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Abstract We present an application of strategy syn-

thesis to enforce spatial properties. This is achieved by

implementing a toolchain that enables the tools CATLib

and VoxLogicA to interact in a fully automated way.

The Contract Automata Library (CATLib) is aimed at

both composition and strategy synthesis of games mod-

elled in a dialect of finite state automata. The Voxel-

based Logical Analyser (VoxLogicA) is a spatial model

checker for the verification of properties expressed using

the Spatial Logic of Closure Spaces on pixels of digital

images. We provide examples of strategy synthesis on

automata encoding motion of agents in spaces repre-

sented by images, as well as a proof-of-concept realistic

example based on a case study from the railway do-

main. The strategies are synthesised with CATLib, while

the properties to enforce are defined by means of spa-

tial model checking of the images with VoxLogicA. The

combination of spatial model checking with strategy

synthesis provides a toolchain for checking and enforc-

ing mobility properties in multi-agent systems in which

location plays an important role, like in many collec-

tive adaptive systems. We discuss the toolchain’s per-

formance also considering several recent improvements.

Keywords Synthesis ⋅ games ⋅ spatial model checking ⋅

CAS ⋅ multi-agent systems ⋅ rigorous tool engineering

1 Introduction

Collective Adaptive Systems (CAS) consist of multiple

spatially distributed agents, each exhibiting intricate

autonomous behaviour. These agents possess the ability
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to cooperate towards shared objectives while typically

also engaging in competition over limited resources [52].

Formal modelling and analysis are essential for en-

abling rigorous reasoning on the behaviour of CAS [59,

28]. By employing strategy synthesis, we facilitate the

capacity of CAS to dynamically adapt their behaviour

in accordance with evolving requirements. The seamless

integration of strategy synthesis with well-established

methods such as spatial model checking enhances the

modelling and analysis techniques available for CAS.

Research on strategy synthesis in games is a hot

topic, with established relations with supervisory con-

trol theory [70,3], reactive systems synthesis [47], parity

games [67] (with complexity breakthroughs [32]), au-

tomated behaviour composition [50], automated plan-

ning [33] and service coordination [16]. Several aca-

demic tools have been developed [45,36,38,37,62,60,

69,6] and applied to disparate domains, including land

transport [14], maritime transport [72], medical sys-

tems [63], CAS [54], and autonomous agents path plan-

ning [55], in which problems are modelled as games and

solved using tailored strategy synthesis algorithms.

In an automata-based setting, a strategy is a pre-

scription of the behaviour (transitions) of a particu-

lar player for all possible situations (states) that leads

that player to a specific goal (final state). Typically,

there are other players or an environment with differ-

ent, often competing goals to account for, and the set of

transitions may be partitioned into controllable (by the

particular player) and uncontrollable transitions. Strat-

egy synthesis is concerned with the automatic compu-

tation of a (safe, optimal) strategy (controller) in such

a game-based automata setting.

Recent advancements in spatial model checking have

led to relevant results like the fully automated segmen-

tation of regions of interest in medical images by brief,
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unambiguous specifications in spatial logic. The topo-

logical approach to spatial model checking of [42] is

based on the Spatial Logic of Closure Spaces (SLCS).

It provides a fully automated method to verify proper-

ties of points in graphs, digital images, and recently 3D

meshes and geometric structures [29,66]. Spatial prop-

erties of points are related to topological aspects like be-

ing near to points satisfying a given property, or being

able to reach a point satisfying a certain property, pass-

ing only through points obeying specific constraints.

The free and open-source tool VoxLogicA [27,39]

has been designed from scratch for image analysis. Log-

ical operators can be freely mixed with a few imaging

operators, related to colour thresholds, texture analysis,

or normalisation. The tool is quite fast, due to the fol-

lowing three factors: i) most primitives are implemented

using the state-of-the-art imaging library SimpleITK1;

ii) expressions are never recomputed (reduction of the

syntax tree to a directed acyclic graph is used as a form

of memoisation); iii) operations are implicitly paral-

lelised on multi-core CPUs. Ongoing work (cf., e.g., [30])

is devoted to a GPU-based implementation which en-

ables a speedup of 1–2 orders of magnitude.

Returning to the topic of strategy synthesis, the tool

CATLib [6,18,5] is a library for performing compositions

of contract automata [17] (a dialect of finite-state au-

tomata) and synthesising either their supervisory con-

trol, their orchestration, or their choreography [16], us-

ing novel notions of controllability [11]. CATLib offers

scalability features such as a bounded on-the-fly state-

space generation optimised with pruning of redundant

transitions and parallel streams computations. More-

over, the software is free and open source [6], it has been

developed using principles of model-based software en-

gineering [5], and it has been extensively validated using

various testing and analysis tools to increase confidence

on the library’s reliability.

Contribution. In this paper, we extend [10], where we

proposed a new approach to combine strategy synthesis

and spatial model checking. We proceed in a bottom-

up fashion. First, we present a toolchain based on es-

tablished off-the-shelf and tool-supported theories. We

then explore the combination of CATLib and VoxLogicA,

to concert the composition and synthesis functionalities

of CATLib with the spatial model checking functional-

ity of VoxLogicA. Subsequently, we provide proof-of-

concept examples of strategy synthesis on automata

encoding motion of agents in spaces represented by im-

ages2. The main insight is to encode an image as an

1 Cf. https://simpleitk.org/.
2 In the VoxLogicA approach, images are seen as a special

kind of graphs, where vertices are pixels, and edges represent

automaton, whose states are the pixels of the image.

These states are then interpreted as positions of an

agent, and transitions to adjacent pixels represent mo-

tions of the agent. A composition of automata is thus

a collective multi-agent system, in which each state of

the composition is a snapshot of the current position of

the agents in the map, and a game can thus be played

by a set of agents against other opponent agents, where

successful states and failure states can be identified us-

ing spatial model checking of the images. Consequently,

the strategy is synthesised with CATLib, while the prop-

erties to enforce are defined by means of spatial model

checking of the images with VoxLogicA. By updating

the properties to enforce, it is possible to synthesise a

new strategy enabling the agents to collectively adapt

to the updated properties. The developed examples are

open source and reproducible at [9].

This paper extends [10] into the following directions:

– the toolchain is automatically invoked by a main

program (written in python) which takes care of

receiving input parameters from the user, and auto-

matically routing them appropriately when invoking

the various phases of the toolchain;

– the number of images that are analysed by the spa-

tial model checker has been drastically reduced;

– the performance of the toolchain has been improved

by pruning unuseful computations and by reducing

the size of the automata to be composed;

– the spatial model-checking procedure has been im-

proved by resorting to a batching technique that

permits to dramatically increase the computation-

to-overhead ratio;

– an example from the railway domain [23] serves as

a proof-of-concept of the practical applicability of

the toolchain to real-world case studies, which also

showcases the necessity of using the recent notion

of semi-controllability rather than uncontrollability.

The benefits of our contribution can be summarised

as follows: we show the practical applicability of the

combination of two quite different tools, and we provide

an original approach to strategy synthesis and spatial

model checking, bridging theories and tools developed

in different research areas.

Related Work. Practical application of spatial logics,

including model checking, has been ongoing during the

last decade. For instance, the research line originating

in [57] merges spatial model checking with signal anal-

ysis. In the domain of cyber-physical systems, the ap-

proach of [76] demonstrates applications of SLCS in

proximity. Actually, the VoxLogicA family of tools can also
operate on arbitrary directed graphs. Adapting the present
work to the more general setting is left for future work.

https://simpleitk.org/
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a spatio-temporal domain with linear time, using bi-

graphical models. An abstract categorical definition of

SLCS has been given in [35]. The spatial model check-

ing approach of SLCS and VoxLogicA has been demon-

strated in case studies ranging from smart transporta-

tion [41,40] and bike sharing [43,44] in the context of

CAS, to brain tumour segmentation [4,27], labelling of

white and grey matter [26], and contouring of nevi [25]

in the context of medical imaging.

Synthesising strategies (or plans/control) for mo-

tion of agents is widely researched [65,55,56,2,73,48].

Spatial logics have been applied to this problem to in-

vestigate the synthesis of strategies from properties of

spatially distributed systems specified with spatial log-

ics [1,58,64]. Recently, the application domain of smart

cities has been explored in [68], and the aforementioned

signal-based approach has been enhanced for a hybrid

approach to multi-agent control synthesis, by exploit-

ing neural network and spatial-logical specifications in

the Spatio-Temporal Reach and Escape Logic (STREL)

formalism.

Differently from the above literature, we set out to

integrate previously developed off-the-shelf algorithms

and tools, with the aim of showing their applicability.

Contract automata and their toolkit were introduced

to synthesise ochestrations and choreographies of com-

positions of service contracts exchanging offers and re-

quests [17,11,16,6]. The interpretation of an image as

an (agent) contract automaton enables to connect con-

tract automata and CATLib with spatial model check-

ing and VoxLogicA, showing the flexibility of both ap-

proaches.

Structure of the Paper. After providing the necessary

background on the tools CATLib and VoxLogicA in Sec-

tion 2, we describe the proposed toolchain in Section 3,

followed by a report on three experiments in Section 4,

where we also discuss the improvement in performance

with respect to [10]. Finally, we conclude and mention

some future work in Section 5.

2 Background

In this section, we provide some background on the var-

ious formalisms and tools used in this paper.

2.1 CATLib, Automata Composition, and Strategy

Synthesis

We first formally introduce contract automata and their

synthesis operation. Contract automata are a dialect of

Finite State Automata with a partitioned alphabet of

actions. A Contract Automaton (CA) models either a

single service or a multi-party composition of services

performing actions. The number of services of a CA is

called its rank. When rank = 1, the contract is called

a principal (i.e., a single service). Figure 3 shows an

example of a principal contract automaton. Labels of

CA are vectors of atomic elements called actions. Ac-

tions are either requests (prefixed by ?), offers (prefixed

by !), or idle (denoted with a distinguished symbol -).

Requests and offers belong to the (pairwise disjoint)

sets R and O, respectively. The states of CA are vec-

tors of atomic elements called basic states. Labels are

restricted to be requests, offers, or matches where, re-

spectively, there is either a single request action, a single

offer action, or a single pair of request and offer actions

that match, and all other actions are idle. The length

of the vectors of states and labels is equal to the rank

of the CA.

For example, the label [!goright, ?goright] is a

match where the request action ?goright is matched by

the offer action !goright. Note the difference between

a request label (e.g., [?goright, -]) and a request ac-

tion (e.g., ?goright). A transition may also be called

a request, offer, or match according to its label.

The goal of each service is to reach an accepting

(final) state such that all its request (and possibly of-

fer) actions are matched. In [11], CA were equipped

with modalities, i.e., necessary (◻) and permitted (◇)

transitions, respectively. Permitted transitions are con-

trollable, whereas necessary transitions can be uncon-

trollable or semi-controllable. The resulting formalism

is called Modal Service Contract Automata (MSCA). In

the following definition, given a vector a⃗, its ith element

is denoted by a⃗(i).

Definition 1 (MSCA) Given a finite set of states

Q = {q1, q2, . . .}, an MSCA A of rank n is a tuple

⟨Q, q⃗0,A
r,Ao, T,F ⟩, with set of statesQ = Q1×. . .×Qn ⊆

Qn, initial state q⃗0 ∈ Q, set of requests Ar ⊆ R, set of

offers Ao ⊆ O, set of final states F ⊆ Q, set of transitions

T ⊆ Q×A×Q, where A ⊆ (Ar ∪Ao ∪ {●})n, partitioned

into permitted transitions T◇ and necessary transitions

T◻, such that: (i) given t = (q⃗, a⃗, q⃗ ′) ∈ T , a⃗ is either a re-

quest, an offer, or a match; and (ii) ∀i ∈ 1 . . . n, a⃗(i) = ●

implies q⃗(i) = q⃗
′
(i).

Composition of services is rendered through the com-

position of their MSCA models by means of the compo-

sition operator ⊗, which is a variant of a synchronous

product. This operator basically interleaves or matches

the transitions of the component MSCA, but, whenever

two component MSCA are enabled to execute their re-

spective request/offer action, then the match is forced

to happen. Moreover, a match involving a necessary



4 D. Basile et al.

transition of an operand is itself necessary. The rank

of the composed MSCA is the sum of the ranks of its

operands. The vectors of states and actions of the com-

posed MSCA are built from the vectors of states and

actions of the component MSCA, respectively.

In a composition of MSCA, typically various proper-

ties are analysed. We are especially interested in agree-

ment . The property of agreement requires to match all

requests, whilst offers can go unmatched.

CA support the synthesis of the most permissive

controller (mpc) from the theory of supervisory control

of discrete event systems [70,34], where a finite state

automaton model of a supervisory controller (called a

strategy in this paper) is synthesised from given (com-

ponent) finite state automata that are composed. Su-

pervisory control theory has been applied in a variety of

domains [53,74,71,24,49,16,75], including healthcare.

In this paper, we use the synthesis in the framework of

games, whose relation with supervisory control is well

known [3].

The synthesised automaton, if successfully gener-

ated, is such that it is non-blocking, controllable, and

maximally permissive. An automaton is said to be non-

blocking if from each state at least one of the final states

(distinguished stable states that represent completed

‘tasks’ [70]) can be reached without passing through

so-called forbidden states, meaning that the system al-

ways has the possibility to return to an accepted sta-

ble state (e.g., a final state). The algorithm assumes

that final states and forbidden states are indicated for

each component. The synthesised automaton is said to

be controllable when only controllable actions are dis-

abled. Indeed, the supervisory controller is not permit-

ted to directly block uncontrollable actions from occur-

ring; the controller is only allowed to disable them by

preventing controllable actions from occurring. Finally,

the fact that the resulting supervisory controller is said

to be maximally permissive (or least restrictive) means

that as much behaviour of the uncontrolled system as

possible is still present in the controlled system without

violating neither the requirements, nor controllability,

nor the non-blocking condition.

Finally, we recall the specification of the abstract

synthesis algorithm of CA from [16]. This algorithm will

be used to synthesise a strategy for the spatial game in

the next sections. The synthesis of a controller, an or-

chestration, and a choreography of CA are all different

special cases of this abstract synthesis algorithm, for-

malised in [16] and implemented in CATLib [5] using

map reduce style parallel operations of Java Streams.

This algorithm is a fix-point computation where at each

iteration the set of transitions of the automaton is re-

fined (pruning predicate ϕp) and a set of forbidden

statesR is computed (forbidden predicate ϕf ). The syn-

thesis is parametric on these two predicates, which pro-

vide information on when a transition has to be pruned

from the synthesised automaton or a state has to be

deemed forbidden. We refer to MSCA as the set of

(MS)CA, where the set of states is denoted by Q and

the set of transitions by T (with T◻ denoting the set of

necessary transitions). For an automaton A, the pred-

icate Dangling(A) contains those states that are not

reachable from the initial state or that cannot reach any

final state. Let B = {⊺,⊥} denote the Boolean constants

true (⊺) and false (⊥).

Definition 2 (abstract synthesis [16]) Let A be an

MSCA, K0 = A, and R0 = Dangling(K0). Given two

predicates ϕp, ϕf ∶ T ×MSCA ×Q → B, let the abstract

synthesis function f(ϕp,ϕf ) ∶MSCA × 2Q →MSCA × 2Q

be defined as follows:

f(ϕp,ϕf )(Ki−1,Ri−1) = (Ki,Ri), with

TKi = TKi−1 − { t ∈ TKi−1 ∣ ϕp(t,Ki−1,Ri−1) = ⊺}

Ri = Ri−1 ∪ { q⃗ ∣ (q⃗ Ð→) = t ∈ T
◻
A, ϕf(t,Ki−1,Ri−1) = ⊺}

∪Dangling(Ki)

The abstract controller is defined in Equation 1 below

as the least fixed point (cf. [16, Theorem 5.2]) where, if

the initial state belongs to R
(ϕp,ϕf )
s , then the controller

is empty; otherwise, it is the automaton with the set of

transitions T
K
(ϕp,ϕf )
s

and without states in R
(ϕp,ϕf )
s .

(K
(ϕp,ϕf )
s ,R

(ϕp,ϕf )
s ) =

sup({ fn
(ϕp,ϕf )(K0,R0) ∣ n ∈ N}) (1)

CATLib. Contract automata and their functionalities

are implemented in a software artefact, called Contract

Automata Library (CATLib), which is under continu-

ous development [6]. This software artefact is a by-

product of scientific research on behavioural contracts

and implements results that have previously been for-

mally specified in several publications (cf., e.g., [18,19,

17,22,21,12,20,13,16,11]). CATLib has been designed

to be easily extendable to support similar automata-

based formalisms. Currently, CATLib also supports syn-

chronous communicating machines [61,46]. CATLib and

the other CA tools [7] allow programmers to use CA

for developing more reliable applications. In this paper,

we further showcase the flexibility of CATLib by using

it to synthesise strategies for mobile agents in spatial

games. CATLib has been implemented using modern es-

tablished technologies for building, testing, document-

ing, and delivering high quality source code. CATLib is

tested up to 100% coverage of all lines, branches, and
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the strength of the tests is measured with mutation

testing with top score.

2.2 VoxLogicA, Spatial Model Checking, and Image

Analysis

The Spatial Logic of Closure Spaces (SLCS) is a mo-

dal logic language equipped with a unary ‘nearness’

modality and two binary operators: ‘reaches’ and ‘is

reached’. The language is interpreted on points of a

spatial structure, which is, generally speaking, a Clo-

sure Space (cf. [42] for details). Graphs, digital images,

topological spaces, and simplicial complexes are all in-

stances of closure spaces.

In this paper, we concentrate on the interpretation

of SLCS on images. In this case, the two reachability

modalities collapse and the nearness modality is a de-

rived operator based on the reachability operator, caus-

ing a particularly simple syntax.

Definition 3 Fix a set AP of atomic propositions. The

syntax of SLCS is defined by the following grammar:

ϕ ∶∶= p ∣ ⊺ ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ρ ϕ[ϕ]

where p ∈ AP .

Models of SLCS formulae, for the purpose of this

paper, are the pixels of digital images; i.e., each SLCS

formula induces a truth value for each point of a given

digital image. In order to define the interpretation of

formulae, a notion of path needs to be established, based

on a notion of neighbourhood or connectivity of pixels.

VoxLogicA uses the so-called ‘8-neighbourhood’, i.e.,

each pixel is adjacent to 8 other pixels, namely those

that share an edge or a vertex with it. Adding a notion

of connectivity permits one to interpret the set of pixels

of an image as a (symmetric) graph. Graph-theoretical

paths are then well defined, and used below.

The interpretation of formulae depends upon a val-

uation of atomic propositions, assigning to each atomic

proposition the set of points on which it holds, and as-

signing a direct interpretation to the symbols p ∈ AP .

The meaning of the truth value ⊺ (true), negation (¬),

and conjunction (∧) is the usual one. A pixel x satisfies

ρϕ1[ϕ2] if there is a path rooted in x, reaching a pixel

satisfying ϕ1, such that all intermediate points, except

eventually the extremes, must satisfy ϕ2. We make use

of the derived operator ϕ1 ↝ ϕ2 which is similar to

ρϕ2[ϕ1], but the extremes are also required to satisfy

ϕ1. The near derived operator Nϕ ≜ ρϕ[¬⊺] is true at

point x if and only if there is a pixel adjacent to x where

ϕ holds.

From now on, we use the tool’s syntax, which uses

tt, &, |, !, ~>, and N for ⊺, conjunction, disjunction,

negation, ↝, and N , respectively, permits macro abbre-

viations of the form let identifier = expression,

permits function definitions of the form let identifi-

er(argument1,...,argumentN) = expression, and it

also permits other constructs not needed for the scope

of this paper. On images, atomic propositions can be

expressions predicating over the colour components of

the pixels. For instance, in our example specification

(cf. Figure 7), to characterise the pixels composing a

door as the blue pixels (note that 255 is the maximum

value since we are using 8-bit images), given that img

denotes an image, we use:

let r = red(img)
let g = green(img)
let b = blue(img)
...
let door = (r =. 0) & (b =. 255) & (g =. 0)

Also, the tool permits global formulae that assign

a truth value to models, not just pixels in isolation.

These can be based on the volume(phi) primitive, that

computes the number of pixels satisfying the formula

phi. For instance, existential and universal quantifica-

tion are defined as follows:

let exists(p) = volume(p) .>. 0
let forall(p) = volume(p) .=. volume(tt)

We note that the type system of VoxLogicA is very

simple, and comprises numbers, Boolean values, images

of numbers (single-channel images, sometimes called

grayscale), images of Boolean values, very often called

binary images or masks, and ordinary multi-channel

images. Operators are strongly typed with no type over-
loading. Therefore, for instance, the pixel-by-pixel and

of two Boolean-valued images is a different operator

with respect to the conjunction of two Boolean values,

and it also differs from the conjunction of the Boolean

value of each pixel of an image with a Boolean (scalar)

constant. With some exceptions, the naming conven-

tion of operators reflects their type, having a dot on

the side of the ‘scalar’ value (Boolean or number) and

no dot on the side of the image, so for instance .&.

is Boolean and, whereas & is pixel-by-pixel and of two

images. With respect to Figure 7, for instance, we have

that base and img are multi-channel images, with the

operators red, green, blue, extracting number-valued

images from them. The definition of mrRed (a red area)

contains the =. operator taking a number-valued im-

age on the left, and a number on the right (hence the

dot on the right side). In the definition of the property

forbidden1, one can find an example of the use of the

operator .|. which takes as arguments two Boolean

values.
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3 Tool Methodology

In this section, we discuss the tool methodology used

to chain CATLib and VoxLogicA in order to perform

strategy synthesis of spatial properties. The diagram in

Figure 1 depicts the workflow and the various activities

in which the whole process is decomposed.

The process starts with a PNG image, depicting a

map or planimetry, for agents to move in. Note that

this implies that the state space is discrete, finite, and

can be provided by a user with no training on the under-

lying theories used. Further input concerns the spatial

properties that one wants to enforce with the synthe-

sised strategy, modelling the forbidden configurations

to avoid and the final configurations to reach, as well

as the number of agents in the experiments with their

starting position, and an indication of which agents are

the controllable players and which are the uncontrol-

lable opponents. The aim of the process is to produce

the maximally permissive strategy for moving the play-

ers against all possible moves of the opponents, such

that no forbidden configuration is ever reached and it is

always possible to reach a final configuration. In game-

theoretical jargon, this is both a safety game and a

reachability game [15]. The strategy is maximal, in the

sense that it includes all possible behaviour that satis-

fies the above properties. If the strategy is empty, then

there exists no strategy for the players satisfying the

given properties. CATLib only considers finite traces: in-

finite looping behaviour where an agent is stalled and is

prevented from reaching a reachable final configuration

is ruled out.

CATLib Activities. To allow the integration of CATLib

and VoxLogicA, CATLib has been extended to allow the

import/export of PNG images, which are internally con-

verted into automata. These automata have pixels as

states and transitions connecting adjacent pixels. We

interpret these automata as agents, whose position is

represented by the current state and transitions are re-

quests to move up, down, left, or right to adjacent pix-

els/states. Note that more transitions could be added

to model complex movements (e.g., between pixels that

are not adjacent) should this be required by the specific

application. The experiments in this paper did not re-

quire such movements. If a border is reached, then there

will be no request transition in the automaton to move

beyond that border. Each state is labelled with both

a position, rendered in three coordinates (the third co-

ordinate is currently not used), and the colour of the

pixel. Figure 2 depicts a small portion of an agent au-

tomaton.

A driver automaton is used to command an agent to

move in a specific direction. It is depicted in Figure 3.

The driver can impose some constraints (e.g., never go

down). The last automaton that is used models a door,

which is initially closed, and which can be opened and

closed repeatedly. It is depicted in Figure 4.

The first activity of CATLib thus consists of import-

ing and creating such automata. There can be several

instances of agents and doors or different maps accord-

ing to the parameters of the experiments to perform.

The second activity consists of composing these au-

tomata to generate all possible reachable and valid con-

figurations. As stated in Section 2, the composition has

unicast synchronisations between offers and requests of

agents (called matches), and labels that are only sin-

gle moves of an agent performing an offer. Agents who

perform requests can move only when paired with a cor-

responding offer. This type of synchronised behaviour

is called agreement: all requests must be matched.

Note that this is an optimisation with respect to the

previous version of the toolchain as discussed in [10].

Indeed, in [10], the composition included all possible

behaviours, including invalid ones. We refined this ac-

tivity to avoid the generation of invalid states in the

composition. Previously, this was done in an additional

activity performed later on, which has been removed.

In Section 4, we will discuss the improvement in per-

formance.

To reduce the size of the state space, the compo-

sition of CATLib allows to avoid generating portions of

the state space that are known to violate some property.

These are, e.g., configurations where an agent is placed

on top of a wall (i.e., its state has colour #000000), on
top of another agent (i.e., in a state of the composi-

tion, two agents have the same coordinates), or on top

of a closed door (i.e., in a state of the composition, one

agent has the same coordinates as the door and the

door is closed). Since these are simple invariant prop-

erties (it only suffices to check the labels of states),

they can be directly checked in CATLib. VoxLogicA is

used to evaluate more complex spatial properties (cf.

Figure 7 below). The aforementioned invalid moves are

also specified in VoxLogicA under the property wrong

in Figure 7 below.

In case of controllable ‘bad’ transitions, these will

not be generated since they will be pruned by the syn-

thesis. In case of uncontrollable ‘bad’ transitions, these

will be generated (since they cannot be pruned) but

their target state will not be visited (the synthesis will

try to make these ‘bad’ states unreachable). Thus, once

some agent is rendered as not controllable (by chang-

ing its transitions), it cannot be stopped from reaching

an illegal configuration. It follows that illegal configu-
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Input

CATLibVoxLogicA

convert image to a mobile agent
automaton, create other automata

Compose the automata to generate
all valid behaviours

Start

Convert each state of the
composition to an image, a

snapshot of the current position of
the agents into the map

Export a JSon with
boolean values of

evaluations of properties
on images

Mark the legal composition
with forbidden, final states
using the JSon attributes,

mark
uncontrollable/controllable

transitions

Synthesise the strategy for the
marked automaton

End

PNG image of the map

Spatial model checking of
properties on images

Spati al
Properties

Archive of Images

JSon evaluated
properties:

forbidden states,
final states

Strategy
Automaton

Uncontrollable
player

Number of
agents

Starting
positions of

agents

export
output

export

import

export

import

import

Fig. 1 The workflow showing the integration of the two tools
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Fig. 2 A zoom-in on a fragment of the agent automaton

[Driver]

[!goright][!goup] [!goleft][!godown]

Fig. 3 The driver automaton

[Open][Close]

[!close]

[!open]

Fig. 4 The door automaton

Fig. 5 State [(10; 10; 0) #FFFFFF, (5; 7; 0) #FFFFFF,

Driver, Close] of the composition of two agents, a driver,
and a door. The door is in position (2; 7) and is closed. The
first agent is depicted red, the second is green, and the door
is blue. The attributes of the position of the two agents are
both #FFFFFF, which is the hexadecimal value for the colour
white, i.e., both agents are placed on a white cell of the map.

rations must be removed before deciding which agents

are not controllable and which are controllable. In this

step it is also decided what are the initial positions of

the agents, i.e., the initial state where the state-space

generation starts. Indeed, the generated state space also

depends on the given initial conditions.

In the composed automaton, each state is a tuple of

states of all agents (including the door and the driver).

Each state can be represented as an image, a snapshot

of the current configuration. For instance, Figure 5 de-

picts a state rendered as an image. The image is gen-

erated by colouring the starting PNG image with a red,

green, and blue pixel to indicate where, respectively, the

first agent, the second agent, and the door are located.

The door is only coloured when it is closed.

The third activity consists of generating all images

for all states of the composition. These images are then

passed to VoxLogicA (whose activities are described be-

low) to evaluate for all properties whether or not they

are satisfied. The number of images generated at this

step are far fewer than those that were generated in [10],

because the composed automaton has been polished by

removing invalid states.

Next, the composed automaton must be marked

with those states that are forbidden and those that are

final. This is the fourth activity of CATLib. Also, it must

be decided which agents are controllable and which not.

This information is provided partly as input parameters

of the experiments, and partly as a JSon file computed

by VoxLogicA, where each state has as set of Boolean

attributes, one for each evaluated spatial property.

After all states and transitions have been marked

with the required information, the strategy synthesis

is performed as the final, fifth activity of CATLib. The

algorithm computes the maximal behaviour of the com-

position (in agreement) such that it is always possible

to reach a final configuration and forbidden configura-

tions are never traversed. If the strategy is non-empty,

this will provide information on the behaviour to be

followed by the controllable agents to ensure that a

final configuration is always reached without passing

through forbidden configurations, against all possible

moves of uncontrollable components.

VoxLogicA Activities. The first activity of VoxLogicA

is the evaluation of the formulae representing final and

forbidden states. This is done via an auxiliary python

script, that takes as input the logical specification, writ-

ten into a file with .imgql extension, the base image

(i.e., the map or planimetry where agents move), and

the directory containing all reachable configurations,

encoded as images. The python script then iterates the

specification on the whole dataset of input images.

The second activity of VoxLogicA collects all the

properties that have been computed in the first activ-

ity, locally for each state, and turns them into a single

source of information, in the form of a JSon file that

contains a record for each state, reporting on all the

properties that have been described in the specification.

In order to do so, a special output mode of VoxLogicA

is used, where the tool outputs a single JSon record of

all the user-specified properties that have been printed

or saved in the specification.

Parameterisation. Previously, in [10], the parameters

of the experiments were hardcoded and each different

setup required to update the source code. We updated

the toolchain such that the parameters are now passed

to the toolchain at command line. This improves the

usability of the toolchain and allows its automatisation.

Below we only report the most significant parameters:

experiment [1|2|3] This is a special option that al-

lows to select the setup of either experiment 1, 2,

or 3 (cf. Section 4). If this option is not specified,
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one has to provide the setup with the parameters

below;

gateCoordinates x y This parameter is used to set

the coordinates of the gate;

position agent 1 x y This parameter is used to set

the initial coordinates of the first agent;

position agent 2 x y This parameter is used to set

the initial coordinates of the second agent;

controllability [1|2] If the value is 1 (2, respec-

tively), then the agents (gate, respectively) are con-

trollable, but not the gate (agents, respectively).

specification This parameter indicates the ImgQL

specification to be used as input of VoxLogicA.

Other parameters include the various paths of the

files to load/store, the name of the attributes in the

output provided by VoxLogicA, and the selection of an

activity to execute (e.g., image generation and strategy

synthesis).

Handling Higher Dimensions. Although in this paper,

we only develop examples using 2-dimensional images,

the toolchain enables the representation of scenarios

with higher dimensions. An n-dimensional object can

be represented in CATLib as an automaton whose state

is a vector of coordinates of length n (currently, three

dimensions are supported). On the logical side, we re-

mark that the main case study for VoxLogicA uses med-

ical 3D images [27]. Furthermore, the model checker

has been ported to the analysis of 3D meshes in [29].
Finally, the logic SLCS has also been interpreted on

higher-dimensional simplicial complexes, which are ca-

pable of expressing logical relationships between data,

as demonstrated in [66]. However, it must be noted that

higher dimensions may render analysis unfeasible unless

specific computational methods are used.

User Input. The way in which a user can provide the

images in input to the toolchain is not constrained,

and it depends on the specific problem. The automata

used by CATLib are generated from the input image.

Later, the images generated by CATLib are interpreted

as graphs for model-checking purposes by VoxLogicA.

Note that the input image provided by the user is dif-

ferent from the images that are generated by CATLib

and model checked by VoxLogicA. Indeed, the graph

representation used by VoxLogicA is not related to the

behavioural graph (i.e., the contract automaton) used

by CATLib, but it only depends on an image’s structure.

Fig. 6 On the left, the initial configuration of both experi-
ments. In the middle, the final states of the first experiment
(marked in violet). On the right, a configuration traversed by
one of the shortest paths of the first experiment’s strategy,
in which the red agent is crossing the door before the green
agent does, thus avoiding forbidden configurations.

4 Experiments

In this section, we describe the experiments that have

been performed following the process described in the

previous section. We performed three experiments.

The first two experiments, discussed in Section 4.1,

start from the same initial conditions, but with opposite

controllable/uncontrollable agents and forbidden/final

states. The setup and outcome of these two experiments

are reported in Table 1. The third experiment, discussed

in Section 4.2, is based on a railway scenario. The setup

and outcome of this experiment are reported in Table 2.

The repository, publicly available [9], contains all

data, sources, and step-by-step instructions on how to

use the toolchain to reproduce the experiments.

4.1 Maze Examples

The PNG map image used as planimetry is a 10 × 10

pixels image that weighs 188 bytes. It is depicted in

Figures 1 and 5 (without coloured pixels). This image

was generated using one of the many maze generators

available through the Internet.

The setup for the experiments is that of two du-

plicate mobile agents, one door agent, and one driver

agent. The door agent is placed in position (2; 7) (cf.

Figure 5). Initially, the red agent is in the top left cor-

ner of the white corridor (position (1; 1)), whereas the

green agent is just below the red one (position (2; 1))

and the door is closed. The initial state is depicted in

Figure 6 (left).

The illegal moves were described in the previous sec-

tion. We recall that in a legal composition, no agent

moves over a wall, a closed door, or another agent.

Below we report the invocation of the composition

function of CATLib. The composition is instantiated

with the list of operands, namely the two agents, the

driver, and the door. The second argument is the prun-

ing predicate: if a generated transition satisfies the prun-

ing predicate it will be pruned and not further explored.

When applying the composition it is possible to spec-

ify a bound on the maximum depth of the generated
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Table 1 Summary of the two experiments

First experiment Second experiment

Controllable Red and green agents Door
Uncontrollable Door Red and green agents
Initial state Green agent in front of red agent Green agent in front of red agent
Final states Both the red and the green agent reached the exit The door separates the green agent on the right

from the red agent on the left
Forbidden states The door separates the green agent on the right

from the red agent on the left, or the red and
green agents are not near each other

Both the red and the green agent reached the exit

Strategy The red and green agents switch position before
traversing the door

Empty

Table 2 Summary of the third experiment

Third experiment

Semi-controllable Trains
Controllable Semaphore
Initial state Both trains behind the semaphore
Final states Both trains outside the junction area
Forbidden states Both trains inside the junction area or one train is inside the junction area, while the other train is

before the semaphore and the semaphore is open
Strategy The semaphore is opened for letting the first train enter the junction area. After it does, the

semaphore is closed. Once the first train exits the junction area, the semaphore opens again to
let the second train enter the junction area so that both trains can eventually exit the junction area

automaton. In this case, the bound is set to the max-

imum Integer value. The two agents are instantiated

with maze tr and maze2 tr being their set of transi-

tions, which only differ in the initial state. The property

of agreement is passed as a lambda expression: transi-

tions with a request label will be pruned. Similarly, this

condition is put in disjunction with a condition check-

ing whether the target state of the generated transition

is ‘bad’ (i.e., an illegal transition), in which case the

transition is pruned.

MSCACompositionFunction<String> cf =
new MSCACompositionFunction<>(List.of(new Automaton<>(maze_tr),
new Automaton<>(maze2_tr),driver,door),
t->t.getLabel().isRequest() || badState.test(t.getTarget()));

Automaton<String, Action, State<String>,
ModalTransition<String,Action,State<String>,CALabel>>
comp = cf.apply(Integer.MAX_VALUE);

Spatial Properties. In the first experiment, the final and

forbidden states are set according to the following def-

initions. Consider the specification given in Figure 7

(cf. Section 2 for an introduction to the operators used

therein). The final state is set to be that on the right-

hand side of the image passing through the corridor

where the door is located (property final1), and is de-

picted in Figure 6 (middle). The property forbidden1

identifies forbidden states as the disjunction of three

sub-properties, characterising: 1) illegal states (prop-

erty wrong); 2) states in which the two agents are in

two areas separated by the closed door, and the green

agent is on the right side of the door, i.e., it can reach an

escape (a final state), whereas the red agent cannot be-

cause it is blocked by the door (property greenFlees);

and 3) states in which the agents are not close to each

other (!. nearby). In fact, Figure 5 represents one of

these forbidden states.

In the second experiment, we change the setting ac-

cording to what is summarised in Table 1. The final

state becomes an illegal state of the first experiment,

such that we end up with an empty strategy. Hence,

the property final2 is the disjunction of two previously

forbidden properties: greenFlees (i.e., the green agent

can reach an exit, while the red one cannot) and wrong,

namely, an illegal situation that might consist of agents

over the door, agents over a wall, or overlapping agents.

Conversely, property forbidden2 is set to be the final

state of experiment 1, so we simply get forbidden2 =

final1 (cf. Figure 7). Thus the forbidden state is now

the one in which both agents reach the exit.

Synthesis. Finally, in this first experiment we interpret

the door as uncontrollable, whereas the red and green

agents are controllable. Basically, this is a scenario in

which the two players are playing against an uncontrol-

lable door. Below we list the code used to invoke the

synthesis operation of CATLib. The instantiation of the

operation takes as argument the property to enforce,

agreement in this case, and the automaton where the

synthesis is applied, called marked in this case.

Automaton<String, Action, State<String>,
ModalTransition<String,Action,State<String>,CALabel>>
strategy = new MpcSynthesisOperator<String>(new Agreement()).
apply(marked);
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let r = red(img)
let g = green(img)
let b = blue(img)
let rb = red(base)
let gb = green(base)
let bb = blue(base)

let exists(p) = volume(p) .>. 0
let forall(p) = volume(p) .=. volume(tt)
let forallin(x,p) = forall( (!x) | p)

let door = (r =. 0) & (b =. 255)
& (g =. 0)

let floorNoDoor = (rb =. 255)
& (bb =. 255) & (gb =. 255)

let floor = floorNoDoor & (!door)
let wall = !floor

let mrRed = (r =. 255) & (b =. 0) & (g =. 0)
let mrGreen = (r =. 0) & (b =. 0) & (g =. 255)

let mrX = mrRed | mrGreen

let initial1 = exists(mrRed & ((x =. 1) & (y =. 1)))
.&. exists(mrGreen & ((x =. 1) & (y =. 2)))

let initial2 = exists(mrRed & ((x =. 6) & (y =. 3)))
.&. exists(mrGreen & ((x =. 1) & (y =. 4)))

let wrong = exists(mrX & wall) .|. (!. (exists(mrRed)
.&. exists(mrGreen)))

let exit = (x =. 9) & (y >. 2) & (y <. 9)
let pathToExit = (floor ~> exit)
let canExit(mr) = forallin(mr,pathToExit)
let sameRoom = forallin(mrGreen,(mrGreen|floor) ~> mrRed)

let greenFlees = (!.wrong) .&. canExit(mrGreen)
.&. (!.(canExit(mrRed)))

let nearby = exists(mrRed & (N N mrGreen))

let forbidden1 = greenFlees .|. wrong .|. (!. nearby)
let final1 = exists(mrRed & exit)

.&. exists(mrGreen & exit)
let final2 = greenFlees .|. wrong
let forbidden2 = final1

Fig. 7 VoxLogicA specification of the properties of experi-
ments 1 and 2

The most permissive synthesised strategy consists

of 684 states and 2635 transitions (recall that in each

transition, only one of the agents is moving). The length
of a shortest path from the initial state to a final state

is composed of 33 transitions to be executed. In the

initial state (Figure 6 (left)), the green agent is in front

of the red agent on the path to the exit. However, in

the strategy the green agent cannot traverse the open

door before the red agent. Indeed, in this case, since the

door is uncontrollable, it is not possible to prevent the

door from closing and separating the red agent (blocked

by the door) from the green agent (who can reach the

exit). This is indeed a forbidden state that the strategy

must avoid. In the strategy, to overcome this problem,

the two agents switch position before crossing the door.

Figure 6 (right) depicts the moment where the red agent

is crossing the door right after exchanging position with

the green agent who is still in the corridor. Indeed, in

the shortest path they switch position near the door.

Note that no forbidden state occurs if the door closes

after only the red agent has traversed it. Indeed, in this

scenario the green agent is prevented from reaching an

exit because it is blocked by the door. Hence, after the

red agent has traversed the door, the strategy guides

the green agent to safely cross the door such that they

can both reach a final state.

To confirm the first experiment, we performed a sec-

ond experiment by inverting the setup of the first ex-

periment. In this second experiment, the door is con-

trollable, whereas the green and red agents are both

uncontrollable. The final states are those in which the

door separates the green agent (on the right side of the

door) from the red agent (on the left side of the door).

These are basically the forbidden states of the first ex-

periment. Similarly, the forbidden states in the second

experiment are those states in which both the green

and the red agent have reached the exit, i.e., the final

states of the first experiment. The initial configuration

is the same as in the first experiment. As expected, in

this dual case the returned strategy is empty. Indeed, if

this were not the case, then we would have a contradic-

tion because the green and red agents have a strategy

to reach the exit without being separated by the door

with the red agent blocked, for every possible finite be-

haviour of the door.

There is no strategy for the door to reach a final

configuration mainly because the door cannot ensure

that the uncontrollable green agent traverses the door

first. Moreover, the door cannot prevent the agents from

reaching the exit by always remaining closed since (un-

less only the green agent has traversed the door) a final

state would not be reachable.

4.2 Railway Example

The third experiment is based on a real-world case

study from the railway domain, which is a well-known

application domain for formal methods [51]. The spe-

cific example is taken from [23] and it is displayed in

Figure 8. Similarly to the previous two experiments,

this experiment uses two agents and a gate. It serves as

a proof-of-concept of the practical applicability of the

toolchain to real-world problems.

In [23], an autonomous tram positioning (ATP) sys-

tem is analysed. In an ATP, the physical track circuits

detecting the occupancy of portions of the railway track

are substituted by virtual track circuits (VTCs). The

VTCs are virtual positions on a map. The real position

of a train is detected using a global positioning system.

In the scenario in Figure 8, one junction area (com-

manded by one interlocking) is composed of two VTCs,

and there is one tram outside the junction area and

one tram inside the junction area. Tram 2 is travers-

ing its assigned route while Tram 1 is waiting at a red

signal for its route to be assigned. VTC 0 is used to de-

tect the occupation of a route, whereas VTC 1 is used
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Fig. 8 The scenario taken from [23], where one train is waiting to enter a junction area while another train is traversing it

to detect the release of a route. Initially, both trains

are located behind the semaphore. The first train will

communicate its route to the interlocking, which will

proceed to set the route. This may cause the move-

ment of the junction point. Once the route is set, the

interlocking will signal to the train that the route is set

by opening the semaphore. The train enters the junc-

tion point and the semaphore is closed again. While the

first train is traversing its route, the second train will

stop at the (closed) semaphore to ask for its route. The

route will be assigned, the junction point moved, and

the semaphore opened only after the first train has ex-

ited the junction area. Otherwise, the movement of the

junction point could cause the derailment of the train

inside the junction area [23].

We have modelled this scenario using images. In-

deed, in general, maps of railway stations are bidimen-

sional planimetries (generally called centralised traffic

control boards). In this experiment, the PNG map im-

age used as planimetry is a 11 × 6 pixels image that

weighs 157 bytes. This image is derived from the junc-

tion scenario in Figure 8. The image representing the

initial configuration of this experiment is depicted in

Figure 9 (left). Initially, both trains (green and red)

are waiting for entering the junction area, whose ac-

cess is signalled by a semaphore (blue). The semaphore

acts like the gate in the maze examples. The open gate

models the green signal, whilst the closed gate models

the red signal. The VTC 0 detecting the occupancy of

the junction area is at the right side of the semaphore,

while we assume that the last two pixels on the right

borders of the image both contain VTCs for realising

the junction. Figure 9 (middle) shows a final configu-

ration where both trains exited the junction area from

the same exit, whereas Figure 9 (right) shows in purple

the junction area.

We want to synthesise a controller for the semaphore

such that both trains can safely traverse the junction

area. Therefore, we synthesise a strategy for a game

in which the semaphore is the player and the oppo-

nents are the trains. The successful final states are those

Fig. 9 On the left, the initial configuration of the railway ex-
ample. In the middle, a final configuration where both trains
exit the junction from the same route. On the right, the junc-
tion area is emphasised in purple.

where both trains have exited the junction area, i.e.,

they both reach the right side of the image. In this

case, the trains cannot travel backwards (from right to

left). This means that in the composition, the Driver

automaton (cf. Figure 3) does not have the transition

labelled with !goleft. The forbidden states are those

where both trains are inside the junction area as well

as those where one train is inside the junction area, the

other train is before the semaphore, and the semaphore

is opened (thus creating a hazardous scenario).

Spatial Properties. The setting in this experiment is

quite similar to that of the previous ones. The semaphore

changes its colour dynamically, and this requires to

check which part of the floor is free (floor is the white

area in the specification) for each image, differently

than in the previous examples (cf. Figures 7 and 10).

We are also interested in knowing where the semaphore

is (gate in the specification). We then specify what

is the junction area, namely, the area where the rail-

way forks after the semaphore: this is a dangerous area.

Then we consider the area before the semaphore (out

in the specification) and the exits (outOfJunction) to

be safe. The semaphore is green in those images where

there is no blue pixel in (4,2): we can thus match these

coordinated with the floor (note that it is not needed to

explicitly check for the y coordinate, as it is implicitly

assumed by the floor). Trains, which are represented

by the green and the red pixels, are defined as MrGreen

and MrRed, as in the previous specification.

At this point, we can start to define our properties

of interest. The possible final combinations are repre-

sented by those in which both trains reach the exit.

So we have two possibilities: MrRed reaches the upward
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let r = red(img)
let g = green(img)
let b = blue(img)

let exists(p) = volume(p) .>. 0
let forall(p) = volume(p) .=. volume(tt)
let forallin(x,p) = forall( (!x) | p)

let gate = (r =. 0) & (b =. 255) & (g =. 0)
let floorNoDoor = (r =. 255) & (b =. 255) & (g =. 255)
let floor = floorNoDoor & (!gate)
let wall = !floor

let mrRed = (r =. 255) & (b =. 0) & (g =. 0)
let mrGreen = (r =. 0) & (b =. 0) & (g =. 255)

let mrX = mrRed | mrGreen

let initial = exists(mrRed & ((x =. 0) & (y =. 4)))
.&. exists(mrGreen & ((x =. 2) & (y =. 4)))

let junction = (x >. 4) & (x <. 9)
let out = (x >.0) & (x <. 4)
let outOfJunction = (x >. 8) & (x <. 11)
let gateOpen = (floor & x =. 4)
let gOp1 = exists(gateOpen) .&. exists(mrRed & out)

.&. exists(mrGreen & junction)
let gOp2 = exists(gateOpen) .&. exists(mrGreen & out)

.&. exists(mrRed & junction)
let wrongSignal = gOp1 .|. gOp2

let combination1 = exists(mrRed & outOfJunction)
.&. exists(mrGreen & outOfJunction)

let combination2 = exists(mrGreen & outOfJunction)
.&. exists(mrRed & outOfJunction)

let final = combination1 .|. combination2

let forbidden = (exists(mrRed & junction)
.&. exists(mrGreen & junction))
.|. wrongSignal

Fig. 10 VoxLogicA specification of the properties of experi-
ment 3

exit, while mrGreen reaches the other exit, or vice versa.

Hence, the final state is the disjunction of the two.

We can now focus on the forbidden state. Also in

this case, we have two possibilities, but things are a bit

more involved. Indeed, we may have a forbidden state in
the case where only one of the trains is inside the junc-

tion area, but the semaphore is green. As previously

said, this could lead to a dangerous situation, and must

thus be avoided. This situation is managed by defin-

ing the two properties gOp1 and gOp2. The property

wrongSignal, which is the disjunction of the two, is

the first part of our forbidden property. The other for-

bidden situation is represented by the simpler case of

having both trains inside the junction. This is managed

directly in the definition of the forbidden property, by

means of the conjunction (exists(mrRed & junction)

.&. exists(mrGreen & junction)). In the end, the

forbidden property is defined as the disjunction of the

latter and wrongSignal.

Synthesis. In the previous experiments, the player tran-

sitions were controllable, whereas the opponent transi-

tions were uncontrollable (called urgent necessary tran-

sitions in contract automata [16]), and the standard

most permissive controller synthesis of supervisory con-

trol theory (implemented in CATLib) was used to syn-

thesise the strategies. However, the standard notion

of uncontrollability from supervisory control theory is

too strict for this third experiment. This is because in

the composed automaton, the transitions of the un-

controllable opponents (i.e., the trains) would be pri-

oritised over those of the controllable player (i.e., the

semaphore). This causes the strategy to be empty. In-

deed, the semaphore must be opened to reach a final

state (both trains have crossed the junction area). Once

the semaphore is opened, both opponent trains can ex-

ecute a sequence of uncontrollable transitions leading

them to a forbidden state (e.g., both trains inside the

junction area). These uncontrollable transitions have

higher priority than the player’s controllable transitions

(i.e., closing the semaphore). Indeed, the setting of a

player (the semaphore) playing against an opponent

(the trains) is not suitable for this particular case study.

For this reason, the orchestration synthesis intro-

duced in contract automata theory is used instead of

the mpc synthesis (cf. Section 2). Differently from the

mpc synthesis, in the orchestration synthesis, the tran-

sitions are partitioned into controllable for the player

and semi-controllable (a.k.a. lazy necessary transitions)

for the opponent [16]. The notion of semi-controllability

emerges when dealing with concurrent compositions of

agents who can internally decide their next transition,

but whose scheduling is controllable [8]. In this experi-

ment, the player controls both the semaphore and also

decides whose service in the composition will execute

the next transition (i.e., the player also acts as the

scheduler/orchestrator). All transitions (i.e., the trains’
movements) of the the opponent cannot be prevented

from eventually being executed, but their execution can

be scheduled to happen after the execution of tran-

sitions of other services in the composition (i.e., the

semaphore transitions). This means that the (control-

lable) semaphore can thus be closed before the (semi-

controllable) second train traverses it. Indeed, the trains

are not competing against the semaphore, but are rather

cooperating with the semaphore to traverse their (in-

ternally chosen) route safely.

The synthesised strategy consists of 180 states and

469 transitions. In this strategy, once the semaphore is

opened and the first train enters the junction area, the

closing of the semaphore happens prior to the second

train entering the junction area. After the first train has

exited the junction area, the semaphore is opened again,

and the second train can now execute its transitions to

reach the exit of the junction area. Hence, a final state

is reached without traversing forbidden states.
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We conclude with some further remarks on the dif-

ference between semi-controllability and controllability.

Note that in Figure 9 (right), on both routes the two

right-most pixels are outside the junction area. This

allows both trains to exit the junction area from the

same route, as shown in Figure 9 (middle). Conversely,

if only the right-most pixel were outside the junction

area, then it would not be possible for both trains to

exit the junction from the same route. The trains could

only exit the junction area if their route is different. In

this case, a non-empty strategy is only possible if also

the trains are controllable (i.e., there is no opponent).

Instead, if the trains are semi-controllable, then there

would be no strategy to guarantee that both trains

eventually exit the junction area. This is because the

opponent decides internally which route each train will

take. Hence, the player cannot prevent the trains from

taking the same route.

4.3 Performance of the Experiments

We now report the time needed to compute various

phases of the three experiments and measures of the

computed automata. We also discuss the performance

improvement with respect to [10]. The experiments have

been performed on a machine with Intel(R) Core(TM)

i9-9900K CPU @ 3.60GHz equipped with 32GB of

RAM. This is the same machine that was used in [10].

The time performance is reported in Table 3. We

note that the synthesis is (computationally) more ex-

pensive than the composition. Indeed, as showed in Sec-

tion 2, each iteration of the synthesis requires to com-

pute the set of dangling states, which requires a forward

and backward visit of the automaton. The performances

of the synthesis are similar to those of [10]. There is a

slight difference due to the updated version of CATLib

(v.1.0.2) that has been used in this paper with respect

to the one used in [10] (v.1.0.1). In CATLib v.1.0.2, the

forward and backward visit of the synthesis has been

updated from a (tail) recursive schema to an iterative

schema. This solved the problem of requiring a larger

than default size of the stack to avoid stack overflow

errors due to the many recursive calls.

We also analysed the improvement in the various ac-

tivities of CATLib with respect to [10]. We only compare

the performance of the first two experiments (Table 1),

since the third experiment was not present in [10].

In [10], the composition was computed twice, first

with all possible behaviour and subsequently with only

legal behaviour. This required a total of 29130ms, which

has been reduced to 1739ms in this paper. Similarly, the

generation of images has been improved by passing from

7910ms in [10] to 1518ms in this paper. This is because

the number of images to generate (i.e., the number of

states in the composition) has been reduced. Finally, we

consider the activity of marking the composition with

the properties computed by VoxLogicA. Again, the log

to parse in this paper is much smaller than the one that

was produced in [10], due to the reduced number of im-

ages that are generated. In [10], the marking required

108058ms and 118291ms for, respectively, the first and

the second experiment. In this paper, the time has been

reduced to 29822ms and 10161ms, respectively.

Finally, concerning the performance of the third ex-

periment in Table 2, we note that it is better (faster)

than either of the first two experiments, mainly due to

the smaller size of the image.

Tables 4 and 5 report the number of states, the num-

ber of transitions, and the size (in bytes) of the various

automata. As expected, the number of states of the

agent automata equals the number of pixels of the im-

ages. We note that an automaton encoding an image

weighs more than the starting PNG image. Finally, the

marked compositions have two additional states with

respect to the composition, which are the added ini-

tial and final states. The number of transitions of these

two automata differs according to the number of states

marked as final, to which a transition to the newly

added final state is added, and the number of forbidden

states, to which a bad transition is added as a self-loop.

Spatial Properties. The analysis of spatial properties

is performed using the image analyser VoxLogicA, as

in [10]. However, the overall performance has improved

significantly: indeed, the execution time in the previous

version of the toolchain was dominated by the overhead
of setting up the computation, importing the images

and parsing the specification several times. This de-

pends on the fact that a single image at a time was pro-

cessed. In this paper, we overcome this issue by adopt-

ing a batching technique, similar to the one used in [31].

The logical specification is parsed by a python script,

which automatically generates a new, much larger spec-

ification, replicating the original specification k times,

each time replacing the name of the image to be anal-

ysed, so that k images are processed in a single run.

VoxLogicA is then called to process the newly gener-

ated specification, and to produce the JSon script to be

used by CATLib. The size k of each such ‘batch’ is lim-

ited to 150 images, as the current version of VoxLogicA

does not include a garbage collector (which is a planned

feature), therefore much larger specifications may result

in memory overflows. By using this technique, the over-

head for loading and starting the tool’s executable, and

parsing the specification, only affects the computation

time once every k runs of the model checker, instead of
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Table 3 Time needed to perform the three experiments

Phase
Experiment

First and Second Third

Computing the composition 1739ms 633ms
Generating images 1518ms 345ms

First Second

Running VoxLogicA 84379ms 87008ms 6594ms
Marking the composition with VoxLogicA properties and controllability 29822ms 10161ms 691ms
Synthesis 31391ms 11979ms 1411ms

Table 4 Number of states, number of transitions, and size of the automata used in the first two experiments

Automaton #States #Transitions Size (bytes)

Agent 100 360 19087
Composition 3200 15176 2019916
Marked composition (first experiment) 3202 17651 2355749
Marked composition (second experiment) 3202 15549 2081535
Strategy (first experiment) 684 2635 350327

Table 5 Number of states, number of transitions, and size of the automata used in the third experiment

Automaton #States #Transitions Size (bytes)

Train 66 230 12269
Composition 363 1084 145485
Marked composition 365 1232 165388
Strategy 180 469 62962

each time. Furthermore, the degree of parallelism can

be much higher, as the processing of each image is in-

dependent from the others, and all such threads are

executed concurrently on multi-core machines.

5 Conclusion

We have discussed a further integration of the tools

CATLib and VoxLogicA to perform strategy synthesis

on images processed with spatial model checking.

Our original contribution, in [10], constituted the

first application of CATLib and VoxLogicA to build a

framework for modelling and solving mobility problems

of collective multi-agent systems, introducing an origi-

nal approach to combine strategy synthesis with spatial

model checking. In this paper, we present a full-fledged

toolchain built from CATLib and VoxLogicA, thus en-

riching the available tooling for modelling and analysis

of CAS. We have improved the efficiency of the encod-

ings, the computations, and the tool integration. The

preliminary experiments we performed in [10] have been

enriched with a realistic example based on a case study

from the railway domain. Several interesting opportu-

nities for future work remain.

Future Work. The toolchain could be improved further.

In the current approach, each agent has a state for each

pixel of the image. Relaxing the representation of an im-

age to one where each state is a zone of the image (e.g.,

a corridor) rather than a pixel would reduce the state

space. Another improvement could be to decompose a

large image into smaller images. For instance, the fi-

nal states of the first experiment in Section 4 could be

entering points to a new portion of the map. Several

small maps could be linked together by ports for enter-

ing and exiting. Yet another improvement could be to
drop the requirement of a strategy to be most permis-

sive in favour of some objective function to optimise.

A near-optimal solution could be synthesised as a trace

using statistics over runs, in the style of [55]. As for

the possibility of allowing more than two agents, this

would lead to an exponential blow up of the state space

of the composed automaton. However, in future work

we plan to exploit state-space reduction techniques, like

the ones just discussed, to tackle this kind of problem.

Concerning metrics, from the behavioural point of

view, the purpose of our analysis is qualitative, i.e., to

synthesise strategies described through finite state au-

tomata that enforce qualitative properties described in

the spatial logic supported by VoxLogicA. Future work

is needed for synthesising strategies enforcing quanti-

tative properties. From the spatial point of view, the

language of VoxLogicA already supports distance and

texture similarity measures, which could definitely be

employed in further examples similar to the ones in-
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cluded in this paper. Finally, concerning VoxLogicA,

the input/output overhead could also be eliminated by

exploiting the recent GPU implementation [30], which

is expected to yield an additional speedup, typically

of 1–2 orders of magnitude. A future version of the

toolchain is meant to leverage on such currently ex-

perimental improvements.
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