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Abstract
Background It is well-known that nanoparticles sediment, diffuse and aggregate when dispersed in a fluid. Once 
they approach a cell monolayer, depending on the affinity or “stickiness” between cells and nanoparticles, they 
may adsorb instantaneously, settle slowly – in a time- and concentration-dependent manner - or even encounter 
steric hindrance and rebound. Therefore, the dose perceived by cells in culture may not necessarily be that 
initially administered. Methods for quantifying delivered dose are difficult to implement, as they require precise 
characterization of nanoparticles and exposure scenarios, as well as complex mathematical operations to handle 
the equations governing the system dynamics. Here we present a pipeline and a graphical user interface, DosiGUI, 
for application to the accurate nano-dosimetry of engineered nanoparticles on cell monolayers, which also includes 
methods for determining the parameters characterising nanoparticle-cell stickiness.

Results We evaluated the stickiness for 3 industrial nanoparticles (TiO2 – NM-105, CeO2 – NM-212 and BaSO4 
– NM-220) administered to 3 cell lines (HepG2, A549 and Caco-2) and subsequently estimated corresponding 
delivered doses. Our results confirm that stickiness is a function of both nanoparticle and cell type, with the stickiest 
combination being BaSO4 and Caco-2 cells. The results also underline that accurate estimations of the delivered dose 
cannot prescind from a rigorous evaluation of the affinity between the cell type and nanoparticle under investigation.

Conclusion Accurate nanoparticle dose estimation in vitro is crucial for in vivo extrapolation, allowing for their safe 
use in medical and other applications. This study provides a computational platform – DosiGUI – for more reliable 
dose-response characterization. It also highlights the importance of cell-nanoparticle stickiness for better risk 
assessment of engineered nanomaterials.
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Introduction
The unique physicochemical properties of nanomaterials 
(NMs) are of interest for a wide range of applications [1, 
2]. For this reason, several NMs are now produced indus-
trially and are referred to as engineered nanomaterials 
(ENMs). In the biomedical field, ENMs are extensively 
employed in the form of engineered nanoparticles (ENPs) 
for modulating mechanical characteristics of scaffolds, 
delivering drugs and genes, and localised sensing, or as 
nano-transducers for directing cell behaviour in targeted 
therapy [3–5].

However, the very same features that make ENPs so 
attractive, also confer them potential toxicity [2, 6]. For 
this reason, an essential point in nanotoxicology is the 
characterization of biological effects induced by ENPs 
in human tissues and organs as a function of their dose, 
along with the investigation of mechanisms trigger-
ing their cytotoxicity. Cell cultures in vitro represent 
one of the most common methods for dose assessment, 
although the extrapolation of dose-response behaviour to 
the in vivo context is still a challenge [7, 8].

A proper definition of the cytotoxic “potential” of a 
specific ENP would require correlating harmful effects 
to the cumulative mass of material per unit area effec-
tively interacting with cells during an exposure test, or 
what we refer to as the “delivered dose”, that is the mass 
of nanoparticles internalized, adsorbed by or near the 
cell culture per unit area of the cell-seeded surface [9, 
10]. Cells in culture are indeed known to be sensitive to 
nanoparticles (and their dissolved ions) whether they 
be internalized, in contact with their surface or in their 
immediate vicinity. The cytotoxic effects depend on sev-
eral intrinsic factors, such as nanoparticle (NP) composi-
tion, surface chemistry/defects, size distribution, partial 
solubility and effective density. Cytotoxicity is also con-
ditioned by extrinsic factors (i.e., related to experimen-
tal conditions) which ultimately determine the rates of 
physicochemical phenomena occurring in the system 
[11]. Although the mechanisms by which NPs induce 
cellular damage have yet to be fully understood (e.g., 
uptake kinetics, oxidative stress, complexation phenom-
ena) [12, 13], there is plenty of evidence to suggest that 
only a fraction of the total amount of material initially 
administered within the suspension (i.e., the nominal 
dose, defined as the ratio of the total NP mass in the sus-
pension to the cross-section area of the vial) is perceived 
by cells (i.e., the delivered dose). While the nominal dose 
is constant over time and independent of the exposure 
configuration, the delivered dose is strongly dependent 
on several parameters, including intrinsic features of 
NPs such as the agglomeration potential (which in turn 
determines their size distribution and effective density) 
[14] as well as extrinsic characteristics: e.g., the NP dis-
persion preparation method [15], the time of exposure 

and the geometry of the experimental set-up [9, 16]. It 
also depends on the affinity or “stickiness” between cells 
and NPs, a parameter which is still ignored and under-
valued. For instance, when cell-NP stickiness is high, NPs 
adsorbed by the cells are effectively removed from the 
suspension; consequently, the downward diffusive flux is 
increased, and this may significantly increase the deliv-
ered dose [17]. However, due to experimental difficulties 
in measuring the delivered dose, most reports on in vitro 
dosimetry and nanotoxicology refer to the nominal dose. 
Thus, toxicity may be underestimated (i.e., harmful bio-
logical effects are associated with doses higher than those 
which effectively cause them), making it difficult to prop-
erly assess ENP hazard and define reference doses for 
their safe use [11, 16].

Given this background, in silico models are a crucial 
tool for estimating the actual amount of ENPs reaching 
tissues and cells in specific configurations and perform-
ing more accurate dose-response characterizations [9, 
10]. In particular, the two best-known models in this 
field are the in vitro sedimentation, diffusion, dissolution 
and dosimetry (ISD3) model and the distorted grid (DG) 
model [17, 18].

Both models require the physicochemical characteris-
tics of NPs and the associated stickiness of the cell mono-
layer as inputs. Since the stickiness is difficult to quantify, 
ISD3 assumes either instantaneous or zero adsorption 
(maximal or zero stickiness, respectively) while DG sug-
gests a reflective cell boundary (zero stickiness). The ISD3 
and DG models are distributed as MATLAB codes which 
require a licensed computing environment and basic pro-
gramming knowledge for entering input parameters and 
obtaining dose predictions, and only a MATLAB-based 
cloud application of the DG model has been proposed 
[19]. As a result, the valuable support that computational 
models could offer to in vitro dosimetry is unexploited, 
and their benefits to NM hazard assessment are limited.

To address the lack of methods for assessing and quan-
tifying stickiness and promote the routine use of dosim-
etry models for accurate prediction of delivered doses in 
in vitro systems, we have developed an in vitro-in silico 
pipeline leveraged on DosiGUI, an open-source soft-
ware platform with an easy-to-use graphical user inter-
face (GUI). DosiGUI integrates the ISD3 and DG models, 
facilitating their comparison and enabling the identifica-
tion of the more suitable one for a given NP and experi-
mental configuration. Furthermore, as not all users may 
know the appropriate value of the model-specific sticki-
ness parameter for a particular setup, DosiGUI includes 
a knob which allows setting the stickiness at five levels 
between zero and maximal.

The pipeline (depicted in Fig. 1) includes methods for 
validating the models for different ENPs, through the use 
of reference highly sticky and non-sticky bottom surfaces. 
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Following this pipeline, we evaluated DosiGUI’s perfor-
mance for three ENPs (TiO2 – NM-105, CeO2 – NM-212 
and BaSO4 – NM-220) by fitting predictions to experi-
mental data. Finally, as a proof of concept, we applied 

the pipeline to estimate the dose of the three ENPs deliv-
ered to three cell lines – HepG2, A549 and Caco-2 – in 
a standard exposure scenario. The stickiness of the cell 
monolayer was identified for each cell-ENP pair using 

Fig. 1 The in silico-in vitro pipeline leveraging DosiGUI. (A) Physicochemical characterization of ENPs (i.e., intrinsic parameters) using established meth-
ods [20, 21, 26, 27] and (B) extrinsic parameters are crucial for optimizing the reliability of delivered dose predictions and improving dose-response 
characterization. (C) The input dataset is fed to DosiGUI for running simulations. The same dataset can be used for both ISD3 and DG models, and the 
outcome can be exploited for identifying the ENP-cell stickiness. (D) DosiGUI is validated for specific ENPs by comparing predictions and experimental 
measurements of a fully characterized test system. (E) Once validated, DosiGUI predictions of delivered dose for a given ENP-cell combination can be 
extrapolated to various exposure scenarios
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statistical methods for comparing the predicted dose 
with corresponding experimental data.

Results
DosiGUI validation
The goodness of predictions performed running ISD3 
and DG in DosiGUI was assessed as a validation of the 
software platform. We evaluated to what extent model 
predictions correlate with corresponding ENP mass frac-
tions measured in cylindrical suspension columns with 
respectively zero and maximally sticky bottom surfaces 
(see Materials and Methods, section DosiGUI validation 
for details).

Table  1 shows how profiles of mid-height mass frac-
tion over time predicted by the two models correlate 
with experimental data from inductively coupled plasma 
optical emission spectroscopy (ICP-OES) measure-
ments. Examples of corresponding correlation fittings are 
reported in Figure A2.

Previous reports have demonstrated the robustness 
of ISD3 for silver NPs (Ag – NM-300 K) [10]. However, 
for the three ENPs studied here, the mass fractions over 
time at mid-height are more reliably estimated by the DG 
model. In fact, for both the sticky and reflective bound-
ary conditions, the DG profiles showed a significant 
correlation (r ≥ 0.6) with measured mid-height mass frac-
tion, along with statistically matching numerical values 
(p ≥ 0.01).

Cell-ENP stickiness
The DG model implements stickiness as a Langmuir 
isotherm adsorption (see Eq.  (1)) fully characterized 
by the dissociation constant kD  (mol L-1) [17], which is 
inversely proportional to stickiness. In its original version 
[18], ISD3 instead accounts for a binary bottom condi-
tion (that is instantaneous adsorption or full reflection of 
NPs), purposely adapted here to allow for a tunable stick-
iness through the parameter K  (m) – see Eq.  (2). Here 

too, the higher the parameter value, the lower the NP-cell 
stickiness.

The quantity of ENP mass adsorbed over time by cell 
monolayers in 96-well plates was measured using ICP-
OES and compared to that predicted by DG and ISD3 
in order to identify meaningful kD  and K  values for all 
of the ENP-cell type combinations considered. Table  2 
shows optimal values of the stickiness parameters (i.e., 
kD  and K ) and the corresponding stickiness level of 
tested cell phenotypes with respect to each of the three 
ENPs analysed. For both models, the stickiness values 
obtained differ for each ENP, underlining that cell uptake 
is NP dependent. Vice versa, as clearly depicted in Fig. 2, 
relevant differences can also emerge among the adsorp-
tive behaviours of the three cell phenotypes for a specific 
ENP, indicating that stickiness and hence the delivered 
dose also depends on cell type. Furthermore, it is worth 
noting that slightly different stickiness “hierarchies” arise 
based on kD  or K . For instance, using the DG model, 
Caco-2 cells are the least adsorptive phenotype for BaSO4 
(NM-220), while according to the ISD3 model, they have 
the highest uptake for this ENP (Table 2).

In Fig.  3, the mass fraction adsorbed over time by 
HepG2 cells for each ENP is shown for two cases: (i) kD  
= 0  mol L-1 (maximal stickiness); (ii) optimal kD values 
obtained from the DG model (Table 2). A similar figure is 
reported in the Additional File 1 (AF) for the ISD3 model 
(Figure A4). The figures highlight the importance of char-
acterizing the boundary stickiness to obtain meaningful 
estimates of delivered dose. Using the optimal stickiness, 
significantly lower adsorbed mass fractions for TiO2 
(NM-105) and CeO2 (NM-212) are observed (Fig.  3A 
and B). On the other hand, the two curves in Fig.  3C 
for BaSO4 (NM-220) are similar. In fact, as reported 
in Table  2, this ENP is highly adsorbed on the HepG2 
monolayer.

Prediction of the delivered dose
The optimal values of stickiness parameters for each 
ENP-cell type pair were used to predict the doses deliv-
ered to HepG2, A549 and Caco-2 cells, starting from dif-
ferent nominal doses. For the sake of comparison, the 
delivered dose was expressed as percentage of the nomi-
nal one (referred to as delivered dose fraction). Figure 4 
reports such predictions; the graphs refer to simula-
tions carried out with the DG model, since it proved to 
be the more accurate in replicating the dynamics of the 
three ENPs. Note that, in the nanotoxicology literature, 
the nominal dose is typically reported, but our data show 
that, even for long exposure times, cells do not perceive 
all of the ENPs administered, and the delivered dose 
reaches a threshold.

Corresponding predictions by the ISD3 model are 
shown in the AF (Figure A5). The delivered dose tends 

Table 1 Results of the correlation analysis between measured 
and simulated mid-height mass fraction profiles over time

DG ISD3
ENP Boundary condition r p r p

TiO2 (NM-105) Maximal stickiness 0.995 0.178 0.987 0.002
TiO2 (NM-105) Zero stickiness 0.690 0.042 0.637 0.033
CeO2 (NM-212) Maximal stickiness 0.942 0.290 0.826 0.045
CeO2 (NM-212) Zero stickiness 0.908 0.022 0.957 0.013
BaSO4 (NM-220) Maximal stickiness 0.999 0.016 0.999 0.001
BaSO4 (NM-220) Zero stickiness 0.622 0.372 0.357 0.098
Correlation analysis for both maximally sticky and non-sticky bottom. The 
Pearson’s coefficient (r ) and the p-value of the extra sum-of-squares F-test 
on the slope of the regression line (p ) are reported as average values of those 
obtained for the three nominal doses administered in each case (see Figure A2 
for examples of the corresponding plots of the correlation fitting)
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to a threshold at a slower rate than using the DG model 
except for BaSO4 (NM-220), which is the stickiest ENP 
with respect to any cell type according to the ISD3 model.

In addition, the delivered dose profiles with respect to 
the nominally administered dose estimated at different 
time points using the DG and ISD3 models are reported 
in Figures A6 and A7, respectively. As expected, for each 
ENP-cell type pair, the delivered dose monotonically 
increases as a function of the nominal one.

Discussion
Accurately determining the amount of ENPs that cells, 
tissues or organs are exposed to in specific scenarios (i.e., 
the actual delivered dose) is a key step towards safely tap-
ping the full potential of ENMs in biomedicine. However, 
due to technical limitations and the complexity of nano-
dosimetry, toxicologists still struggle to provide accurate 
dose estimations even in typical cell culture experiments. 
This may result in a misleading characterization of ENP 
toxicity and consequent hazard assessment.

To tackle these issues, we present an in silico-in vitro 
pipeline for application to the accurate assessment of 
delivered doses in monolayer cell cultures. The approach 
relies on DosiGUI, a purposely developed open-source, 
multi-model graphical user interface which embeds the 
two best-known (but unfortunately not widely used) in 
silico models for computational nano-dosimetry, with 
the integration of new methods for the identification of 
parameters quantifying the cell-NP adsorption or sticki-
ness. In fact, the adsorption kinetics of NPs on cells 
strongly impact on the delivered dose (as highlighted in 
Fig. 3) but has often been neglected.

As a proof of concept, we demonstrated the robustness 
of the approach for three ENPs (TiO2 – NM-105, CeO2 
– NM-212), BaSO4 – NM-220) with negligible solubility. 
Starting from physicochemical characterization reported 
by Wohlleben’s group [20, 21], the reliability of simula-
tions performed using DosiGUI was validated experi-
mentally reproducing two reference boundaries with 
a maximally adsorptive and a purely reflective surface, 
respectively. This allows identifying the more suitable 

Table 2 Optimal values for stickiness parameters 

Stickiness parameters determining the insoluble ENP adsorption of the three cell phenotypes, identified for the DG (kD, opt ) and ISD3 (Kopt ) models. 
The colourbar can be used to match the identified parameter values with the five stickiness levels (zero, low medium, high and maximal)



Page 6 of 13Botte et al. Particle and Fibre Toxicology           (2024) 21:45 

model to simulate the adsorption dynamics of each ENP. 
Following this first validation step, the stickiness parame-
ters (K  or kD ) describing the affinity between ENPs and 
three different cell types were identified. The results con-
firmed that the boundary stickiness is a specific feature 
of the ENP-cell type combination. In fact, the values of 
kinetic constants differ with respect to both cell type and 
ENP, indicating that each cell type interacts differently 
with each ENP (Table 2). Thus, setting the right stickiness 
is a crucial step for accurate delivered dose estimation.

Having characterized the adsorptive behaviour of the 
three phenotypes, we applied DosiGUI to predict the 
delivered dose in each ENP-cell type combination in a 
standard in vitro test configuration. As expected, the 
simulations show that only a fraction of the administered 
ENPs interacts with cells, with a threshold effect emerg-
ing either for long exposure times or at high nominal 
doses (Fig. 4 and A4). This is because the adsorption of 
sedimenting ENPs is a surface occupancy-driven mecha-
nism, which is explicitly modelled in the DG model (see 
Eq.  (1) and section AF3) and may be the reason why its 
predictions better correlate with experimental data for 
insoluble ENPs. In fact, for the three ENPs studied in 

this work, the DG model resulted in a better fit between 
experimental and computed data (Table 1). However, the 
stickiness “hierarchies” with respect to both ENP and cell 
type depend on the model used to identify the empiri-
cal constants (e.g., according to the ISD3 model, BaSO4 
and Caco-2 cells are maximally sticky, while simulations 
using the DG model show that the same ENP-cell pair 
has low stickiness). We underline that such discrepancies 
are expected since the two models use different analyti-
cal formulations for the bottom boundary conditions (see 
the Materials and Methods, subsection Basic principles 
of integrated dosimetry models). Thus, kD  and K  values 
cannot strictly be compared. In addition, despite its bet-
ter performance overall, the DG’s Langmuir adsorption 
function (Eq. (1)) is better suited to short exposure times 
(i.e., ≤ 24  h), when cell adsorption is effectively limited 
by the steric occupancy of settling ENPs, which saturate 
the monolayer surface. For longer time windows, addi-
tional mechanisms – leading to mass uptake/internaliza-
tion – may reduce occupancy, allowing more particles 
to adhere onto cells. In such a situation, the adsorption 
kinetics are likely to be better approximated by the ISD3 
model. Combining these two approaches for modelling 

Fig. 2 Optimal values for stickiness parameters describing the ENP adsorption of the three cell phenotypes. Stickiness parameters identified for: (A) the 
DG model (kD, opt ) and (B) the ISD3 model (Kopt ). For the sake of clarity, bar plots are logarithmically scaled, and differences in terms of stickiness level 
are highlighted (*one level; **two levels)
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NP adsorption by cells could be used to further improve 
the accuracy of dose estimation.

We should also point out that the contribution of 
stickiness to delivered dose estimation is likely to be NM 
dependent. That is, stickiness is less important in ENPs 
with high effective density and high size values, since 

gravitational settling will probably predominate over 
affinity-related cell-material interactions. On the other 
hand, low-density, small ENPs whose downward motility 
depends more on diffusion-related phenomena will likely 
be more influenced by concentration gradients and cell 
uptake kinetics.

Fig. 3 Predictions of adsorbed mass fractions over time. Mass fractions adsorbed by HepG2 cells expressed as a percentage of the total amount of ENP 
mass in the suspension, obtained running the DG model within DosiGUI and assuming a nominally administered dose of 78.1 µg/cm2. Comparison 
between the case of a maximally sticky bottom (blue line) and the optimal stickiness identified using the pipeline (orange line) for: (A) TiO2 (NM-105), (B) 
CeO2 (NM-212) and (C) BaSO4 (NM-220)
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Whenever available, the use of exact numerical values 
of K  or kD  is recommended. However, identifying the 
stickiness parameters is not a straightforward procedure. 
Given that different ENP-cell type combinations may 
exhibit similar adsorption kinetics, in DosiGUI we pro-
pose a simplified description of the adsorption behaviour 
of cells through a knob, which allows choosing among five 
discrete stickiness levels (zero, low, medium, high, maxi-
mal) encompassing the entire range of possible K  or kD  
values. We assume therefore that, although the numerical 

values of these empirical parameters corresponding 
to different configurations do not exactly match, their 
stickiness can be reasonably approximated by the same 
discrete level. Note also that the empirical parameters 
K  and kD  are used to describe the adsorption behaviour 
because mechanistic knowledge about specific interac-
tion phenomena funneling cellular adhesion and inter-
nalization of ENPs is lacking. The integration of tools 
such as DosiGUI with the development of more compre-
hensive models of the interaction kinetics between ENPs 

Fig. 4 Predictions of delivered dose. Dose fraction (i.e., delivered dose/nominal dose, percentage) delivered to (A) HepG2 cells, (B) A549 cells and (C) 
Caco-2 cells over time, obtained running the DG model within DosiGUI
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and cells should be a focus of future, multi-disciplinary 
studies, allowing mechanistic rather than empirical pre-
dictions of ENP-cell interaction.

This study provides an important contribution to more 
accurate dose-response characterization of NPs, which 
can be applied to the improvement of ENP safety and 
risk assessment. DosiGUI should facilitate the applica-
tion of in silico tools in nanotoxicology, encouraging 
more data sharing, cross-laboratory comparisons and an 
exhaustive characterization of cell-ENP stickiness, which 
should also be integrated as an essential part of existing 
ENP databases. As regards further developments, the in 
silico models embedded within DosiGUI could be fur-
ther generalized to simulate the dynamics and hence reli-
ably predict cytotoxicity of buoyant (i.e., having effective 
density smaller than the culture medium density) and 
hydrophobic (which cannot be dispersed using stan-
dard methodologies) NPs [22, 23], as well as extended 
to three-dimensional configurations for delivered dose 
estimations in scaffolds, spheroids and organoids. Such 
models could be used to simulate the dynamics of NPs in 
more physiologically relevant scenarios and facilitate in 
vitro-to-in vivo extrapolation.

Materials and methods
Basic principles of integrated dosimetry models
The ISD3 and DG models simulate the temporal and spa-
tial dynamics of NPs suspended in cell culture medium 
contained in a vial with constant cross-sectional area. 
They both consider a one-dimensional (1D) model of 
sedimentation, diffusion and, if applicable, dissolution 
[17, 18], assuming a stable NP dispersion with unchanged 
intrinsic parameters over the duration of the simu-
lated exposure experiment. The different processes are 
described through a series of rate equations as discussed 
in the AF (section AF2), which are solved numerically to 
give NP diameter (dp  (m)) and number surface density 
(N  (m-2)) – i.e., the number of NPs having diameter dp  
per unit of cross-section area – as functions of time (t  
(s)) and the 1D space dimension (x  (m), corresponding 
to height, with the cell monolayer at x = 0). The two mod-
els differ in: (i) the method of solving equations, (ii) the 
way they treat dissolution and (iii) the bottom boundary 
layer condition, which basically describes the stickiness 
of the cell monolayer for NPs.

In particular, the DG model accounts for NP dissolu-
tion considering a first order rate equation with a rate 
constant that depends on dp . On the other hand, the ISD3 
model implements dissolution as a surface area-driven 
phenomenon based on a NP-specific kinetic model. This 
description can be more accurate but less general than 
that provided by the DG model. It does however require 
an in-depth characterization of dissolution kinetics for 

determining an analytical formulation of the associated 
rate for the NP of interest.

Regarding the bottom boundary, both models allow 
for tuning the stickiness through a parameter which 
describes adhesive behaviour ranging from zero to 
instantaneous adsorption. The DG model accounts 
for this by means of a Langmuir isotherm adsorption, 
expressed as in Eq. (1):

 
θ (t) =

[NP ] (0, t)

kD + [NP ] (0, t)
 (1)

where θ  is the surface fraction of the boundary occupied 
by adsorbed NPs and [NP ] (0, t) (mol L-1) is the molar 
concentration of NPs in the vicinity of the boundary (i.e., 
at x = 0). kD  (mol L-1) – the parameter to be set for modu-
lating the boundary stickiness – denotes the equilibrium 
dissociation constant; it is inversely proportional to the 
NP-cell stickiness: for a maximally sticky bottom (kD = 0
), the cell monolayer surface is completely occupied by 
adsorbed NPs (θ = 1), while the reflective or zero-sticki-
ness case (kD → ∞ ) implies that the boundary is not at 
all occupied (θ → 0).

The ISD3, on the other hand, assumes instantaneous 
NP uptake through a Dirichlet boundary condition, i.e., 
N (dp; 0, t) = 0 . We modified this condition by parame-
trizing it with respect to a constant K  (m), which deter-
mines the stickiness of the cell monolayer (Eq. (2)).

 
N (dp; 0, t) +K

∂ N(dp; 0, t)

∂ x
= 0  (2)

Thus, if K → 0, the equation reduces to maximal sticki-
ness as in ISD3. On the other hand, if K → ∞ , we have 
a no-flux or Neumann boundary condition (∂ N(dp;0,t)

∂ x
= 0

), implying a purely reflective surface (i.e., zero sticki-
ness). Thus, K  is inversely proportional to the stickiness.

Methods for the identification of the stickiness param-
eters are reported in the subsection Identification of ENP-
cell stickiness parameters.

DosiGUI
DosiGUI was developed as an open-source, standalone 
desktop application using MATLAB (R2022b, The Math-
Works Inc., Boston, Massachusetts). A unique feature of 
DosiGUI is that only a single input dataset for both ISD3 
and DG models is required (Table  3). Thus, the same 
experimental configuration can be simulated using both 
models, and the consistency of their predictions can be 
compared to determine which is the more suitable for 
estimating the delivered dose of NPs for a given setup. 
In addition, a stickiness knob allows users to reasonably 
estimate and set a stickiness level. Alternatively, in the 
case of already characterized numerical values of kD  and 
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K, they may also be directly set in the Advanced panels. 
It is also worth highlighting that, for both DG and ISD3, 
using default settings and parameters (which correspond 
to configurations simulated in [17, 18]) in DosiGUI pro-
vides exactly the same dose predictions as directly using 
the original code scripts. A practical guide on how to 
download, install and use the application is provided in 
the AF (section AF1).

DosiGUI validation
We verified that DG and ISD3 models could correctly 
account for stickiness by setting up a test system to 
measure the kinetics of ENP sedimentation in the two 
extreme boundary conditions (i.e., maximal and zero 
stickiness, respectively). Then, the test configurations 
were implemented within DosiGUI for evaluating the 
goodness of fit with the experimental data.

Experimental setup
The validation was performed using three referenced 
insoluble ENPs: titanium oxide (TiO2 – NM-105), cerium 
oxide (CeO2 – NM-212) and barium sulphate (BaSO4 
– NM-220), from the European Union’s Joint Research 
Council (JRC) repository [24]. Protocols used to disperse 
and characterize them were identical to those previ-
ously established in [25], accounting also for specific rec-
ommendations by DeLoid et al. [15]. As input colloidal 
parameters (see the AF, Table A1), we considered effec-
tive density values reported in [20, 21], while the ENP 
size distribution was measured by dynamic light scatter-
ing (DLS) of freshly prepared suspensions. In particular, 
stock dispersions in BSA-water of each ENP were diluted 
in culture medium and then incubated for 1  h at 37  °C 
before DLS measurements. The culture medium was 
Dulbecco’s Modified Eagle Medium (DMEM – Thermo 
Fisher Scientific, Waltham, USA) supplied with 10% 
v/v fetal bovine serum (FBS - Thermo Fisher Scientific) 
and 1% v/v Minimal Essential Medium (Thermo Fisher 
Scientific).

Briefly, cylindrical plastic vials (base radius of 7.5 mm) 
containing 8 mL (V h ) of ENP suspension were prepared 
with a thick layer of gelatin on the base to mimic the 
maximal stickiness boundary condition, while untreated 
vials were used to represent zero-stickiness. ENP stock 
dilutions corresponding to nominal doses of 25, 125 and 
250  µg cm-2, respectively, were incubated for 1, 4 and 
24  h in both gelatin-coated and uncoated vials. After 
incubation, 3 mL (Vh/2) was collected from the middle 
of the suspension column and analysed using inductively 
coupled plasma optical emission spectrometry (ICP-
OES). All experiments were carried out in triplicate. Fur-
ther details on the experimental protocols are reported in 
AF6.

Given that the mid-height and the nominal concentra-
tions refer to different volumes, they must be rescaled as 
absolute masses to estimate the ENP mass fraction con-
tained in Vh/2 , or φ exp

h/2 . Eq.  (3) was used to convert the 
outcome of the measurements – a mid-height mass con-
centration (ch/2) – to φ exp

h/2 :

 
φ exp

h/2 =
Vh/2*ch/2
h*A*c0

 (3)

where c0  (µg mL-1) is the nominal mass concentration, 
h  (mm) is the height of the suspension column and A  
(mm2) its cross-sectional area. Note that since A  is con-
stant along the liquid column, the ENP mass fraction is 
equal to the ratio of the corresponding doses (i.e., masses 
per unit area, see AF2).

In silico predictions of mid-height mass fraction
To model the experiments, the dynamics of ENPs along 
the liquid column was simulated using DosiGUI. The 
physicochemical properties of the three ENPs were taken 
as detailed in the previous subsection. The maximally 
sticky boundary condition in the presence of gelatin was 
taken into account considering K = 0 m for ISD3 and 
kD = 0  mol L-1 for DG (corresponding stickiness level on 
the knob: maximal), while a purely reflective bottom was 
replicated by setting saturating values for both param-
eters (K = 1012 m and kD  = 10− 5 mol L-1; correspond-
ing stickiness level on the knob: zero). For both models, 
dissolution was disabled, given the negligible solubility in 
aqueous media of the three ENPs. All settings used for 
these simulations are summarized in the AF, Table A2.

The results of simulations in terms of ENP mass along 
the liquid column at the time points of interest (i.e., 1, 4 
and 24  h) were rearranged according to Eq.  (4) to esti-
mate the fraction of the initially administered mass (φ sim

h/2

) contained in Vh/2 .

 
φ sim

h/2 =

∑
n
i=1mi

h ∗ A ∗ c0
 (4)

Table 3 DosiGUI input parameters
Intrinsic parameters Extrinsic parameters

ENP size distribution (i.e., diameters (dp ) and 
corresponding normalized counts)

Suspension height 
(h )

ENP density (ρ ) Temperature (T )

ENP effective density (ρ eff ) ENM nominal dose 
(Mnom )

Dissolution constants 1 Stickiness parameters 
(kD  or K )

Medium density (ρ f ) Exposure time (τ )

Medium dynamic viscosity (µ ) Spatial resolution 
(∆ x )

Time resolution (∆ t )
Basic intrinsic and extrinsic input parameters required by DosiGUI for running 
the ISD3 and DG models
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In the equation, mi  (µg) is the ENP mass in the i-th 
simulation element at the considered time point, and 
n = Vh/2/(∆ x ∗ A) denotes the number of simulation 
elements in Vh/2 , with height ∆ x .

Then, we evaluated the reliability of simulated data 
from both ISD3 and DG through correlation analy-
sis between measured (Eq.  (3)) and predicted (Eq.  (4)) 
mid-height mass fraction profiles over time (see AF4 for 
details on the statistical analyses).

Identification of ENP-cell stickiness parameters
Having verified the goodness of model predictions for 
the three ENMs, we used DosiGUI to characterize the 
stickiness of three different cell lines – HepG2, A549 
and Caco-2 cells (ATCC, Manassas, Virginia, USA) – 
exposed to each ENP considered through estimation of 
parameters K  and kD  (Eqs. (1) and (2), respectively). The 
experiments consisted in ICP-OES measurements of the 
quantity of ENP mass adsorbed by cell monolayers over 
time. The data were compared through correlation analy-
sis with their corresponding computational predictions 
in DosiGUI, obtained through parametrization of K  or 
kD . Using this method, we were able to identify the best 
value of K and kD  for each cell type-ENP pair.

Experimental measurements of cell-adsorbed mass 
fraction
Cells of each phenotype were seeded at confluence in 
96-well plates by dispensing 200 µL per well of cell sus-
pension, then incubated overnight before NP exposure 
(see AF7 for further details on cell maintenance). ENPs 
were suspended in DMEM (Sigma-Aldrich) supplied 
with 10% w/v FBS (Sigma-Aldrich). Suspensions con-
taining nominal doses of 7.8, 15.6 and 78.1  µg cm-2 of 
each ENP were obtained through serial dilutions of a 
stock batch prepared as described for DosiGUI valida-
tion [25]. Then, 100 µL of each suspension was added 
to the wells. After exposure, the ENP suspension was 
removed, and wells rinsed twice with phosphate buffered 
saline (PBS, Lonza, Basel, Switzerland) 1X for eliminating 
ENPs either deposited (but not adsorbed) onto cells or 
attached to the walls of the well. Both the overlaying ENP 
suspension and the washing volume of PBS were anal-
ysed to account for all of the initially administered mass. 
Trypsin-EDTA (Lonza) was then used for detaching cells, 
and the resulting samples were collected for measur-
ing the cell-adsorbed ENP mass. Two types of controls 
were used: blank controls (BCs) consisted in cells without 
ENPs, while positive controls (PCs) were simply 100 µL 
of the suspension, collected immediately after stock dilu-
tion (before the exposure). All experiments were carried 
out in triplicate for four different exposure times: 4, 8, 24 
and 72 h.

The same procedure described in DosiGUI validation 
was applied, determining the ENP mass concentration in 
each sample. Note that, for each ENP and nominal dose, 
the controls BC and PC represent the offset of the mea-
surement and the maximum mass concentration detect-
able in the samples, respectively. Thus, to get meaningful 
adsorbed fractions (φ exp

a ), the raw data were post-pro-
cessed as follows:

 
φ exp

a =
ca − cBC

cPC − cBC
 (5)

where ca  (µg mL-1) is the concentration of ENPs 
adsorbed by cells as measured by ICP-OES, while cBC  
and cPC  (µg mL-1) are the ENP concentrations detected 
for the corresponding BC and PC samples, respectively. 
All the variables in Eq. (5) are expressed as mean ± stan-
dard deviation of the triplicate, and standard methods 
were applied to account for error propagation.

In silico predictions of cell-adsorbed mass fraction and 
correlation analysis
After setting the input parameters in DosiGUI (geom-
etry and ENP characteristics according to [20]), we ran 
a parametric sweep for the stickiness varying K  and kD  
within reasonable ranges (reported in the AF, Table A3). 
Simulations were carried out for the same nominal doses 
experimentally administered. The settings for these simu-
lations are summarized in the AF, Table A3.

The simulated adsorbed mass fraction (φ sim
a ) for each 

time point of interest was expressed as:

 
φ sim

a =
ma

h ∗ A ∗ c0  (6)

where ma  (µg) is the cumulative ENP mass adsorbed at 
the bottom of the column, and the other parameters are 
the same as in Eq. (4).

We then performed a correlation analysis between the 
experimental (Eq. (5)) and simulated (Eq. (6)) mass frac-
tions versus time for identifying the most reliable value 
of both K  and kD  and therefore the associated stickiness 
level for each of the three ENPs. Specifically, the best fit-
ting regression line for φ exp

a  as a function of φ sim
a  was 

estimated with a confidence interval of 99% for each 
model, ENP and nominal dose with respect to each stick-
iness value considered. The optimal value of K  or kD  
was determined using the same criteria as reported in 
the section DosiGUI validation. Details on the statistical 
analyses are provided in AF4.

Delivered dose prediction
Having established the optimum value of K  or kD  for 
each ENP-cell type combination, we were able to reliably 
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extend DosiGUI predictions to any exposure scenario 
involving those combinations. Using the optimum sticki-
ness, we estimated the delivered dose of each of the 
three ENPs perceived over time by HepG2, A549 and 
Caco-2 monolayers cultured in 96-well plates. The deliv-
ered dose was computed as the mass of ENPs per unit 
area adsorbed by cells and within the lowest simulation 
domain (i.e., in the immediate vicinity of the cell culture). 
An analytical expression for delivered dose and further 
details of the statistical methods used are given in the AF 
(Eq. (A6) and AF4).
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ICP-OES  Inductively coupled plasma optical emission spectrometry
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