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Abstract

In this paper we address the problemn of query optimization by using semantic properties
of data. The discussion is in terms of the relational data model. We present some rules for
Relational Algebra (RA) queries that can be used to transform a query into an equivalent
one which is mote efficient to process, and provide a formal proof of their correctness. Such
rules, called semantic rules, allow to eliminate joins, to introduce clustering indexes and to
test for query emptiness, according to the database properties stated by a set of integrity
constraints. The correctness of these rules is formally proved by showing that the obtained
queries define exactly the same set of tuples as the original query. We also investigate
she problem of using semantic rules within transactions, where any arbitrary sequence of
queries and modify operations may occur and semantic integrity can be violated during
intermediate steps of processing. Couditions are provided under which the semaatic rules
presenied in this paper can be correctly applied within compiled iransactions.

Keywords — Relational Algebra, query optimization, semantic properties of data, semantic
integrity of data, transactions.

1 Introduction

The problem of query optimization, in both centralized and distributed databases, has been
widely studied and many approaches have been proposed and/or implemented. Surveys are
presented in {Jark 84] and [Yu 84], while several aspects are discussed in detail in a compre-
hensive book {Quer 85]. Traditional approaches to the query optimization problem are based
only on the knowledge of data structures and physical organization, such as access paths, and
the query itself. Also transformations performed on queries are mainly syntactic ones.
However, in other researches {Wied 84} it has been pointed out the need of investigating
the usage of different types of knowledge in the process of query optimization. An interesting
approach, often referred to as semantic query optimizalion, is the usage of semantic properties
of data to transform a given query Q into a query Q which is equivalent to the original one but
which is more efficient to process. Data semantic properties are predicates that must be true
for each element of a certain data set, or for each combination of elements of a certain graup
of data sets. A typical usage of semantic properties has been as integrity constraints [Bert 88,
Brod 78, Eswa 75, Nico 82, Ston 75] that ensure the correctness of database updates.
However, semantic query optimization is still a rather unexplored area and only few studies
have been reported {Hamm 80, King 81, Chak 86, Shen 87]. Some of the issues invoived in this

area are: (1) identification of the types of data semantic properties useful for query transfor-
mation; (2} identification of all possible transformations and formal proof of their correctness;
(3) definition of heuristics to guide the process of query transformation.

In {Hamm 80] a framework for semantic query optimization is presented and several impor-
tant issues are discussed. The authors describe some types of semantic properties to be used
for query transformation and a language in which the properties are defined. An important
point also made in {Hamm 80] concerns the method used to control the transformation process.
In fact, given a query there may be many possible ways of transforming such a query into
equivalent ones. Therefore a heuristic must be defined to select only those transformations
that may actually reduce the query cost.

In the work reported in {King 81] a system called QUIST (QUery Improvement through
Semantic Transformation) is described that demonsirates the feasibility of query processing
improvements through query transformations by using semantic rules for a class of relational
queries. The system uses detailed knowledge of the data semantic properties as well as detailed
knowledge of the database physical organization.

In [{Chak 86} an approach called on semantic compilation is presented. Under this approach,
a set of valid and useful integrity constraints are associated with each relation in the database.
Integrity constraints are represented in the form of clauses. A query on a relation can then be
transformed by using the constraints associated with the relation without searching the entire
database. The major weakness of this approach is that no method is described to determine
which rules can be profitably applied for a specific query. This problem is overcome in [Shen
87], where a scheme is proposed that dynamically selects from a large set of applicable integrity
constraints only the profitable ones for a relation in a query context. Under this approach, the
same formalism as in {Chak 86) is used for integrity constraint definition.

In the present paper we address the problem of providing the correctness of a set of semantic
rules for query transformations. In fact, if semantic optimization is to be viable, it is important
to provide some formal proofs of the correctness of such transformations. That is, we show
that the query obtained from a given query by applying semantic transformation techniques
provides the same answer as the original query.

Moreover, we address the problem of semantic query optimization in the framework of gen-
eral compiled transactions. In a compiled transaction (transaction from now on) the query
execution strategy is determined before the transaction is actually executed, so that the opti-
mization cost may be amortized over several executions. Therefore, semantic query transfor-
mation using integrity constraints is executed at transaciion compile time. A transaction in its
general form contains arbitrarily interleaved queries and modify operations. It may happen that
some of the intermediate transaction modifications cause an inconsistent state of the database.
For example, a program may withdraw money from one account and deposit it into another by
updating two tuples. After the first update, the state of the database may violate the integrity
constraint concerning the balancing of the accounts. This implies that a transaction must be
allowed to violate semantic integrity during intermediate steps of processing. A problem may
arise if during a transaction a query is executed which has been transformed at compile time
by using some integrity consiraint that has been violated by sorne preceding modify operation.
In this case, in fact, the integrity constraint is lnvalid and its usage in optimizing the query
may produce an incorrect answer. In the paper we present conditions preventing this type of
incorrect situation. The approach presented here extends our previous work presented in {Bert
88], where the assumption is made that the transaction queries are ail executed before the
modify operations. In this paper, we release this assumption, by allowing arbitrary interleaving
of queries and modify operations.

‘Thedigcussion will be in terms of the relational data model {Codd 70}. The class of queries
for which the transformations are defined is a subset of the queries that can be expressed in




terms of the Relational Algebra {Codd 70].

Our work differs with respect to recent works, such as [Chak 86] and {Shen 87], under two
aspects. The first is that our techniques are in the framewoark of Relational Algebra. Since,
most query opiimizers are based on the set processing primitives of the Relational Algebra, our
approach is more ditectly applicable. However, the most relevant difference is that we address
the problem of semantic query optimization in the framework of compiled transactions contain-
ing interleaved queries and modify operations. This problem, at the best of our knowledge, has
not been addressed elsewhere.

The remainder of this paper is organized as follows. In Section 2 the basic definitions and
the notation are introduced. In Section 3 a formal definition of integrity constraint is given
in terms of Relational Algebra. In Section ¢ some semantic rules for query transformation are
proposed. The formal proof of the correctness of these rules is presented in Section 5. Finally in
Section § the problem of semantic query optimization is discussed in the framework of general
compiled transactions.

2 Preliminaries

For the notation and the definitions not explicitly included here refer to [Ullm 82). RA is an
abbreviation for Relational Algebra.

2.1 RA expressions and RA-4 expressions

A RA ezpression is any expression formed legally (i.e., in accordance with the restrictions on
the operators) from the base relations by using the projection, selection, union, difference and
Cartesian producl operators. Recall that every RA expression defines in turn a relation, whose
scheme (resp. content) depends on the scheme {resp. content) of the base relations and on the
relational operators involved ia it [Codd 72).

Two RA expressions £; and E; are said to be equivalent, written E; = E,, if they define
the same set of tuples whatever is the content of the base relations involved in them . Some
equivalence rules between RA expressions that are based on syntactical properties of the RA
operators and that will be used in the sequel are reported in Appendix A.

In the present paper we shall focus on the RA expressions that can be derived by using
the operators of projection, selection, union, and Cartesian product, called in the sequel RA-4
ezpressions. We shall use the following notation: .

s w4(R) projection of relation R onto the set 4 of attributes

® ap(R)  selection of the tuples of relation R satisfying predicate 2
® RUR' union of relations R and R

¢ Rx R' Cartesian product of relations R and R’

R and R’ above are any base relation or any relation defined by a RA-4 expression. Predicate
P in the selection is any RA predicate (see Section 2.2).
Two canonical sets are associated with each RA-4 expression, as follows:

Definition 2.1 Let E be a RA-4 expression. Then the set of relation aames and the set of
attribute names involved in E, denoted respectively by Rel(E) and by Attr(E), are defined
recursively according to the following rules:

'In Section 5 we shall consider a looser form of equivalence, called local equivalence, which only requites that
the returned set of tuples is the same for a given content of base relations.
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1. If F is a base relation R, then

e Rel(E) = {R)

e Attr(E) is the relational scheme of R
2. If B = w4(£"}, then

o Rel(E) = Rei(£')

e Altr(E)= A
3. [ E = op(E’), then

o Rel(E) = Rel(E")

o Altr(E) = Attr(£’)
4. If £ = £y x E;, then

s Rel(E) = Rel(Ey) URel(Ey)

o Attr(E) = Attr(Ey) U Attr(Ey)
5. If E = Ey U Bq?, then

o Rel(E) = Rel(Ey) URel(Ey)

o Attr(E) = Attr(E£y) = Attr(E;) O
Every attribute name of a base relation R {called in the following basic attribute name) will

take the form R.C, where C denotes a column of R. The eztension of the column C of R,
which is expressed by the RA-4 expression 7(g cy(R), will be denoted in the sequel by Krc.

2.2 RA predicates and simple predicates

A RA predicate is any boolean combination of simple predicates by means of the logical con-
nectives and, or and not, and parentheses. Simple predicates are defined as follows:

Definition 2.2 A simple predicate is either a scalar- simple predicate or a set- simple predicate.
In particular:
(a) a scalar- simple predicate is any predicate having the form {X op Y}, where:
- X is a basic attribute name
- op is a scalar comparison operalor®
- Y is a constant or a basic attribute name; o
(b) a sei- simple predicate is any predicate having the form [X op’ Y], where: )
- X is a basic attribute name
- op is a sel membership operator *

- Y is a set of constants or the extension of a column C of a base relation R. O

The semantics of simple predicales is intuitive, and therefore is omitted®. Given two RA
predicates Py and Py, by P, = P; we shall denote that £, implies . P, and P, will be said
equivalent, written P} < Py, if both P, => P, and P, = P,.

Two canonical sets are associated with each RA predicate, as follows:

?For our purpose it is sufficient to assume that £y and E; have the same relation scheme.

3i.e., op is one of the following eperators: >, 2, =, #, <, <.

‘i.e., op’ is one of the following operators: € {is inj, ¢(is not in).

*Remark that the inclusion of the set membership operators in the simple predicates, and then in the RA
predicates, extends the Relational Algebra with respect to the original definition given in [Codd 70}.



Definition 2.3 Let P be a RA predicate. Then the set of relation names and the set of
attribute names involved in P, denoted respectively by Prel(P) and by Pattr(P), are defined
recursively according to the following rules:

1.HP=[RCopc
or P=[R.C op {c1,c3,.uCa}]
where ¢, ¢y, €3,...,cn{n > 1) are constants, then
s Prel(P) = {R}
o Pattr(P) = {R.C}
2. UP=[R.Cop R.L'
or P = [R.C op’ Kr.c] then
o Prel(P) = {R,R'}
s Pattr(P)= {R.C,R.C'}
3. If P = not(P’) then
o Prei(P) = Prel(P)
» Pattr(P) = Patir{P')
4. If P = (P and P")
or P = (P or P’} then
o Prel(P) = Prel(P')UPrel(P)
o Pattr(P) = Pattr(P)UPattr(P*) O
To give ourselves more convenience, in the sequel we shall include in the sei of simple
predicates also the constant predicates true and false. The expressive power of the set, clearly,

not changes. For P = true and P = false we shall assumne Prel(P) = Paitr(P) = 9, where 8
denotes the empty set.

2.3 Canonical forms for RA-4 expressions

The operators of projection, selection, union and Cartesian product can be arbitrarily combined
together within RA-4 expressions. In turn the predicate P in the selection can be any complex
RA predicate. Thus RA-4 expressions may present any arbitrarily complex form®. Below we

focus on two classes of RA-4 expressions which satis{y some restrictions both on the order on-

which the relational operators are applied and on the form of the RA predicate in the selection.
Definition 2.4 (a) A RA-4 expression £ is said to be in D-canonical form iff

E = n40p(E),
where:

- E is a base relation or a Cartesian product of base relations
- P has the form [P or Py or ... Pp}(m > 1),

and

#According to Section 2.2 the predicate P in the selection can also be a constant predicate frue or false. By
definition the RA-4 expressions oy ue{R) and oyain{R) return, respectively, the selation R itself and the empty
relation.
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- each P; in P is a simple predicate or a conjunction of simple predicales.
(b) A RA-4 expression E is said to be in Dg-canonical form iff

E = xp0p(£),
where:

- £ is a base relation or a Cartesian product of base relations

- P is a simple predicate or a conjunction of simple predicates. O

In spite of the restrictions the RA-4 expressions in D-canonical form and in Dg-canonical
form satisfy, the foilowing properties hold:

Property 2.1 Given any arbitrarily complez RA-{ expression E, there exists a R4-{ ezpres-
sion E' equivalent to E which is either in D-canonical form or is 2 union of RA-4 ezpressions
in D-canonical form ([Bert 86a) - Theorem 3.3 and Theorem 4.1). O

Property 2.2 For each RA-§ ezpression E in D-canonical form, there exists o RA-{ expression
E’ equivalent fo E which is either in Dg-canonical form or is the union of RA-{ expressions in
Dg-canonical form {{Bert 86a} - Theorem 4.2). O

Thus RA-4 exptessions in D-canonical form and in Dy-canonical form are very general.
Without loss of generality we shall therefore consider only RA-4 expressions in D-canonical
form and in Dy-canonical form in the sequel.

2.4 Queries and modify operations

In this section we briefly review queries and modify operations on a database.

2.4.1 Queries

A query (or read operation) is any RA expression. In the present paper we shall focus on
those queries that are either RA-4 expressions in Dg-canonical form or that are union of RA-4
expressions in Dg-canonical form. The former will be called in the sequel Dg-queries while the
others will be called Up,-queries.

Note that the queries we are dealing with in this paper, in spite of their restricted form, cover
a wide class of queries and are useful in many applications. In fact by Property 2.1 and Property
2.2 they express the whole set of queries definable by RA-4 expressions (or RA-4 gueries), and
thus they cover all the queries except those involving the RA difference operator. Moreover
the framework of compiled transactions we are concerned with ensures a direct application to
general RA-4 queries of the resuits proved for Dy- and Up,-queries in the present discussion.

2.4.2 Modify operations

Modify operations are those operations which makes it possible to alter the content of base
relations in a database, i.e. the delete, the inserl, and the updaie operations. The meaning
of each of these operations is intuitive, but there are several different definitions in use in the
literature. Let R be a base relation. In the present paper we shalil assume that:

e the delefe operation takes the form Ap(R), and removes from R all the tuples satisfying
predicate P
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o the insert operation takes the form T,,(py(R), and appends to R ail the tuples in &
satisfying predicate P

the wpdole opersiion takes the form ¥, py{R), where £ is a set of m pairs {a5, i) (1 £
i <m < k), and k is the degree of R 7. Each a; in £ is a basic attribute name for R, and
each ; is a constant or a basic attribute name for R different from a; ot an anithmetic
expression including both constants and attribute a;. @z, py(R) replaces the value of each
attribute a; in £ with the value of the corresponding expression ;. The replacement is
made only for those tuples of & that satisfy predicate £.

Predicate P in a modify operation is any RA predicate, whereas relation R is any constant
or base relation having the same relation scheme as R.

2.5 Transactions

A transaction is a work unit consisting of an application-specified sequence of database opeta~
tions, whose (sequential) execution is viewed as an afomic action by the end-user {e.g., refer
to [Date 83]). The execution of a transaction can conclude in two different ways:

e the transaction is committed, i.e. it terminates with all supported variations perma-
nently stored in the database

or else

s the transaction is aborted, i.e. it terminates with all supported variations removed from
the database.

Queries and modify operations can be arbitrarily combined together within tramsactions.
Let T be a transaction on a database D. If On....Of {f 2 1) are, in order, all the occurrences
of modify operations in T' (possibly some queries occur interleaved with them), then during the
execution of T' the database D goes through at most f + 1 states {or database extensions)

ST,O‘ ST,I! vevy ST,]

where:
* 57 {called initial state) is the state of D in which the execution of T starts

e for 1 < i < f, St (called infermediate state) is the state reached by D by executing O;
in the state S7,;.4

In the following we shall denote the set of states {510, 511,..., 51,4} by State(D, T) &.
Note that because a query does not modify the content of a database, then Srg is also the
state of D in which the first modify operation of T (i.e., O1) is executed. State St,4, which
is the state produced by the last modify operation of the transaction, is also cailed final state.
All the intermediate states produced by T on the database except the final one are transparent
to the end-user, and they are only seen by the transaction. St; may be visible or not by the
end-user, depending on how T concludes its execution. In fact the state of D visible by the
end-user after the execution of T is either St,7 or Srg. Entering into details, it is:

® 514, if T is properly terminated (ie., if T is committed)

:Recaﬂ that the degree of a relation is the ber of attributes defining its scheme,
Clearly if the transaction T contains only queries the database does not change state during the execution
of T and zemains in state Sro. In this case State(D,T) = {Sro}.

Consider a database consisting of the following base relations, which describes reviews loan and
requests, and employees at [.E.I library:

REVIEW.CATALOGU E(review_code, review_title, starting_year, publisher, first.year, last_year)

SU BSCRIBE R(subscriber_code, name, category, address, year) '
LOAN_.CATALOGU E(applicani_code, review.code, dernanded_year, number, date, period)
REQUESTS.L1ST(applicant_name, topic, review title, demanded_year, number).

EM PLOY EE(name, position, salary, status) )
Some integrity constraints on the database can be the following:

I: Every computer science and astronomical reviews published siarting from year 1984 can be
found of LE.I library.

I: Every applicant for a compuler science review must be a LE.L library subscriber.

It Only professors may borrow a review from the LE.L library for a period greaier than fifieen
days.

I: Students cannot borrow a review from the LE.L library.

Is: All library employees that are manager have a salary greater than 30,000.

Figure 1: Tntegrity constraints on a database: an example

o Ste, if T is aborted.

In other words, when the transaction is committed the database is left in theA final state.
Otherwise the database is left in the initial state. This is usuaily achieved rollingback the
changes performed by the transaction (see, e.g., [Gray 82]).

3 Integrity Constraints

Knowledge about the semantic properties of data can be represented as a set of integrity
constraints. Some examples of integrity constraints are shown in Fig. 1.

3.1 Formal definition
An integrity constraint basically consists of three components:
@ a domain, representing the data set for which the iniegrity constraint must hold
e a condition, expressing a property for the data in the domain
¢ a precondition, selecting the data in the domain for which the condition must be true.

Other components may be associated with an integrity constraint that are relevant for
sernantic integrity control. For instance, as described in {Bert 84}, a set W of access types aAnd
a set V of actions can be defined, where W specifies the types of modify operations upon which
it is necessary to verify that the integrity constraint is not violated, and V specifies the actions
to be executed by the system if the integrity constraint is violated. In this paper, however, we

™ only shall consider the three basic components of integrity constraints. In particular, we model

integrity constraints as follows:



Definition 3.1 An inlegrily constraini (shortly IC) is a 3-tuple I = (E, P!, P} where:

(a) E (representing the domain) is a RA-4 expression

{b) P’ (representing the precondition) and P (representing the condition) are RA predicates

and
(c) Pattr(P)UPattr(P") C Attr(E). O

Condition (¢) of Definition 3.1 simply asserts that the precondition and the condition of an
IC are definad only on attributes of its domain, and then ensures that the IC is well-formulated.
Next property follows as a direct consequence of condition (c) of Definition 3.1:

Property 3.1 Let I = (E,P’, P") be an IC. Then
Prel(P'yUPrel(P") C Rel(E). O

In the sequel we shall denote by P(t) the evaluation of predicate P on tuple t, and by {| 7 {}
the assertion on the database stated by the IC I, which is defined as follows:

Definition 3.2 Let I = {E, P/, P"} be an IC. Then
{1 =% vte &' P"(t), where E' = 0p:(E).D

We shall say that I = (E, P, P") holds in a database state (or, equivalently, that a database
state is consistent with I) iff | I |} is verified by that state. Note that whenever / holds then
P’ = P" for all the tuples in £.

A formal definition of the ICs presented in Fig.! is shown in Fig.2. Remark that there are
different ways in general to formaily define the same integrity constraint.

Definition 3.3 Two integrity constraints I and I’ are said to be equivalent, written I = I, iff
i1i«lr]o

Thus two ICs are equivalent if they define equivalent assertions on the database.
Let us briefly consider now the case of sets of ICs. For any set of ICs T we shall denote by
[} 7 {] the assertion on the database stated by 7.

Definition 3.4 Let T = {I1, I, ..., I,} te a set of ICs (n > 1). Then
i
Nz =" {{h Jand{{ L] and..and (| I, }.O

Clearly Z holds in a database state (or equivalently a database state is consisteat with.T)
iff {| Z f} is verified by that state.

Definition 3.5 Two sets of ICs 7 and Z’ are said to be eguivalent, written I =7/, it | T |] &
jrj]a

Recall that when a set of ICs is defined for a database the database must preserve the
semantic integrity of data with respect to this set. Thus if Tp is the set of ICs defined for the
database D then Tp must hold in every state of D visible by the end-user, otherwise an error is
pointed out by the system. Therefore Ip must hold in every state of D in which a transaction
T is started. This assumption is released for the database states produced by the intermediate
steps of the transaction, except for St s (see Section 2.5), which are not visible by the end-user.
Semantic integrity of data, in fact, can be violated during the execution of a transaction without
forcing the transaction to be aborted (a case in which this situation occurs is, for example, that
mentioned in the Introduction, concerning the bank-accounts administration).

Iy = { REQUESTS_LIST x REVIEW .CATALOGUE,
{REQU ESTS_LIST topic = ‘computerscience’]
or [REQUESTS.LIST topic = “astronomy’ ],
[REQUESTS_LIST review.title € XREVIEW CATALOGUE.review.title)
or{REQUESTS_LIST.demanded_year < 1984} }

I = { T(REQUESTS.LIST.applicant_name SUBSCRIBER.name}
U(REQUEST.LIST.topi(:’compuler:cience'](REQU ESTS_LIST x SUBSCRIBER),

true,

[REQUESTS.LiST applicant_name € KsyBSCRIBERname))

I3 = { OLOAN_C AT ALOGU E.agplicant code=SUBSCRIBERavbacriber <odel (LOAN .CATALOGU E'x
SUBSCRIBER),

[LOAN-CATALOGU E.period > 15,
[SUBSCRIBER.category = ‘professor’] )

I = { 91L0 AN CAT ALOGUE.applicant code=SUBSCRIBER. subscriber code){ LOAN CATALOGU Ex
SUBSCRIBER),

true,

[SUBSCRIBER.category # ‘student’])
Is = ( EMPLOYEE,

[EM PLOY EE position =' manager’],

[EMPLOY EE.salary > 30,000})

Figure 2: Formal definition of the integrity constrainis presented in Fig.1
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3.2 Simple integrity constraints

In this section we focus on a class of ICs, called simple ICs, which satisfy some restrictions both
on the form of the domain, and on the form of the condition and precondition.

Definition 3.6 An IC [ = (£, P!, P} is said to be simple iff:

{a) E is a base relation or a Cartesian product of base relations

(b) for each base relation Rin £ is
R € Prel(PYUPrel(P")

{e¢) P'is a simple predicate or a conjunction of simple predicates

(d) P”is a simple predicate or a disjunction of simple predicales. 0

Note that by condition (b) of Definition 3.6 each base relation in the domain of a simple
IC is either involved in the precondition or in the condition of the simple IC, or in both. Thus
the domain of every simple IC I is defined only on base relations on which 7 really expresses
a property and therefore is not redundant. Next property follows as a direct consequence of
condition (b) of Definition 3.6 and of Property 3.1:

Property 3.2 Let I = (£, P, P) be a simple IC. Then
Rel(E) = Prel(PYuPrel( P"). 0

In spite of the restrictions simple ICs satis{y, the following theorem holds {the proof of this
theorem is presented in Appendix B):

Theorem 3.1 Given a sel of ICs I, there exists a set of simple ICs T’ such that T =I'. O

Thus simple ICs preserve the same expressive power of the whole class of ICs. Without loss
of generality we shall therefore consider only simple ICs in the remainder of this paper.

To conciude this section, we present in Fig.3 an equivalent formulation in terms of simple
ICs of the set of I{Cs shown in Fig.2. Note that:

{Il} = {Iﬂ.x ' IJ\J}

12 = I,,
i
13 = 1,3
14 = I,‘
15 = I,5

The proof of the previous equivalences is straightforward and is obtained from Lemma B.5,
Lemma B.2, and Lemma B.3 in Appendix B (we omit it for brevity).
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I, =( REQUESTS_LIST x REVIEW_CATALOGUE,
{REQUESTS LIST topic = ‘compulerscience’],
[REQUESTS.LIST review title € KREVIEW CATALOGUE review-title]
or{REQUESTS_LIST demanded_year < 1984} )

I,, ={ REQUESTS_LIST x REVIEW_.CATALOGUE,
[REQU ESTS.LIST topic = ‘astronomy ],
[REQU ESTS_LIST review title € KREVIEW CATALOGUE review-iitle]
or{REQU ESTS_LIST demanded_year < 1984] )

I, =( REQUESTS.LIST x SUBSCRIBER,
REQU ESTS.LIST topic =' computerscience’,
{REQUESTS_LIST .epplicant_name € KsygscRIBER rname])

I, = ( LOAN_CATALOGUE x SUBSCRIBER,
{LOAN_CATALOGUE applicant_code = SUBSCRIBER.subscriber_code)
and [LOAN .CATALOGU E period > 15,
{SUBSCRIBER.category = ‘professor] )

I,, ={ LOAN_CATALOGUE x SUBSCRIBER,
[LOAN_CATALOGU E.applicant_code = SU BSCRIBER.subscriber_code]
{SUBSCRIBER.category # ‘student’))
I, =( EMPLOYFEE,
{EM PLOY EE.position =' manager’},
[EMPLOY EE.salary > 30,000})

Figure 3: Formulation of the set of integrity constraints listed in Fig.l in terms of simple
integrity constraints
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4 Semantic Rules for Query Transformation

Query transformation can be performed by using syntactical properties of RA operators (as
is the case of the rules presented in Appendix A) as well as semantic properties of data. In
this section we focus on this second aspect, and propose some rules, called in the following
semantic rules, which transform a query by modifying the predicate in the selection and by
eliminating a join according to the database properties stated by a set of integrity constraints.
Join elimination is particularly important since joins are usually very expensive to perform.
The modification of the predicate in the selection, in turn, comes out to be useful not only to
reduce the predicate to a simpler form but even to introduce clustering indexes in the query,
or to recognize that the query is empty without evaluating it.

The semantic rules we present below apply to Dg- and Up,-queries (see Section 2.4.1),
however they can be easily extended to arbitrary RA-4 queries because of Property 2.1 and
Property 2.2. In addition they only make use of simple integrity constraints, but this is not
a restrictive assumption because of Theorem 3.1. First in Section 4.1 we introduce a semantic
rule for modifying the predicate in the selection of a Dy-query, without any concern for join
elimination. Then in Section 4.2 we propose three semantic rules for eliminating a join in Jg-
queries. In Section 4.3 we consider the case of Up,-queries. Finally in Section 4.4 we provide a

_sample application. The proof of the correctness of the semantic rules presented in this section
is given in Section 5. In Section 6 we shall investigate their application within transactions.

4.1 Modification of the predicate in the selection

A semantic rule is presented which transforms a Dg-query by modifying the predicate in the
selection.

S-Rulie 4.1 Let Ip be the set of simple ICs defined for a database D, and let Q = wqap(F)
be a Dy-query on D (P # false).

if for some I; = {E;, P}, P{"} in Ip the following cenditions hold

1. Rel(E;) C Rel(E)
2. P = Py and Py, where P, = P/

then Q can be transformed with respect to J; into the query

Q = wa0p(E),
where
A TP =P (casel)
P={ false il P!’ = not Py {case?)
P and P! otherwise (cosed) O

The predicates P, and P in S-Rule 4.1 are simple predicates or conjunctions of simple
predicates. Note that (case 1) of S-Rule 4.1 allows the predicate in the original query to be
transformed by eliminating a conjunct, while (case 3) ailows a new predicate to be added to the
original predicate of the query (the addition of a predicate, for instance, may be useful when
this predicate is defined on an attribute on which there is an index). Finally {case 2) allows to
deduce that the query is empty without evaluating it.

We introduce the following definition:
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Definition 4.1 An IC [ is said to be reducing for a Dy-query Q with respect to a RA predicate
P iff Q can be transformed with respect to [; by using S-Rule 4.1, and the application of 5-Rule
4.1 produces the elimination of P from the selection of Q. O

Thus an IC I; is reducing with respect to a Dg-query Q whenever I; can be used to transform
Q according to (case 1) of S-Rule 4.1.

4.2 Join elimination

Three semantic rules are presented which transform a Do-query by eliminating a join. They
concern the case of eguijoins.

S-Rule 4.2 Let Ip be the set of simple ICs defined for a database D, and let @ = w40p(E)
be a Dy-guery on D such that :

(a) E= Ry x R
(b) AC Attr(Ry)
(¢) P= P, and [R).C} = Ricll

and

{(d) P, =true,
ot Prel(P) = {R1}

If for some I; = (&;, P{, P'} in Ip the following conditions hoid

1. Rel(E;) C Rel(E)
2. b= P,’

3. either P = [R7.Cy = (]
or P! = P;y" or {1;.Cy = ¢}, where P, = not P

then @Q can be transformed with respect to I; into the query

Q= maop(Ry),

where
P=Poand[R1.Ci=¢c. 0

Predicates P; and P/ in S-Rule 4.2 are simple predicates or, respectively, a conjunction and
a disjunction of simple predicates. Condition 3 in S-Rule 4.2 simply states that whenever P/
is not a simple predicate the component P{; of P/’ must not hold in order to apply S-Rule 4.2.
S-Rule 4.2 asserts in particular that the presence of an integrity constraint forcing a column of a
relation Ry to have a constant value may produce as a result the simplification of a Dy-query 4
requiring an equijoin between Ry and some relation Ry. This occurs whenever (1) the column
of Rz involved in the equijoin is the same forced by the integrity constraint to be a constant,
(2) the set A of attributes in the projection of Q only includes attributes of Ry, and (3) the
predicate Py in the selection of @ is either trivially true or is defined only on attributes of R;.
In this case Q can be transformed into a more efficient query Q defined only on relation Rj.
Note that the constant value expressed by the integrity constraint for the column C; of Ry is
forced in the selection of G on the column of R, that is involved in the equijoin in Q.

S-Rule 4.3 Let Tp be the set of simple ICs defined for a database D, and let Q = m40p(£E)
be a Dg-query on D such that :
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(a) E=Ri x Ry

(b) AC Attr(R;)

(¢) P =P ond [Ri.Ci = B.(y)
and

(d) P =true,
or Prel(Py) = {R}

If for some I; = (£}, P{, P/} in Ip the following conditions hold
- Rel(E:) € Rel(E)
2. P> P

3. either P! = [R,.C, € Kg,.q,)
ot P! = Piy" or [Ry.Cy € Kp,.c,], where Py => not P

—

then Q can be transformed with respect to I; into the query
Q: anp,(Rx). 0

S-Rule 4.3 is similar to S-Rule 4.2, but in this case an inclusion relationship holds between
a column of Ry and a column of Ry. This fact allows to transform Q by simply eliminating the
equijoin whenever the hypotheses of $-Rule 4.3 are satisfied by Q.

?\Iext semantic rule extends the previous ones to the case in which some additional con-
straints on relation Ry are included in the selection predicate of Q.

S-Rule 4.4 Let Ip be the set of simple 1Cs defined for a database D, and let @ = waop(E)
be a Dg-query on D such that:

(3a) E=Ry xRy

(b) A C Atir(Ry)

(¢} P=P and P; and [R,.Cy = Ry.Ch}

and

(d) P =true
or Prel(P) = {Ry} ‘
(e) Prel(Py) = {Ha}.

If for some L, L, in Ip the following conditions hold

L. I is reducing for Q with respect to P

2. I satisfies with respect to Q either the conditions of S-Rule 4.2 (case 1) or those of
S-Rule 4.3 (case 2)

then Q can be transformed with respect to {FLi,, I;,} into the query

Q = TFAO'E(R‘)

where

o

=) Prand [R.Cy =] if (case 1) is verified
Py if (case 2) is verified D
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S-Rule 4.4 asserts that a query Q requiring an equijoin between two relations 2y and R,
can be transformed into a query _Q defined only on relation R; even in the case in which there
is a predicate in the selection of Q that is defined only on aitributes of /3. This occues when
there exists an IC that is reducing for § with respect to Py and either S-Rule 4.2 or 5-Rule 4.3
can be applied accordingly.

All the semantic rules presented in this section can be easily generalized to the case in which
the query Q is defined on the Cartesian product of more than two relations.

4.2 Transforming Up,-queries by using semantic rules
Up, -gueries can be transformed by using the following semantic rule:

S-Rule 4.5 Let Zp be the set of simple ICs defined for a database D, and let O be a Up,-query
on D such that

for some Dy-queries Qy, ..., Ga {n > 1).
Then @ can be transformed with respect to a subset 7 of Zp into a query

El

e=U%.
i=1

it

where each @, is obtained by @; by applying one or more of S5-Rule 4.1, S-Rule 4.2, $-Rule
4.3 and S5-Rule 4.4 or, when no transformation is possible, Q is the same as Q;, and 7 {pos-
sibly empty) is the set of ICs in Zp used to transform @y, ..., @y, into Ql,....,gn, respectively O

S-Rule 4.5 asserts that any Up,-guery can be transformed by separately transforming the
Dy-queries which are part of it, whenever is possible, according to the semantic rules introduced
in Section 4.1 and Section 4.2,

4.4 A sample application

In this section we provide a sample application of the semantic rules introduced above. We
give, in particular, an example of equijoin elimination.
in the hypotheses of Figure 1, consider the following query Q:

Q: Relurn the list of all the compuler science reviews edited in 1990 thal are re-
quested al the LE.L library and are presen! at LE.] library.

(Note that a request may be issued for a review which is not at the LE.I library.) According
to the RA notation (see Section 2) Q can be formalized as follows:

Q = 740p(REQUESTS_LIST x REVIEW_CATALOGUE),

where

+» A= {REQUESTS.LIST review ditle}
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P = |[REQUESTS_LIST topic = ‘computerscience’)
and {REQUESTS.LIST.demanded_year = 1950}
and (REQUESTS LIST review title = REVIEW CATALOGU E review title]

Then @ requires an equijoin between relation REQU ESTS_LIST and relation REVIEW_CATALOGU
Consider the simple IC I, of Fig.3, reported below for convenience

L., = (REQUESTS.LIST x REVIEW CATALOGUE,
(REQU ESTS.LIST topic = ‘computerscience’],
[REQUESTS_LIST.review.itle € KRgV [EW_CATALOGUE review title)

or (REQUESTS_LIST.demnanded_year < 1934)).

It can be easily verified that @ and I,,; satisfies all the hypotheses of S-Rule 4.3 for A, P and
P, defined respectively as follows:

Py = [REQUEST.LIST topic =' computerscience’]
and[REQU EST_LIST demanded_year = 1§90},

P! = [REQUEST_LIST topic =' computerscience’]
and
P!y = [REQUEST_LIST demanded.year < 1984}.

Then by applying S-Rule 4.3 the query Q can be transformed with respect to I, ; into the
foliowing query Q defined only on relation REQUEST_LIST:

Q = ©40p(REQUESTS.LIST)

whete

P = [REQUEST_LIST topic = ‘computerscience’]
and [REQU EST_LIST.demanded_year = 1990].

Thus Q can be evaluated by evaluating Q, without any expensive computation of the equijoin.

5 Formal Proof of the Correctness of the Semantic Rules

In this section we prove the correctness of the semantic rules introduced in Section 4. The
problem of proving the correctness of the semantic rules is twofold: on one side it is necessary
to ensure that the transformation the semantic rules produce is well-formulated with respect to
the integrity constraints they use; on the other side it is necessary to ensure that the application
of the semantic rules provides the expected results. To this purpose remark that it is not strictly
necessary that the resulting query and the original query be equivalent (refer to Section 2.1),
but it is sufficient that they produce the same results just in those database states in which the
resulting query must be evaluated on the place of the original query {see below).

To prove the correctness of the semantic rules we shall therefore introduce two distinct
correctness criteria in this section, each dealing with one face of the problem. First in Section
5.1 we present such criteria, then in Section 5.2 we show that the semantic rules introduced
tn Section 4 satisfy both correctness criteria, and thus are correct. The correct application of
semantic rules to queries occurring within transactions will be separately discussed in Section

9.

e

5.1 Correctness criteria

In this section we formally define the criteria that will be used to prove the correctness of the
semantic rules. First we introduce the following definition, which formalize the concept of local
equivalence:

Definition 5.1 Let Q and G be two queries on 2 database D. Then Q and Q are said to be
locally equivalent in some state 5; of D, writtea Q =g; @, it Q and Q produce exactly the
same set of tuples when they are evaluated in state §;. O

Thus two queries are locally equivalent in some database state if and only if they produce
the same set of tuples when they are evaluated in such state. Next property follows directly
from the definitions:

Property 5.1 Let Q and Q be queries on a dalabase D. Then Q = Q if and only if Q =5, Q
for each state S5 of D. O

Thus whenever two queries on a database are equivalent they are locally equivalent in every
possible state of the database. The vice versa is also true.
The correctness of the semantic rules is established as follows:

Definition 3.2 (First Correciness Criterion) Let D be a database, and let Tp be the set of
simple ICs defined for D. A semantic rule correctly determines a transformation Q of a query
Q on D iff for each state S; of D in which holds the set of ICs I with respeci to which Q is
transformed (T CIp) isQ=5,Q O

Definition 5.3 {Second Correciness Criterian) Let D be a database, and let Tp be the set of
simple 1Cs defined for D. A semantic rule which determines a transformation Q of a query @
on D is correctly applied to Q iff whatever is the state S; of D in which Q@ must be evaluated
is Q =s; _Q_ 0

Thus a semantic rule correctly determines a transformation @ of a query Q on a database
D if and only if @ and  are locally equivalent in every state of D that is consistent with the
set of integrity constraints used by the semantic rule to transform Q into Q. In addition a
semantic rule is correctly applied to a query  if and only if Q aad the resuiting query Q are
locally equivalent in every state of D in which Q must be evaluated.

5.2 Correctness proofs

In this section we prove that the semantic rules introduced in Section 4 satisfy both the First
and the Second Correctness Criterion defined in the previous section.

First we present two properties that will be used within the correctness proofs and follow
directly from the properiies of the RA operators.

Property 5.2 Given two Dy-queries Qy = w4ap,(E) and Qp = w40p,(E) on o database D, if
in same state S; of D is Py & P, for each tuplet in E then Qy =5, O

Property 5.3 Given some couples of Do-queries Qi = auop(E:) ond Qi = waop{E:)

on a database D (n > 1,1 £ i £ n), if in same state Sj of D for each i & {l,...n} is
Qi=s; @ then UL, Qi=s, UL, Qi O
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Property 5.2 asserts that whenever two Dp-gueries are defined.on the same relation they
are locally equivalent in a database state if the predicates appearing in their selection operators
are equivalent in that state. Property 5.3 asserts that whenever some couples of Dg-queries are
locally equivalent in the same database state then the two Up,-gueries obtained by coilecting
together respectively the first elements of these couples and the second ones are again locally

equivalent in that state.
Below we prove that each semantic rule introduced in Section 4 satisfies the First Correctness

Criterion.

Theorem 5.1 S-Rule 4.1 correctly defermines a transformation Q of Q.

Proof

Let L; = {E;, Pl,P!"), Q = wA0p and {E) and Q = w40p(E) be defined accordingly to
S-Rule 4.1. We must show that whenever I; holds in some database state 5; then Q =g; Q. By
Property 5.2 it is sufficient to show that in every database state 5; in which [} L |] is verified
P & Py and Py for each tuple t in E. First we show that in every database state 5; in which
{1 I; 1] is verified Py = P{ for each t in E.

Claim 1 In every database state S; in which {} I; |} is verified

Vi€ E P(t)=> P'(t)

Proof of the claim
When [} I; |] is verified then by definition

vie B Pt = F'(t)
But by cordition 1 of S-Rule 4.1
Rel(E;) C Rel(E),

therefore
Attr(E;) C Atir(E).

Also by definition
Pattr( PYUPattr(P) C Atir(E;).

Then whenever [| I; |} is verified

Yte E Pi(t)= PI'(x)
Moreover by condition 2 of S-Rule 4.1

Yte E Pi(t)= Pl(t)
Thus whenever [} I; {] is verified

Yte E A(t)= P/(t) Q.E.D.O
The proof of the theorem can now be completed by showing that in every database state 5 in
which {| L |} is verified

Yt E P(t) e Pi(t) and Pyt).

case I (__E: Pg)
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(¢=) It trivially follows from the definitions.
(=) It is sufficient to show that whenever [] I; |} is verified thea

Ve E At)= P3).
But when {} [; |] is verified it follows by Claim 1 that
Vi€ E A(t)= P'(1).
Also by the hypotheses it {ollows that
Yte E P{t) = Pt).
Thus whenever {| I; ] is verified
Yte £ P(t)= P(t) Q.E.D.

case 2 {P = false)
It must be shown that whenever {} I; |} is verified the RA predicate P, and P, is false for
all the tuples in E. But whenever [} I; |] is verified it follows by Claim 1 that

Yie B A{t)= Pt).
Also by the hypotheses it follows that
Yt € E P(t) = not B{1).
Thus whenever [ £; |] is verified

Yt € E Pi{t) = not B{t) Q.E.D.

case 3 {P.= P, and P; and P")
(=) It trivially follows from the definitions.
{<=) It is a direct consequence of Claim 1.

This concludes the proof of the theorem. Q.E.D. Q

Theorem 5.2 S-Rule 4.2 correctly delermines a transformation Q of Q.

Proof
Let ; = (E;, P, P}, Q = TA0p, and (Rr.Cr=Re.col{ 1 X B2) and Q= 740p, and (Ry.Cr=q(Fa X

Ry) be defined accordingly to 5-Rule 4.2. We must show that whenever /; holds in some
database state Sj then Q =s; Q.

Claim 1 In every database state S; in which I; holds
Vi€ Ry x Ry PAi(t)= [R.Cr = c](t)

Proof of the claim
Analogously as shown in Theorem 5.1 it can be proved that whenever {} I; |] is verified

Yte Ry x Ry Pi(t) = P/(1).
Then because of condition 3 of S-Rule 4.2 it follows that whenever {| I; |} is verified
R Vi€ Ry x By Pi{t) = [R:.Cr = e}(t)
‘This concludes the proof of the claim Q.E.D. 0O
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Claim 2 For each database stale Sj in which I; holds

TATP, and [Ry.Cy=c(R1 X Ra) S5; ACP, and (Ry.Cy=Ry.Co}{Fa X Ra2)

Proof of the claim ) ) )
By Property 5.2 it is sufficient to prove that in every database state S in which {| I [} is

verified
Vi€ Ry x R; Px(i) and [R\.C[ = C](f) =3 [R].Cx = R‘).Cg](t) [0}
But observe that [R3.C; = ¢} implies both

[R;.C) = C] = [Rl.C‘ = RQ.C'Q]

and
{R1.C = Rp.Ch) = [Ry.C) = (]

Thus by Claim 1 whenever [| §; [] is verified the equivalence {c] is satisfied Q.E.D. O

To conclude the proof of the theorem it is therefore sufficient to show that for each database
state 5j in which {| &; |} is verified

TATP, and {Ry.Cr={(F1 X Ba) =g, TA0P, and (R.Cr={ 1) (5}

But the equivalence [f] follows directly from the properties of the RA operators, by the hy-
potheses (b) and (d) of $-Rule 4.2 and by Property 5.1. This conclude the proof of the theo-

tem Q.£.D. O

Theorem 3.3 S-Rule {.8 correctly determines a transformation Qof Q.

Proof
Let I; = (E;, P/, Pl'), @ =%40p, gnq (RiCi=Re.0{{F1 X Rg) and Q = waap (R;) be defined

accordingly to S-Rule 4.3. We must show that whenever I; holds in same database state Sj
then Q =5; Q.

Claim 1 In every datsbase slate S; in which I; holds

Vi€ Ry x Ry Pi{t) = [Ri.C1 € Kn,.c)(h).

Proof of the claim . . =
Analogously as shown in Theorem 5.1 it can be proved that whenever [| ; {] is verified

Vi€ Ry x By Ai{t) = PI(t)
Then because of condition 3 of S-Rule 4.3 it follows that whenever {| I; [] is verified
Vi€ Ry x Ry Pi(t) = [R1.C1 € Kp,.c,)(t)
This concludes the proof of the claim Q.E.D. O
Claim 2 For each database state Sj in which I; holds

Taete(m) P (R1 X R2) S35, TAus(R,)OP, and [R.Cr=Ry.Co}(Fa x Ra)

21

!
]
B
1

v

Proof of the claim
It is sufficient to show that whenever {1 Ii ]} is verified

€ ryon(fix R) =t € TAr(R)OP, ond [Ry.Cr=Ra.co{ Bt % Ra).

The implication

1 € Tanr(R) R (R X B2) = 11 € Taup(ry P, and {R1.C1=8,.,)( F1 X Rp)

in fact is trivially true.
Lett € op (R x Ry). Then t = (t1 * #2) for some #; € Ry and t; € Ry®. Note that by
construction f; & Taur(R,)P, (R1 X Ry). We must show that whenever 1 I i1 is verified

also #y € TAUr(R)IP, and [R).C=Ry.Co)(Fr X R3). But when {t i {i is verified by Claim 1
it follows that

Vi€ Ry x Ry P(t)= [Ri.Ci € Kpyoy)(t)
Then there exists 1, in Ry such that ti(Ri.Cy) = 12(R32.C2)*®. Thus whenever s
verified
{t1 %12) € 07 and (1y.Cy=Reco)( B X Ra),
and then
1€ XA (R) TPy and [Re.Cr=Rec)(Ba X R2) Q.E.D. O

To complete the proof of the theorem observe that by Claim 2 it follows that

FATAur(R)OR (R X Ra) Z5; TAT 4ur ()0, and R0.Gy=RyCa)( By x Ry) Ml

Also, when [} ; {] is verified, by Rule A.1 reported in Appendix A it follows that because of
hypothesis (b) of S-Rule 4.3 and of Property 5.1

FATAr(R)OP, and [Rr.Cy=Ro.Co)(R1 X Ba) =5, Q
and
FATAstr(2,)0 7 (B X Re) =5, mq0p, (Ry x Ry);
moreover by Rule A.4 reported in Appendix A it follows that because of hypothesis (d) of
S-Rule 5.3 and of Property 5.1
740p (Ry x Ry) =5Q
Due to the equivalence {7} this concludes the proof of the theorem Q.£.D. 0O

Theorem 5.4 S-Rule 4.4 correcily determines a transformation Qof Q.

Proof

Let I\ I, Q = maop, and Py and [Ry.Cy=Ry.Co){( Rt X Ra) and @ = 740p(Ry) be defined
accordingly to S-Rule 4.4. We must show that whenever{J;,, I;, } holds in some database state 55
then Q =5, Q. Let @' = TATP; and [Ry.Cr=Ry.C3)(F1 X Rz). Observe that Q can be iransformed
into @' by applying 5-Rule 4.1 with respect to ;. Then in every database state S; in which I,
holds, by Theorem 5.1 is Q =g, . Observe that ¢, in turn, can be transformed with respect
to I, into the query £ by applying either S-Rule 4.2 or S-Rule 4.3, depending on the conditions
satisfied by I;,. Thus in every database state Sj in which [, holds either by Theorem 5.2 {case
1) or by Theorem 5.3 {case Z)is @' =g, Q. Therefore in every database state Sj in which both
I, and I, hold is Q=s5Q Q.ED.Q

*Given two tuples §; € Ry and t3 € /a2 by (1 + t) we denote the concatenation of ¢, and t; (see [Ullm 82)).
We are using 2 non positional notation for relations here (see, e.g., [Maie 83]), then a tuple is seen as a
mapping from attribute names to values.



Theorem 5.5 S-Rule §.5 correctly deiermines o transformation Q of Q.

Proof

it follows as a corollary of Theorem 5.1, Theorem 5.2, Theorem 5.3 and Theorem 5.4, because
of Property 5.3 O

The proof of the correctness of the semantic rules introduced in Section 4 with respect to
the First Correctness Criterion is therefore concluded. Now we must show that each semantic
rule satisfy also the Second Correctness Criterion. But observe that whenever semantic rules
are applied to queties that occur outside a transaction the fact that semantic rules satisfy the
First Correctness Criterion is sufficient to ensure that they also satis{y the Second Correctness
Criterion. In fact semantic integrity is preserved by the database, and thus all the integrity
constraints used by a semantic rule to transform Lhe original query surely hold in the database
state in which the evaluation of the query is performed. Therefore the following property holds
as a corollary of Theorem 5.1, Theorem 5.2, Theorem 5.3, Theorem 5.4 and Theorem 5.5.

Property 5.4 Let D be a database, and let Ip be the sel of simple ICs defined for D. Let
Q be 4 query occurring outside a transaclion, and let Q be a transformation of Q obtained by
applying one or more of S-Rule 4.1, S-Rule 4.2, 5- Rule 4.3, S-Rule §.4 and S-Rule {.5. Then
for each stale S; of D

@=s00

Thus for every query Q occurring outside a transaction any semantic rule which determines
some transformation Q of Q is correctly applied to Q (remark that by Property 5.4 and by
Property 5.1 it is also Q = Q). This concludes the proof of the correctness of the semantic
rules introduced in Section 4.

6 Applying Semantic Rules within Transactions

In this section we investigate the problem of applying the semantic rules we have introduced in
Section 4 within transactions. We shall focus on compsled transactions (transactions from now
on).

As we have seen in Section 5, the fact that semantic rules are well-formulated ensures that
the obtained query and the original query produce exactly the same results in every database
state which is consistent with the integrity consiraints defined for the database. However,
differently from the case of queries occurring outside transactions, this property is not sufficient
to guarantee that semantic rules are correctly applied when they are used for transforming
queries that occur within transactions. Transactions, in fact, are allowed to violate semantic
integrity during intermediate steps of processing (see Section 3.1). Thus it may happen that the
evaluation of a query in a transaction is performed in a database state which is not consistent
with all or some of the integrity constraints defined for the database. Therefore restrictions
on the usage of semantic rules within transactions must be introduced to avoid to transform a
query into another by applying a semantic rule when the semantic rule makes use of integrity
constraints that can be invalidated during the execution of the transaction and can be still not
valid when the evaluation of the query is required. An example in which errors are produced
because no restriction on the usage of semantic rules within transactions is observed is shown in
Section 6.1. The problem of correctly applying semantic rules within transactions is discussed in
next two sections, First in Section 6.2 the problem is formalized, then in Section 6.3 sufficient
conditions for a correct application of semantic rules within transactions are presented.
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Begin transaction

new_pos: tuple (name: string, pasition: string, salary: float);

egmp_name: string;

while there are still triples to read do

begin

read(new.pos);

if (new_pos.salary = 0) then

W ((EMPLOY EE position,ncw_pos pasition}) EMPLOY EB.name=new._pos.name){ EM PLOY EE)
else

¥ {{EMPLOY EE.position,new_pos.position),{EMPLOY EE.salary,new.pos.saiary)), EMPLOY EE.name=new_pos.name}

(EMPLOYEEY,

end

T{EMPLOY EE.name}(TEMPLOY EE position="manager’ and EMPLOY EE.salary<a0000l EM PLOY EE))
while there are tuples result of the query de

begin

read{emp_name);
‘?(((EMPLOYEa.mlary,awco),((EMPLoyys.um,,'rl)),EMPLGYEE.mmampmme)(EMP LOY EE);

end

End transaction

Figurs 4: Transaction example

6.1 A sample of incorrect application

Consider the database jllustrated in Fig. 1. Consider a transaction which receives as input a
set of employee promotions. Each employee promotion consists of a triple of the form

name, position, salary).
po

A triple specifies that the employee, whose name is specified in the field name, must receive
the position specified in the field pesition. The field salary of the triple contains the new salary
to be assigned to the employee. The value 0 is used as a special value and denotes that the
new salary has not been established yet, and therefore the salary is left unchanged. However,
since it may happen that an employee becomes a manager and its new salary is not specified,
the transaction is designed so that in this case a minimum default salary of 31,000 is assigned,
if the current salary of the employee is lower or equal to 30,000 (recall that the IC I specifies
that the salary of a manager must be greater than 30,000). Moreover, the status atiribute of
the tuple (in relation £M PLOY EE) concerning the employee is set to T to to denote that the
current salary is temporarily set {and later on, the salary may need to be revised). A possible
organization for the transaction is informally specified in Fig. 4.

The transaction is organized into three steps. The first updates all employees by modifying
the positions of the employees according to the triples received as input. If the salary in a triple
is different from 0, the salary of the corresponding employee is updated accordingly; otherwise
is left unchanged. The second step retrieves all employees that are manager having a salary
iower than 30,000. It may happen that the previous updates have left some tuples of relation
EMPLQOY EE inconsistent with respect [C I5 (note a transaction may violate some ICs during
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its execution, as long as the final state is left consistent). The purpose of this select operation
is to determine which tuples are inconsistent and to assign them a minimum defanlt value of
31,000, so that the database is left in a consistent state after the transaction commit. For each
tuple retrieved by the select operation, an update is executed.

A problem may however happen if semantic query optimization techniques are applied
to this transaction. Suppose that the predicate in the select operation, that is [position =
manager and salary < 30000}, is transformed by using the IC I5 on the basis of rule S-Rule
4.1 (cf. Subsection 4.1). The result of the semantic transformation is O latse{ EMPLOY EE).
IC I5 asserts that all managers have a salary greater than 30,000. Therefore, a query asking for
managers having a salary equal or lower than 30,000 must necessarily return an empty result
if IC Is is used to transform the query. Thus, if the semantic transformation is applied, the
select operation will not retrieve the tuples which must be fixed in order for the database to be
consistent with respect to the ICs (this will cause the transaction to be backed out when the
[Cs validation is performed before transaction commit). If instead no semantic transformation
is applied the query will retrieve all tuples that are inconsistent, if any, and correctly update
them so that the database state, as modified by the transaction, is correct with respect to IC
Is.

Note that the expected correct behavior is the one where the select operations retrieves the
inconsistent tuples, that is, the one obtained when no semantic transformation is performed.
The reason why the semantic transformation produces an incorrect behavior is that uses an
IC which is temporarily not valid. Since transactions must be allowed to violate some ICs
during their execution, conditions must be defined preventing semantic transformations using
invalid ICs to be applied to queries within a transaction. In this particular example, the select
operation should not be transformed by using IC /5.

6.2  Correct application of semantic rules within transactions: formalization
of the problem

In this section we focus on the problem of correctly applying semantic rules within transactions.
Let Tp be the set of ICs defined for a database D, and let T be a transaction on D containing
some queries. In general transaction T may contain also modify operations, possibly interleaved
with queries. Then if Oy,...,0f (f > 1) are, in order, all the occurrences of modify operations
in T, some queries may occur in T before Oy, some after Oy and some others between each
couples of modify operations 0;_1,0; (1 < j < f). Correspondingly the evaluation of the
query in T is distributed on the database states in State(D,T) (see Section 2.5). That is, some
queries are evaluated in state ST, some in state 57,7, and some in the other states produced in
D by the intermediate steps of T, as illustrated in Fig. 5. Note that a query Q may occur more
than one time in T" (before and after some modify operations), and thus Q can be evaluated in
different states of D. In the following we shall denote the set of states in which a query @ is
evaluated during the execution of T' by Stateq(D,T) (cleatly Stateg(D,T) C State(D, T)).
Assume that at compile time a query Q in T can be transformed into the query Q by
applying some semantic rule with respect to the set of ICs T (T C Ip), and let T be the
transaction obtained by T by replacing Q with Q (see Figure 6(a), where we assume that Q
occurs two times in T). Then in order to apply the semantic rule to Q at compile time, and
thus to execute transaction T on the place of T at run time, it must be guaranteed that
produces exactly the same answers as Q would produce (see Fig. 6(b)), as is established by
the Second Correctness Criterion introduced in Section 5. For convenience we report below the
Second Correctness Criterion specifically formulated for queries that occur within transactions:

Definition 6.1 (Second Correctness Criterion for Queries occurring within Transactions) Let
Ip be the set of integrity constraints defined for a database D, and let T be a transaction on
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Figure 5: States of the database during the execution of the transaction T

Figure 8: Applying semantic rules within transactions

D. A semantic rule which determines a transformation @ of a query Q in 7' with respect to
the set of ICs 7 (I C Ip) is correctly applied to Q iff

¥S7; € Stateg(D,T) Q=s,; Q0 {8}

1t easily follows from the definitions that the First Correctness Criterion (sze Section 5) is
not sufficient to guarantee that condition {5} is satisfied by Q and Q. The states in Stateg(D,T),
in fact, may be not consistent with Z, except for state ST, which is the state in which the
execution of T starts (refer to Section 3.1). For every other state St in Stateg(D,T) (j > 1)
the validity of I clearly depends both on the content of 57 and on the sequence of modify
operations Ot,..,0;. Therefore some restrictions on the usage of semantic rules within trans-
actions must be introduced in order to satisfy condition {§]. We shall discuss this problem in
Section §.3. Before we need some definitions that are introduced in the following.

8.2.1 Involving and Triggering Operations

Let Zp be the set of integrity constraints defined for a database D. Then the execution of a
modify operation on D may invalidate one or more integrity constraints defined for D. We
introduce the foilowing definition:

Definition 8.2 Let J; = (Ej, P/, P/} be in Tp, and let O be a modify operation on D. Then

(a) O s said to be involving with respect to I; (or, equivalently, I; is said to be involved by O)
iff O changes some relation in Rel(£;).

(b) O is said to be triggering with respect to I; {or, equivalently, /; is said to be triggered by
0) iff O is involving with respect to I; and I can be violated by the execution of 0. O

Clearly if a modify operation O that is involring but not triggering with respect to some
IC I; is executed in a database state in which I; holds then I; holds aiso in the database state
produced by the execution of 0. Furthermore, as we have shown in [Bert 88 - Lemma 4.1}, if ;
does not hold in the database state in which O is executed then the execution of O may restore
the database in a state consistent with I;.

It is therefore important to recognize the cases in which a modify operation is involving
but not triggering with respect to some IC, because in this case the semantic integrity of the
database is preserved. We have investigated this problem in [Bert 88}, where we have presented
some syntactical conditions for recognizing this kind of operations at compile time. We shail
assume that whenever a modify operation O that is involving with respect to an IC does not
satisfy the conditions presented in [Bert 88] then O is triggering with respect to the IC. In the
following we shall denote by Trig{Zp, T) the set of ICs in Tp that are triggered by some modify
operation in T

6.2.2 Integrity Enforcement Actions

An Integrity Enforcement Action (shortly IEA) represents the check of an integrity constraint
in some database state. The IEA of the IC J; in the database §; will be denoted in the sequel by
BA(L, S;), and the outcome of this [EA wiil be denoted by Qut( EA(Z;, S;)). We shall assume

“that Out{EA(J;, S;)) is either abort or ok. In particular:
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o out{EA(J;, S;)) is ok if the IC  holds in the database state S; -
o owt(EA(J;,S;)) is abort if the IC I; does not hold in the database state Sj.

We shall also assume in the sequel that no compensation actions are executed in the case of
integrity failure. Therefore the enforcement of a given IC will be independent of the enforcement

of all other ICs.

6.2.3 Enforcing States and Inherently Enforcing States

The states produced on a database D by the execution of a transaction can be characterized on
the basis of their properties with respect to the set of simple ICs Tp defined for D, as follows:

Definition 6.3 Let T' be a transaction on a database D, and let O; be a modify operation in
T. Let I; be an IC in Trig(Zp,T), and let St ; be in State(D,T). Then:

(a) St is said to be enforcing with respect to [; iff either j = f or Out(EA(L;, S1,5)) = abort
implies Out{ EA(L, S1.7)) = abort

{b) Sty is said to be inherently enforcing with respect to I iff whatever is the state Sy in
which the execution of T starts St is enforcing with respect to I; O

Then a state St; in State(T,Ip) is enforcing with respect to an IC I; in Trig(ZTp,T) if
and only if either St is the final state for T (i.e., j = f), or whenever J; is violated in state
St then [ is also violated in state St.;. The state St is inherently enforcing with respect: to
I; if it is enforcing with respect to I; whatever is the initial state Stg for T (that is, even if a
different initial state St may lead to a different state Sy j, St is still enforcing with respect
to I;). In other words, inherently enforcing states are those states that can be recognized for
a transaction as enforcing staies with respect to some integrity constraint withoul exarmining
their content. They can be therefore recognized at compile time, on the basis of the form of
the transaction and the order among the modify operations included in it, without waiting for
the transaction execution. Syntactical conditions for detecting the snherently enforcing states
with respect to a triggered integrity constraint for a transaction have been presented in {Bert

88).

6.2.4 Integrity Enforcement Schedule and Minimal Integrity Enforcement Sched-
ule

An Integrily Enforcement Schedule (shortly, IES) consists of a set of IEAs (see Section 6.2.2),
and defines an order for checking the integrity constraints during the execution of a transaction.
We have introduced this concept in [Bert 88}, to provide a solution to the problems related to
the transaction management in the presence of integrity constraints. Delaying the enforcement
of integrity constraints to the end of a transaction, in fact, even if theoretically correct, can be
expensive, because it may cause a complete rollingback of a transaction. On the other hand,
because transactions are allowed to violate semantic integrily during the intermediate steps of
processing, it must be guaranteed that after the completion of a transaciion the database is
again in a consistent state with respect to the integrity constraints, otherwise the transaction
must be aborted. The solution proposed by an IES consists in the enforcement of integrity con-
straints during the execution of a transaction, without waiting for the iransaction termination.
In the remainder of the paper we shall use the advantages offered by the IESs to individuate
conditions allowing a correct application of semantic rules within transactions,

In the sequel we shall denote an IES for a transaction T with respect to a set of ICs
T by ES(Z,T), and its outcome will be denoted by out(ES(Z,T)). We shall assume that
out{ ES(Z,T)) is either ok or abort. In particular: ’
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o out{( ES(Z,T)) is abort
if out{ EA(L;, 5;)) is abort for at least one EA(L;, S;) in ES(Z,T)

s out(E£S5(Z,T)) is ok
if out(EA(L, S7)) is ok for every EA(L;,S;) in ES(Z,T)

Thus when all the IEAs defined for an IES produce as outcome ok (that is, when all the
integrity constraints enforced by the Inlegrily Enforcemeni Actions in the IES hold in the
pointed out database states) the outcome of the IES is ok, otherwise the outcome of the IES js
abort and the transaction must be aborted.

Refer to [Bert 88 - Definition 4.1} for a formal definition of the correctness of an IES. Briefly,
an IES for a transaction is correct if and only if its outcome is the same as the outcome of the
IES where all the integrity constraints are checked at the end of the transaction execution.
Remark that under the hypothesis that no compensation actions be executed in the case of
integrity checking failure, the problem of finding a correct IES for a transaction can be restated
as the problem of finding the most appropriate database states for the enforcement of each
triggered integrity constraint.

A special case of IES, called Minimal Iniegrity Enforcement Schedule (shortly, MIES) pro-
vides a check of each integrity constraint triggered by the transaction in the first state that is
inkerently enforcing with respect to that integrity constraint, with the obvious advantage of
allowing the detection of semantic integrity failure as early as possible during the transaction
execution. In fact as soon as an Infegrily Enforcing Action of an integrity constraint is pes-
formed in astate that is inkerently enforcing with respect to the integrity constraint and returns
as outcome abort then the checking of the integrity constraint in the final state produced by the
execution of the transaction (i.e., for transaction T, state Sr,s) still returns as outcome abort
(refer to Definition 6.3). Then by definition also the cutcome of the MIES is abort, and thus
the transaction must be aborted. Therefore the execution of the transaction can be halted in
correspondence of the modify operation that produces the inherently enforcing state in which
the Integrity Enforcing Action returning abort is performed, without waiting for the transac-
tion termination: all the updates made on the database by carrying on the subsequent part
of transaction, in fact, should be erased from the database because the transaction is aborted.
Thus their accomplishment can be avoided, with the result of reducing the number of unusefu)
updates on the database and the related expensive roilingback operations required when the
transaction terminates. Clearly the detection of a transaction failure in the first inherently
enforcing state with respect to some integrity constraint minimizes the number of rollingback
operations to be performed on a database.

In {Bert 88] we have proposed an algorithm which returns 2 MIES with respect to a set of
simple integrity constraints for a transaction consisting of two distinct phases: a read-phase,
where queries on the database ate performed, and a modify-phase, which follows the read-
phase, where modify operations are carried out on the database. The construstion of the MIES
(refer to [Bert 88-Algorithm 5.3)) is realized on the basis of the syntactical properties of the
transaction and on the form of the simple integrity constraints defined for the database, without
examining the database content, and thus it can be entirely accomplished at compile time. The
MIES obtained by applying such algorithm is a correct Integrity Enforcement Schedule for the
transaction (see [Bert 88 - Theorem 5.3]), and contains only Integrity Enforcing Actions to
be executed in same state that is inkerently enforcing with respect to an integrity constraint
triggered by the transaction.

In the following section we shall extend the use of a MIES to the case of transactions
containing any arbitrary interleaved sequence of read and modify operations, with the goal of
individuating conditions ensuring a correct usage of semantic rules within transactions.
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Figure 7: Inhereatly enforcing states and involving and {riggering operations with respect to
the integrity constraint [;

6.3 Sufficient conditions for a correct application of semantic rules within
transactions

In this section we present sufficient conditions for correctly applying semantic rules within
transaction. Nexi two properties follow as a direct consequence of the First and the Second
Correctness Criterion:

Property 6.1 Ifa transaction T conlains only queries then every semantic rule can be correctly
applied within T. O

Property 6.2 If a transaction T' contains both queries and modify operations, and gueries
precede all the modify operations, then every semantic rule can be correctly applied within T,
a

Thus every semantic rule can be correctly applied to transform a query occurring within a
transaction if the transaction does not contain any modify operations or if the modify operations
included in the transaction follow all the transaction queries,

In the remainder of this section we consider the general case of transactions having an
arbitrary formn. Assume that T be a transaction containing any arbitrarily interleaved sequence
of queries and modify operations. Let Ths be the transaction obtained by T by eliminating all
the queries in T, i.e. let Ty be the transaction containing, in order, all the modify operations
that are in T and no other operations. Clearly Trig(Ip, Tsr) is the same as Trig{Zp,T). For
each I; € Trig(Tp,Tar) let ESi({L;},Tar) be the MIES for the transaction Tar produced by
applying Algorithm 5.3 in [Bert 88] (refer to Section 6.2.4) with respect to the set of ICs {f;}.
Let State(£Si{({L},Tu)) = {SThias 5T} (1 € hiz € o € hin; < f) be the set of
inkerenily enforcing states in which I; must be tested during the execution of Ths according to
the MIES ES;. As illustrated in Fig. 7, every operation O; in Tay with j > hj n, by construction
is not invoiving or involving but not riggering with respect to I; !, Remark also that if 0;
is the first modify operations in Ty that is triggering with respect to I; then by construction
Jo < hiy. Finally observe that for each h € {hit, -t hin} the execution of Ty is carried on
after the execution of the operation Oy only if the database state St is consistent with the
IC I;, otherwise the transaction is immediately aborted (see Section §.2.4). Therefore if the
transaction Ty is not aborted in the state St then the integrity constraint I surely holds in
all the subsequent states produced by the modify operations following Oy in Thy, until the first
modify operation after O, that is triggering with respect to i, if any, is not encountered.

Since the MIES ES; can be defined at compile time, and conditions that are purely syntac-
tical are available for detecting if a modify operation is involving but not triggering with respect
to a given integrity constraint (refer to Section 6.2.1), it is therefore possible to determine at
compile time some intervals of states in State(D, Tar) (see Fig. 8) having the property that
either the integrity constraint J; holds in each state of the interval during the execution of Tyy
or the transaction Ty is aborted exactly in correspondence of the first state of the interval
reached by the database (which is one of the states in {ids s Bing })-

If we consider transaction T on the place of transaction Ty, we can now recognize that the
evaluation of some queries in T occur inside the intervals of states emphasized in Fig. 8 (refer
to Fig. 5), while the evaluation of some others queries may occur outside such intervals. Clearly

Y ¥or details concerning this property refer to {Bert 88].
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Figure 8: Special intervals of database states definable at compile time with respect to the

integrity constraint I;

- T

only for the queries whose evaluation is performed in states that belong to the intervals it is
guaranteed that the integrity constraint I; holds during their evaluation (in fact either I; holds
or the execution of T is halted before the evaluation of the query: see above). No assumption
concerning the consistency at run time of the database with respect to I; can instead be made
at compile time for those queries that can be evaluated outside these intervals. Therefore to
correctly apply at compile time a semantic rule which makes use of the integrity constraint I;
to a query Q in 7, it is sufficient to prevent the application of the semantic rule to Q in all the
cases in which there is some state in Stateg(D,T) which is not included within the intervals
reported in Fig. 8. This condition is formally defined by the following property: .

Property 6.3 Let T be a transaction on a database D, let Tp be the sel of simple ICs de-
fined for D, and let T C Ip. For each I; € Trig(Z,T), let ES({L},T) be the Minimal En-
Jorcement Schedule derived by applying Algorithm 5.8 in [Bert 88] with respect to I;, and let
StaiE(ES;({I;},TA{)) = {ST.h.',n--nST.h.,m} (1 < hm <. KL hi.n.' < f) Consider the Jol-
lowing subsels of inlegers, each one containing a sequence of conseculive numbers representing
subsequent indezes of modify operations included in the transaction T (and the corresponding
stales generated on the dalabase):

H;’o = {0, ..4,20 - 1}
Hiv={higy gy, - 1)
Hiner = {hini1, o gy, ~1}

T
Him; = {h;,,“., ey I')»

where '-io’lh.,x""’ih.,n,--x are such that Oia is the first modify operation in T that is triggering

wilh respect to I; (by construction Jp < hin)s and for each s € {hiy, .. hini1)} Ol}., . is the
first medify operation following Op,,, in T that is triggering with respect {o I; (by construction
I, S Mian1):
Then a semantic rules which transforms o query @ wilh respect lo I; is correctly applied 1o
Qif
SQ(D,T) c H,"o U H,'J U Hi.n.' [w]

Thus a semantic rule is correctly applied to transform a query (J occurring in a transaction
T with respect to the integrity constraint I; if Q must be evaluated during the execution of
T in some database state S; which either precedes the state SZO produced by the first modify
operation that is friggering with respect to I in 7, or is inherently enforcing with respect to
I; and is pointed out for the enforcement of I; in the MIES defined for Ty, or it follows an
inherently enforcing state for I; but precedes the subsequent state produced by the next modify
operation that is iriggering with respect to I, if any.

When more than one integrity constraint is involved in the application of a semantic rule to
a query occurring in a transaction, in order to correctly apply the semantic rule to the query
it is sufficient to ensure that the database states in which the query must be evaluated during
the execution of the transaction belong to the intersection of the intervals of states that can be
identified for each involved integrity constraint as described above. Formally:
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Property 6.4 Lel Hiy,..., Hia; be defined as in Property 6.3. Then a semantic rules which
transforms o guery Q with respeci to a set of inlegrily constraints I is corvectly applied to Q if:

sa@.1ye () #5) @

ieT j=0
7 Concluding Remarks

In this paper we have discussed the problem of query transformation by using semantic proper-
ties of data for queries expressed in terms of Relational Algebra (RA). The particular semantic
properties of data used to transform the queries are those expressed by the integrity constraints
exptessed for the database. The class of queries for which the transformations are provided is
a special class of the RA queries. In [Bert 86] it has been demonstrated that any arbitrarily
complex query not containing the difference operator is equivalent to the union of this special
kind of queries.

First we have given a formal definition of integrity constraints for the RA. An integrity
constraint  is defined by a 3-tuple (&, P/, P”} expressing the fact that the tuples obtained by
applying the predicate P’ to the set derived from the expression E satisy the predicate P”. In
other words P/ = P” {or tuples in the set defined by E.

We have also introduced the concept of simple integrity constraints, which are integrity
constraints satisfying some restrictions on the structure of the expression £ and on the form
of the predicates P/ and P”. In particular, £ is a base relation or a Cartesian product of base
relations, P’ is a simple predicate or a conjunction of simple predicates, and P is a simple

predicate or a disjunction of simple predicaies. As shown in the paper, no loss of generality

follows on assuming only simple integrity constraints.

Then we have presented query transformation rules which use semantic properties of data
expressed by simple integrity constraints to transform a given query into an equivalent one. In
particular, the first rule allow the predicate of a query to be transformed with the elimination
or modification of some of the component predicates, as well as with the addition of new
predicates deriving from the semantic properties of data. The other three rules allow the
number of relations in a query to be modified, without changing the query semantics, which
leads to join elimination. Finally the last rule allow to transform complex queries which also
include the snfon RA operator. A formal proof of the correctness of such rules is presented in
the paper.

‘The importance of such rules is that they may affect the time required to process a query.
In particular join elimination, clustering index introduction, empty query test become possible,
depending on the properties of data. As a result, a query optimization can be gained. Then
the transformations defined in the paper become useful in the process of query cptimization
and can be added to the semantic query optimization techniques.

We have also addressed the problem of correctly applying the semantic rules introduced in
this paper within transactions. At best of our krowledge this problem has not been addressed
elsewhere in the literature, but it has not a trivial solution. ‘The case of compiled transaction has
been investigated, where the query optimization cost can be amortized over several transaction
executions. Conditions are presented in the paper which guarantee a correct application of the
semantic rules to transform the queries occurring within transactions.

The work presented in this paper can be extended in several ways. First, other semantic rules
may be defined. In particular, some generalization of the rules presented in Section 4 can be
given. Second, the convenience of the various transformations in terms of query processing cost
will be evaluated. Third heuristics will be defined to guide the process of query transformation.
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A  Equivalence Rules for RA Expressions

in this appendix we present some equivalence rules for RA expressions that are based on
syntactical properties of RA operators. For the proof of the cotrectness of these rules refer to
{Ullm 82].

Rule A.1 Cascade of projections:
sa(zp(E))=wa(E) TACAH

Rule A.2 Cascade of selections:
or(op(E)) = opianar,(E)

Rule A.3 Union of selections:
op (EYUeop,(E) = oporp(E)

Rule A.4 Commuling selection and projection:
wa{op(E)) = op(7a(E)) if Pattr(P)C A
aal{op(E)) = maop(za(E)) i A = AUPattr(P)

Rule A.5 Commuting selection and union:
op(Ey U Eg) = op(E)) Uep(Esz).

B  Proof of Theorem 3.1

In this appendix we present the proof of Theorem 3.1. Before we introduce some lemmas that
emphasize properties of integrity constraints that will be used to prove Theorem 3.1. The
equivalence rules for RA expressions referred within these lemmas are those listed in Appendix
Al

Lemma B. 1 (*|J” elimination)
LetT = {I}UTy, where I = (By U Ey, P!, P"). LetT' = {I, b} UT, where I = (Ey, P, Py,
and Iz = (Eq, P', P"}). Then I =1

Proof

It is sufficient to prove that {I} = {fi,1}. Let E' = op(E; U Ey), E| = op«(Ey), and
Ej = opi(Ey). By Rule A.5is E = EJUE}. Then || [ =Vt € & P“(t) = Vt € (E\UE}) P(t),
whereas {| {i, 12} |] = Vt € By P"(3)] and [Vt € B} P“(t)]. Therefore {| I {| < | {§, Iz} i
Thus {I} = {I;,},and then T =T’ Q.E.D.O

Lemma B. 2 (“n” elimination) .
Let T = {I}UTy, where I = (xa(E), P!, P"). LetT' = {1} UT,, where Iy = {E, P', P"). Then
I=1.

Proof

It is sufficient to prove that I = I;. Let E' = op:(n4(E)) and let £} = gp/(E). By Rule A4
is B = wa(Ey), being Patir(P') C A by construction . Then [| I [J=Vt€ &' P'() =Vt €
TA(Ey) P"(t), whereas {| f {] = ¥t € E{ P“(t). Therefore [| I {] & {| I {|, being Pattr(P") C A
by construction !3. Thus I = [;, and then T =7’ Q.E.D.O

*This follows from Rule 2 of Definition 2.1 and from condition {c) of Definition 3.1.
131t again follows {rom Rule 2 of Definition 2.1 and from condition {c) of Definition 3.1.

34




Lemma B. 3 (“o” elimination) ]
LetT = {I}UZ,, where I = (op(E), P/, P"). LetT' = {[}}UT;, where Iy = (E,P and P, Py,
Then I =71'.

Proof
It is sufficient to prove I = 1. Let E' = op{op(E)) and E} = 0p qa pr(E). By Rule A2is
E'= E}. Therefore | I <> {| I [} Thus I=1I;, and then T = 7' Q.ED.Q

Lemma B. 4 (predicate simplification for disjunction)
LetT = {I}UT,, where I = (E, P, P"), and P’ has the form [P] or Pj] for some RA predicates
Bl and P}, LetT' = {[;, b} UT,, where I = (B,P,P") and I = (E,P},P"). ThenT = T'.

Proof

It is sufficient to prove {I} = {/;,I}. Let E' = opi(E), Ef = op(E), and E} = op(E).
By Rule A3is B' = B{UE). Then [/ [J=Vt € &' P/t) =Vt ¢ (£, U E}) P*(t), whereas
 {hh} [ =[vteE Pt)) and [Vt € Ey P"(t)]. Therefore {| I [ & || {h, 53} |}. Thus
{I}={h,h},and then T=7' Q.E.D.Q

Lemma B. 5 (predicate simplification for conjunction)

Lt T = {1V Uy, where I = (E,P',P"Y and P has the form [P{" and P§] for some RA
predicates P and P}, Let T' = {I}, b} UTy, where L =(E,P,P)and I = (E, P, Py,
ThenI =7,

Proof

It is sufficient to prove {I} = {L,}). Let E' = op(E). Then [} I |] = ¥t ¢
E' [P(t) and P{(t)], whereas U hhf] =N eE P and ¥t € E' P{(t)]. Therefore
{1l {h,L} ]l Thus {I} = {h,h}),and then T =7’ QE.D.Q

Now we present the proof of Theorem 3.1.

Theorem 3. 1 Given a set of ICs T, there ezisis a set of simple ICs T’ such that T = 7.
Proof

First we prove that given a set of ICs 7 for each condition of Definition 3.6 there exists a set
of ICs equivalent to 7 whose elements satisfy that condition.

Claira 1 Given a set of ICs T, there ezists a sel I} equivalent to T such that each IC

in Ij satisfies condition (a) of Definition 3.6. .

Proof of the claim

It follows from Lemma B.1, Lemma B.2 and Lemma B.3 as a direct consequence of-

Property 2.1 O

Claim 2 Given a set of ICs I, there exists a set I} equivalent 1o T such that each Ic
in I} satisfies condition (b) of Definition 3.6.

Proof of the claim

1t is sufficient to prove that for any IC in T not satisfying condition (b) an equivalent IC
can be defined that satisfies condition (b). Let I = (E,P',P") be an IC in T that does
not satisfy such condition. Because of Claim 1 we can assume without loss of generality
that E=R; x...x Ry (n > 1), where R;...R, are base relations. Let [ = (£, P/, P"),
where £ is the Cartesian product of the (base) relations in Prel{ PYUPrel( P"). Then by
construction Rel(£) = Prel(P') U Prel(P"). Furthermore by construction E = mu(E),
where 4 = UR.sRel(_l-D Attr(R;). Thus by Lemma B.2 [ = [ Q.E.D.O
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Claim 3 There exists o set I§ equivalent to T such thal zach IC in 13 satisfies both
condition (¢} and condition (d) of Definition 3.6,

Proof of the claim
It follows directly from Lemma B.4 and Lemma B.5. O

To complete the proof of the theorem observe that as a direct consequence of Claim 1, Claim 2
and Claim 3 there exisis a set of ICs 2’ equivalent to 7 whose elements satisfy all the conditions
(a), -y (d) of Definition 3.6. Since all the elements of 7’ by construction are simple the proof
of the theorem is concluded. Q.£.D. O
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