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We study the open relaxation dynamics of an asymmetric dipole that is ultrastrongly coupled
to a single electromagnetic cavity mode. By using a thermalizing master equation for the whole
interacting system we derive a phase diagram of the Liouvillian gap. It emerges that the ultra-
strong coupling inhibits the system’s relaxation toward the equilibrium state due to an exponential
suppression of the dipole tunneling rate. However, we find that polaronic multi-photon resonances
restore fast relaxation by a cavity-mediated dipole resonant tunneling process. Aside of the numer-
ical evidences, we develop a fully analytical description by diagonalizing the Rabi model through
a generalized rotating-wave approximation, valid in the so-called polaron frame. The relaxation
physics of such ultrastrong-coupling systems is then reduced to a multi-photon polaron version of
the standard text-book dressed states picture. At the end we discuss an extension to a multi-well
dipole that can set the basis of a cascaded resonant tunnelling setup in the ultrastrong coupling
regime.

I. INTRODUCTION

Relaxation from a metastable state toward equilibrium
is a central problem in many branches of physics, such
as chemical reactions, radiaoactive decay and electronic
transport, to name a few [1]. The energy barrier separat-
ing a local minimum from the stable equilibrium, i.e. the
activation barrier of chemical reactions [2], can be over-
come by thermal fluctuations, for which, after an initial
absorption of energy from the bath, the system is kicked
out the metastable state, rolling down to its absolute
equilibrium state and releasing the energy excess. When
the temperature is too small to kick the system over the
metastable energy barrier, relaxation is then dominated
by the tunnel effect (or quantum tunneling), which is
one of the first surprising consequences of the quantum
theory [3].

Following the hand-wavy intuition that quantum fluc-
tuations replace thermal ones in kicking the system out
of the metastability, one might speculate that includ-
ing in these systems a supplemental quantum reservoir
could sensibly alter the tunneling dynamics. The work
of Leggett et al. on tunneling-systems coupled to an
environment [4, 5] has shown that this is actually the
case, and tunneling can be sensibly changed as a func-
tion of the environment parameters. Since for most sys-
tems the natural environment is provided by the electro-
magnetic radiation, here quantum tunneling is crossing
its path with another fundamental concept of quantum
physics: the non empty vacuum of quantum electrody-
namics (QED) [6], rising the question: can vacuum fluc-
tuations of the electromagnetic field affect tunneling and
relaxation in material systems?

Experiments have shown strong suggestions that the
answer may be positive, and that the electromagnetic
vacuum of a resonant cavity could have a major role in
chemical reaction and electronic transport where impor-
tant differences are observed when molecules, atoms or
electrons couple strongly or ultrastrongly to such a ex-
treme resonant electromagnetic environment [7–10].

All these exciting observations have stimulated mul-
tiple theoretical debates in various communities opening
new research lines such as: polaritonic chemistry [11–13],
cavity QED control of electronic transport in mesoscopic
devices or in quantum Hall systems [14, 15], cavity QED
modification of ferromagnetism, ferroelectricity and su-
perconductivity [16–21], and their out-of-equilibrium ex-
tensions [22–29], all with the general aim to explore and
understand up to which degree the quantum vacuum of
cavity QED can be a resource to modify and control prop-
erties of matter [30–33].

However in the community there is still not a full con-
sensus about the origin, validity and interpretation of
these theories and they relation with the actual experi-
mental evidences [34–37], suggesting that more research
and additional examples are needed in order to com-
pletely make clear these physical mechanisms.

In this article we explicitly address the problem of how
the electromagnetic vacuum of ultrastrong-coupling cav-
ity QED can affect the relaxation toward equilibrium of a
polarizable material. In order to isolate every single dif-
ferent effect we consider a simple paradigmatic setup: an
asymmetric double well dipole in a single-mode resonant
cavity. Its low-energy dynamics can be approximated to
the quantum Rabi model, which is the simplest theoret-
ical framework to study light-matter interactions. We
complete the description of the model including two ba-
sic dissipative mechanism: Ohmic cavity dissipation and
dipole radiative losses. Under these circumstances the
system’s relaxation is described through a thermalizing
master equation valid for arbitrary light-matter coupling
values, whose steady state is the correct thermal equi-
librium state. From the spectral gap λ of its Liouvillian
operator we derive a phase diagram describing how re-
laxation toward equilibrium is modified by the coupling
to the cavity.

The intuition arising from all recent works regarding
thermalization and transport in cavity QED would sug-
gest that the coupling with the cavity always favours and
accelerates the relaxation properties of the system. How-
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ever, here we show that an increasing light-matter cou-
pling strength from the strong to the ultrastrong cou-
pling regime exponentially suppresses the relaxation rate
of the dipole, being a prototype for the so-called lo-
calization transition in the spin-boson model [5]. The
cavity-induced inhibition of the dipole relaxation is only
restored thanks to the occurrence of polaronic multi-
photon resonant tunneling processes, in very close anal-
ogy to Franck-Condon physics describing electron tun-
neling assisted by vibrational transitions [38–41]. After
showing that this mechanism is already observable in cur-
rent experimental platforms such as superconducting cir-
cuits we comment on the possible consequence for cav-
ity assisted quantum transport and cascaded ultrastrong-
coupling setups with multi-well dipoles.

Differently from previous studies [22–24], here we ex-
ploit a generalized rotating-wave approximation of the
Rabi model from which we analytically derive the transi-
tion rates of the master equation in the ultrastrong cou-
pling regime. From this calculation we obtain a complete
and simple picture on how relaxation and thermalization
work in terms of polaronic dressed states, valid in the
ultrastrong coupling regime.

The article is organized as follows. In Sec. II we intro-
duce the physical system and its approximated descrip-
tion in terms of the asymmetric quantum Rabi model.
By considering the Liouvillan gap of its open dynamics,
in Sec. III we study how the ultrastrong coupling regime
changes the relaxation and thermalization rate. By using
a generalized rotating-wave approximation to diagonalize
the Rabi model we explicitly show an exponential slow-
down of the system’s relaxation due to the ultrastrong
coupling regime. In Sec. IV we show that the fast relax-
ation can be restored by a cavity assisted multi-photon
resonant tunnelling process. Exploiting again the gener-
alized rotating-wave approximation we develop the dis-
cussion in terms of multi-photon polaron dressed states.
In Sec. V we extend this setup to the extended Dicke
model leading to a cascaded resonant tunnelling device.
Finally, in Sec. VI we draw our conclusions.

II. MODEL

We consider the paradigmatic cavity quantum electro-
dynamics (cQED) setup described in Fig. 1(a), where a
single electrically polarizable object (a dipole) is placed
into the planar capacitor of a resonant LC circuit. This
simple toy model is able to reproduce most of the features
of cQED in all various coupling regimes, and is particu-
larly important in giving a simple and intuitive descrip-
tion of many solid-state or circuit cQED setups relevant
for experiment in the ultrastrong coupling (USC) regime
in the GHz or THz range [16, 42–45].

The system cavity QED Hamiltonian is given by the

(a) (b)

(c)

FIG. 1. (a) Cavity QED system. The cavity is modelled as
an LC-circuit, where the inductor magnetic flux Φ takes the
role of the dynamical variable of the electromagnetic field,
usually given by the vector potential A⃗. The dipole inside
the capacitor couples to the voltage drop U = Φ̇ between
the plates, separated by the distance d. (b) The dipole is
described as a particle in a tilted double-well potential. The
position x represent the displacement between the two charges
q, −q, such that the dipole moment is qx

. When the central well of the potential is large enough the
system is approximated by only the two lowest levels

(two-level approximation, see App. A). (c) Open-system
schematic view. The cavity QED system can be interpreted

as an element of a dissipative circuit.

so-called asymmetric Rabi model (ℏ = 1)

HcQED ≈ HRabi = ωca
†a+ ωdsz + ϵsx + g

(
a+ a†

)
sx,

(1)

where a is the annihilation operator of a cavity pho-
ton with frequency ωc. The pseudo-spin operators sx,z
are linked, respectively, to the dipole moment x and the
dipole internal energy through the two-level approxima-
tion, ωd is the dipole lowest transition frequency, ϵ is the
dipole asymmetry (which breaks the Z2 symmetry of the
Rabi model). The dipole eigenstates are also asymmetric

with frequencies ±ωϵ/2 =
√
ω2
d + ϵ2/2 and this picture

holds until the two-level subspace is well separated in
energy from the rest of the spectrum, see Fig. 1(b) for
a schematic view. Finally, g is the light-matter interac-
tion strength due to the dipole coupling to the cavity.
A complete derivation of the model is presented in App.
A-B.
As schematically shown in Fig. 1(c), the system dissi-

pates energy mainly in two external environments: a re-
sistive element (or transmission line) for the cavity, and
free-space radiative modes for the dipole. The full sys-
tem dynamics is thus obtained from the contribution of
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three Liouvillian super operators

∂tρ = LH(ρ) + Lc(ρ) + Ldip(ρ), (2)

where

LH(ρ) = −i [HRabi, ρ] (3)

generates the coherent time evolution, while the cavity
and dipole dissipative dynamics are given by

Lc/dip(ρ) =
∑
n<m

[1 +NT (ωmn)] Γ
c/dip
nm D (|n⟩⟨m|, ρ)+

+
∑
n<m

NT (ωmn)Γ
c/dip
nm D (|m⟩⟨n|, ρ) .

(4)

Here D (c, ρ) = c ρ c†− 1
2

[
c†c , ρ

]
+
is the usual dissipator

super-operator [46] ([·, ·]+ is the anticommutator), and
NT (ω) = 1/(exp [ω/(kBT )] − 1) is the bosonic thermal
population, where kB is the Boltzmann constant. The
transition rates of the relaxation dynamics are given by

Γc
nm = JOhm(ωmn)| ⟨n|ccnm|m⟩ |2 = γ

|ωmn|
ωc
| ⟨n|a− a†|m⟩ |2,

Γdip
nm = Jrad(ωmn)| ⟨n|cdipnm|m⟩ |2 = κ

|ωmn|3

ω3
d

| ⟨n|sx|m⟩ |2,

(5)

where ωmn = ωm−ωn is the difference between the eigen-
frequencies of the Rabi Hamiltonian in Eq. (1), while
JOhm(ω) = γω/ωc is the spectral density of the resis-
tance (cavity bath), which is Ohmic, with photon loss
rate γ, and Jrad(ω) = κω3/ω3

d is the spectral density of
the radiative modes (dipole bath), which is super Ohmic
with dipole decay rate κ. Notice that a different choice
for these spectral densities does not change our main con-
clusions, as long as the spectral densities are Ohmic or
super Ohmic. See App. E for major details regarding
the modelling of dissipation.

It is then easy to verify that the steady state of such
defined master equation is correctly given by the thermal
density matrix ρ(t = +∞) = ρT = e−HRabi/(kBT )/Z,
where Z = Tr[e−HRabi/(kBT )].

III. RELAXATION REGIMES OF CAVITY QED

In this section we will explore the combined effect of
light-matter coupling g and dipole asymmetry ϵ on the
open relaxation dynamics of the system.

For the sake of simplicity, through the whole
manuscript we only focus on the relevant dipole-cavity
resonant case where ωc = ωd.

A. Zero temperature Liouvillian gap

To have a first indication about the relaxation prop-
erties of the system we consider the Liouvillian gap
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FIG. 2. (a) Phase diagram of the Liouvillian gap λ as a func-
tion of the light-matter coupling g and the dipole asymmetry
ϵ. Parameters: γ = κ/4 = 0.05ωc, ωd = ωc. (b) A cut of
the phase diagram at ϵ = 0 as a function of the light-matter
coupling g, in logscale. (c) A cut of the phase diagram at
g/ωc = 3 as a function of the dipole asymmetry ϵ, in logscale.

λ = Re[λ1] [47–49], obtained from the spectrum {λn},
n = 0, 1, 2 . . ., of the total Liouvillian operator L =
LH +Lc +Ldip defined from Eq. (2) [50]. This quantity
provides the slowest relaxation rate of the system, de-
scribing the long-time evolution of the system, for which
before reaching its thermal steady state the density ma-
trix decays as [47, 49]

lim
t→∞

ρ(t) ≈ ρT + ρ1e
λt (6)

It is worth noticing that using the Liouvillian gap to char-
acterize the relaxation toward equilibrium is not always
straightforward and may cause problems in more complex
many-body systems [51]. Anyway we will see that in our
case it works without problems or ambiguities, correctly
matching the expected physical predictions and giving a
correct and clear picture of how relaxation works as a
function of our control parameters (g, ϵ).

We consider only the zero temperature case T = 0,
which is the relevant case for superconducting cavity
QED setups [52]. The same picture holds also for finite
temperature, provided that kbT ≲ ℏωc, ℏωd, where kb is
the Boltzmann constant. When the temperature grows
larger, and kbT > ℏωc USC effects are pushed to much
larger light-matter coupling values [53].

In Fig. 2(a) we show the Liouvillan gap as a function
of the light-matter coupling and the dipole asymmetry,
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λ(g, ϵ). At small light-matter coupling g ∼ 0, the ef-
fect of increasing ϵ is to progressively rotate the dipole
eigenstates from the sz-basis to the sx-basis, decreasing
the value of the matrix element in the dipole transition
rate in Eq. (5). However the vanishing matrix element is
compensated by the increasing energy difference between
the dipole levels, giving larger contribution from the ra-
diative spectral density of the bath, Jrad ∼ ω3. This can
be seen by explicitly computing the dipole transition rate
at g = 0 using the bare uncoupled dipole states in Eq.
(A4), for which we have

Γdip
LR =

κ

4

(
1 +

ϵ2

ω2
d

)3/2

cos

(
tan−1

(
ϵ

ωd

))
=
κ

4

√
1 +

ϵ2

ω2
d

.

(7)

In the specific case κ = 4γ this rate is always larger
than the bare photon loss set by γ which becomes the
slowest relaxation time scale, and so we have λ = −γ/2.
In such conditions, the Liouvillian gap does not show
any structure as long as the light-matter coupling re-
mains small. It is worth noticing that replacing the su-
per Ohmic radiative spectral density with a Ohmic spec-
tral density would give a too slow increase of the decay
rate as a function of the transition frequency to com-
pensate the effect of the vanishing matrix element of the
dipole transition rate. As a result we would have that

(Γdip
LR)

Ohm = κ/(4
√
1 + ϵ2/ω2

d), and so the overall relax-
ation rate would decrease as a function of ϵ at very weak
coupling g/ωc ≃ 0 to then increase again at slightly larger
coupling. In this case the Liouvillian gap λ would ex-
hibit a different structure as a function of (g, ϵ), in the
weak coupling limit. Giving rid of this weak-coupling
features only considering a radiative bath (and thus a
super Ohmic spectral density) for the dipole highlights
the effect of the USC, making this choice particularly
meaningful.

In the USC regime, g/ωc ≫ 1, for small dipole asym-
metry ϵ ≃ 0, the Liouvillian gap goes to zero monothon-
ically with an exponential behaviour λ ∼ − exp[−g/ωc],
as is clearly visible from Fig. 2(b). Increasing the dipole
asymmetry, ϵ, we observe the emergence of lobes where
the Liouvillian gap approaches zero λ ∼ 0, separated by
a narrow region where relaxation is partially restored and
λ ∼ −γ/2. This is shown in Fig. 2(c), where we fixed
g/ωc = 3 and we plot λ as a function of ϵ. Quite surpris-
ingly, these narrow gaps between the lobes appear only
when ϵ ≃ ωc × k, where k = 1, 2, 3 . . . is an integer num-
ber. Moreover this lobular structure is present also in
the higher Liouvillian eigenstates, suggesting important
physical consequences for the system.

B. Relaxation breakdown in the USC regime

The thermalization exponential slow-down pointed out
by the spectral analysis of the Liouvillian L can be under-

stood as an interplay between the USC spectral proper-
ties and transition rates in Eq. (5) (due to the dressing of
the jump operators in the USC regime [54, 55], see App.
D). Here we analyze in detail the symmetric case, when
ϵ = 0, which will provide the basic tools to understand
the whole phase diagram of Fig. 2(a).
We start by transforming the original Rabi Hamil-

tonian through the unitary transformation Upol =
exp

[
g/ωc(a− a†)sx

]
, and obtaining the Rabi polaron

Hamiltonian (ℏ = 1)

H̃Rabi = ωca
†a+ ϵsx +

ωd

2

[
D(g/ωc)s̃+ +D†(g/ωc)s̃−

]
.

(8)
Here s̃± = sz ± isy are the raising/lowering operators
along the sx-axis, while D(g/ωc) = exp

[
g/ωc(a− a†)

]
is

the usual displacement operator.
Since both cavity and dipole dissipative operators

are unaffected by the polaron transformation Upol(a −
a†)U†

pol = (a − a†), UpolsxU
†
pol = sx, the general master

equation defined in Eqs. (2)-(3)-(4) is still valid, with the
only difference that the eigenstates |n⟩, |m⟩ appearing in
the transition rates in Eq. (5) are now replaced with the
eigenstates of the Rabi polaron Hamiltonian in Eq. (8).
As reported in [56] and detailed in Appendix F, the po-

laron Rabi Hamiltonian supports a generalized rotating-
wave approximation (gRWA) and thus follows the struc-
ture of the Jaynes-Cummings model, with the approx-
imated conservation of the polaron excitation number
N̂z

exc = a†a + sz. Its eigenstates are then given by the
usual dressed states

|+, n⟩ = cos
θn
2
| ↓, n⟩+ sin

θn
2
| ↑, n− 1⟩,

|−, n⟩ = − sin
θn
2
| ↓, n⟩+ cos

θn
2
| ↑, n− 1⟩,

(9)

where θn is given in Appendix F. The ground-state of the
system is simply the uncoupled vacuum state

|GS⟩ = | ↓, 0⟩. (10)

In order to appreciate the quality of this approximation,
in Fig. 3(a) we compare the spectrum obtained from the
exact diagonalization (solid lines) and from the gRWA
analytical formula reported in Appendix F (yellow dots),
from which is quite clear that the gRWA gives very good
results.
Relaxation can then be understood from the dressed

state perspective [57] and in Appendix G we explicitly
compute the transition rate in Eq. (5).
From the explicit expression for the Hopfield coeffi-

cients sin, cos (present in the Appendix F), we find that
in the infinite-coupling limit

lim
g/ωc→∞

cos
θn
2

= 1

lim
g/ωc→∞

sin
θn
2

= 0.

(11)
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FIG. 3. (a) Spectrum of the Rabi model as a function of the
light-matter coupling g at fixed ϵ = 0. The solid lines are the
result of full diagonalization, and the color red/blue are only
meant to match the color-code in (c). The yellow dots are
given by the analytic Eq. (F6) in Appendix F. (b) cos θn/2,
sin θn/2 given by Eq. (F8) for each n block as a function
of the light-matter coupling g. (c) Scheme of the relaxation
mechanism. The cavity relaxes jumping mainly between ++
or −− dressed states, while for the dipole is mainly between
+− states. The orange curly arrows represent the decay of
the photon from an upper state to a lower one, while the blue
curly arrows represent the decay of the dipole. In the USC
limit the dipole does not relax anymore. Parameters: ϵ = 0,
ωc = ωd.

This is clearly shown in Fig. 3(b) where we plot the Hop-
field coefficient analytically computed through the gRWA
for a few lowest eigenstates. Using this observation to-
gether with the matrix element computed in Appendix
G we can build the transition rates in Eq. (5), arriving
to the conclusion that the only non-negligible transitions
in the USC regime are

lim
g/ωc→∞

Γc
(+,n)(+,n−1) = γ

ω+,n − ω+,n−1

ωc
≈ γ

lim
g/ωc→∞

Γc
(−,n)(−,n−1) = γ

ω−,n − ω−,n−1

ωc
≈ γ

lim
g/ωc→∞

Γ dip
(−,n)(+,n−1) = κ

(
ω−,n − ω+,n−1

ωc

)3

≈ 0.

(12)

The fact that the dipole transition rate goes to zero

Γ dip
(−,n)(+,n−1) ≈ 0 follows from the approximate degen-

eracy of the states |−, n⟩, |+, n − 1⟩ in the USC limit,
for which ω−,n − ω+,n−1 ≈ 0, while ω+,n − ω+,n−1 ≈
ω−,n − ω−,n−1 ≈ ωc.

Here we realize that the USC Liouvillian gap suppres-
sion observed in Fig. 2(a-b) is only due to a suppression
of the dipole transition rates only, while the cavity transi-
tion rates return to their bare uncoupled values when the
USC regime is reached. In the infinite coupling limit the
exponential slowdown become a proper cavity-induced
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FIG. 4. Infidelity time-evolution. (a-b) Weak and inter-
mediate coupling regime, the infidelity is calculated start-
ing with the initial density matrix ρ0,d (blue solid line) and
ρ0,ph (red solid line). The black dashed line highlights the
bare decay scaling s0 exp[−γt] while the green dot-dashed
line marks the scaling given by the Liouvillian gap s′0 exp[2λt]
(here s0, s

′
0 are arbitrary offsets). The light-matter coupling

is given in the panels. (c) USC regime, the infidelity is cal-
culated starting with the initial density matrix ρ0,d (weak-
blue, mid-blue, deep-blue solid lines) and ρ0,ph (orange, red,
dark-red solid lines). For both initial state the couplings are
g/ωc = 2.5, 3.5, 4.5 going from the lighter to the darker color.
The mid-blue and deep-blue lines representing the infedelity
starting from ρ0,d are almost overlapping and not well distin-
guishable. Parameters: ωc = ωd, ϵ = 0, γ = κ/4 = 0.1ωc,
T = 0.

breakdown of the relaxation of the dipole, resulting in
a localization transition similar to what happens in the
so-called spin-boson model [5]. The schematic represen-
tation of the remaining relaxation channels is shown in
Fig. 3(c). It is important to stress that what described
above holds only in the infinite coupling limit, and for
finite values of the light-matter coupling g, the long-time
dynamics is always given by the finite Liouvillian gap,
both for the dipole and the cavity. However, if we con-
sider the relaxation of a single photon (in the polaron
frame) in the USC regime, initializing the system in the
state ρ0,ph = |1ph, ↓⟩⟨1ph, ↓ | we observe a transient dy-
namics where the system relaxes as a bare cavity photon
as exp[−γt], and arriving progressively closer to the equi-
librium state before entering in the long-time dynamics
settled by the suppressed Liouvillian gap. On contrary
initializing the state in a pure dipole excitation (in the po-
laron frame) ρ0,d = |0ph, ↑⟩⟨0ph, ↑ |, the system enters al-
most immediately in the long-time dynamics, remaining
frozen there. This is well visible from the time evolution
of the infidelity with respect to the thermal state (or, at

T = 0, the groundstate) 1−F = 1−Tr[
√√

ρ(t)ρT
√
ρ(t)]

[50], that is shown in Fig. 4. In particular in Fig. 4(a-b)
we show, for comparison, the time evolution at weak and
intermediate coupling. It is well visible the slower relax-
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ation at higher coupling, but still the two different states
decay to the groundstate in a similar way. In Fig. 4(c) on
contrary there is a strong asymmetry in the dipole and
photon state decay and it is clear that asymptotically
a single polaron photon decays with its bare decay rate,
while a polaron dipole excitation is completely frozen and
does not decay. This behaviour is not specific for the in-
fedelity only, but it is common for most of the observables
and states of this system.

This result can be physically interpreted from a pola-
ronic perspective: the USC cavity vacuum heavily dresses
the dipole with virtual photons, which inhibit its abil-
ity to tunnel from one side to the other of its double
well potential. Because of the radiative nature (but in
the Ohmic case as well) of its dissipation mechanism,
the dipole can loose energy only moving between the
two wells (i.e. tunneling), and the faster it moves the
stronger it dissipates. In this regime of heavy dressing
by virtual-photon tunneling becomes extremely slow and
so the dipole’s rate to release energy in the bath.

IV. USC MULTI-PHOTON RESONANT
TUNNELING

In this section we are going to explore more in detail
the nature of the gaps between the relaxation-slowdown
lobes in Fig. 2(a). In these narrow regions the system can
relax as is almost unaffected by the USC suppression of
tunneling described in the previous section. However, if
we artificially remove the cavity dissipation, γ = 0, we see
that these narrow gaps disappear. This suggests that the
suppression of tunneling described above is still present
for ϵ ̸= 0, but a new resonant mechanism appears, al-
lowing the dipole to tunnel again by exchanging photons
with the cavity. This effect is the cavity analogous of res-
onant tunneling in electronic setups interacting with vi-
brational degrees of freedom, and thus establishing a con-
nection between USC cavity QED and Franck-Condon
physics in molecular-electronic setups [38, 40, 41].

After analyzing the relaxation properties from the
spectral features of the system, as in the previous section,
we show that signature of this physics are also present in
quantities that are not strictly related to relaxation and
real-time dynamics, such as transmission spectra.

A. Diagonalization of the asymmetric Rabi
Hamiltonian

As in the symmetric case ϵ = 0, also the asymmetric
Rabi model, ϵ ̸= 0 is approximately block-diagonal, as a
consequence of the general form of the displacement op-
erators. However here the situation is more complicated
and we cannot find a unique formula that fits the whole
spectrum for every (ϵ, g), but we can only have analytic
expressions valid near to each resonance.

We start by noticing that Eq. (8) is written in a form

1 2 43 500
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1 2 43 50

FIG. 5. Spectrum of the Rabi model as a function of the
dipole asymmetry ϵ for various g/ωc = 0.1, 1, 2.5, 3.5 light-
matter couplings. The solid lines are the result of exact di-
agonalization while the yellow dot are given by the analitical
formula in Eq. (17). For k > 1 the yellow dots do not cover
the lower lines. This is because our approximation treats
these eigenstates as bare photon state for which the energy is
trivially nωc. In order to highlight the part of the spectrum
where cavity and dipole are effectively coupled we do not put
the yellow dots on these trivial eigenvalues.

Parameters ωd = ωc.

that calls for the gRWA, provided that the system has
an asymmetric resonance ϵ ≃ ωc × k, with k = 1, 2, . . ..
Differently from the usual Jaynes-Cummings model, and
the gRWA of the symmetric Rabi model, here we need
to take the dipole basis as an eigenstate of sx. Moreover,
considering higher resonances at ϵ = ωc, 2ωc, 3ωc . . . is
well motivated by the fact that the displacement oper-
ator contains all power of creation/annihilation opera-
tors, giving access to multi-photon processes with higher
frequencies. This is indeed well visible considering the
normal-order expansion [58]

D(x) = e−x2/2
∑

n,m=0

(xa†)n

n!

(−xa)m

m!
. (13)

From this expression is also clear that the non-linear in-
teraction term in the polaron Hamiltonian in Eq. (8) is

exponentially suppressed by the factor ∼ ωde
−g2/(2ω2

c).
As a consequence, when

ϵ, ωc > ωde
−g2/(2ω2

c) (14)

the polaron light-matter interaction becomes perturba-
tive, and we can adopt the gRWA. Notice that this cor-
respond to keep only the terms n < m with ωc(m−n) ≃ ϵ
in Eq. (13), so, even if the interaction is perturbative, is
still multi-photon and thus highly non-linear.
The asymmetric polaron Rabi Hamiltonian can then be

approximately diagonalized around each k-resonance by
projecting it on the states {| ←, n⟩, | →, n− k⟩} and the
ground-state is simply given by |GS⟩ ≈ | ←, 0⟩. As for
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the symmetric case explained in App. F this treatment
is equivalent to a quasi-degenerate pertubation theory on
polaron interaction Hamiltonian.

The Hamiltonian can be then expressed succinctly in
a matrix form, as the sum of 2× 2 blocks

H̃k
Rabi ≈

∞∑
n=1

ωck − ϵ
2

σ(n,k)
x +

ωd

2
Dnn−k σ

(n,k)
z

+
2ωcn− ωck

2
1(n,k),

(15)

where σ
(n,k)
x,y,z are the Pauli matrices for each n = 1, 2, . . .

block for the k-resonance, while

Dnn−k =
gk

ωk
c

e
− g2

2ω2
c L

(k)
n−k

(
g2/ω2

c

)√ (n− k)!
n!

(16)

is the n, n−k matrix element of the displacement opera-

tor [58]. Here L
(l)
m (x) is the special Laguerre polynomials.

The excited eigenfrequencies are then given by

ωR
k,n,± = ωc

(
n− k

2

)
± 1

2

√
(ωck − ϵ)2 + ω2

dD2
nn−k.

(17)

Since the displacement operator has diagonal matrix el-
ement different from zero Dnn ̸= 0, one should consider
the dipole basis states composed by dipole states oriented
along ∼ cosϕsx + sinϕsz, with a certain angle ϕ given
by Dnn. Including these corrections makes the analyti-
cal formula in general quite complicated, having a simple
expression only for the ground-state, which is

ωR
0,0 = −

√
ϵ2 + ω2

de
−g2/ω2

c

2
. (18)

However, in the USC regime ϕ ∼ 0 is a small angle and
we can thus neglect it, proceeding with the simple sx
picture developed above.

In Fig. 5 we compare the real spectrum to the one
obtained from the gRWA at each resonant point. In the
USC limit, when g/ωc ≫ 1 the agreement is very good.
The eigenstates are now given in terms of a multi-

photon version of the sx-polarized Jaynes-Cummings
dressed states, fully characterized by the Hopfield coeffi-
cients cos θ(k,n)/2, sin θ(k,n)/2, generalizing the symmet-
ric case in Appendix F. When the resonance condition
ϵ = ωc × k is satiesfied, the system eigenstates become

|+(k,n)⟩ =
1√
2
(| ←, n⟩+ | →, n− k⟩)

|−(k,n)⟩ =
1√
2
(| ←, n⟩ − | →, n− k⟩) ,

(19)

and the ground state is |GS⟩ = | ←, 0⟩.
Repeating the analysis on the matrix elements in Ap-

pendix G, we realize that the sx operator can only con-
nect dressed states of the same (k, n) block, for which the

0

0.5

-0.5
0 0.5 1 1.5 2

(a) (b)

FIG. 6. (a) Schematic view of the resonant tunnel mechanism.
In the USC regime, the dipole can switch well by exchanging
k-photons with the cavity. (b) Rabi oscillations data collapse.
Each curve is labelled by its resonant index k and represents
⟨s̃x⟩ = ekγ/2t(⟨sx⟩ + 1/2) − 1/2. For each k-curve the time
is normalized on its respective k-Rabi frequency, Ω(k,k)/(2π).
In this way it is clear how our analytical description fits very
well the full numerics. Parameters: ωd = ωc, g/ωc = 3,
γ = κ/4 = 0.002ωc.

only non-diagonal non-zero matrix element is

⟨+(k,n)|sx|−(k,n)⟩ = cos
θ(k,n)

2
sin

θ(k,n)

2
. (20)

Each block is disconnected by the others and the ground-
state is disconnected from all other states. Therefore
relaxation toward equilibrium is still suppressed from the
USC also when ϵ ̸= 0.

On contrary, the cavity is still able to efficiently dis-
sipate. So, when hitting a k-resonance, also the dipole
can lose energy by exchanging k-photons with the cavity,
which are consequently flushed out. This resonant tun-
neling effect provides a relaxation channel for the dipole,
as depicted in Fig. 6(a) and give the proper explanation
for the gaps between the lobes observed in Fig. 2(a).

We conclude this subsection by highlighting that: in
the polaron frame, the USC open dynamics is mainly
given by a polaronic version of the standard text-book
dressed state master equation dynamics [57].

B. Multi-photon oscillations and cavity-mediated
relaxation

Here we illustrate how the polaronic dressed state pic-
ture emerges clearly in the full time-dependent dynam-
ics. As a striking example we show that the system un-
dergoes to damped Rabi oscillations, as in traditional
cavity QED systems described by the Jaynes-Cummings
model. However here, depending from the resonance con-
dition, the Rabi oscillations involve multiple photons [59–
61] and must be interpreted as tunneling oscillations for
the dipole.

From the block-Hamiltonian in Eq. (15) we can derive
the Rabi frequency of the k-resonance multi-photon Rabi
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FIG. 7. Current transmission |T (ω)| as a function of the
dipole asymmetry ϵ and the probe frequency ω, for various
g/ωc = 0.1, 0.5, 2, 2.5 light-matter couplings. Parameters:
ωd = ωc, kbT = 0.2ℏωc, Q = ωc/γ = 102.

oscillations reading

Ω(k,n) = ωd
gk

ωk
c

e
− g2

2ω2
c L

(k)
n−k

(
g2/ω2

c

)√ (n− k)!
n!

, (21)

where n ≥ k is the total number of photons involved.
Differently from usual Rabi oscillations in cavity QED,

here the dipole oscillates between the right and left states
of its asymmetric double well potential, for which we can
call them tunneling oscillations. The relevant quantity
to follow is then ⟨sx⟩ (t) (on contrary to traditional Rabi
oscillations, visible looking at ⟨sz⟩ (t), in standard nota-
tion).

We then numerically simulate ⟨sx⟩ (t) starting from the
initial state |ψ0⟩ = | →, 0⟩ (in the polaron frame). When
γ < Ω(k,k), we observe a very good fit on the curve

⟨sx⟩ (t) ≈ e−
kγ
2 t cos

[
Ω(k,k)t

]
+ 1

2
− 1

2
. (22)

Notice that the overall decay rate is given by ∼ k× γ/2,
with a factor k. This takes into account that the photon
decay increase linearly with the number of photons in-
volved, which, in this case is properly k. In Fig. 6(b) we
show the Rabi oscillations data collapse for various res-
onant values ϵ = ωc, 2ωc, 3ωc, 4ωc. For each k the curve
is plotted against its normalized time t̃ = Ω(k,k)t/(2π)
and is normalized to remove the exponential decay ac-
cordingly to ⟨s̃x⟩ = ekγ/2t(⟨sx⟩+ 1/2)− 1/2.

C. Response functions and higher-order processes

Here we take a quick detour from the investigation of
the relaxation properties of the system and we focus our
attention more specifically on how the spectral features
analyzed so far manifest themselves through standard
transmission measurements.

This is particularly important because current experi-
ments, for instance in circuit QED, cannot easily probe
the time-dependent dynamics and thus have no direct ac-
cess to measuring how the light-matter coupling affects
relaxation. Nevertheless, since we have seen that relax-
ation is in the end determined by the eigenstates of the
system, measuring some specific spectral features can be
an indirect indication that the system follows the physics
described in the previous sections.

We start considering a weak probe current entering in
the LC-circuit and we look for the transmitted current.
With the help of linear response theory (see Appendix
H), the current response is mainly given by the cavity
structure factor

Sc(ω) =
ℏZLC

2

∑
n,m

e−ℏωn/(kbT )

Z
∣∣⟨n|a− a†|m⟩∣∣2 δ(ω−ωmn).

(23)
Here Z =

∑
n e

−ℏωn/(kbT ) is the thermal equilibrium par-
tition function of the system, and ZLC is the characteris-
tic cavity impedance parameter defined in App. B. The
system circuit impedance is then defined as

Zsys(ω) = −
iωSc(ω)

ℏ
, (24)

and consequently the current transmission function

Iout
Iin

= T (ω) = Q−1

Q−1 + ZLC/Zsys(ω)
. (25)

Here Q = ωc/γ is the LC cavity quality factor.
In Fig. 7 we show the current transmission |T (ω)|

as a function of the dipole asymmetry ϵ and the probe
frequency ω. To mimic experimental conditions, we con-
sider a fixed temperature kbT ≃ 0.2ℏωc.
For coupling strength up to g/ωc ≲ 0.5 the transmis-

sion spectrum exhibits the usual Jaynes-Cummings po-
laritonic (or dressed state) behaviour. At ϵ ̸= 0 the re-
sponse mainly follows the bare LC circuit response, while
the maximum hybridization is at ϵ = 0, with maximum
Rabi splitting between the upper and lower dressed state
branches. This is well visible in the first panel of Fig. 7.
For increasing coupling strength, as in the second panel

of Fig. 7, where g/ωc = 1, the upper branch of the
transmission spectrum starts to vanish exactly at ϵ = 0,
signalling that we are entering the USC regime.
At even larger couplings the transmission is drastically

changed. This is well visible from the two lower panels
in Fig. 7, where g/ωc = 2.5, 3. In the region around
ϵ = 0 the transmission becomes much smaller, and the
two branches related to the Jaynes-Cummings dressed
states are gone. Instead the k = 1 avoided crossing due to
the resonant tunneling is well visible around |ϵ|/ωc = 1.
The k > 1 higher resonances, on contrary, are not well
visible, since they are covered by the bare photon reso-
nance between the lower levels n < k. It is worth notic-
ing that the ultrastrong-coupling spectral features shown
here, and in particular the k = 1 resonance, are already
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FIG. 8. Dipole radiation impedance |Zrad(ω)| as a function of
the dipole asymmetry ϵ and the probe frequency ω for various
g/ωc = 2, 2.5 light-matter couplings. Parameters: ωd = ωc,
kbT = 0.5ℏωc. In this plot we assumed a linewidth γSdip =
0.05ωc.

visible in recent experiments with superconducting cir-
cuits [52, 62–64].

Another interesting quantity to probe the spectrum of
the system is provided by the dipole structure factor

Sdip(ω) = 2ℏZdip

∑
n,m

e−ℏωn/(kbT )

Z
|⟨n|sx|m⟩|2 δ(ω−ωmn).

(26)
Here the characteristic dipole impedance Zdip is defined
in App. A. From the linear response theory perspective,
Sdip(ω) quantifies the dipole radiation response to a di-
rect drive of the dipole. Because of the consideration
done in Sec. IVA, is clear that this quantity is strongly
suppressed in the USC regime, at low temperature. If we
only stick to the dressed state picture we should observe
vanishing transitions for T → 0, due to the fact that the
dipole matrix element between the ground-state and the
first block is zero

⟨±(k,1)|sx|GS⟩ = 0. (27)

Thus in this framework only transitions beyond the
dressed state picture are visible. It is important to stress
that this transitions are also present in the cavity trans-
mission, but, since they are much weaker they are much
better visualized without the presence of the dressed
state transitions which are dominant in the cavity trans-
mission.

Similarly to the system circuit impedance we can define
a dipole radiation impedance as

Zrad(ω) = −
iωSdip(ω)

ℏ
. (28)

In Fig. 8 we show the radiation impedance Zrad(ω) in
logscale, as a function of the dipole asymmetry ϵ and the
probe frequency ω (with an artificial linewidth γSdip

to
smear out the delta function in Eq. (26)). On contrary
to the previous case of the cavity response, at frequen-
cies ω ∼ ωc the dipole response is strongly suppressed in
favour of higher frequencies transitions that emerge with
a diamond-like pattern.

The dipole matrix elements giving the amplitude for
these transitions are much weaker than the cavity-current

matrix elements for the k-resonant transitions between
dressed states, since are given by beyond gRWA correc-
tions. They are the USC cavity equivalent of the vi-
bronic transitions responsible of the Coulomb diamond
structure in the Franck-Condon blockade voltage/current
characteristic [38].

V. CASCADED RELAXATION IN
MULTI-WELL DIPOLE

Finally we comment on the possibility to extend our
results to the case of a multi-well dipole. The relaxation
dynamics of this system is particularly interesting be-
cause it can be interpreted as a prototype of a transport
problem through an extended system: intuitively, in a
tilted multi-well potential a particle would relax from a
higher well to the lowest one, but this means that this
particle is also transported from side to side of the sys-
tem.
Despite that a full coverage of cavity-modified relax-

ation or transport in an extended system is well beyond
the scope of this paper, we can still use the concepts de-
veloped above to give an initial intuition which sets the
basis for future investigations.

A. The extended Dicke model

We model the multiple-well dipole generalizing the
two-level approximation to (N+1)-level, where each level
represent a potential well. In this way, the dipole is sim-
ply described by spin-N/2 operators, Sx,y,z that gener-
alizes the spin description of Sec. A. In particular the
eigenvalues of Sx, |mx⟩, are interpreted as localized states
in themx-th well, while the Sz operator creates some tun-
nelling between them. This model is very similar to the
famous Wannier-Stark ladder model, where the only dif-
ference is in the non-homogeneous hopping rates, settled
by the Sz matrix element between Dicke states along the
Sx-direction.
While the dissipations, and the master equation, are

derived in the same way as before, just replacing sx,y,z 7→
Sx,y,z everywhere, the light-matter Hamiltonian is no
more given by the Rabi model of Eq. (1). Indeed,
when taking the two-level approximation of Eq. (B5)
we had discarded the x2-term, which is only a constant
within the two-level subspace, x2 ≈ 4x210s

2
x = 4x2101. For

a multi-level dipole, described by a spin-N/2 system if
N > 1 we have that S2

x ̸= 1/4, and thus the correct cav-
ity QED Hamiltonian within the (N + 1)-level subspace
is given by the so-called extended Dicke model (EDM)
[16, 42]

HEDM = ωca
†a+ωdSz+g

(
a+ a†

)
Sx+

g2

ωc
S2
x+ϵSx. (29)

Performing the polaron transformation in the same
way as for the Rabi model, we arrive to the polaron
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(EDM) [16]:

H̃EDM = ωca
†a+ ϵSx+

ωd

2

[
D(g/ωc)S̃+ +D†(g/ωc)S̃−

]
,

(30)

where, again, S̃− = Sz− iSy. In the USC regime g ≫ ωc,
and for non-negligible asymmetry ϵ ̸= 0, in the limit of
large spin, N ≫ 1, we can use the Holstein-Primakoff
approximation [65] on the Sx-direction, for which Sx ≈
−N/2+b†b, and S̃− ≈

√
Nb. The polaron EDM can then

be approximated by

H̃EDM ≈ H̃HP
EDM = ωca

†a+ ϵb†b+

+
ωd

√
N

2

[
D(g/ωc)b

† +D†(g/ωc)b
]
.

(31)

B. Relaxation dynamics of the EDM

The considerations done for the Rabi model in Sec.
IVA are still valid, in particular regarding the possibility
to discard the counter-rotating terms in the displacement
operators and the suppression of tunneling. It is then
clear that one can use the same dressed state approach
to diagonalize the polaron EDM as well. In particular,
considering the relaxation from the initial state |0,m⟩ =
(b†)m/

√
m!|0, 0⟩ the resonant tunnelling effect gives rise

to a cavity-mediated cascaded dynamics to the ground-
state, where, depending from the resonance condition ϵ =
k × ωc, nph ≈ k ×m photons are released.
To have a more quantitative understanding we consider

the limit of strong cavity dissipations with respect to the
k-resonance splitting, γ ≫ Ω(k,k). In this regime we can
adiabaticaly eliminate the cavity in favor of an effective
master equation for the dipole only [46]. Following the
previous analysis on cavity and dipole transition rates, we
completely neglect the dipole dissipations, while we take
as a jump operator of the cavity its bare annihilation
operator c = a. Again, this is well motivated by the
analysis performed above. Using the approximated form
of the EDM in Eq. (31) and assuming that at each time
the total density matrix of the system is ρ(t) ≈ ρd(t)⊗ρthc
(here ρthc is the thermal density matrix for the bare cavity
at temperature T ) we have that

∂tρd = −i
[
ϵb†b, ρd

]
+

ΓT (ϵ)

2

(
2bρdb

† −
[
b†b, ρd

]
+

)
+

ΓT (−ϵ)
2

(
2b†ρdb−

[
bb†, ρd

]
+

)
.

(32)

Similarly to non-linear optomechanics setups [66, 67], the
cooling and heating rates are given by

ΓT (ω) =
ω2
dN

2
×

× Re

[∫ ∞

0

dt
(
⟨D (t, x)D† (x)⟩ − ⟨D(x)⟩2

)
eiωt

]
,

(33)
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FIG. 9. Total relaxation rate Γtot
T (ω) defined in Eq. (35)

as a function of frequency ω for various g/ωc = 0.1, 0.5, 1, 2
coupling strengths (normalized over Γd = ω2

dN/γ). The blue
line corresponds to T = 0, while the red line is for kbT =
2 ℏωc. Parameters: γ/ωc = 0.1.

where Hc = ωca
†a, x = g/ωc and D(t, x) =

eiHctD (x) e−iHct. Since that the average ⟨·⟩ is intended
over the cavity thermal state ρthc , we can explicitly com-
pute this quantity [53, 66, 67]

ΓT (ω) =
ω2
dN

γ
e−x2(1+2NT (ωc))×

×
∑
q,r ̸=0

x2rNr
T (ωc)

r!

x2q(1 +NT (ωc))
q

q!

γ2/4

(ω − ωc(q − r))2 + γ2

4

.

(34)

Here NT (ωc) = 1/(eℏωc/(kbT ) − 1) is the cavity thermal
population. From this expression it is particularly evi-
dent the multi-photon character of this cavity assisted re-
laxation mechanism, where the dipole can relax by emit-
ting q-photons into the cavity, and, at the same time, can
be re-excited by absorbing r-photons from the cavity (if
the temperature is non-zero T > 0).
As in the standard theory of laser cooling the total

relaxation rate is given by

Γtot
T = ΓT (ϵ)− ΓT (−ϵ). (35)

At T = 0 and close to resonance ϵ ≃ ωc × k, the to-
tal relaxation rate is approximately given by Γtot

T=0 ≈
Ω2

(k,k)N/γ, which is the USC version of the Purcell ef-

fect. In Fig. 9 we show some examples of the total
relaxation rate for T = 0 and for T > 0 at different
coupling strengths. Interestingly larger temperature may
help in activating the higher k-resonances even in the
non-USC regime, g/ωc ≪ 1, resembling the behaviour of
optomechanical laser cooling setups [68]. We highlight
the fact that at weak coupling this description does not
hold, since it is based on the assumption that dipole tun-
neling is suppressed by the USC regime. However we
found interesting to show the total relaxation rate Γtot

T
also in this regime for completness.
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As anticipated in the beginning of this section, the re-
laxation dynamics of this multi-well setup can be seen as
a way to study how the incoherent transport is modified
by the cavity. Staying at the single particle level we can
interpreted an excitation produced by the dipole opera-
tor b† as the particle moving one well up in energy, and
the dipole ground-state as the state where only the lowest
energy well is occupied. Following this line of thoughts,
we can say that the system has good transport properties
if it rapidly thermalizes sufficiently close to its ground-
state. Since that the saturation number of the steady
state of Eq. (32), ⟨b†b⟩ss = N0, around each k-resonance
ϵ = ωc × k is the dipole thermal occupation

N0 =
ΓT (−ϵ)

ΓT (ϵ)− ΓT (−ϵ)
≈ NT (ωc × k), (36)

we also need that the temperature T is small enough
so thermal photons cannot push the particle (the dipole
excitation) on an upper energy level.

In summary, the cavity USC suppresses tunnelling also
in a multi-well dipole scenario, inhibiting the dipole’s re-
laxation and its ability to transport excitations from one
well to the other. Fast relaxation (and transport) is pos-
sible only when the tilted multi-well dipole is resonant
with the cavity having access to the multi-photon reso-
nant tunnelling process.

VI. CONCLUSION

In conclusion, we studied the relaxation properties of
a simple (but paradigmatic) cavity QED setup in the
ultrastrong coupling regime described by the asymmet-
ric quantum Rabi model. Here the Bosonic cavity mode
is provided by an LC resonant circuit while the two-
level atom is given by an asymmetric dipole inside the
capacitor of the LC circuit. We introduce dissipation
by considering the cavity coupled to a Ohmic transmis-
sion line, while the dipole dissipates into radiating modes
with super-Ohmic spectral density. The system’s dynam-
ics is thus described by a thermalizing master equation,
valid at arbitrary light-matter coupling strengths and ar-
bitrary dipole asymmetry. From the Liouvillian gap we
obtained the longest relaxation rate of the system, that
we can also consider its asymptotic thermalization rate.
From this quantity emerges clearly that the effect of the
USC is to slow-down the system’s thermalization by an
exponential suppression of the Liouvillian gap. However,
for special values of the dipole asymmetry the standard
relaxation is restored and the system can thermalize ac-
cordingly to its bare relaxation rates.

To understand this behaviour of the Liouvillian gap
and to link it to the physical observables of the system,
we employed a generalized rotating-wave approximation
(gRWA) [56], valid in the so-called polaron frame. Within
this approximation we showed that is possible to ana-
lytically diagonalize the asymmetric Rabi model, even
in the USC regime, where the eigenstates are given by

a polaronic multi-photon version of the usual Jaynes-
Cummings dressed states. In this way, we were able
to compute the relaxation rates in the USC regime an-
alytically, explicitly showing the exponential slow-down
of thermalization due to an effective suppression of the
dipole tunnelling dynamics, while the cavity, remaining
effectively uncoupled from the dipole, can still efficiently
relax.
When the dipole asymmetry is resonant with the cav-

ity, the dipole dynamics is revitalized, by a cavity assisted
tunnelling, where the dipole resonantly tunnels from one
well to the other by releasing multiple photons. Since
photons can then relax out of the cavity, this process
gives an effective relaxation channel also for the dipole.
After showing that these phenomenon can be ob-

served indirectly from the cavity transmission or the
dipole impedance, we highlight a link to the Franck-
Condon physics of electronic transport through a molec-
ular dot[9, 38].
At the end, we commented on the possibility of ex-

tending this non-linear resonant processes to a multi-well
dipole. A simple toy model to describe this situation is
provided by the extended Dicke model, introduced orig-
inally to study a multiple qubit ultrastrongly coupled
to a single LC cavity [16, 42]. From this setup is clear
that the USC resonant tunnel dynamics can affect also
a multi-well system, giving rise to a resonant cascaded
multi-photon process. We argue that this cascaded ef-
fect could be observed in cavity modified transport ex-
periments with multiple electronic quantum dots, or in
superconducting circuit devices with only minor modifi-
cations of the already existing platforms [9, 52]. This sug-
gests that these findings could thus provide an interest-
ing playground to study an implementation for cascaded-
laser electronic devices operating in the USC regime in
GHz or THz range.
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Appendix A: A dipole in a asymmetric double well
potential

The dipole dynamics is described as a single particle
with mass m in a potential

Hdipole =
p2

2m
+ V (x). (A1)

The dipole has charge +q on an extreme and −q on the
other extreme, and qx is its dipole moment. So, the
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dipole displacement x is its main dynamical variable and
p its canonical momentum.

As depicted in Fig. 1(b), we consider only the paradig-
matic case of a dipole described by a double-well poten-
tial, very similarly to Refs. [69, 70]. Considering only
its low energy dynamics we are basically studying the
electromagnetism of quantum tunnelling.

Differently from Ref. [16] here we introduce a linear
tilt that makes the height of the two wells asymmetric.
The total dipole’s potential is then given by

V (x) = −µ
2
2

2
x2 +

µ4
4

4
x4 + qEx. (A2)

The linear tilt ∼ qEx is physically implemented by a bias
static external electric field of amplitude E and has no
influence on the LC resonator dynamics.

Whenever µ2/µ4 ≫ 1 and qE/µ2 ≪ 1, the two lowest
levels are below the central barrier and well separated
from the other energy levels. We can then truncate the
dipole’s Hilbert space keeping only these two lowest en-
ergy levels [16]. We perform the two level approxima-
tion (TLA) on the dipole Hamiltonian projecting on the
eigenstates without tilt E = 0, and we obtain

HTLA
dipole = ℏωdsz + ℏϵsx. (A3)

Here we have introduced the pseudospin operators sa =
σa/2 (σa are the usual Pauli matrices). The dipole fre-
quency ωd is the energy difference between the two low-
est states without the tilt E = 0, and ϵ = 2qEx10/ℏ,
where x10 = ⟨1|x|0⟩ is the dipole matrix element between
the two lowest dipole states. The dipole operator now is
given by x ≈ x10σx.

When the tilt is on, the energy splitting between the
two eigenstates of Eq. (A3) is given by ωϵ =

√
ω2
d + ϵ2,

while the eigenfunctions are partially localized on the left
or right well, with a small, but non-negligible, overlap
with the opposite well, Fig. 1(b). In the two-level lan-
guage these states are given by

|Lϵ⟩ = cos
θϵ
2
| ↓⟩+ sin

θϵ
2
| ↑⟩

|Rϵ⟩ = − sin
θϵ
2
| ↓⟩+ cos

θϵ
2
| ↑⟩,

(A4)

where tan (θϵ) = ϵ/ωd.
We can also associate a characteristic impedance to

the dipole by considering Zdip = ℏ/q2f10, and f10 =
2mω0|x10|2/ℏ is the oscillator strength of the two-level
dipole transition. Introducing this parameter is particu-
larly convenient when discussing the linear response the-
ory, and creates a nice parallelism with the circuit de-
scription of the cavity given in what follows.

Appendix B: General cavity QED Hamiltonian

The Hamiltonian of the full cavity QED system can
be written summing up the dipole energy and the total

energy stored in the electromagnetic field

HcQED = Hem +Hdipole. (B1)

For an LC-resonant system, the electromagnetic en-
ergy is described by

Hem =
CU2

2
+

Φ2

2L
, (B2)

where U is the total voltage drop across the capacitor C,
Φ is the magnetic flux through the inductance L.
When the dipole is inside the capacitor the total volt-

age U is no more the right canonical variable conjugate
to Φ. In order to have the correct canonical description
we need to introduce the total capacitor charge variable
Q, such that [Φ, Q] = iℏ. Without the presence of the
dipole the total charge and the voltage drop are directly
proportional through the usual relation U = CQ. When
the dipole is inside the capacitor the charge responsible
for the voltage drop is modified by the presence of the
charge induced by the dipole on the metallic plates. This
induced charge does not contribute to any voltage drop,
and must be removed [16, 42]. The voltage drop becomes

U = C (Q−Qind) . (B3)

For an ideal capacitor we have Qind ≃ qx/d [16], where
d is the distance between the capacitor plates.
We introduce now the cavity creation/annihilation op-

erators through the relations

Φ = i
Φ0√
2

(
a− a†

)
Q =

Q0√
2

(
a+ a†

)
.

(B4)

Here Φ0 =
√
ℏZLC , Q0 =

√
ℏ/ZLC and ZLC =

√
L/C.

The cavity QED reads

HcQED = ℏωca
†a+Hdipole + F0x

(
a+ a†

)
+
F 2
0

ℏωc
x2,

(B5)

where ωc = 1/
√
LC and we introduced the zero-point

electric force F0 =
√
ℏωc/(2Cd2)q2.

As detailed in Refs. [69, 70], implementing the TLA
described in Section A, we can now approximate the cav-
ity QED Hamiltonian with the so-called quantum Rabi
model (ℏ = 1)

HcQED ≈ HRabi = ωca
†a+ ωdsz + ϵsx + g

(
a+ a†

)
sx,

(B6)

where the light-matter coupling is given by g = 2F0x10.
We will see in particular that the transverse term
∼ ϵsx, that breaks the Z2 symmetry of the usual Rabi
model, is fundamental in our development, becoming a
switch between slow and fast dissipation of the dipole. In
circuit QED this term emerges quite naturally through a
bias in the external magnetic flux and is typically used
in the observation of the spectral features of the USC
regime [52, 63].
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Appendix C: Linear damping

This section reviews the standard derivation of the
Langevin equation for open quantum systems as it is de-
veloped in standard textbook [46, 71], that sets the basis
for the formalism that we use through the whole paper.

We consider a generic system, described by the hamil-
tonian Hsys, coupled to a bath of harmonic oscillators
(which may represent the electromagnetic field outside
of a cavity, or a resistance in a circuit):

H = Hsys +
∑
k

[
P 2
k

2mk
+

1

2
mkω

2
k

(
Yk −

ck
mkω2

k

X

)2
]
.

(C1)
The equations of motion for a generic system operator A
are given by

∂tA = −i [A,Hsys] + i
∑
k

ck
2
(Yk [A,X] + [A,X]Yk)+

− i
∑
k

c2k
2mkω2

k

[
A,X2

]
(C2)

∂tYk =
Pk

mk
, ∂tPk = −mkω

2
kYk + ckX. (C3)

The formal solution of the bath’s equations is given by

Yk(t) = Y homg.
k (t) +

ck
mkωk

∫ t

t0

dt′ sin(ωk(t− t′))X(t′),

(C4)
where

Y homg.
k (t) = Yk(t0) cos(ωk(t−t0))+

Pk(t0)

mkωk
sin(ωk(t−t0)).

(C5)
Plugging back this solution is (C2), and integrating by
part, we get the quantum Langevin equation, describ-
ing the whole open-dissipative dynamics of our quantum
system

∂tA(t) = −i [A(t), Hsys]

+
i

2
(ξ(t) [A(t), X(t)] + [A(t), X(t)] ξ(t))

− i

2

[∫ t

t0

K(t− t′)∂t′X(t′)dt′ , [A(t), X(t)]

]
+

.

(C6)

Here [·, ·]+ is the anti-commutator, and

ξ(t) =
∑
k

ck

(
Y homg.
k (t)− ck

mkω2
k

X(t0) cos(ωk(t− t0))
)

K(t) =
∑
k

c2k
mkω2

k

cos(ωkt),

(C7)

are, respectively, the quantum noise term and the dissi-
pative kernel. We notice that the last term in (C2) is ex-
actly cancelled by the term proportional to K(t) coming
out by the integration by part. From the fluctuations-
dissipation theorem we obtain the specific value of the
quantum noise correlator [71]. In the high-temperature
limit it reads

1

2
⟨[ξ(t), ξ(t′)]+⟩ ≃ 2kbTK(t− t′). (C8)

The in/out relation are given by [71]

Y out(t) = Y in(t)−
∫ +∞

−∞
K(t− t′)Ẋ(t′)dt′, (C9)

where Y in(t) =
∑

k ckY
homg.
k (t).

A useful way to treat the dissipation without having all
the details of the bath is to introduce the bath spectral
density

J(ω) =
π

2

∑
k

c2k
mkωk

δ(ω − ωk), (C10)

and recast the dissipator in the form

K(t) =

∫ ∞

0

dω

π

J(ω)

ω
cos(ωt). (C11)

Now all bath properties are encoded in the spectral den-
sity J(ω).

Appendix D: Thermalizing master equation

We consider here the master equation suitable to study
relaxation and thermalization processes in cavity QED
under the ultra-strong coupling regime. For this purpose
we consider the treatment used in [55]. We do not re-
peat the derivation here, but we stress that the physical
assumptions are almost the same as used in deriving the
Langevin equation in Appendix C, with the further as-
sumption that the coupling between the system and the
bath is very small. In particular this latter one ensures
that we can implement the rotating wave approximation
between the system and the bath, proceeding with the
standard textbook derivation.
The crucial step here is to isolate the compo-

nents of the system coupling operator X that ro-
tates with positive (negative) frequencies. This can
be done as follows: given an Hamiltonian Hsys and a
(or multiple) system operator(s) X, we express them
on the system eigenbasis X =

∑
n,m ⟨n|X|m⟩ |n⟩⟨m|.

The jump operators are then given by the set
{cnm = ⟨n|X|m⟩ |n⟩⟨m| , such that n < m}. In the
Heinseberg picture these jump operators evolve with pos-
itive frequencies. This allows to implement the rotating
wave approximation in the standard system-bath linear
Hamiltonian in Eq. (C1).
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The master equation is then given by

∂tρ = LH(ρ) + LD(ρ), (D1)

where the conservative time evolution is generated by

LH(ρ) = −i [Hsys, ρ] , (D2)

while dissipations are given by

LD(ρ) =
∑
n<m

[1 +NT (ωmn)] ΓnmD (|n⟩⟨m|, ρ)+

+
∑
n<m

NT (ωmn)ΓnmD (|m⟩⟨n|, ρ) .
(D3)

Here

D (c, ρ) = c ρ c† − 1

2

[
c†c , ρ

]
+

(D4)

is the usual dissipator super-operator [46], and

NT (ω) =
1

eω/(kBT ) − 1
(D5)

is the bosonic thermal population, where kB is the Boltz-
mann constant. The thermalization rates are given by

Γnm = J(|ωmn|) |⟨n|X|m⟩|2 . (D6)

It is important to keep in mind here that there is another
implicit assumption to correctly use this master equa-
tion: the energy levels are well resolved with respect to
the bath induced linewidth, meaning that Γnm ≪ ωnm.
Considering only weak losses and not too weak nor not
too strong coupling, we can consider it always satisfied
in our development.

Considering the thermal density matrix ρss =
e−Hsys/(kBT )/Z, where Z = Tr[ρss], one can easily prove
that is the steady state of the system.

Appendix E: Physical dissipators

1. Cavity dissipation

A standard way to introduce dissipation in an LC cir-
cuit is to couple it to a transmission line [46]. When
is traced out from the dynamics, the transmission line
plays the role of a resistive element, effectively realizing
the scheme described in Fig. 1(c). An input voltage can
inject current in the system, and the resistance damps the
excited oscillations of the LC-circuit. This scheme pro-
vides a basic input/output theory describing the system’s
read out from the energy dissipated into the resistance.

The formal description of this setup assumes a linear
coupling to a multi-mode bath of harmonic modes, as
described in Eq. (C1) of Appendix C. To realize the
resistive circuit, since Φ = LI is linked to the current
passing through the inductor (and so through the whole

circuit) the system operator coupled to the bath is [46,
53, 72]

X̂ = Φ = i
Φ0√
2

(
a− a†

)
. (E1)

To reproduce a standard Ohmic resistance we assume
the standard linear spectral density (neglecting for now
the correct dimensional units)

JOhm(ω) ∼ γω. (E2)

Eliminating the bath’s dynamics, we obtain the equa-
tions of motion of the circuit in terms of the Langevin
equation in Eq. (C6), and, considering A = Φ̇ in Eq.
(C6), we have that

Φ̈ ∼ −γΦ̇, (E3)

correctly matching the standard Kirchhoff equations of a
resistive circuit.
To implement the thermalizing master equation used

in the main text, we introduce the jump operators corre-
sponding to this decay channel as

ccnm = ⟨n|a− a†|m⟩ |n⟩⟨m|, (E4)

where m > n and |n⟩ are the eigenstates of the whole
system. In such a way that they correctly describe the re-
laxation process from higher to lower energy states, even
when the system is ultrastrongly coupled, see App. D.
Since in our theory the coefficient γ is a free param-

eter, we absorb the dimensional quantity Φ0/
√
2 in the

definition of the spectral density, such that

ωc|Φ0|2

2
JOhm(ω) 7−→ JOhm(ω). (E5)

2. Dipole dissipation

In our simplified picture, the main source of dissipation
of an oscillating electric dipole is given by radiative emis-
sion into free space electromagnetic modes. Indeed, even
if the dipole is strongly coupled to the sub-wavelength
mode of the LC cavity, still interacts with the all the
other transverse electromagnetic modes. These have typ-
ically a small effect on the coherent dynamics [37], but
they provide a decay channel for the dipole.
Because of the harmonic dynamics of the electromag-

netic field, and its general linear coupling with the dipole,
we can again model the dipole dissipation as a linear
damping, as described in Appendix C. In this case the
system operator coupled to the dissipative bath is given
by the dipole moment

X̂ = x ≈ 2x10sx (E6)

The bath spectral function is given from the spectral
function of the transverse electromagnetic modes. In
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free-space this would be given approximately by (neglect-
ing the dimensionality, the correct dimensional units will
be reintroduced in the next section)

Jrad(ω) ∼ κω3. (E7)

Considering the Langevin equation in Eq. (C6) for the
dipole moment velocity A = ẋ, using this spectral density
we find

ẍ ∼ κ ...x , (E8)

recovering the Abraham-Lorentz formula for a radiating
dipole [73].

More generally for our developments, one can choose
any spectral density for the dipole dissipative bath of
the shape Jrad ∼ ων , with ν ≥ 1. Having ν > 1 gives
particularly simple results.

As for the cavity, the jump operators corresponding to
this decay channel are

cdipnm = ⟨n|sx|m⟩ |n⟩⟨m|. (E9)

where m > n and |n⟩ are the eigenstates of the whole
system. In such a way that they correctly describe the re-
laxation process from higher to lower energy states, even
when the system is ultrastrongly coupled, see App. D.

Since also here κ is a free parameter, we absorb the
dimensional quantity 2x10 in the definition of the spectral
density, such that

4ωd|x10|2Jrad(ω) 7−→ Jrad(ω). (E10)

Appendix F: Diagonalization of the
resonant-symmetric Rabi Hamiltonian

In this section we perform the approximated diagonal-
ization of the Rabi model in the regime where

ωd ≃ ωc

ϵ = 0.
(F1)

We first transform the original Rabi Hamiltonian through
the unitary transformation Upol = exp

[
g/ωc(a− a†)sx

]
,

obtaining the Rabi polaron Hamiltonian in the form

H̃Rabi = ωca
†a+ ωd

[
cosh

(
g/ωc(a− a†)

)
sz

+ i sinh
(
g/ωc(a− a†)

)
sy

]
.

(F2)

Here cosh, and sinh operators can be expressed in terms
of the displacement operator D(x) = exp

[
x(a− a†)

]
.

In this frame one can then perform a generalized
rotating wave approximation [56], following from the
fact that the Hamiltonian in this basis is approximately
block diagonal. Each block is spanned by the states
{| ↑, n− 1⟩, | ↓, n⟩}, where n = 1, 2 . . ., and the ground-
state is given by the polaron vacuum state | ↓, 0⟩.

This block-diagonal structure is ultimately linked to
the matrix elements of the displacements operators in Eq.
(F2), which are known to be exponentially suppressed

as ⟨n|D(g/ωc)|m⟩ ∼ e−g2/(2ω2
c) [58]. Moreover because

of parity selection rule of the cosh(g/ωc(a − a†))sz,
sinh(g/ωc(a−a†))sy operators only second nearest neigh-
bour blocks are coupled. Combining this two obser-
vations we have that the most relevant transitions are
within each block, for which we need only two matrix
element of the displacement operator per block:

Dnn−1 =
g

ωc

√
(n− 1)!

n!
e
− g2

2ω2
c L

(1)
n−1

(
g2/ω2

c

)
,

Dnn = e
− g2

2ω2
c L(0)

n

(
g2/ω2

c

)
,

(F3)

where L
(α)
n (x) are the special Laguerre polynomials. No-

tice that, since L
(α)
n (0) = (n + α)!/(n!), we have that

L
(1)
n−1(0) = n, recovering the usual Jaynes-Cummings pic-

ture at weak-coupling.
We can then rewrite the polaron Rabi Hamiltonian as

a block-diagonal matrix, H̃Rabi ≈
∑

n H̃
n
Rabi, where each

block reads

H̃n
Rabi =

(
An Cn

Cn Bn

)
(F4)

where

An = ωcn−
ωde

−g2/(2ω2
c)

2
L(0)
n

(
g2/ω2

c

)
,

Bn = ωc(n− 1) +
ωde

−g2/(2ω2
c)

2
L
(0)
n−1

(
g2/ω2

c

)
,

Cn =
g

ωc

ωde
−g2/(2ω2

c)

2

√
(n− 1)!

n!
L
(1)
n−1

(
g2/ω2

c

)
.

(F5)

The spectrum is

ω±,n =
An +Bn

2
±

√
(An +Bn)

2

4
+ C2

n −AnBn (F6)

and the eigenstates are

|+, n⟩ = cos
θn
2
| ↓, n⟩+ sin

θn
2
| ↑, n− 1⟩,

|−, n⟩ = − sin
θn
2
| ↓, n⟩+ cos

θn
2
| ↑, n− 1⟩,

(F7)

where

cos
θn
2

= ±

√√√√√1

2

1 +
An −Bn√

(An −Bn)
2
+ 4C2

n



sin
θn
2

= ±

√√√√√1

2

1− An −Bn√
(An −Bn)

2
+ 4C2

n


(F8)

This approximate solution of the symmetric Rabi
model is valid in all coupling regimes for each value of
g. However its validity is restricted to the cases when
ωd ≲ ωc [56].
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Appendix G: Matrix element and transition rates of
the symmetric Rabi model

As for standard dressed states, the allowed transitions
are only between states of neighbouring blocks, with
(n, n ± 1)-excitations, and the only relevant matrix el-
ements contributing to the transition rates of the cavity
are

⟨+, n|
(
a† − a

)
|−, n− 1⟩ =

√
n− 1 cos

θn−1

2
sin

θn
2
+

−
√
n cos

θn
2

sin
θn−1

2
,

(G1)

⟨−, n|
(
a† − a

)
|+, n− 1⟩ =

√
n− 1 sin

θn−1

2
cos

θn
2
+

−
√
n sin

θn
2

cos
θn−1

2
,

(G2)

⟨+, n|
(
a† − a

)
|+, n− 1⟩ =

√
n− 1 sin

θn−1

2
sin

θn
2
+

+
√
n cos

θn
2

cos
θn−1

2
,

(G3)

⟨−, n|
(
a† − a

)
|−, n− 1⟩ =

√
n− 1 cos

θn−1

2
cos

θn
2
+

+
√
n sin

θn
2

sin
θn−1

2
,

(G4)

and for the ground-state

⟨↓, 0|
(
a† − a

)
|+, 1⟩ = − cos

θ1
2
,

⟨↓, 0|
(
a† − a

)
|−, 1⟩ = sin

θ1
2
.

(G5)

For the dipole we have a complementary situation

⟨+, n|sx|−, n− 1⟩ = −1

2
sin

θn−1

2
sin

θn
2
, (G6)

⟨−, n|sx|+, n− 1⟩ = 1

2
cos

θn−1

2
cos

θn
2
, (G7)

⟨+, n|sx|+, n− 1⟩ = 1

2
cos

θn−1

2
sin

θn
2
, (G8)

⟨−, n|sx|−, n− 1⟩ = −1

2
sin

θn−1

2
cos

θn
2
, (G9)

and the ground-state

⟨↓, 0|sx|+, 1⟩ = sin
θ1
2
,

⟨↓, 0|sx|−, 1⟩ = cos
θ1
2
.

(G10)

Appendix H: Linear response and absorption spectra

Exciting the cavity corresponds to insert a current in
the circuit, which can be interpreted as a parallel LC
filter. We can then define a system circuit impedance
Zsys(ω) for the LC circuit, which takes into account the
presence of the dipole in the capacitor. By using the
standard composition of circuit impedance, we can de-
rive the response input/output relation from the current
flowing in the resistance (the transmission line)

Iout
Iin

=
Zsys(ω)

R+ Zsys(ω)
, (H1)

where R = ZLCQ is the Ohmic resistance of the trans-
mission line coupled to the LC cavity, and Q = ωc/γ is
the LC cavity quality factor. In Fig. 1(c) it is shown the
general scheme of our circuit approach.
The system impedance is defined by considering the

relation between voltage and current flowing through the
circuit, V = ZI, which gives

Zsys(ω) =
⟨Φ̇⟩ (ω)
Iin(ω)

. (H2)

When the input current is very small we can invoke linear
response theory [74], for which we have

χV I = lim
Iin→0

⟨Φ̇⟩ (ω)
Iin(ω)

, (H3)

where χV I is the voltage-current linear response function
[74]. From here it follows an operative definition of the
system impedance as

Zsys(ω) = −iωχII(ω), (H4)

where

χII = lim
Iin→0

⟨Φ⟩ (ω)
Iin(ω)

(H5)

is the current-current linear response function.
The current-current linear response function can be

calculated in many ways, but the simplest one is to use
the cavity structure factor

Sc(ω) =
∑
n,m

e−ℏωn/(kbT )

Z
|⟨n|Φ|m⟩|2 δ(ω − ωmn). (H6)

The system impedance is then given by Zsys(ω) =
−iωSc(ω).
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T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist,
Magneto-transport controlled by Landau polariton states,
Nature Physics 15, 186 (2019).

[9] F. Valmorra, K. Yoshida, L. C. Contamin, S. Mes-
selot, S. Massabeau, M. R. Delbecq, M. C. Dartiailh,
M. M. Desjardins, T. Cubaynes, Z. Leghtas, K. Hirakawa,
J. Tignon, S. Dhillon, S. Balibar, J. Mangeney, A. Cot-
tet, and T. Kontos, Vacuum-field-induced THz transport
gap in a carbon nanotube quantum dot, Nature Commu-
nications 12, 5490 (2021).

[10] F. Appugliese, J. Enkner, G. L. Paravicini-Bagliani,
M. Beck, C. Reichl, W. Wegscheider, G. Scalari, C. Ciuti,
and J. Faist, Breakdown of topological protection by cavity
vacuum fields in the integer quantum Hall effect, Science
375, 1030 (2022).

[11] J. Flick, M. Ruggenthaler, H. Appel, and A. Rubio,
Atoms and molecules in cavities, from weak to strong
coupling in quantum-electrodynamics (QED) chemistry,
Proceedings of the National Academy of Sciences 114,
3026 (2017).

[12] J. Fregoni, F. J. Garcia-Vidal, and J. Feist, Theoreti-
cal Challenges in Polaritonic Chemistry, ACS Photonics,
ACS Photonics 9, 1096 (2022).
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J. P. Garrahan, Towards a Theory of Metastability in
Open Quantum Dynamics, Phys. Rev. Lett. 116, 240404
(2016).

[50] J. Johansson, P. Nation, and F. Nori, QuTiP 2: A
Python framework for the dynamics of open quantum
systems, Computer Physics Communications 184, 1234

(2013).
[51] T. Mori and T. Shirai, Resolving a Discrepancy between

Liouvillian Gap and Relaxation Time in Boundary-
Dissipated Quantum Many-Body Systems, Phys. Rev.
Lett. 125, 230604 (2020).

[52] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi,
S. Saito, and K. Semba, Superconducting qubit–oscillator
circuit beyond the ultrastrong-coupling regime, Nature
Physics 13, 44 (2017).

[53] P. Pilar, D. De Bernardis, and P. Rabl, Thermodynamics
of ultrastrongly coupled light-matter systems, Quantum 4,
335 (2020).

[54] D. Z. Rossatto, C. J. Villas-Bôas, M. Sanz, and
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