
ORIGINAL ARTICLE

Networks

Optimization of gas metering maintenance

services: a multiobjective vehicle routing problem

with a set of predefined overlapping time windows

Lucia Cassettari1 | Mauro Gaggero2 | Stefano Saccaro1

1Department of Mechanical Engineering,

University of Genoa, I-16145 Genoa, Italy

2Institute of Marine Engineering, National

Research Council of Italy, I-16149 Genoa,

Italy

Correspondence

Mauro Gaggero, Institute of Marine

Engineering, National Research Council of

Italy, I-16149 Genoa, Italy

Email: mauro.gaggero@cnr.it

Funding information

No funding information.

Optimization of maintenance services of a company working

in the gas metering sector is investigated. In particular, daily

tasks of operators are optimized by exploiting the paradigm

of vehicle routing problems with a set of predefined timewin-

dows that overlap one with the others and four competing

objectives to take into account. First, an exact integer formu-

lation is presented that can be solved only for a reduced num-

ber of customer sites to visit. Then, a heuristic approach is

proposed to find approximate solutions with huge savings on

the computational effort, also for high-dimensional instances.

Numerical results on both real and synthetic scenarios show-

case the effectiveness of the approach.

KEYWORDS

Gas metering service optimization; vehicle routing problem with

time windows; multiple objectives; mixed-integer programming;

heuristics.

1 | INTRODUCTION

Optimization of natural gas distribution networks is an interesting topic for several disciplines, ranging from Oper-

ations Research to Engineering, that embraces financial, technical, and environmental aspects [23]. This field of

research includes various optimization problems, involving optimization of many different parts of the distribution

network, such as physical components, storage, transportation, and layout. Examples include pipeline and compres-

sor station management [35], planning to face uncertainties [6], computation of the best amount of natural gas to

transfer [1], specification of the optimal network layout to minimize investment costs [51], as well as design of new

networks or expansion of existing ones [34]. However, as pointed out also in previous works [39], the literature lacks

1

2

of approaches to plan and optimize last-mile service operations at the end-user level, such as planning of maintenance

and technical activities on gas meters to guarantee satisfaction of customers and profitability of natural gas providers.

This paper aims at bridging this gap by optimizing the logistics operations related to the activation and deactivation of

gas meters of customers. In particular, the daily tasks of a set of operators of a company working in the gas metering

sector are optimized by exploiting the paradigm of vehicle routing problems with time windows. Thus, the problem

studied in this work is an interesting variant of the classical vehicle routing one coming from a real application. Each

operator is assumed to drive a vehicle of the company fleet and has to visit a certain number of sites in order to per-

form given tasks on gas meters of customers. Such tasks have to be executed within a sequence of predefined time

windows that overlap one with the others, and capacity constraints on working time of operators for each window

and day exist. Time windows account for constraints that have to be taken into account when planning maintenance

tasks on gas meters of customers and cannot be violated. On the one hand, the presence of time windows where

tasks are performed allows final customers to reserve a particular, restricted portion of the day to make operators

access gas meters located in their own properties. Hence, final customers are satisfied only if the company serves

them by respecting the corresponding time windows. On the other hand, time windows allow to organize the work-

ing day of operators, and penalties with the natural gas provider of the client are avoided if maintenance services are

performed within the prescribed time windows. In more detail, the gas provider usually agrees with final customers

the preferred days and time slots for interventions on gas meters. Then, it collects all the requests of customers in a

given area by grouping them by date and communicates the list of interventions with the required time windows to

the gas metering company of the considered area. The gas metering company cannot modify the list generated by the

natural gas provider (it is not possible to insert new operations or change the time windows). In this work, we adopt

the point of view of the gas metering company: given the list, the goal is to search for optimal paths of operators. We

have no chance of modifying the list of interventions and the related time windows; we have just to organize in an

optimal way the working day of operators by satisfying all the constraints given by the time windows. The considered

problem has a multiobjective nature since four conflicting goals are usually pursued by gas metering companies: (i)

minimize the overall distance traveled by operators, (ii) perform a “balanced” assignment of tasks to operators, i.e.,

make the working time of operators within a time window as equal as possible, (iii) reduce idle times of operators,

and (iv) execute all tasks with a number of operators as small as possible. To the best of the authors’ knowledge, no

previous attempts pursuing the aforementioned goals (i)-(iv) in the optimization of gas metering services exist in the

literature. The direct application of results available in the literature on vehicle routing problems with time windows

is prevented by goals and constraints that have to be taken into account in this problem.

First, we present an exact formulation for the considered problem based on integer programming. Unfortunately,

finding an optimal solution is possible only for small instances of the problem. Then, we propose a heuristic approach

that allows finding approximate solutions also for a large number of customers to visit, with a very low computational

effort. The developed heuristic is composed of four steps, and combines the savings algorithm of Clarke and Wright

[13], the 2-opt local search [15], and a nearest-neighbor criterion. It belongs to the class of cluster-first-route-second

approaches [43], as the various customer sites are first organized into clusters, and then routes are constructed for

each cluster. In more detail, the first step is devoted to the computation of upper bounds on the maximum working

times of operators for each time window. Such bounds account for overlaps of the various windows and balance

working times of operators within each window. In the second step, the overall problem is split into different sub-

problems, one for each timewindow, and clusters of customer sites are created by exploiting the output of the savings

algorithm. The result is a series of routes for each time window, starting from the depot and returning therein after

visiting a certain amount of sites. In the third step, such routes are optimized through a local search algorithm and

then merged to create daily paths across the various windows that start from and end to the depot. Lastly, the fourth

3

step refines the paths computed through the previous steps via a random search. Another advantage of the proposed

heuristic is its simplicity: there exists only one parameter to be tuned (the number of random perturbations in the

final step), and therefore it can be easily applied by practitioners with no difficulties.

To sum up, the main contributions of this work are the focus on service operations at the end-user level of a

gas distribution network and the formalization of an optimization problem for their optimal management as a vehicle

routing problemwith several competing objectives based on a set of predefined, overlapping timewindows, for which

an exact and a heuristic approach are proposed. To the best of the authors’ knowledge, both aspects have not been

sufficiently investigated up to now.

The rest of this paper is organized as follows. Section 2 reviews recent contributions in the field of vehicle routing

problems with time windows. The considered gas metering service optimization problem is presented in Section 3,

together with its integer programming formulation. The heuristic approach developed to find approximate solutions

is discussed in Section 4. Numerical results are reported in Section 5. Conclusions are drawn in Section 6.

2 | LITERATURE REVIEW

Vehicle routing is a classic NP-hard, combinatorial optimization problem that has received a lot of attention from the

research community working on Operations Research [43, 8]. The problem consists in searching for an optimal route

(for instance, the one characterized by the minimum distance or minimum time) for a fleet of vehicles that have to

visit a set of customers, under suitable constraints, starting from a depot and returning therein at the end of the route.

As previously pointed out, in this paper we consider one of the most studied variants: the vehicle routing problem

with time windows. In this case, customers have to be visited within given time window constraints [17, 4]. As said,

we focus on the optimization of gas metering maintenance tasks. Such problem, which did not receive significant

attention in the past, involves a sequence of predefined, hard time windows that overlap one with the others. We

consider the situation in which all customers must be visited within a fixed, limited number of time windows; all the

windows have the same duration, and several tasks are assigned to the same window.

In a nutshell, two main families of approaches are available in the literature to solve vehicle routing problems

with time windows: exact and heuristic techniques. Among the exact ones, we mention classical methods based

on Lagrange relaxation and dynamic programming [29, 19, 28], together with recent developments relying on set-

partitioning, column generation, and branch-and-price methods [9, 2, 3, 18, 32, 14, 20]. Concerning heuristic tech-

niques, several approaches are available that are based on genetic or evolutionary algorithms [44, 12, 27], particle

swarm optimization [11, 48, 33], simulated annealing [31, 45, 30], and methods based on local search [26, 10, 24, 50].

Other works investigate the selection of the most suitable heuristic approach among several available ones using

learning techniques [22]. An important variant of the vehicle routing problem with time windows is the presence of

multiple time windows [16, 7], while recent developments are focused on the development of heuristic approaches

that are able to account for flexibility in the execution of tasks within time windows [42, 47] and uncertainties in the

travel and execution times [37, 21, 32].

The two main characteristics of the problem considered in this work that are not shared by the aforementioned

works are the presence of a sequence of predefined overlapping time windows and a number of competing objectives

to be taken into account. Concerning the sequence of predefined overlapping time windows, an exception is [46] for

delivery and pickup problems, where the authors point out that the overlap of time batches is a source of issues since

it entails the problem of assigning and reusing vehicles among different batches, in addition to vehicle routing. Two

approaches based on tabu search are developed to solve the problem in an approximate way. Overlapping windows

4

are mentioned also in [39], but they are taken into account by using a simple scoring policy based on experience of

practitioners, with no guarantee on the violation of the corresponding working times of operators or vehicles. Lastly,

[25] presents mixed-integer linear programs to take into account possibly overlapping time windows, and points out

that, in the absence of overlaps, the number of variables and constraints can be conveniently reduced, thus simplify-

ing the problem to be solved. As regards the presence of multiple competing objectives, some results are available

in the literature [41, 12, 38, 5, 49]. In [41], an approach based on evolutionary computation is proposed to minimize

traveled distance, driver remuneration, and number of vehicles subject to constraints such as time windows and ve-

hicle capacity. In [12], the goals are the minimization of the number of vehicles and the total traveled distance in the

presence of time windows using again an evolutionary algorithm. Reference [38] aims at minimizing operational costs

and maximizing service level using memetic and local search approaches. In [5], an artificial bee colony algorithm is

developed to minimize total transportation costs and maximize customers’ satisfaction. Lastly, [49] pursues reduction

of the number of vehicles and minimization of time-wasting during the delivery process caused by early arrival using

again an evolutionary approach. However, in none of the aforementionedworks the goals of balancing the assignment

of tasks and the reduction of idle times are explicitly taken into account. A balance of the traveled distance over vehi-

cles is pursued in [40], together with the minimization of the number of vehicles, by means of a hybrid estimation of

distribution algorithm. However, also in this case the goal of balancing the working time of operators is not addressed.

3 | PROBLEM FORMULATION

The motivation of the problem considered in this paper is the need for planning the daily duties of a set of operators

of a company working in the gas metering sector. The company needs to plan a certain amount of tasks, given by

activation and deactivation of gas meters of end users, i.e., the opening and closing of gas meters corresponding to

beginning and cancellation of supply contracts with the client company, respectively. All tasks have to be performed

within a set of predefined, hard time windows to increase satisfaction of final customers and avoid penalties with the

gas provider. In other words, we have to assign a sequence of tasks to a set of operators. Operators drive vehicles

of the company fleet and have to execute tasks at given customer sites (i.e., there is a one-to-one correspondence

between sites and tasks) within certain time windows. Moreover, all operators start from the company depot at the

beginning of the day and return therein at the end of the day.

The problem can be modeled through a graph, whose nodes and arcs represent customer sites and connections

among them, respectively. With a little abuse of notation, fromnowonwewill use the terms “node”, “task”, “operation”,

and “customer site” interchangeably. As said, four goals have to be pursued, which may conflict one with the others:

(i) minimize the total distance traveled by operators, (ii) assign tasks to operators in a balanced way by making the

working time of operators, given by the sum of the time needed to perform tasks and the time to travel among

customers’ locations, as equal as possible within a time window, (iii) avoid idle times of operators, i.e., the case in

which an operator has no tasks to execute in a time window between two windows with at least an operation to be

performed, and (iv) use the minimum number of operators to perform all tasks.

Goals (i) and (iv) are due to obvious economical savings for the gas metering company: the lowest is the distance

traveled by operators, the lower are the travel costs and the higher is the number of tasks that can be executed

by a given operator, which in turn implies further savings. The same applies for the number of operators that are

needed to perform the various activities. The balance of the working time of operators per time window, i.e., goal

(ii), is introduced to account for a common request of gas metering companies. In fact, due to labor agreements, such

companies have to divide the overall workload as fairly as possible among the available operators. The balance of

5

TABLE 1 Notation for the considered problem.

n number of tasks

m number of operators

q number of time windows

i , j indices for tasks

k index for time windows

l index for operators

τi execution time of tasks

Wk duration of time windows

Vk overlapping of time windows

R maximum working time per day of operators

Fk j relationship between time windows and tasks

Si j precedence between tasks

Di j distance between nodes

Ti j travel time between nodes

x l i j arc variable

u l i subtour elimination variable

p l k auxiliary decision variable

working time per window has the consequence of balancing the working time of operators over the entire day, and

it concurs to avoid idle times, i.e., goal (iii). In fact, the balance on the whole day does not guarantee a balance within

each time window since the average daily working time may be the same for different combinations of working times

per window. As said, the reduction of idle times pursued through goal (iii) is strictly related to the balance of working

times of operators. In more detail, an idle time preceded and followed by very busy periods, as well as an unbalanced

assignment of tasks, results in an inefficient management of the workforce. In fact, it is much more convenient for

the gas metering company to let windows with no tasks to be executed at the beginning or at the end of the day

in order to use operators to perform other types of activities than activation and deactivation of meters. To avoid

burdening the notation, we decided to neglect investigation of such additional activities but we just limit to avoid idle

times within two windows with at least one task to be executed.

In the following, we formulate the problem as an integer programming one. Toward this end, below we provide a

description of the involved variables and parameters. A summary of all the considered quantities is reported in Table

1.

Number and type of operations

The number of customer sites to visit in each day, or, equivalently, the number of tasks, is denoted by n. As said,

each operator has to perform a subset of such tasks starting from the company depot and, after completing the tour,

he/she has to return to the depot. To avoid burdening the notation, we assume that tasks 1 and 2 are fictitious and

correspond to the start from and return to the depot, respectively. Each task is associated with an execution time,

which we denote by τi , i “ 1, . . . , n. Clearly, we have τ1 “ 0 and τ2 “ 0 since such tasks are fictitious.

6

!! !"
!#

"! "" "# "# $!

!#

FIGURE 1 Sketch of the sequence of q predefined, overlapping time windows considered in this paper.

Time windows

The executionof operations is scheduled in a sequence of q predefined, hard timewindows (see Figure 1). Noflexibility

is allowed, in the sense that no deviation from the requiredwindow is permitted, and several tasks have to be executed

within the same window. The duration of each window is denoted byWk , k “ 1, . . . , q . Time windows overlap with

each other: we denote byVk , k “ 1, . . . , q ´ 1, the amount of time such that windows k and k ` 1 are overlapped.

To avoid burdening the notation, we introduce the fictitious windows 0 and q ` 1 to impose the start from and

return to the company depot at the beginning and at the end of each day. Then, we define a pq ` 2q ˆ n binary matrix

F , whose elements Fk j are such that

Fk j :“

#

1 if the operation j belongs to the time window k ,

0 otherwise,

where k “ 0, . . . , q ` 1 and j “ 1, . . . , n , with the window k preceding the window k ` 1. Since each task has to be

performed in one and only one time window, the matrix F is such that
řq`1

k“0
Fk j “ 1 for all j “ 1, . . . , n. As regards

the first two fictitious tasks, we assume they are assigned to the first and last time windows, respectively. Moreover,

they are the unique operations scheduled in their time windows with, of course, the first one preceding the second

one. Thus, we have F01 “ 1, F0j “ 0, j “ 2, . . . , n , as well as Fq`1 2 “ 1, Fq`1 j “ 0, j “ 1 and j “ 3, . . . , n.

One of the objectives of the assignment is to avoid idle time of operators (see goal (iii) stated at the beginning of

this section) since this corresponds to their inefficient management, with the consequence of an increase of costs for

the company. In other words, we have to avoid that an operator has no tasks to execute in a time window between

twowindowswith at least one task to be performed, excluding the fictitiouswindows 0 and q`1. As it will be detailed

in the following, a suitable penalization term in the cost function to minimize will be adopted to reduce the occurrence

of this situation.

Number of operators

The number of available operators for the execution of tasks is denoted by m . As said, one of the goals of the assign-

ment is to rely on the minimum number of operators that is needed to satisfy all tasks requests (see objective (iv) at

the beginning of this section).

The maximum working time that an operator can provide for each time window coincides with the duration of

the window: it is equal toWk , k “ 1, . . . , q . However, the overlap of time windows may reduce such amount of time

in practice. In more detail, since the windows k and k ` 1 overlap for an amount of time equal toVk , the maximum

working time of operators for the twowindows is equal toWk `Wk`1 ´Vk . Furthermore, operators are characterized

by a maximum daily working time denoted by R . Clearly, we have R ď
řq

k“1
Wk due to the overlap of time windows.

Such times include both the times needed to perform the various tasks and the times needed to travel among customer

sites.

7

Precedence relations, distance, and travel times

We account for the precedence among tasks by means of a n ˆ n binary matrix S , whose elements Si j are such that

Si j :“

#

1 if operation i is in a time window succeeding operation j ,

0 otherwise,

where i “ 1, . . . , n and j “ 1, . . . , n. Clearly, we have Si i “ 0 for i “ 1, . . . , n , S1j “ 0 for j “ 1, . . . , n , and S2j “ 1 for

j “ 1, . . . , n , j ‰ 2.

The distance between nodes is taken into account via the nˆn symmetricmatrixD , whose elementsDi j represent

the distance between node i and node j , i “ 1, . . . , n , j “ 1, . . . , n. Of course, we have Di i “ 0 for i “ 1, . . . , n. We

point out the role played by the first two tasks, for which D12 “ D21 “ 0. In fact, as said such operations are

conventionally located at the company depot to ensure that paths of operators start and return therein.

Travel times between customer sites are modeled through the n ˆ n symmetric matrix T , whose elements Ti j

account for the time needed to travel from node i to node j , i “ 1, . . . , n , j “ 1, . . . , n. Likewise for the matrix D , also

in this case we haveTi i “ 0 for i “ 1, . . . , n , andT12 “ T21 “ 0.

Decision variables

The binary decision variables x l i j P t0, 1u, l “ 1, . . . ,m , i “ 1, . . . , n , j “ 1, . . . , n , take into account if operator l is

enabled to travel along the arc from node i to node j , i.e., he/she is committed to perform tasks i and j consecutively.

In more detail, such variables are defined as follows:

x l i j :“

#

1 if operator l travels from node i to node j ,

0 otherwise,

where l “ 1, . . . ,m , i “ 1, . . . , n , and j “ 1, . . . , n.

We introduce also the integer variables u l i P Î, l “ 1, . . . ,m , i “ 1, . . . , n , to avoid subtours in the path [36]. Such

variables denote the position of task i performed by operator l in the sequence of tasks executed by the operator.

Then, we consider the auxiliary binary variables p l k P t0, 1u, l “ 1, . . . ,m , k “ 1, . . . , q , which are equal to 1

if operator l has to perform at least one task in time window k , otherwise they are equal to 0. Such quantities are

crucial to avoid idle times of operators, and can be written in terms of the variables x l i j (wewill connect them through

suitable constraints, as detailed in the following). They are introduced to avoid burdening the notation.

8

3.1 | Formulation of the optimization problem

Based on the previous definitions, the considered problem can be formulated as an integer programming problem as

follows:

min c1

m
ÿ

l“1

n
ÿ

i“1

n
ÿ

j“1

Di j x l i j ` c2

m
ÿ

l“1

q
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

n
ÿ

j“1

pTi j ` τj qFk j x l i j ´
1

m

m
ÿ

z“1

n
ÿ

i“1

n
ÿ

j“1

pTi j ` τj qFk j xzi j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

c3

m
ÿ

l“1

q´1
ÿ

k“1

0.5

˜

1 `

ˇ

ˇ

ˇ

ˇ

ˇ

´M pp l k`1 ´ p l k ` 1q `

q
ÿ

z“k`1

p l z

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

´M pp l k`1 ´ p l k ` 1q `

q
ÿ

z“k`1

p l z ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

¸

(1a)

s.t.

n
ÿ

j“1

x l 1j “ 1, l “ 1, . . . ,m, (1b)

n
ÿ

i“1

x l i2 “ 1, l “ 1, . . . ,m, (1c)

m
ÿ

l“1

n
ÿ

i“1

x l i j “ 1, j “ 3, . . . , n, (1d)

u l i ´ u l j ` n x l i j ď n ´ 1, l “ 1, . . . ,m, i “ 1, . . . , n, j “ 3, . . . , n, (1e)

m
ÿ

l“1

n
ÿ

i“1

n
ÿ

j“1

Fk i x l i j “
n

ÿ

i“1

Fk i , k “ 1, . . . , q , (1f)

n
ÿ

j“1

Si j x l i j “ 0, l “ 1, . . . ,m, i “ 1, . . . , n, (1g)

n
ÿ

i“1

x l i j ď 1, l “ 1, . . . ,m, j “ 1, . . . , n, (1h)

n
ÿ

j“1

x l i j ď 1, l “ 1, . . . ,m, i “ 1, . . . , n, (1i)

x l i i “ 0, l “ 1, . . . ,m, i “ 1, . . . , n, (1j)

n
ÿ

i“1

x l i j “
n

ÿ

h“1

x l j h , l “ 1, . . . ,m, j “ 3, . . . , n, (1k)

n
ÿ

i“1

n
ÿ

j“1

rTi j ` τj sFk j x l i j ď Wk , l “ 1, . . . ,m, k “ 1, . . . , q , (1l)

n
ÿ

i“1

n
ÿ

j“1

Ti j x l i j `

q
ÿ

k“1

n
ÿ

i“1

n
ÿ

j“1

τj Fk j x l i j ď R , l “ 1, . . . ,m, (1m)

n
ÿ

i“1

n
ÿ

j“1

k`1
ÿ

z“k

rTi j ` τj sFz j x l i j ď Wk `Wk`1 ´Vk , l “ 1, . . . ,m, k “ 1, . . . , q ´ 1, (1n)

n
ÿ

i“1

n
ÿ

j“1

k
ÿ

z“1

rTi j ` τj sFz j x l i j ď
k

ÿ

z“1

Wz ´
k´1
ÿ

z“1

Vz , l “ 1, . . . ,m, k “ 1, . . . , q , (1o)

n
ÿ

i“1

n
ÿ

j“1

Fk j x l i j ě p l k , l “ 1, . . . ,m, k “ 1, . . . , q , (1p)

n
ÿ

i“1

n
ÿ

j“1

Fk j x l i j ď Mp l k , l “ 1, . . . ,m, k “ 1, . . . , q , (1q)

9

where x l i j P t0, 1u, u l i P Î, p l k P t0, 1u for l “ 1, . . . ,m , i “ 1, . . . , n , j “ 1, . . . , n , k “ 1, . . . , q , M is a large positive

constant, and c1, c2, and c3 are given positive weight coefficients. For the sake of brevity, we will refer to (1) as vehicle

routing problem with overlapping time windows, or VRPOTW for short.

The objective function in (1a) is made up of three terms weighted by the coefficients c1, c2, and c3 . The first

term is the total distance traveled by operators and accounts for goal (i) listed at the beginning of this section. The

second term represents the imbalance in the assignment of tasks to operators over time windows and is given by the

difference between the amount of working time of an operator in a time window and the average working time of

operators within the same window. The working time includes both the time needed to perform a task and the travel

time between customers’ locations. Clearly, a balanced allocation of tasks to operators according to goal (ii) requires

that such a difference is small. The goal (iii) about the reduction of idle times of operators is taken into account via

the third term of the cost function. In more detail, for a given operator, it is a penalization term that is equal to the

number of idle times over time windows. Its expression can be easily derived by subtracting two ramp functions with

argument´M pp l k`1´p l k `1q`
řq

z“k`1
p l z . The rationale is to penalize, for a given l , sequences of p l k , k “ 1, . . . , q ,

with a zero between two ones.

As regards constraints, (1b) and (1c) ensure that each path starts and ends at the company depot. Constraints

(1d) impose that each task except the first and second ones is assigned to one and only one operator. Equations (1e)

avoid subtours. Constraints (1f) guarantee that all tasks to be performed are assigned within the corresponding time

window. The precedence among tasks is taken into account by means of (1g). Constraints (1h) and (1i) ensure that

each node is visited only once. A node cannot be simultaneously origin and destination by imposing (1j). Constraints

(1k) ensure that, if the operator l visits node j , j “ 3, . . . , n , a predecessor and a successor of node j exist in the path of

the same operator. Equations (1l) and (1m) account for the maximum working time of operators in each window and

in the entire day, respectively. Such time is made up by the sum of the travel time and the time needed to perform the

various tasks. The overlap of time windows k and k ` 1, k “ 1, . . . , q ´ 1, which reduces the amount of working time

available for operators, is taken into account via (1n) and (1o). Lastly, constraints (1p) and (1q) connects the variables

x l i j and p l k , in such a way that p l k “ 1 if the operator l has to perform at least one task in the time window k , and

p l k “ 0 otherwise.

Since one of the goals of the considered problem is the minimization of the number of operators, see goal (iv)

discussed at the beginning of this section, we may solve a sequence of VRPOTW, each one characterized by a fixed

value of m that progressively increases of one unit until a feasible solution is found (the first problem of the sequence

corresponds to the choice m “ 1). The rationale is that the use of a number of operators lower than the minimum

one is a cause of infeasibility for the considered problem. A failure in finding a feasible solution for the problem

corresponding to a given value of m may be overcome by increasing m . Thus, it is important to quickly check the lack

of feasibility for the problem under consideration. The minimum number of operators needed to execute all the tasks

can be determined by starting with a small value of m and then increasing it until a feasible solution can be found.

Clearly, such a choice is sub-optimal since it ignores the possible conflicting nature of goals (i)–(iii) and (iv). A better

trade-off could be obtained by considering the number of operators m as an additional decision variable in (1), but

this further complicates finding a solution since it entails a structural dependence of the number of constraints on the

amount of operators.

In fact, finding an exact solution to VRPOTW is still very difficult, especially in the case of a large number of tasks

and operators, and therefore a heuristic approach is needed to find approximate solutions with a reduced computa-

tional burden, as detailed in Section 4.

Remark The absolute values in the second and third terms of the cost function in (1a) can be easily linearized. In fact,

as it is well known, an absolute value in the cost function of a mathematical programming problem can be replaced by

10

introducing an additional decision variable that is constrained to be greater than the argument of the absolute value

and also greater than its opposite. For instance, if we refer to the second term of the cost, we may introduce an addi-

tional real decision variable yl k , l “ 1, . . . ,m , k “ 1, . . . , q , and consider theminimization of the cost c2
řm

l“1

řq

k“1
yl k

with constraints given by (1b)–(1q) together with

yl k ě
n

ÿ

i“1

n
ÿ

j“1

pTi j ` τj qFk j x l i j ´
1

m

m
ÿ

z“1

n
ÿ

i“1

n
ÿ

j“1

pTi j ` τj qFk j xzi j

and

yl k ě ´
n

ÿ

i“1

n
ÿ

j“1

pTi j ` τj qFk j x l i j `
1

m

m
ÿ

z“1

n
ÿ

i“1

n
ÿ

j“1

pTi j ` τj qFk j xzi j

for l “ 1, . . . ,m and k “ 1, . . . , q . In this way, VRPOTW reduces to a mixed-integer linear programming problem.

4 | THE PROPOSED FOUR-STEP HEURISTIC APPROACH

In this section, we describe a simple yet effective four-step heuristic approach (FSH, for short) to find suboptimal

solutions to VRPOTW. The proposed approach combines the savings algorithm of Clarke and Wright, the 2-opt local

search method, and a nearest-neighbor criterion. As pointed out at the beginning of Section 3, the goals are the

minimization of the total traveled distance of operators, a balanced assignment of tasks to operators within the same

time window (in order to have similar working times of operators within a certain window), the reduction of idle times

of operators, and the adoption of a number of operators as small as possible, i.e., the maximization of the number of

tasks per operator while satisfying a given maximum daily workload per operator and time window.

The proposed approach is made up of four steps, denoted by “initialization”, “clustering”, “cluster optimization and

merging”, and “refinement”, respectively. The various steps are summarized in Figure 2 and detailed in the following,

while the pseudo-code of the proposed method is reported in Algorithm 1. Their application to a toy example with

n “ 20 tasks and q “ 3 time windows is sketched in Figure 3.

4.1 | Initialization step

The developed heuristic starts with an initialization step that aims at taking into account the overlap of time windows

and at giving temporal continuity to the work of operators throughout the entire day without idle times, thus reducing

the risk that an operator has no tasks to be performed in a time window between two windows with one or more

operations. In other words, this step accounts for the goal (iii) of the considered problem. Moreover, the initialization

step also accounts for the goal (ii) related to a balanced assignment of tasks to operators within the same timewindow,

as detailed in the following.

In more detail, upper bounds Ũk , k “ 1, . . . , q , on the maximum working time of operators for each time win-

dow are computed on the basis of the corresponding workload, given by the sum of the execution times of all tasks

belonging to the window. Such bounds are determined as follows:

Ũk :“ min

ˆ

Wk , R

řn
i“1

Fk i τi
řn

i“1
τi

˙

, k “ 1, . . . , q , (2)

11

FIGURE 2 The four steps of the proposed heuristic approach.

whereWk and R are the duration of the timewindow k and themaximumworking timeper day of operators introduced

in Section 3, respectively.

However, upper bounds Ũk computed in (2) do not account for the possible overlap of time windows. In other

words, it may happen that Ũk ` Ũk`1 ě Wk `Wk`1 ´Vk for a certain k , i.e., constraints (1n) and (1o) of VRPOTW

may be violated. This happens especially in the presence of large numbers of tasks to be executed in the windows

k and k ` 1. In this case, the quantities Ũk are reduced proportionally to account for the overlapping nature of time

windows. Otherwise, they are not modified. Thus, we introduce new bounds Uk , k “ 1, . . . , q , that are computed

iteratively as follows:

U
pχ ,ξq
k

:“

$

’

’

’

’

’

&

’

’

’

’

’

%

U
pχ´1,ξq
k

řχ

z“ξ
U

pχ´1,ξq
z

¨

˝

χ
ÿ

z“ξ

Wz ´

χ´1
ÿ

z“ξ

Vz

˛

‚ if

χ
ÿ

z“ξ

U
pχ´1,ξq
z ě

χ
ÿ

z“ξ

Wz ´

χ´1
ÿ

z“ξ

Vz ,

U
pχ´1,ξq
k

otherwise,

k “ 1, . . . ,χ , ξ “ 1, . . . , q ,

U
pχ ,ξq
k

:“ U
pχ´1,ξq
k

, k “ χ ` 1, . . . , q , ξ “ 1, . . . , q ,

where χ “ 2, . . . , q . The procedure is initialized withU
p1,1q
k

:“ Ũk for k “ 1, . . . , q and updated withU
p1,ξq
k

:“ U
pq ,ξ´1q
k

for k “ 1, . . . , q and ξ “ 2, . . . , q . Eventually, the assignmentUk :“ U
pq ,qq
k

, k “ 1, . . . , q , yields the final upper bounds.

The upper bounds Uk allow to distribute the workload of operators on the various time windows proportionally to

the number of tasks to be performed. The smaller is the lower bound Uk , the lower is the time that is available for

an operator to perform tasks belonging to the time window k , and therefore a higher number of operators will be

required for that window. Hence, the upper bounds guarantee to assign tasks to operators in a balanced way over

time windows, thus reducing the risk that an operator has too many tasks to be performed in a given window, while

another one has very few operations to be executed within the same timeframe. Therefore, as previously pointed out,

the initialization step also concur to pursue goal (ii) of VRPOTW described in Section 3.

12

Algorithm 1 Four-step heuristic approach for the solution of VRPOTW

1: Inputs: n , q , τi ,Wk ,Vk , R , Fk j , Si j , Di j ,Ti j , P , c1, c2, c3.

2: // Initialization step //

3: for k “ 1, . . . , q do

4: compute upper bounds Uk ;

5: end for

6: // Clustering step //

7: for k “ 1, . . . , q do

8: compute Clarke and Wright’s savings for tasks of window k ;

9: sort savings in descending order;

10: for z “ 1, . . . , number of savings do

11: create routes starting from and returning to the company depot such that travel and execution times

ë do not exceedUk ;

12: end for

13: group tasks belonging to the various routes in different clusters;

14: Ck Ð total number of clusters of time window k ;

15: end for

16: // Cluster optimization and merging step //

17: define an empty set of locked tasks;

18: for k “ 1, . . . , q ´ 1 do

19: for c “ 1, . . . ,Ck do

20: apply 2-opt to optimize the order of tasks of window k and cluster c, with the exception of locked tasks;

21: end for

22: for c“1, ...,minpCk `non-merged clusters of previous windows,Ck`1q do

23: merge clusters by connecting the final node of a non-merged cluster of window k with the task

ë of window k ` 1 with minimum distance belonging to a non-merged cluster;

24: insert this task into the set of locked tasks;

25: end for

26: end for

27: // Refinement step //

28: compute the cost of the current assignment of tasks to operators and label it as best cost;

29: for p “ 1, . . . , P do

30: randomly extract two paths and two operations within the selected paths;

31: randomly select and apply a perturbation among swap, insertion, and crossing;

32: compute the cost of the new assignment and check constraints satisfaction of the perturbed paths;

33: if new cost is less than best cost and constraints are satisfied then

34: accept perturbation and update paths and best cost;

35: end if

36: end for

37: m Ð number of daily paths;

38: Outputs: m , daily paths for all the operators.

13

4.2 | Clustering step

The goal of the second step is to group tasks belonging to a certain time window in one or more sets, called clusters,

which will be then merged in the third step with clusters of the next time windows in order to create daily paths for

operators.

In more detail, the problem is split into q sub-problems, one for each time window, and the Clarke and Wright’s

savings algorithm is applied by considering eachwindow separately from the others. The algorithm consists in comput-

ing savings that may occur if two tasks are executed in sequence rather than starting from/returning to the company

depot before/after the execution of each operation. For each time window, a certain number of routes are created

by joining tasks sequentially based on a decreasing saving order. The creation of a route among tasks belonging to

the window k is feasible only if the total working time of the corresponding route, given by the sum of execution

times of tasks and travel times, does not exceed the upper bound Uk computed in the initialization step. The process

terminates when no further feasible routes can be created. Each route starts from the depot and returns therein after

visiting a certain number of customers’ sites. The tasks of the various routes are then grouped into ordered sets of

nodes called clusters.

The amountof clusters of a timewindowdefines the number of operators requested toperform all tasks belonging

to it. In general, the number of clusters of a window may be different from the amount of clusters of another one,

even if the upper bounds computed in the initialization step should lead to rather homogeneous numbers for all the

windows. Hence, the initialization and clustering steps play a crucial role to determine the minimum required number

of operators stated in goal (iv) of VRPOTW. This number is equal to the maximum number of clusters belonging to

the various time windows.

4.3 | Cluster optimization and merging step

The goal of this step is to optimize the order of execution of tasks belonging to the various clusters identified in the

previous step by means of a 2-opt local search algorithm, and then merge the clusters of a time window with those of

another one to create daily paths for operators with the goal of minimizing the overall traveled distance, i.e., pursuing

goal (i) of the considered problem. In particular, the “final” tasks of each cluster (preceding the return to the depot)

are joined with the “best” tasks belonging to clusters of the next time windows, as detailed in the following.

Starting with the first time window, the order of execution of tasks belonging to each cluster is optimized via

the 2-opt method. Hence, the 2-opt algorithm is used to improve part of the route of an operator. It is based on

an edge-exchange criterion: starting from a given initial route within a cluster, the procedure considers each pair

of tasks and reorders them to check whether the resulting route is shorter. The acceptance criterion is of the first-

improvement type: the first obtained improvement is immediately carried out, i.e., tasks are reordered and the current

route is modified. The algorithm stops when no further improvement can be obtained. The main advantage of the

2-opt algorithm lies in its very small computational effort, even if a local optimal solution may be found that highly

depends on the initial one. After the application of the 2-opt algorithm to the first time window, the final nodes in

the execution order of each optimized cluster are considered, and a merge with a task of the next time window is

performed based on a nearest-neighbor criterion. In particular, for each final task, all the nodes of the clusters not yet

merged belonging to the next time window are analyzed, and the best merge is selected as the one minimizing the

distance between tasks.

It may happen that a cluster of the time window k is not merged with a cluster of the window k ` 1, but with a

cluster of the following ones (e.g., k ` 2, k ` 3, and so on). This happens if the number of clusters of the window k is

14

! "

#
$

%

& !'
(

)

*

!(

!#

!"
!&

!!

!*

!)

!%
"'

!$

+,-./

/0
1
,2
3
04
+
.
3
"

/01
,23
04+.3

&

/01,2304+.3 !

!!

!&

!"

(a) Initialization step

! "

#$%&'()*! #$%&'()*" #$%&'()*+

#$%&'()*!

#$%&'()*"#$%&'()*!

#$%&'()*"

,

-

.

+ !/

0

1

2

!0

!,

!"

!+

!!

!2

!1

!.

"/

!-

(b) Clustering step

! "

!

"

#

$ %&

'

(

)

%'

%!

%*

%$

%%

%)

%(

%#

*&

%"

(c) Cluster optimization and merging step

! "

!

"

#

$ %&

'

(

)

%'

%!

%*

%$

%%

%)

%"

%#

*&

%(

!"#$ %&'

%!()"#%)'*

!"#$ %&'

%!()"#%)'+

,-./#()

#"/0#

!"#$ %&'

%!()"#%)'1

-(2(34

)%.#(

56#$63 "'

,-./#()

(d) Refinement step

FIGURE 3 The four steps of the proposed heuristic approach applied to a toy example with n “ 20 tasks and q “ 3

time windows. The initialization step (a) sketches all the tasks with the corresponding time windows and upper

bounds U1, U2, and U3 on the maximum working time of operators. The clustering step (b) results into a series of

routes for each time window starting from the depot and returning therein. The clusters of different time windows

are then merged in the third step (c). Lastly, the fourth step (d) implements a refinement of the solution via swaps,

insertions, and crossings aimed at further minimizing the cost: in particular, the swap of tasks 8 and 9 in the first

time window and the insertion of task 18 in the third one are performed (both moves are highlighted in dark gray).

greater than the number of clusters of the window k ` 1. In this case, the final node of a non-merged cluster will be

taken into account in the next merging phase, i.e., when considering the merging of final nodes of the window k ` 1

with the tasks of the window k ` 2.

The tasks of the time window k ` 1 that are chosen to be merged with the final nodes of clusters of the window

k become the first nodes of the corresponding routes within clusters of the window k ` 1 and are then “locked”, i.e.,

they will remain the first ones in the execution order and will not be taken into consideration by the 2-opt search

algorithm applied to the clusters belonging to the time window k ` 1.

The procedure is iterated for all time windows: the first window is optimized by 2-opt and the second window is

merged, the second window is optimized and the third one is merged, and so on. As a result, m daily paths starting

from the company depot and returning therein are obtained that are assigned to m different operators.

15

4.4 | Refinement step

The aim of the refinement step is to improve the paths computed through the previous steps in order to further min-

imize the cost function (1a). In more detail, a random search starting from the current best solution is performed

via the generation of a given number P of perturbations. Perturbations may be of three different kinds: swaps, in-

sertions, and crossings. In particular, for p “ 1, . . . , P , first two paths and two operations within the selected paths

are randomly extracted. Then, a perturbation within swap, insertion, and crossing is randomly chosen and applied.

The perturbation is accepted if the resulting assignment of tasks to operators reduces the cost as compared to the

current best solution and satisfies all the constraints. In this case, the current best solution and best cost are updated

accordingly. Otherwise, if the perturbed paths violate constraints or correspond to an assignment with a higher cost,

they are discarded. Then, a new perturbation of the best solution is analyzed until the considered maximum number

of moves is reached.

In more detail, the swap perturbation acts as follows. Given two paths a and b and two operations i and j

belonging to a and b , respectively, they are simply swapped, i.e., task i of path a is assigned as task j of path b and

viceversa. Concerning insertion, given two paths a and b and two operations i and j belonging to a and b , respectively,

task i is removed from path a and inserted between tasks j and j ` 1 of path b . Lastly, let us focus on the crossing

perturbation. Given two paths a and b and two operations i and j belonging to a and b , respectively, tasks from i ` 1

to the end of path a are assigned to path b after task j , while tasks from j ` 1 to the end of path b are assigned to

path a after task i .

5 | NUMERICAL RESULTS

The effectiveness of the proposed approach is evaluated by means of a case study coming from the real world, and

real data are used for the various tests. In particular, we consider a company providing gas metering services for third

parties in the urban area of Genoa, Italy. As previously pointed out, operations to be executed are of two types, i.e.,

activation and deactivation of gas meters, and at each customer site operators can do either the first or the second

one, but not both together. Each task has a known execution time that depends on the type of operation. In particular,

the execution times are equal to 30 and 15min for the activation and deactivation tasks, respectively. We have a total

number of q “ 6 fixed time windows throughout the day, each one with duration equal to 2 h. Thus, we haveWk “ 2

h for all k “ 1, . . . , q . There exists a lunch break around midday of 1 h. As a consequence, we have three windows in

the morning and three windows in the afternoon, which overlap 1 h with each other. Hence, we have V1 “ V2 “ 1

h, V3 “ 0, and V4 “ V5 “ 1 h. In addition, we consider the fictitious windows 0 and 7 to model the departure from

and return to the company depot at the beginning and at the end of the day, respectively. Each operator has a daily

maximum working time R “ 8 h, from 8 am to 12 pm and from 1 pm to 5 pm (the lunch break is from 12 pm to 1pm).

A sketch of time windows where the various tasks are performed is reported in Figure 4.

To evaluate performance and scalability of the proposed FSH approach, we have considered several instances of

VRPOTW: the approximate solutions computed by the FSH have been compared with the exact solutions obtained

by solving (1) for all the considered instances. For the sake of brevity, in the following we will refer to such approach

as “optimization-basedmethod”, or OPT for short. Optimization has been performed with the mixed-integer program-

ming solver available in CPLEX and with a time limit of 24 h. Instead, the heuristic technique has been implemented in

Matlab. The effectiveness of the proposed approach has been tested also against a simple, ad-hoc developed heuristic

technique based on the paradigm of iterated local search (ILS, for short). Starting from a feasible initial solution, this

approach iteratively modifies it through perturbations, i.e., relocation of customers within routes, deletion of arcs, and

16

!"#$"$"%&'($")* !"#$"$"%&'($")*

+",-%+(. +",-%+(/

0&,#1(23*45

64) 74) 8.4) 884) 89:) 8:) 9:) ;:) <:) =:)

$")*(+",-%+(8 $")*(+",-%+(>

-4"0?(+%35",@($")*

$")*(+",-%+(9

$")*(+",-%+(; $")*(+",-%+(<

$")*(+",-%+(=

FIGURE 4 Time windows in the considered case study.

tot. distance
imbalance

id
le

ti
m

es

FIGURE 5 Solutions of the instance with n “ 30 tasks of the VRPOTW corresponding to different values of the

weighting coefficients of the cost function (blue points) and solution chosen to fix the coefficients (bold, red point).

replacement with other ones with the goal of minimizing the objective function (1a). In more detail, the initial solution

is generated starting from the list of tasks to be performed, sorted by time window and execution time. Tasks are

assigned sequentially to operators starting from the sorted list in such a way to satisfy all the constraints (1b)–(1q).

Then, the initial solution is improved via a number of perturbations, which consist in iteratively swapping, inserting,

and crossing nodes or parts of routes. In more details, the same perturbations detailed in Section 4.4 are considered,

i.e., swap, insertion, and crossing. For all the combinations of two paths in the set of all paths, and for all the pairs

of tasks belonging to the cross-product of tasks belonging to the selected paths, the three perturbation moves swap,

insertion, and crossing are applied. Each move is accepted if the change in the paths corresponds to a descent of the

cost (1a) and constraints are satisfied, while moves entailing infeasibility or an increase of the cost are discarded.

The comparison has been performed by evaluating separately the various goals (i)–(iv): the total distance traveled

by operators (the first term in the cost function in (1a)), the imbalance in the working time of operators within the

same time window (the second term in the cost (1a)), i.e., the difference between working time of operators in a time

window and the average working time of operators within the same window, the presence of idle times of operators

(the case of time windows with no tasks to be executed between two windows with at least one operation to be

performed, as accounted for in the third term in (1a)), and theminimumnumber of operators required to perform all the

activities (the number m in the exact formulation of VRPOTW). Then, we have focused on a condensed performance

indicator that allows evaluating the effectiveness of the various approaches “at a glance”. Such an indicator, which

will be called overall performance index (OPI), is given by the linear combination (with coefficients c1, c2, and c3) of

the corresponding terms in the optimal cost of VRPOTW.We have evaluated also the computational requirements of

the OPT, FSH, and ILS approaches by comparing the time needed to find a planning for the entire day, referred to as

17

computation time in the following.

The coefficients c1, c2, and c3 of the cost function (1a) have been chosen equal to 1, 0.1, and 10, respectively.

Such values have been fixed via the numerical computation of the three-dimensional Pareto front related to VRPOTW.

In fact, the cost (1a) can be viewed as a scalarized version of a multiobjective optimization problem. Figure 5 reports

as blue points the solutions of the instance with n “ 30 tasks of VRPOTW corresponding to about 2000 different

values of the coefficients. The chosen values of the coefficients, highlighted with a larger, red point, correspond to a

non-dominated solution. Among the various points belonging the Pareto front, the choice of the one related to c1 “ 1,

c2 “ 0.1, and c3 “ 10 has been guided by some managerial considerations (see later on for additional details). In a

nutshell, the imbalance is the term in the objective function with the lowest impact on the costs of the gas metering

company, and for this reason the corresponding coefficient c2 has been fixed to a smaller value. The selection of

other points in the Pareto front, although possible, has not been taken into account since it does not correspond to

solutions that are significant from the practical viewpoint.

The value of M in (1a) and (1q) must be chosen sufficiently large. After a trial-and-error investigation, we have

chosen M “ 1000 since we have observed that larger values of M may cause numerical issues while lower ones may

cause infeasibility. A detailed investigation on the lower bounds of such a quantity ensuring feasibility is outside the

scope of this work.

Concerning the FSH approach, the only parameter to be tuned, i.e., the number P of refinements in the last

step, has been fixed equal to 1000. This value has been selected after a trial-and-error procedure aimed at balancing

effectiveness and computational requirements. In more details, we verified that the selection of larger values was

useless as regards performance improvements but entailed only increased computational requirements.

Two rounds of tests have been performed for performance evaluation. In the first one, we have focused on ten

real instances of VRPOTWwith an increasing number of tasks to be executed: n “ 10, 20, 30, 40, 50, 60, 70, 80, 90, and

100. The goal is to assess the scalability properties of the proposed approach and to enable a comparison with the

optimal solution provided the OPT method, which, as we will see in the following, can be found only for small values

of n. In practice, the standard number of gas meter maintenance tasks to be executed for each day ranges from 80

to 100 on the average, hence the maximum number of operations considered in this paper. The operations included

in the smaller instances of VRPOTW from n “ 10 to n “ 70 are subsets of the daily workload of the company in a

standard business day. Clearly, only the cases with n “ 80, n “ 90, and n “ 100 have an importance from the practical

point of view, while the lower-dimensional instances are much less interesting. In fact, in the case of n “ 100, the

average number of tasks to be executed per each time window is about 16, while in the case of n “ 10 or n “ 20

it is equal to about 2 or 3. Clearly, no practical significance can be given to the case of 2 or 3 interventions per

time window, but the investigation of the performances is important to check effectiveness in comparison with the

optimization-based method, which is unable to find a solution for larger numbers of tasks. Thus, in the first round of

tests, matrices F , S , D , and T introduced in Section 3 are filled with real data. The second round of tests is devoted

to assess performances on many different synthetic instances of VRPOTW. In more detail, starting from the real data

used in the previous round of tests, we have generated 100 additional instances for each value of n obtained through

random perturbations of the customers’ location where the various tasks have to be executed.

The results obtained in both cases are showcased and discussed in the following sections. All the simulations

have been performed on a computer equipped with a 3.7 GHz Intel i7 CPU with 32 GB of RAM.

18

TABLE 2 Summary of the numerical results obtained in the first round of tests.

Num. Total traveled Imbalance Num. Num. Overall Gap [%] Gap [%] Gap [%] Gap [%] Gap [%] Comput.

tasks distance [km] [min] idle times operators perf. index distance imbalance idle times operators OPI time [s]

O
P
T

10 35.15 0.00 0 1 35.15 - - - - - 0.039

20 69.72 127.64 0 2 82.48 - - - - - 2.81

30 106.80 114.45 1 3 128.25 - - - - - 971.89

40 112.00 253.02 1 3 147.30 - - - - - 86400.00

50 - - - - - - - - - - -

60 - - - - - - - - - - -

70 - - - - - - - - - - -

80 - - - - - - - - - - -

90 - - - - - - - - - - -

100 - - - - - - - - - - -

F
S
H

10 35.15 0.00 0 1 35.15 0.00 0.00 0.00 0.00 0.00 0.031

20 69.72 127.64 0 2 82.48 0.00 0.00 0.00 0.00 0.00 0.25

30 102.42 338.29 0 3 136.25 -4.10 195.58 -100.00 0.00 6.24 0.31

40 125.90 220.27 0 3 147.93 12.41 -12.94 -100.00 0.00 0.42 0.66

50 148.15 369.57 0 4 185.11 - - - - - 0.88

60 172.17 232.63 0 5 195.43 - - - - - 2.65

70 193.27 372.71 0 6 230.54 - - - - - 2.82

80 200.27 621.71 0 7 262.44 - - - - - 4.62

90 247.01 467.10 1 7 303.72 - - - - - 4.71

100 265.19 658.07 0 8 331.00 - - - - - 5.12

IL
S

10 37.30 0.00 0 1 37.30 6.12 0.00 0.00 0.00 6.12 0.063

20 84.16 102.72 0 2 94.43 20.71 -19.52 0.00 0.00 14.49 0.28

30 111.21 252.55 1 3 146.47 4.13 120.66 0.00 0.00 14.21 1.09

40 148.31 110.45 0 3 159.36 32.42 -56.35 -100.00 0.00 8.18 2.50

50 158.34 288.10 0 4 187.15 - - - - - 4.87

60 185.64 213.44 0 5 206.98 - - - - - 8.94

70 219.27 279.80 0 6 247.25 - - - - - 14.38

80 248.72 387.23 0 7 287.44 - - - - - 30.51

90 278.69 825.85 4 9 401.27 - - - - - 57.81

100 288.77 921.56 2 10 400.93 - - - - - 84.04

5.1 | First round of tests: simulations on real instances of VRPOTW

Table 2 contains a summary of the numerical results obtained in the first round of tests with an increasing number of

tasks to be executed. In particular, the total distance traveled by operators, the total imbalance over time windows,

the total number of idle times for operators, the required number of operators, and the OPI are reported. Moreover,

for the case of the FSH and ILS approaches, the table also contains, for each index, the percentage gap with respect to

the corresponding indicator provided by the OPT method. The last column showcases the computation time required

to find a solution for all the considered techniques. A sketch of the behaviors of the OPI and of the computation time

with respect to the number of tasks is reported in Figure 6.

Looking at the simulation results, we note an increasing trend of the total traveled distance, total imbalance,

amount of idle times, required number of operators, and overall performance index with respect to the number of

tasks to be performed, as expected. The FSH and ILS approaches are able to find a solution for all the instances of

19

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600
OPT

FSH

ILS

Overall performance index

n

10 20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

OPT

FSH

ILS

Computation time [s]

n

FIGURE 6 Overall performance index (thin lines without markers represent a linear fitting of data) and computation

time (in logarithmic scale) for increasing number of tasks obtained in the first round of tests.

VRPOTW from n “ 10 up to n “ 100. In the case of FSH, a computation time ranging from few milliseconds to few

seconds is needed to obtain an approximate solution, while the ILS technique requires at most about 80 seconds to

find a solution in the largest instance of the problem. On the contrary, the true optimal solution can be found by the

OPT approach only up to n “ 40 tasks, but with an exponential increase of the required computational effort. This

impedes finding a solution for n greater than 40.

Concerning the comparison between the FSH and the OPT methods, the same solution is found for n “ 10

and n “ 20 tasks, while the instance with n “ 30 operations is characterized by the largest gap between the two

methods. In more detail, the solution provided by FSH has a lower value for the total traveled distance, but an

increased imbalance. Overall, the gap in term of the OPI with respect to the optimization-based approach is equal to

about 6%. As regards the largest instance that can be solved with the OPT method, i.e., the case n “ 40, the overall

gap between FSH and OPT is less than 0.5%, thus confirming the effectiveness of the former to find a suboptimal

solution. Such a solution is characterized by an increased value of the total traveled distance, but a saving of the

imbalance and a reduction of the number of idle times.

On the average, from n “ 10 to n “ 40, an increase of about 1.5% of the OPI is obtained by using the proposed

heuristic method for all the values of n such that we can find an optimal solution (see the column “GapOPI” in Table 2).

A saving of 5 orders of magnitude in the computation time is experienced for the largest instance of the problem that

can be solved through optimization, i.e., for n “ 40. As regards the various goals (i)-(iv), we note that both the FSH and

OPT approaches require the same number of operators, and therefore the corresponding gaps in Table 2 are equal to

zero. The FSH always overcomes the OPT in terms of minimization of the number of idle times, as no idle times are

experienced from n “ 10 to n “ 40. An average gap of about 2% is experienced for the total distance traveled by

operators, while we can observe a higher variability as concerns the total imbalance. In particular, for n “ 40, the FSH

guarantees a reduced imbalance as compared to the OPT approach, which in turn provides quite a reduced traveled

distance as compared to FSH. For n “ 30, the gap on the total imbalance is larger. Such results suggest that there

may be possible margins to improve the proposed heuristic as regards the imbalance, for instance by acting on the

initialization step.

However, from amanagerial point of view, the imbalance is the objective termwith the lowest impact on company

costs. As previously pointed out, the imbalance has been introduced in the objective function due to labor agreements

requiring to divide the overall workload as fairly as possible among the available operators, but it does not have a direct

impact on company expenditures. Instead, the gap on the total distance between the FSH and the OPT approaches

20

is reduced and the difference in terms of company disbursements of the two assignments is practically negligible. To

fix ideas, let us consider the case of n “ 40 tasks: if we consider an all-inclusive cost of fuel and vehicle wear of

about 0.6 e/km, the difference in the total traveled distance results into an increase of less than 10 e per day. The

most impacting components of the objective function on company savings and efficiency are the number of required

operators and their idle times. In the presence of idle times between time windows, operators cannot perform any

technical activities on meters (activation and deactivation) and therefore they are unproductive for the gas metering

company: the company bears the costs of operators for idle time slots without an economic return in terms of incomes.

In this case, the FSH method guarantees no idle times for the problem instances from n “ 10 to n “ 40, whereas

the OPT solution suffers from the presence on one idle time for both the instances with n “ 30 and n “ 40 tasks.

Therefore, the performances of the proposed approach are very satisfactory for the gas metering company.

As regards the comparison between FSH and ILS, we observe that performances of the former are much better

than the latter for all the considered indicators, with the exception of the imbalance. The OPI of the ILS is larger in

general, especially for the largest instances of the problem with n “ 90 and n “ 100. The worst indicators are given by

the total traveled distance and by the required number of operators, which are greater than the corresponding values

of the FSH technique.

Summarizing, satisfactory results are obtained by using the FSH approach, as a reduced decay of performance

is obtained as compared to the OPT, but a huge saving of the required effort is guaranteed. The linear extrapolation

of the trend of the OPI in Figure 6 (the thin lines without markers represents a linear fitting of the available data) for

the OPT method confirms that the proposed heuristic approach can be successfully used to solve high-dimensional

instances of VRPOTWwith negligible computation time. The comparisonwith the ILS heuristic is successful, as better

results are provided for the performance indicators with the largest impact on the costs of the gas metering company,

and a reduced computational effort is required to find an approximate solution.

5.2 | Second round of tests: simulations on many synthetic instances of VRPOTW

As previously pointed out, the second round of tests is devoted to assess performances onmany different instances of

VRPOTW. In more detail, starting from the real data used in the first round of tests, we have generated 100 synthetic

instances for each value of n obtained through random perturbations of customers’ location. Figure 7 contains the

boxplots of the OPI provided by the OPT, FSH, and ILS approaches over the considered 100 instances.

Likewise in the first round of tests, an optimal solution is found by the OPT method only up to n “ 40 tasks,

whereas the FSH and ILS methods are able to find a solution for n up to 100 in all the considered 100 synthetic

instances. In more detail, an increasing trend of the OPI with the number of tasks can be observed, but the gap

between the OPT and the FSH approach is reduced and similar to the values obtained in the first round of tests

when using real data. The OPT approach guarantees the lowest dispersion around the median values, while a higher

dispersion is provided by the FSHmethod for n “ 30 or n “ 40. However, for larger values of n , the dispersion around

the median of FSH remains more or less constant and much lower as compared to the one guaranteed by ILS, which

is again the worst method.

Figure 8 depicts the medians of the OPI provided by the OPT, FSH, and ILS approaches (the triangle, circle, and

plus markers, respectively) together with their linear fitting. It turns out that the difference between the OPT and

FSH values remains almost constant for increasing values of n , likewise in the first round of tests, whereas the gap

between FSH and ILS grows with n.

21

O
P

T
F
S

H
IL

S

O
P

T
F
S

H
IL

S

O
P

T
F
S

H
IL

S

O
P

T
F
S

H
IL

S

O
P

T
F
S

H
IL

S

O
P

T
F
S

H
IL

S

O
P

T
F
S

H
IL

S

O
P

T
F
S

H
IL

S

O
P

T
F
S

H
IL

S

O
P

T
F
S

H
IL

S

0

50

100

150

200

250

300

350

400

450
Overall performance index

n=10 n=20 n=30 n=40 n=50 n=60 n=70 n=80 n=90 n=100

FIGURE 7 Boxplots of the overall performance index over 100 simulations obtained in the second round of tests.

6 | CONCLUSIONS

In this paper, we have presented an approach to optimize maintenance services of a company working in the gas

metering sector for third parties by exploiting the paradigm of vehicle routing problems with time windows. In more

detail, the considered problem involves a set of predefined time windows that overlap one with the others and four

competing objectives that have to be taken into account. First, an integer programming formulation of the problem

has been devised. However, finding the optimal solution is possible only for small instances. Thus, we have developed

a heuristic approach that is able to find approximate solutions with a reduced computational effort, also for a large

number of nodes to be visited. The heuristic is made up of four steps, and combines the savings algorithmof Clarke and

Wright, the 2-opt local search, and a nearest-neighbor criterion. Successful numerical results using both data coming

from the real world and multiple synthetic instances have confirmed the effectiveness of the proposed approach.

An important advantage of the developed heuristic, which does not turn out explicitly from numerical results, is its

simplicity. In particular, its performances do not depend on many parameters that have to be properly tuned before

obtaining satisfactory results, as it often happens for other heuristics commonly used in vehicle routing problems. This

makes the proposed approach interesting also for practitioners that are non-experts in complex tuning procedures.

As pointed out in the Introduction, this is the first work dealing with the optimization of gas metering services by

pursuing the considered four conflicting goals. Thus, several directions of future investigation can be outlined. The

main efforts will be devoted to refining the proposed FSH approach, for instance by using other methods than the

Clarke and Wright savings algorithm and the 2-opt in the second and third step, respectively. In more detail, we will

investigate the effect of introducing a “working area” for operators to improve the Clarke andWright approach used in

the clustering step and avoid starting/returning from/to the depot for each path. A special attention will be devoted

22

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400
OPT

FSH

ILS

Median overall performance index

n

FIGURE 8 Medians of the overall performance index over 100 simulations obtained in the second round of tests.

The thin lines represent a linear fitting of the available data.

also to the initialization step, as the obtained numerical results have indicated that the largest gaps with respect to the

optimization-based approach are in the imbalance component of the objective function. Further, we will investigate

whether the insertion of additional decision variables accounting for the time scheduling of the various operations

may help to better make use of all the amount of time within a window, for instance by exploiting idle times to travel

among customer locations. Moreover, the effectiveness of the proposed approach in low-dimensional instances of

the problem will be evaluated also in comparison with alternative approaches, such as, for instance, dynamic pro-

gramming, while larger instances will be compared with new heuristic methods that are more sophisticated than the

considered one based on the iterated local search paradigm. Lastly, we plan to test the proposed approach in other

real case studies, introduce stochasticity, for instance by considering travel and execution times as random variables

with suitable probability distributions, as well as account for the case of flexible and multiple time windows.

References

[1] F.S. Alves, J.M. de Souza, and A.H. Costa,Multi-objective design optimization of natural gas transmission networks, Comput.

Chemical Eng. 93 (2016), 212–220.

[2] N. Azi, M. Gendreau, and J.Y. Potvin, An exact algorithm for a vehicle routing problem with time windows and multiple use

of vehicles, Eur. J. Oper. Res. 202 (2010), 756–763.

[3] R. Baldacci, E. Bartolini, and A. Mingozzi, An exact algorithm for the pickup and delivery problem with time windows, Oper.

Res. 59 (2011), 414–426.

[4] R. Baldacci, A. Mingozzi, and R. Roberti, Recent exact algorithms for solving the vehicle routing problem under capacity and

time window constraints, Eur. J. Oper. Res. 218 (2012), 1–6.

[5] V. Baradaran, A. Shafaei, and A.H. Hosseinian, Stochastic vehicle routing problem with heterogeneous vehicles and multiple

prioritized time windows: Mathematical modeling and solution approach, Comput. Indus. Eng. 131 (2019), 187–199.

[6] H. Behrooz and R. Boozarjomehry, Dynamic optimization of natural gas networks under customer demand uncertainties,

Energy 134 (2017), 968–983.

[7] S. Belhaiza, R. M’Hallah, G. Brahim, and G. Laporte, Three multi-start data-driven evolutionary heuristics for the vehicle

routing problem with multiple time windows, J. Heuristics 25 (2019), 485–515.

23

[8] K. Braekers, K. Ramaekers, and I.V. Nieuwenhuyse, The vehicle routing problem: State of the art classification and review,

Comput. Indus. Eng. 99 (2016), 300–313.

[9] J. Bramel and D. Simchi-Levi, On the effectiveness of set covering formulations for the vehicle routing problem with time

windows, Oper. Res. 45 (1997), 95–301.

[10] O. Braysy and M. Gendreau, Vehicle routing problem with time windows, part I: Route construction and local search algo-

rithms, Transp. Sci. 39 (2005), 104–118.

[11] J. Chen and J. Shi, A multi-compartment vehicle routing problem with time windows for urban distribution – A comparison

study on particle swarm optimization algorithms, Comput. Indus. Eng. 133 (2019), 95–106.

[12] T.C. Chiang and W.H. Hsu, A knowledge-based evolutionary algorithm for the multiobjective vehicle routing problem with

time windows, Comput. Oper. Res. 45 (2014), 25–37.

[13] G. Clarke and J. Wright, Scheduling of vehicles from a central depot to a number of delivery points, Oper. Res. 12 (1964),

568–581.

[14] L. Costa, C.Contardo, and G. Desaulniers, Exact branch-price-and-cut algorithms for vehicle routing, Transp. Sci. 43 (2019),

946–985.

[15] G. Croes, A method for solving traveling salesman problems, Oper. Res. 6 (1958), 791–812.

[16] K. Doerner, M. Gronalt, R. Hartl, G. Kiechle, andM. Reimann, Exact and heuristic algorithms for the vehicle routing problem

with multiple interdependent time windows, Comput. Oper. Res. 35 (2008), 3034–3048.

[17] N. El-Sherbeny, Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic methods, J. King Saud

University 22 (2010), 123–131.

[18] T. Faiz, C. Vogiatzis, and M. Noor-E-Alam, A column generation algorithm for vehicle scheduling and routing problems, Com-

put. Indus. Eng. 130 (2019), 222–236.

[19] M. Fisher, Optimal solution of vehicle routing problem using minimum K-trees, Oper. Res. 42 (1994), 626–642.

[20] T. Gschwind, S. Irnich, C. Tilk, and S. Emde, Branch-cut-and-price for scheduling deliveries with time windows in a direct

shipping network, J. Scheduling 23 (2020), 363–377.

[21] A. Gutierrez, L. Dieulle, N. Labadie, and N. Velasco, Heuristics for the robust vehicle routing problem with time windows,

Comput. Indus. Eng. 125 (2018), 144–156.

[22] A. Gutierrez-Rodriguez, S. Conant-Pablos, J. Ortiz-Bayliss, and H. Terashima-Marin, Selecting meta-heuristics for solving

vehicle routing problems with time windows via meta-learning, Expert Syst. With Appl. 118 (2019), 470–481.

[23] M. Hamedi, R. Farahani, and G. Esmaeilian, “Optimization in natural gas network planning," Logistics Operations and Man-

agement - Concepts and Models, R. Zanjirani, S. Farahani, and L. Kardar (eds.), Elsevier Insights, London, UK, 2011, pp.

393–420.

[24] H. Hashimoto, M. Yagiura, and T. Ibaraki, An iterated local search algorithm for the time-dependent vehicle routing problem

with time windows, Discr. Optim. 5 (2008), 434–456.

[25] P. Hungerlander and C. Truden, Efficient and easy-to-implement mixed-integer linear programs for the traveling salesperson

problem with time windows, Transp. research procedia 30 (2018), 157–166.

[26] P. Kilby, P. Prosser, and P. Shaw, Guided Local Search for the Vehicle Routing Problem with Time Windows pp. 473–486,

Springer US Boston, MA 1999.

24

[27] C. Koc, T. Bektas, O. Jabali, and G. Laporte, A hybrid evolutionary algorithm for heterogeneous fleet vehicle routing problems

with time windows, Comput. Oper. Res. 64 (2015), 11–27.

[28] N. Kohl and O. Madsen, An optimization algorithm for the vehicle routing problem with time windows based on Lagrangian

relaxation, Oper. Res. 45 (1997), 395–406.

[29] A. Kolen, A.R. Kan, and H. Trienekens, Vehicle routing with time windows, Oper. Res. 35 (1987), 266–273.

[30] I. Kucukoglu, R. Dewil, and D. Cattrysse, Hybrid simulated annealing and tabu search method for the electric travelling

salesman problem with time windows and mixed charging rates, Expert Syst. With Appl. 134 (2019), 279–303.

[31] S.W. Lin and V. Yu, A simulated annealing heuristic for the team orienteering problem with time windows, Eur. J. Oper. Res.

217 (2012), 94–107.

[32] D. Lu and F. Gzara, The robust vehicle routing problem with time windows: Solution by branch and price and cut, Eur. J. Oper.

Res. 275 (2019), 925–938.

[33] Y. Marinakis, M. Marinaki, and A. Migdalas, A multi-adaptive particle swarm optimization for the vehicle routing problem

with time windows, Informat. Sci. 481 (2019), 311–329.

[34] M. Mikolajkova, C. Haikarainen, H. Saxen, and F. Pettersson, Optimization of a natural gas distribution network with poten-

tial future extensions, Energy 125 (2017), 848–859.

[35] M. Mikolajkova, H. Saxen, and F. Pettersson, Linearization of an MINLP model and its application to gas distribution opti-

mization, Energy 146 (2018), 156–168.

[36] C. Miller, A. Tucker, and R. Zemlin, Integer programming formulations and traveling salesman problems, J. Assoc. Comput.

Machinery 7 (1960), 326–329.

[37] D. Miranda and S. Conceicao, The vehicle routing problem with hard time windows and stochastic travel and service time,

Expert Syst. With Appl. 64 (2016), 104–116.

[38] D.M. Miranda, J. Branke, and S.V. Conceicao, Algorithms for the multi-objective vehicle routing problem with hard time

windows and stochastic travel time and service time, Appl. Soft Comput. 70 (2018), 66–79.

[39] M. Paolucci, D. Anghinolfi, and F. Tonelli, Field services design and management of natural gas distribution networks: A class

of vehicle routing problem with time windows approach, Int. J. Production Res. 56 (2018), 1154–1170.

[40] R. Perez-Rodriguez and A. Hernandez-Aguirre,A hybrid estimation of distribution algorithm for the vehicle routing problem

with time windows, Comput. Indus. Eng. 130 (2019), 75–96.

[41] K. Tan, C. Cheong, and C. Goh, Solving multiobjective vehicle routing problem with stochastic demand via evolutionary

computation, Eur. J. Oper. Res. 177 (2007), 813–839.

[42] D. Tas, O. Jabali, and T.V. Woensel, A vehicle routing problem with flexible time windows, Comput. Oper. Res. 52 (2014),

39–54.

[43] P. Toth and D. Vigo, The Vehicle Routing Problem, SIAM, Philadelphia, PA, 2002.

[44] T. Vidal, T. Crainic, M. Gendreau, and C. Prins, A hybrid genetic algorithm with adaptive diversity management for a large

class of vehicle routing problems with time-windows, Comput. Oper. Res. 40 (2013), 475–489.

[45] C. Wang, D. Mu, F. Zhao, and J. Sutherland, A parallel simulated annealing method for the vehicle routing problem with

simultaneous pickup–delivery and time windows, Comput. Indus. Eng. 83 (2015), 111–122.

[46] M. Yu and X. Qi, A vehicle routing problem with multiple overlapped batches, Transp. Res. Part E 61 (2014), 40–55.

25

[47] H. Zhang, Q. Zhang, L. Ma, Z. Zhang, and Y. Liu, A hybrid ant colony optimization algorithm for a multi-objective vehicle

routing problem with flexible time windows, Informat. Sci. 490 (2019), 166–190.

[48] J. Zhang, F. Yang, and X. Weng, An evolutionary scatter search particle swarm optimization algorithm for the vehicle routing

problem with time windows, IEEE Access 6 (2018), 63468–63485.

[49] W. Zhang, D. Yang, G. Zhang, and M. Gen, Hybrid multiobjective evolutionary algorithm with fast sampling strategy-based

global search and route sequence difference-based local search for VRPTW, Expert Syst. With Appl. 145 (2020), 1–16, art.no.

113151.

[50] Y. Zhou and J. Wang, A local search-based multiobjective optimization algorithm for multiobjective vehicle routing problem

with time windows, IEEE Syst. J. 9 (2015), 1100–1113.

[51] J. Zhoua, J. Peng, G. Liang, and T. Deng, Layout optimization of tree-tree gas pipeline network, J. Petroleum Sci. Eng. 173

(2019), 666–680.

