disambiguation may reveal variability:
there may be some e-shops that use a central warehouse, others
that use a number of distributed warehouses, as modelled in the
following Figure

Variability escape clauses. : 2 matches found, one variability and the
other a false positive. The requirement to consider for variability is:
R11 The order shall be shipped to the client address or to an

associated store, if the “shipping to store” service is available.
Variability escape clauses are straightforwardly modelled with an
optionality. In this case the shipping to store service is optional:

NP multiplicity. : The tool found 3 matches, out of which the first
two are disjunctions and the third contains a conjunction.
R6 The system shall display the list of active and/or the list of

completed orders in the customer profile.
R11 The order shall be shipped to the client address or to an

associated store, if the “shipping to store” service is available.
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R16 After delivery, the system may enable the users to enter their
reviews and ratings.

Both or and and/or are modeled by default with a disjunction be-
tween features. Conjunction is not directly an indicator of vari-
ability, however a conjunction can aid in the process of family
elicitation by typically finding sibling features that share the same
optionality/mandatory indication. In this case we have detected
two sibling mandatory features that are children of the optional
abstract feature feedback introduced above. The resulting partial
FD is below.

The complete e-shop feature diagram, obtained as a merge of
the partial trees built so far, includes also the constraint defined in
requirement R11: ShippingToShop→ShoppingToStoreService.

6 DISCUSSION AND RELATEDWORK
We compared the performance of the new tool against that of the
previously used tool, QuARS.

The comparison was based on two documents containing 256
and 65 requirements, respectively. Results are in Figure 3: the pre-
cision is highly improved, with a negligible loss in recall. Precision
was indeed our goal: although other authors in the RE community
recommend to maximise recall [10], increasing precision can make
NLP for RE approaches more applicable in practice, in particular for
variability detection. In fact, while it is of utmost importance to iden-
tify ambiguities in safety-critical system requirements, unidentified
variabilities do not have such serious consequences, and losing a bit
of recall in favor of accuracy would speed up the system analysis
process.

In the requirement engineering of SPLs several researches have
focused on exploiting Natural Language Processing (NLP) tech-
niques and tools to extract information related to features and
variability fromNatural Language (NL) requirements documents [1–
6, 9] that can be used as a source from which variability-relevant
information can be elicited.

Systematic literature reviews on feature identification and vari-
ability extraction from NL documents have been published by Li et
al. [8] and by Bakar et al. [2]. Our work differs from previous con-
tributions in that they define techniques for feature identification,
variability extraction being a consequence, while we use a technique
that operates in the opposite way, looking directly for variation

Figure 3: Precision and Recall vs QuARS

points. In addition, our approach integrates research on ambiguity
detection with research on identifying points of variation.

7 CONCLUSION
In previous work we have shown that ambiguity detection in re-
quirements can represent latent aspects of variability, and we have
experimented with NLP tools able to detect ambiguities and hence
to point at potential variation points. The latest works in this re-
search stream have pointed at the limits of previously used tools
for what concerns the variability indicated by particular syntactic
constructions. In this paper we have presented a novel tool support
to include detection of such syntactic indicators. The developed
prototype has been shown to improve precision over the previous
tool on a running example.

Future work includes the refinement of the represented tool to
reduce false positives (that is, ambiguity detections that turn out
not to be variation points) by means of a graphical interface that
allows to accumulate in a dictionary specific terms that will be
ignored in subsequent analyses.

REFERENCES
[1] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet, and

P. Lahire. On extracting feature models from product descriptions. In Proc. of
VaMoS ’12, pages 45–54, 2012.

[2] N.H. Bakar, Z.M. Kasirun, and N. Salleh. Feature extraction approaches from
natural language requirements for reuse in software product lines: A systematic
literature review. Journal of Systems and Software, 106:132–149, 2015.

[3] A. Fantechi, A. Ferrari, S. Gnesi, and L. Semini. Hacking an ambiguity detection
tool to extract variation points: an experience report. In Proc. of VAMOS’18, pages
43–50. ACM, 2018.

[4] A. Fantechi, A. Ferrari, S. Gnesi, and L. Semini. Requirement engineering of
software product lines: Extracting variability using NLP. In Proceedings of the
26th IEEE Int. Requirements Engineering Conf., pages 418–423. IEEE, 2018.

[5] A. Fantechi, S. Gnesi, and L. Semini. Ambiguity defects as variation points in
requirements. In Proc. of VAMOS ’17, pages 13–19. ACM, 2017.

[6] N. Itzik, I. Reinhartz-Berger, and Y. Wand. Variability analysis of requirements:
Considering behavioral differences and reflecting stakeholders’ perspectives.
IEEE Trans. on Software Engineering, 42(7):687–706, 2016.

[7] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer
Peterson. Feature-oriented domain analysis (FODA) feasibility study. Technical
report, Carnegie-Mellon Univ Pittsburgh, Software Engineering Inst, 1990.

[8] Y. Li, S. Schulze, and G. Saake. Reverse engineering variability from natural
language documents: A systematic literature review. In Proc. of the 21st SPLC,
pages 133–142. ACM, 2017.

[9] S. Ben Nasr, G. Bécan, M. Acher, J.B. Ferreira Filho, N. Sannier, B. Baudry, and
J.M. Davril. Automated extraction of product comparison matrices from informal
product descriptions. Journal of Systems and Software, 124:82–103, 2017.

[10] S.F. Tjong and D.M. Berry. The design of SREE - a prototype potential ambiguity
finder for requirements specifications and lessons learned. In Proc. of RESFQ,
volume 7830 of LNCS, pages 80–95. Springer, 2013.



A spaCy-based tool for extracting variability from NL requirements SPLC’21, 06–11 September, 2021, Leicester, UK

APPENDIX - TOOL DEMONSTRATION
The tool demonstration will show the execution of the tool on
example requirements documents containing potential variability
indications. In particular, the demonstration will show how lexical
analysis and syntactic analysis performed by the tool are able to
point to potential variation points. Figures 4 and 5 show the tool
working in the two cases.

An accompanying short video is available here:
https://stlab.dinfo.unifi.it/fantechi/videolink.html
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