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ABSTRACT
The elasticity of disordered and polydisperse polymer networks is a fundamental problem of soft matter physics that is still open. Here, we
self-assemble polymer networks via simulations of a mixture of bivalent and tri- or tetravalent patchy particles, which result in an exponential
strand length distribution analogous to that of experimental randomly cross-linked systems. After assembly, the network connectivity and
topology are frozen and the resulting system is characterized. We find that the fractal structure of the network depends on the number density
at which the assembly has been carried out, but that systems with the same mean valence and same assembly density have the same structural
properties. Moreover, we compute the long-time limit of the mean-squared displacement, also known as the (squared) localization length, of
the cross-links and of the middle monomers of the strands, showing that the dynamics of long strands is well described by the tube model.
Finally, we find a relation connecting these two localization lengths at high density and connect the cross-link localization length to the shear
modulus of the system.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0134271

I. INTRODUCTION
Polymer networks are solids that can be obtained by cross-

linking polymeric chains.1 From rubbers2 to hydrogels3 to biological
networks,4,5 these systems have countless industrial6 and biomed-
ical7 applications. Understanding how the macroscopic properties
of polymer networks, and in particular their elasticity, depend
on their structure, chemistry, and topology is still a largely open
problem.8–13 To unravel these questions, numerical simulations12–34

are an invaluable tool, as they allow a control on the structure and
topology of the network that is impossible to achieve in experiments,
making it possible to disentangle the effects of different microscopic
contributions.

Since cross-linked polymer networks are systems with
quenched (frozen-in) disorder, their properties depend on the
way the network is formed. Therefore, when simulating a model
polymer network, the first step is to choose an assembly protocol.
One possibility is starting with a system of precursor polymers,
which can be mono- or polydisperse, linear or branched, which
are then cross-linked via some procedure. The cross-linking can
be allowed to occur only between chain ends (end-linking)13–20,25

or between any pair of monomers (random cross-linking).12,21–24

Random cross-linking, however, is only efficient at melt densities,
whereas end-linking suffers from kinetic limitations, as reaching
a perfect (fully bonded) configuration requires a time that grows
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quickly as the length of chains grows.14–16 Ad hoc methods can
be used to increase the number of bonded sites.15,16 Using these
methods is, however, not completely satisfactory since the final
structure in principle depends on the exact method that was used to
force the formation of the bonds. Another option is to impose some
lattice connectivity, like the diamond lattice.26–31 Several of these
“lattice networks” can then be randomly superimposed in order
to obtain a disordered structure.27,29,31 These systems, however,
present an underlying ordered topology and monodisperse strand
length, contrary to most experimental systems.

Here, we study a model of disordered, polydisperse, and defect-
free (i.e., fully bonded) networks, which has originally been devel-
oped for the study of microgels35–40 and later applied to the study
of phantom,32 double,33 and hyper-auxetic networks.34 This model
has been previously validated against experiments of microgels35,40

and we therefore consider it as a viable computational counterpart
of experimentally realizable hydrogel networks. The macroscopic
properties of these networks, which are self-assembled via equilib-
rium simulations, depend only on a very small number of para-
meters. Moreover, the self-assembly procedure naturally gives rise to
a disordered topology with a well-defined exponential chain length
distribution, similar to that of randomly cross-linked networks21,41

or resulting from step-growth polymerization.42 Here, we use molec-
ular dynamics simulations to characterize the structure and elasticity
of these systems, and show how these properties are related to each
other.

In Sec. II, we give a detailed description of the simulation model
and of the self-assembly procedure. In Sec. III, we study the struc-
tural properties of these networks, such as strand length distribution,
radius of gyration of the chains, bond angle distribution, and struc-
ture factor. In Sec. IV, we analyze their elastic properties, connecting
them to static observables. We conclude in Sec. V with a discussion
of our results and of future perspectives.

II. MODEL AND METHODS
We generate a polydisperse network via the method described

in Ref. 35. This method was originally developed for MD simu-
lations of microgels,35–40 but it can be generalized to the case of
bulk systems.32–34 In contrast to network-generation approaches
using direct simulations of cross-linking dynamics12–25 or based on
compenetrating lattices,27,29,31 this method allows for an efficient
generation of fully bonded networks by using a bottom-up self-
assembly approach43 based on a bond-swapping potential as detailed
below.

A. Network assembly using patchy particles
The starting point is a mixture of two different species of patchy

particles, i.e., spheres of identical size and mass decorated by a
certain number of interaction sites (the “patches”) arranged in a
regular configuration. The number of patches per particle is called
the valence. We consider systems of volume V init containing Mtot
=M2 +M f particles, or monomers, with M2 bivalent particles and
M f f -valent particles. Two patchy particles are reversibly attached
to each other when at least two of their respective patches are over-
lapping. Only pairs formed by two bivalent particles or by a bivalent
particle and an f -valent particle can be attached to each other, so that

cross-links can be connected only through chains made of bivalent
particles to form branched structures. In the following, we consider
the cases f = 3 and f = 4.

The interaction potential between a pair of particles i and j is

U(rij,{pi},{pj}) = UWCA(rij) + ∑
Rμ∈{pi}

∑
Rν∈{pj}

Upatch(Rμν), (1)

where rij = ri − rj is the particle–particle distance, rij ≡ ∣rij∣, {pi},
{pj} are the sets of unit vectors identifying the patches of particles
i and j, respectively, and Rμ and Rν are the positions of patch μ on
particle i and patch ν on particle j and Rμν = ∣rij + Rμ − Rν∣ is their
distance. The potential UWCA is a Lennard-Jones potential cut and
shifted at the minimum to be purely repulsive,44

UWCA(rij) =
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In the following, all quantities are given in reduced units, with the
units of energy, length, and mass being, respectively, ϵ, σ, and m,
where m is the mass of a monomer. The units of temperature and

time are, respectively, T∗ = ϵ/kB and τ∗ =
√

mσ2
/ϵ, where kB is the

Boltzmann constant, which we set equal to 1. The patch potential
takes the form

Upatch(Rμν) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2ϵμν(
σ4

p

2R4
μν
− 1) exp(

σp

Rμν − rc
+ 2) Rμν < rc

0 otherwise,

(3)

where rc = 1.5σp [and therefore rc is the distance at which
Upatch(rc) = 0] and σp is the position of the minimum of the
attractive well of depth ϵμν, which we set to σp = 0.4. The resulting
interaction potential is shown in Fig. 1(a). The interaction energy
ϵμν is ϵμν = 1 for all pairs of patches, except for pairs of f -valent
particles, for which ϵμν = 0, so that the bonding between two f -valent
particles (cross-links) is forbidden. The patches are arranged on
the poles, equidistant on the equator, and on a tetrahedron for
bi-, tri-, and tetravalent particles, respectively [see for instance
Fig. 1(b)]. In all cases, the distance between the patch and the
center of the particle is 1/2. The pair potential given in Eq. (3) is
complemented by a three-body potential U triplet acting on triplets of
nearby patches,45

U triplet = w∑
λ,μ,ν

ϵμν U3(rλ,μ)U3(rλ,ν), (4)

where U3(r) has the following form, also shown in Fig. 1(a):

U3(r) =
⎧⎪⎪
⎨
⎪⎪⎩

1 r < rmin

−Upatch(r)/ϵμν rmin < r < rc.
(5)

The term (4) has a twofold effect: On the one hand, it enforces the
single-bond-per-patch condition—a given patch cannot be involved
in more than one bond at a time. On the other hand, the three-body
term also allows the introduction of an efficient bond-swapping
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FIG. 1. (a) Patch potential, Eq. (3), and U 3 potential, Eq. (5). (b) Schematics of a tetravalent ( f = 4, orange) patchy particle attached to a bivalent ( f = 2, blue) particle.
The gray spheres represent the patches. (c) Snapshot of one of the simulated networks ( f = 3, c = 1%, ρinit = 0.1, ρ = 0.97). Bivalent particles are shown in blue and
cross-links are shown in orange. Note that some of the particles look detached from the network because of periodic-boundary conditions.

mechanism that makes it possible to easily equilibrate the system at
extremely low temperatures. The parameter w appearing in Eq. (4)
can be used to tune the amplitude of U triplet in order to favor (w ≃ 1)
or hamper (w≫ 1) bond swapping.45

The assembly is performed via molecular dynamics simulations
(GPU implementation of the oxDNA software46) run in the NVT
ensemble at T = Tassembly = 0.05. At this low temperature, the system
approaches the fully bonded ground state. Since the bonds can break
and reform with an efficiency that is significantly improved by the
bond-swapping potential, Eq. (4), the system can quickly reach equi-
librium. Thus, for a given Tassembly, the properties of the final state
are uniquely determined by only three parameters, as it will be
shown below: the fraction of cross-links c =M f /Mtot, the cross-link
valence f, and the number density ρinit =Mtot/V init at which the
assembly has been carried out. We note that the variation of the
latter parameter can be regarded as a crude way for tuning solvent
quality. In fact, from a mean-field-like perspective an increase in
the assembly density corresponds to a stronger effective attractive
monomer-monomer interaction.

Once the majority of the bonds (>99.8%) are formed, the
simulation is stopped and the particles that do not belong to the
percolating cluster (at most 4% of the total in all the simulated sys-
tems) are removed. Although we chose for practical reasons to stop
the reaction before reaching the fully bonded ground state of the
system, reaching this state is in principle possible with a greater
computational effort.

The so-obtained networks still contain a few dangling ends.
As only a very small fraction of particles is part of these loose
strands, we do not expect them to have a significant effect on the
elastic properties of the network. However, due to their very long
relaxation times, which are known to grow exponentially with the
length of the strands,47,48 they could lead to a slow relaxation of
the monomer mean-squared displacement, which is analyzed below.
To avoid these long relaxation times, we remove all the (simple
and branched) dangling ends in the system, obtaining a perfect

fully bonded network. We note that for systems with tetravalent
cross-links, the removal of the dangling ends has the side effect of
introducing some trivalent cross-links in the system, since when
a dangling end is cut, a cross-link loses a bond. In this case, the
cross-link fraction should be calculated as c = (M3 +M4)/(M2 +M3
+M4). However, for all the systems considered, with the exception
of c = 1%, where the number of dangling ends can become compa-
rable to that of cross-linkers, we have M3 ≪M4 and therefore the
presence of the trivalent cross-links is negligible. By contrast, in the
case of trivalent cross-links, the removal of dangling ends transforms
cross-links into regular bifunctional particles. Regardless, in all cases
at the end of the procedure, we obtain a network that is naturally
disordered and almost fully bonded.32,34

B. NPT simulations with frozen topology
and connectivity

Once the dangling ends are removed, the interaction poten-
tial of Eq. (1) is replaced by the Kremer–Grest potential:49,50 The
excluded volume interaction is still given by the WCA potential,
Eq. (2), but the reversible bonds of the patchy system are replaced
by permanent FENE bonds, with interaction potential

UFENE(rij) = −
kr2

0

2
ln[1 − (rij/r0)

2
], (6)

where k = 30ϵ/σ2 and r0 = 1.5σ. The combined effect of the FENE
and the WCA potentials prevents chain crossing at the thermody-
namic conditions considered here, so that both the topology and
connectivity of the system are frozen.50

We consider systems containing an initial number of par-
ticles (before the assembly of the network) Mtot = 5 ⋅ 104, with
initial cross-link fractions c = 1%, 5%, and 10%, and two different
cross-link valences, f = 3 (trivalent) and f = 4. For c = 5% and
10%, we build the network starting from initial number densities
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ρinit = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.85 (the latter is chosen to
mimic typical melt concentrations50 and thus an elastomer-like sys-
tem), whereas for c = 1% we only considered ρinit = 0.05, 0.1, and 0.2
as the network phase separates at higher densities (see discussion
below). For each system, we consider two independent realizations
to make sure that their properties do not depend in a relevant
manner from the initial conditions. Moreover, for c = 5%, 10% and
ρinit = 0.1, 0.2, we have also considered systems of 4 ⋅ 105 particles
in order to check for the presence of significant finite size effects,
which were found to be absent for the structural and dynamic quan-
tities considered in this work. We note that not all combinations of
f , c, and ρinit will generate a homogeneous percolating network. This
is because the thermodynamics of systems of limited-valence parti-
cles like those used here to generate the networks is controlled by the
mean valence,51–56 defined as57

F ≡
2M2 + f M f

M2 +M f
= 2 + ( f − 2)c. (7)

The larger the value of F, the larger the density at which the
system undergoes a liquid–gas phase separation. Moreover, upon
approaching the phase separation boundary, the self-assembled
networks becomes increasingly heterogeneous and thus we make
sure to be far enough from this boundary by looking at structural
quantities such as the structure factor (see below). The composi-
tions and densities of all the systems studied are reported in detail in
Tables I and II.

Molecular dynamics simulations of the network with frozen
topology and connectivity are run using the LAMMPS package.58

The system is initially allowed to relax to pressure P = 0 at con-
stant temperature T = 1.0; then, NPT simulations are run at these
T, P values. An equilibration run of 107 time steps is followed by
a production run of 2 ⋅ 108 time steps. Temperature and pressure

TABLE I. Properties of the networks with trivalent (f = 3) cross-links.

Mtot M3 M2 c F ρ

48 773.0 4845.0 43 928.0 0.0993 2.099 0.1270
49 388.5 4907.0 44 481.5 0.0994 2.099 0.1929
49 636.0 4940.0 44 696.0 0.0995 2.100 0.2908
49 731.5 4953.5 44 778.0 0.0996 2.100 0.3758
49 803.0 4966.0 44 837.0 0.0997 2.100 0.4630
49 797.5 4968.5 44 829.0 0.0998 2.100 0.5398
49 714.0 4961.5 44 752.5 0.0998 2.100 0.6976

47 023.0 2346.0 44 677.0 0.0499 2.050 0.0936
48 508.0 2394.0 46 114.0 0.0494 2.049 0.1498
48 976.0 2434.0 46 542.0 0.0497 2.050 0.2469
49 243.5 2454.0 46 789.5 0.0498 2.050 0.3327
49 439.0 2465.0 46 974.0 0.0499 2.050 0.4141
49 469.0 2465.0 47 004.0 0.0498 2.050 0.4812
49 231.5 2457.0 46 774.5 0.0499 2.050 0.6317

36 368.5 352.0 36 016.5 0.0097 2.010 0.0425
41 791.0 405.0 41 386.0 0.0097 2.010 0.0872
46 047.5 441.0 45 606.5 0.0096 2.010 0.1789

TABLE II. Properties of the networks with tetravalent (f = 4) cross-links.

Mtot M4 M3 M2 C F ρ

48 952.0 4821.5 176.0 43 954.5 0.1021 2.201 0.1593
49 568.5 4901.5 98.5 44 569.0 0.1009 2.200 0.2487
49 748.0 4924.5 75.0 44 748.5 0.1005 2.199 0.3563
49 792.5 4948.0 52.0 44 792.5 0.1004 2.200 0.4472
49 804.5 4958.0 42.0 44 804.5 0.1004 2.200 0.5255
49 888.0 4970.0 29.0 44 889.0 0.1002 2.200 0.6123
49 718.5 4998.5 71.5 44 720.0 0.1005 2.200 0.7694

47 464.5 2319.5 163.0 44 982.0 0.0523 2.101 0.1258
48 946.5 2408.5 91.0 46 447.0 0.0511 2.100 0.1924
49 469.0 2441.0 58.5 46 969.5 0.0505 2.100 0.2908
49 439.0 2450.5 49.0 46 939.5 0.0506 2.100 0.3750
49 620.0 2462.0 37.5 47 120.0 0.0504 2.100 0.4617
49 700.5 2466.0 34.0 47 200.5 0.0503 2.100 0.5399
49 494.5 2500.0 55.5 46 994.5 0.0505 2.100 0.6868

39 123.5 373.5 105.0 38 645.0 0.0122 2.022 0.0597
44 301.5 419.0 72.0 43 810.5 0.0111 2.021 0.1137
46 274.5 438.0 58.0 45 778.5 0.0107 2.020 0.1977

are kept constant by Nosé–Hoover chains (three thermostats and
barostats),59–61 insuring a correct sampling of the NPT ensemble.
The integration time step is δt = 0.003 for all the simulations, and the
relaxation time for the thermostat is chosen to be δt ⋅ Tdamp = 0.3,
whereas the relaxation time for the barostat is δt ⋅ Pdamp = 3.59 The
three dimensions of the box, Lx, Ly, and Lz , are allowed to fluctuate
independently, so that we have access to both volume and shape fluc-
tuations, which are used to estimate the shear and bulk moduli G and
K, respectively.39 The total density ρ is thus defined as ρ ≡Mtot/⟨V⟩,
where V = LxLyLz and ⟨⋅⟩ denotes an average over all configurations.
We note that, here, Mtot refers to the number of particles after all the
dangling ends have been removed (see Tables I and II).

III. STRUCTURE
In this section, we study the topological and structural proper-

ties of the networks.

A. Density and strand length distribution
After the relaxation at P = 0, the final mean density of the sys-

tem, ρ ≡Mtot/⟨V⟩, will in general be different from the assembly
density ρinit. In Fig. 2(a), we show ρ as a function of ρinit for differ-
ent values of c and f . One can see that for most of the systems with
ρinit < 0.85, we have ρ > ρinit, i.e., the network contracts after switch-
ing the interaction from patchy to Kremer–Grest and letting the
system relax to P = 0. This is due to the fact that the chains are stiffer
with the patchy potential due to the directionality of the bonds,
which is absent with the Kremer–Grest potential. The only excep-
tions are when f = 3, c = 5%, ρinit = 0.5 and f = 3, c = 1%, ρinit = 0.2,
for which the network expands slightly (ρ < ρinit). For ρinit = 0.85, on
the other hand, all the systems expand, as discussed below. Finally,
we note that the curves for f = 4, c = 5% and f = 3, c = 10% superim-
pose perfectly, implying that the parameter controlling ρ is the mean
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FIG. 2. (A) Average density, ρ ≡ Mtot/⟨V⟩, as a function of the assembly density of the system, for different values of f and c. F is the mean valence. The f = 3, c = 10%
and f = 4, c = 5% curves, which have the same F, overlap almost perfectly. (B) Number of strands of length n, mn, normalized by the number of strands of unit length, m1.
Points are simulation data, with different colors corresponding to different f and c values and different symbols corresponding to different densities. Lines are the predictions
of Eq. (8).

valence F [Eq. (7)]. Indeed, it can be verified that both these systems
have F = 2.1 (see also Tables I and II). This is expected for systems of
patchy particles, where the mean valence F is known to control the
equilibrium thermodynamic properties of the system.53–56

One of the most relevant properties of the network is the strand
length distribution, where a strand is a segment of bivalent particles
between two cross-links. Here, we define the strand length n as the
average number of bivalent particles contained in such a segment,
so that a strand of length n will comprise of n beads and n + 1 bonds.
We recall that, since the two cross-links cannot bind to each other
in our system, the minimum chain length is n = 1, corresponding
to two bonds. Defining mn as the number of network strands of
length n, we can compute the normalized distribution of the chem-
ical lengths n of the chains, mn/m1, which is shown in Fig. 2(b) for
systems with different f , c, and ρ. For all systems, the distribution is
exponentially decaying, consistent with the behavior found for ran-
dom cross-linking from a melt of precursor chains,21,41 and divalent
self-assembling systems.42,62,63 Moreover, mn is independent of the
density, as one expects given the equilibrium nature of the assem-
bly protocol. The distribution is given by the well-known formula of
Flory,64

mn

m1
= (1 −

1
Ns
)

n−1
, (8)

where Ns is the mean strand length, defined as

Ns ≡ ⟨n⟩n =
1

Ms

∞

∑
n=1

mnn =
2
f
(c−1
− 1). (9)

In Eq. (9), ⟨⋅⟩n denotes averaging over the configurations and over
the strands and Ms the total number of strands. The theoretical prob-
ability distribution is shown in Fig. 2(b) by continuous lines and
reproduces the simulation data well.

B. Strand conformation and entanglements
In order to study the spatial conformation of the strands, we

consider the mean radius of gyration of single strands of length n,
Rg(n). To calculate Rg , we consider as part of the strand only the
bivalent particles and the bonds that connect them, excluding the
cross-links. Thus, Rg(1) = 0, since for n = 1 we only have a single
bead, and for n = 2 (two beads) we have Rg(2) = lb/2, with lb the
bond length. In Fig. 3(a), we show Rg(n)/Rg(2) for all the simu-
lated systems. As a consequence of Eqs. (8) and (9), networks with
low c contain longer strands on average. In particular, for c = 1% we
observe chain lengths up to n ∼ 500. Fitting Rg(n) for all c values to
the power law (n − 1)ν in the range n − 1 ≥ 10 yields ν = 0.59 ± 0.02
for f = 3 and ν = 0.60 ± 0.02 for f = 4 [see Fig. 3(a)]. Within the
accuracy of the data, these values are compatible with the Flory expo-
nent for self-avoiding walks, i.e., ν = 0.59,1 suggesting that in the
considered range of n, the strands adopt conformations akin to those
of linear chains in a good solvent. The inverse of the above met-
ric exponent yields the fractal dimension of the individual strands,
1/ν = 1.7. Note that this fractal dimension is, in general, different
from that of the whole network, and that for randomly branched
polymers, this is predicted to be d f = 2.65 We also note that at fixed n,
Rg(n) is basically independent of the cross-link concentration c and
of the cross-link valence f , and it depends only weakly on the density
of the system. This is shown in Fig. 3(b), where we plot the quantity
⟨R2

g(n)⟩n/⟨(n − 1)2ν
⟩n, which is proportional to the effective Kuhn

length1 of the chains. For all systems considered here, this is a mono-
tonically increasing function of ρ and, discounting the numerical
noise, a monotonically decreasing function of c. From Fig. 3(b), we
also see that in the systems f = 4, c = 5% and f = 3, c = 10%, which
have the same mean valence F, the strands have the same conforma-
tion. The same qualitative behavior is observed when considering
the end-to-end distance (not shown).

The fact that Rg increases with density might be surprising,
since in polymeric systems with free chains, Rg usually decreases with
increasing ρ.1 This behavior, however, can be understood qualita-
tively by analyzing the bond angle distribution of the strands, P(θ),
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FIG. 3. (a) Normalized mean radius of gyration of the strands of length n as a function of n − 1. Points represent simulation data, with different colors corresponding to
different f and c values and different symbols corresponding to different densities. Solid lines represent power-law fits in the range n − 1 ≥ 10. The data for f = 4 have been
shifted up by a factor 3 in order to aid visualization. Note that for each pair of f and c values, all the densities ρ considered are included in the plot, and the vertical arrows
denote the direction in which ρ increases. (b) Mean-squared strand radius of gyration R2

g ≡ ⟨R
2
g(n)⟩n, normalized by ⟨(n − 1)2ν

⟩n, as a function of density, for different
values of f and c, where ⟨⋅⟩n denotes averaging over the configurations and over the strands.

where θ is the angle between bonded triplets of monomers. In Fig. 4,
we report with solid lines P(θ) for c = 5% and f = 3 (a) and f = 4
(b) (the other systems show the same qualitative behavior). These
are compared with the distribution obtained before changing the
interaction potential from patchy to Kremer–Grest and allowing the
system to relax to P = 0 (dotted lines). Before the system is brought
to P = 0, P(θ) displays a peak at θ ≃ 142○, which originates from the
patchy potential. Moreover, P(θ) drops to zero for θ ≲ 60○, which
is the minimum allowed angle considering the excluded volume
(WCA) interaction.

We note that before relaxation, P(θ) only depends on f and c
and not on ρinit. As the bonding potential is switched to the direc-
tional patchy one to the nondirectional FENE one and the system
relaxes to P = 0, the curve becomes broader and the peak shifts to
lower values of θ. At low ρ, the system can completely relax and

P(θ) assumes a form identical to that of chains in a dilute solution
(dashed lines; data from Ref. 66). By contrast, for high ρ, P(θ)
retains a shape that is close to the shape it had before relax-
ation, signaling the presence of strong topological constraints, i.e.,
entanglements,1 resulting from the non-crossability of the strands.
These constraints prevent the bond angle from fully relaxing, as
signaled by the survival of the θ ≃ 142○ peak. We can see that
for both systems, the average bond angle ⟨θ⟩ increases with den-
sity: This results in an increase in the effective persistence length1

of the strands and of Rg(n), as shown in Fig. 3(b). This phe-
nomenon is reminiscent of topological rigidification, when the
system’s rigidity increases with increasing topological complexity
as observed in knotted rings and star polymers,67 although the
limited range of strand lengths available here does not allow estab-
lishing the exact nature of this rigidification. We note that the

FIG. 4. Bond angle distribution P(θ) for f = 3, c = 5% (a) and f = 4, c = 5% (b). The dotted lines are bond angle distributions before the system is allowed to relax to zero
pressure. Dashed lines: data for a polymer solution of 50 chains of length 1000 for ρ = 0.11 (data from Ref. 66).
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FIG. 5. Number of kinks Mk (obtained from primitive path analysis), normalized
by the total number of monomers Mtot, as a function of monomer density ρ, for
different values of f and c. Dashed line: power law with slope 1.5. Dash-dotted
lines: the three cross-link fractions investigated (c = 1%, 5%, and 10%).

persistence length of chains of patchy particles in solution decreases
with ρinit, but it does so only weakly (see Appendix A); thus, this
ρinit-dependence cannot, by itself, explain the effect observed
in P(θ).

The increase in the number of entanglements with increas-
ing density can be more directly quantified using the method of
primitive path analysis.68,69 The procedure is as follows: (1) The
cross-links are fixed in space, then (2) the intra-chain excluded
volume interactions are turned off, while the interchain interactions
are kept, and finally (3) the bonds of the segments are gradu-
ally shrunk, as when the system is cooled to T = 0. Since intra-
chain excluded volume interactions are turned off, the chains are
straightened; however, the interchain interaction still prevents the
chains from passing through each other, and thus the topology
is conserved. The network is thus reduced to a mesh of primi-
tive paths. We then count the number of contacts between any
two primitive paths and refer to it as the number of kinks, Mk.
Under the assumption that two strands do not entangle more than
once, Mk is proportional to the number of entanglements Me, i.e.,
Mk ∝Me ≃Mtot/4Ne, where Ne is the entanglement length.1,68 One
can see from Fig. 5 that the fraction of kinks Mk/Mtot increases
with ρ and decreases with c and f . The ρ-dependence at high-
density seems to be compatible with a power law of exponent 1.5,
although the limited density range does not allow to draw any
definite conclusion (see the dashed line reported in Fig. 5 as ref-
erence). It is important to stress that in our systems, an increase
in ρ is not equivalent to the one obtainable by simply compress-
ing the system (i.e., by collapsing the network), since the degree

FIG. 6. (a) Structure factor S(q) of all the particles for the system with f = 3, c = 5%. At low density, the behavior of S(q) is consistent with a power law with exponent
−α, consistent with the fractal and polydisperse nature of the network (slope with α = 1.3 reported for comparison). (b) Structure factor of the cross-links [(same systems
as in (a)]. Inset: S f(q) on linear scale. (c) Comparison between the structure factor S(q) of the f = 3, c = 10% system and that of the f = 4, c = 5% system for different
densities. Note that these systems have the same mean valence F and the same density ρ. (d) Comparison between the structure factor of two selected systems that have
the same density ρ = 0.25 but different F (continuous lines). Dashed lines: data for a polymer solution of 50 chains of length 1000 for ρ = 0.20 and 0.26 (data from Ref. 66).
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of entanglement of the network strongly depends on the assembly
density ρinit.

The results of the primitive path analysis are important for sev-
eral reasons: First of all, from the methodology point of view, it is
clear that in the protocol we employ to build disordered networks
the number of topological kinks (and therefore of entanglements)
can be controlled, in a statistical sense, by varying ρinit. Leveraging
this feature will make it possible to investigate fully entangled, poly-
disperse, disordered networks. Second, for the particular choice of
parameters we made here, these results show that the investigated
systems are at most lightly entangled as the order of magnitude of the
number of entanglements (which is smaller than Mk) never exceeds
that of the cross-links (also shown in Fig. 5). Finally, the increase in
the number of entanglements with density may explain the apparent
topological rigidification discussed above.

C. Structure factor
To gain insight into the global structure of the network, it is

useful to study the structure factor.70 We report the total struc-
ture factor S(q) in Fig. 6(a) and the structure factor of the cross-
links S f (q) in Fig. 6(b) for f = 3, c = 5% and different values of
the monomer density ρ. The structure factors of the other sys-
tems display the same qualitative features. All the systems have
rather large isothermal compressibility κT = S(0)/ρkBT,70 which
grows with decreasing density. In a finite range of small wave-
vectors q, S(q) is compatible with a power law, S(q)∝ q−α. This
behavior results from the fractal structure and inherent (strand-)
polydispersity of the network and also from the presence of holes
with a wide size range, clearly visible in Fig. 1.71–73 The value of α
decreases with increasing monomer density; for the systems studied
here, it was found that 0.5 ≲ α ≲ 1.3. For larger q, S(q) behaves simi-
larly to that of a liquid, with a contact peak at q ≃ 8 ≃ 2π/σ, followed
by periodic oscillations.

In Fig. 6(b), we show the structure factor of the cross-links,
S f (q), for the same systems. The qualitative behavior of S f (q) is
very similar to that of S(q), with a power-law decrease at small
q, followed at larger q by a liquid-like oscillatory behavior (inset).
However, the height of S f (q) in the small-q limit is much lower
than that of S(q) and also the oscillations have much smaller
amplitude, showing that the location of the cross-links is more
random than that of the monomers. Note that since two f -valent
particles cannot bind, the distance of closest approach between two
cross-links is ≃ 2σ and therefore the contact peak of S f (q) is found
at q ≃ π/σ.

In Fig. 6(c), we compare the total structure factors S(q) of the
systems f = 4, c = 5% and f = 3, c = 10% for different values of the
total density ρ. As noted above, these two systems have approxi-
mately the same mean valence F and therefore the same ratio ρ/ρinit
as well [Fig. 2(a)]. One can see that curves corresponding to sim-
ilar densities superimpose almost perfectly, suggesting that S(q) is
controlled either by ρ alone or by ρ and F. In Fig. 6(d), we compare
S(q) for two systems with very similar densities but rather differ-
ent F (2.05 and 2.20): The two curves are quite different, suggesting
that the behavior of S(q) is determined by both F and ρ. These
two structure factors are also compared with the S(q) of a solu-
tion of 50 chains of length 1000 at similar densities (dashed lines,
data from Ref. 66), evidencing a rather different low-q behavior. The

power-law behavior of the network’s S(q) at small q suggests that the
structure of the network is significantly more heterogeneous than
that of the solution at sufficiently large length scales or, equivalently,
the inhomogeneities caused by the cross-links make the networks
much more compressible than their chain-only counterparts.

IV. ELASTICITY
In this section, we investigate the long-time limit of the mean-

squared displacement of the particles and connect it to the shear
modulus of the networks.

A. Localization length
To probe the dynamics of the system, we consider the mean-

squared displacement (MSD) of the particles, defined as70

⟨r2
(t)⟩ ≡ ⟨∣r(t) − r(0)∣2⟩, (10)

where r(t) is the particle’s position vector. Since we run constant-
pressure simulations, the simulation box experiences an affine
motion due to the change of length of its edges. When comput-
ing the MSD, we remove this motion (which is almost negligible
due to the large system size). In Fig. 7(a), we show the MSD of all
the particles for some selected systems, which are representative of
the general behavior. After the initial ballistic regime, ⟨r2

(t)⟩∝ t2

(dashed line), the MSD crosses over toward a plateau, a behavior
that is typical of cross-linked networks and characterizes the system
as an elastic solid.15,53,74,75 At high density, this crossover is almost
immediate, whereas at low density an intermediate superdiffusive
regime, ⟨r2

(t)⟩∝ tβ, with 1 < β < 2 is observed, resulting from the
free motion of chains with different lengths. The square root of the
MSD in the plateau region,

λ ≡ [ lim
t→∞
⟨r2
(t)⟩]

1/2
, (11)

is a static property of the system that is known as the localiza-
tion length, which is an important quantity in many systems53,76,77

and corresponds to the typical length scale of the motion the
particles perform around their equilibrium positions. One sees that
λ increases with decreasing ρ, going from λ ≃ 1 for ρ = 0.29 to λ ≃ 20
for ρ = 0.04. These values can be compared with those typical of
glass-forming liquids, where λ ≃ 0.1 due to the localization being
mainly determined by local packing constraints.78,79 By contrast,
here the localization stems from topological constraints, those of
the connectivity of the network and the non-crossability of the
chains, and the observed plateau is not transient but linked to the
rubbery modulus. Therefore, the localization length we study is
different from the one typical of glassy segmental dynamics.25 The
topology of the system is fixed, but the particles can still partici-
pate in large amplitude oscillations involving substantial parts of the
network.53,74,80 We note that at low densities, the approach to the
plateau occurs at very long time scales, since even in the absence
of dangling ends these networks can have extremely long relaxation
times due to the long time it takes the longest strands to explore the
whole configuration space. Despite this, it is possible to estimate λ
with good accuracy for all the studied systems.

In Fig. 7(b), we show the localization length as a function of
the monomer density ρ. The observed dependence of λ on ρ is
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FIG. 7. (a) Mean-squared displacement of all the particles for selected systems. Dash-dotted line: the localization length λ, defined as the long-time limit of the MSD
[Eq. (11)], for f = 3, c = 10%, ρ = 0.13 (green line). Dashed line: power law with slope 2 (ballistic regime). (b) Squared localization length of all the particles as a function
of ρ for all investigated systems. Dashed line: power law with slope −1.

roughly compatible with a power law with exponent −1, i.e., λ∝ ρ−1

although the curves display a steeper decrease at the highest
densities, where local packing starts to play a more significant role.
The same behavior is observed when considering the localization
length of the cross-links or that of the bivalent particles, see Fig. 12
in the Appendix. We note that also in this case, the curves for f = 4,
c = 5% and f = 3, c = 10%, which have the same mean valence F,
superimpose almost perfectly, confirming once more that the static
properties of the system are controlled by F alone, as also shown
in Sec. III. As the strand length distribution is independent of den-
sity, we ascribe the decrease of λ with ρ to topological constraints
stemming from the non-crossability of the chains and possibly to a
difference in the overall network topology.

To better understand how the entanglements affect strands of
different lengths, we consider the MSD of the central monomers
of odd-length strands, ⟨r2

mid(n, t)⟩, shown in Fig. 8(a) for f = 3,

c = 10%, ρ = 0.25. In order to improve the statistics, we show here
the data for systems of 4 ⋅ 105 particles instead of those of 5 ⋅ 104.
We observe that the localization length λmid(n) of the central
monomers, which for n = 1 is very similar to that of the cross-
links (dashed line), increases monotonically with the strand length
n, reaching for large n values that are much larger than the mean
localization length λ (dashed-dotted line). From the tube model, we
expect strands of length n > Ne to be confined in a tube-like region
of diameter d ∝ N1/2

e .1 After a brief transient, during which entan-
glements are not yet constraining the strands’ dynamics, the strand
monomers will fluctuate around their equilibrium positions. For
monomers that are part of short strands and are thus close to cross-
links, the fluctuations will be rather isotropic, whereas monomers
that are in the middle of long strands will perform the largest excur-
sions along the tube.19,24 Since the tube itself can be considered as a
random walk, this motion is a “random walk on a random walk,”

FIG. 8. (a) MSD of the middle monomers of the strands of length n for f = 3, c = 10%, ρ = 0.25. Dashed lines: MSD of the cross-links. Dash-dotted lines: MSD of all the
particles. (b) Localization length of the central monomers of the strands λmid(n), multiplied by the monomer density ρ, as a function of the strand length.
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so that ⟨r2
mid⟩ ≃ d2

(t/τe)
1/4, with τe ∝ N2

e the entanglement time.
For a free chain, this regime will come to an end at the Rouse time
τR ≃ τe(n/Ne)

2, when all the monomers start to move coherently
and the chain diffuses along the tube, i.e., ⟨r2

mid⟩∝ t1/2. Our strands,
however, are constrained at their ends by the cross-links, so that
instead the mean-squared displacement of the monomers reaches a
plateau with localization length15,24

λmid(n) ≃ d(
n

Ne
)

1/4
(n > Ne). (12)

The simulation data agree with the predicted scaling λmid ∝ n1/4,
as shown in Fig. 8(b), where we report ρλmid(n) as a function of
n for the systems of 4 ⋅ 105 particles (here the ρ prefactor accounts
for the empirical observation that λ∝ ρ−1). One clearly sees that,
whereas the small-n behavior of ρλmid(n) depends on f (and, to a
lesser extent, on c), the large-n behavior is basically independent of
f and ρλmid(n)∝ n1/4, confirming that the behavior of the longer
strands is compatible with the tube model.

Figure 8(a) also shows that, with the exception of the middle
monomers of strands of length n ≤ 3, the cross-links are more
constrained than the bivalent particles, as one may expect. In
order to better compare the dynamics of these two types of
particles, we compare the MSD of the cross-links, ⟨r2

f (t)⟩, to the

average MSD of the middle monomers belonging to odd-length
strands, ⟨r2

mid(t)⟩n and their long-time limits ⟨λmid⟩n and λ f , respec-
tively (we recall that ⟨⋅⟩n denotes an average over the configu-
rations and over the strands). We start by computing the ratio
⟨λ2

mid⟩n/λ
2
f in the framework of the phantom network model1,81,82

(PNM). In the PNM, it is assumed that the network is composed
by identical chains of size N and each cross-link is connected
to a fixed background through f effective springs of constant
K f = K( f − 2)/( f − 1), where K = 3kBT/b2N is the ideal entropic
spring constant of each chain and b is the Kuhn length. From
the equipartition theorem,83 one obtains λ2

f (N) = 3kBT/( f K f )

= b2N( f − 1)/[ f ( f − 2)], which when averaged over the exponen-
tial chain-size distribution that characterizes our networks [see
Fig. 2(b)] becomes

λ2
f = b2Ns

f − 1
f ( f − 2)

. (13)

Under the same approximation, the middle monomer of a strand
of size Ns is connected to two cross-links by chains of length Ns/2,
which behave as entropic springs of constant 2K = 6kBT/b2Ns. In
turn, each cross-link is connected to the fixed background through
( f − 1) springs of constant K f . Therefore, recalling that the effective

FIG. 9. (a) Ratio between the localization lengths of middle monomers and that of the cross-links rescaled according to Eq. (15). (b) Comparison between the MSD of the
cross-links, ⟨r2

f (t)⟩, and that of the middle monomers rescaled by Eq. (17), 2⟨r2
mid(t)⟩/3, for systems with f = 3, c = 5% and different ρ. (c) Ratio between the localization

lengths of middle monomers and that of the cross-links rescaled according to Eq. (17). The dashed line is the expected behavior according to Eq. (17).
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constant of a set of springs is the sum of the constants if the springs
are connected in parallel, and the reciprocal of the sum of the
reciprocal constants if the springs are connected in series, a middle
monomer is connected to the fixed background through two springs
of constant 2K( f − 2)/2 or, equivalently, through a single spring of
constant 4K( f − 2)/ f . As a result, the PNM predicts for the local-
ization length of middle monomers (averaged over the exponential
chain-size distribution as done above)

⟨λ2
mid⟩n = b2Ns

f
4( f − 2)

. (14)

Dividing Eq. (14) by Eq. (13) yields

⟨λ2
mid⟩n

λ2
f
=

f 2

4( f − 1)
. (15)

Figure 9(a) shows that rescaling the numerical data for ⟨λ2
mid⟩n/λ f

by Eq. (15) yields values that at low density are close to 1, and
hence to the PNM prediction, for all the systems. However, all
curves retain a dependence on c and a significant dependence on
the density as ρ→ 0 that are not captured by the simplistic PNM
approach.

As the density increases, excluded volume effects and the non-
crossability of the strands become important, leading to a monotonic
increase of ⟨λ2

mid⟩n/λ
2
f . We attempt to rationalize this behavior by

hypothesizing that, at high density, the large number of topological
constraints increases the effective spring constant connecting a par-
ticle to the fixed background to a value Keff that is the same for every
particle, be it a monomer or a cross-link. Under this assumption, the
localization length of a particle is given by

λ2
N =

3kBT
NKeff

, (16)

where N is the effective number of chains to which it is con-
nected. Therefore, with this ansatz, the high-density limit of the ratio
between the localization lengths is simply given by

⟨λ2
mid⟩n

λ2
f
=

f
2

. (17)

Figure 9(b) shows that the MSD of the middle monomers multi-
plied by a factor 2/ f overlaps well with the MSD of the cross-links
at high density, with the agreement getting worse as ρ decreases. We
also note that values in agreement with Eq. (17) have been found in
other simulation studies of similar systems.16,75 Finally, in Fig. 9(c)
we rescale ⟨λ2

mid⟩n/λ
2
f by f /2 for all the investigated systems, finding

that all curves tend toward 1 as ρ increases, supporting the hypothe-
ses underlying Eq. (17). To test the more general applicability of
Eq. (17) for different values of f , we also include in Fig. 9(c) results
for networks with pentavalent ( f = 5) cross-links, finding results in
agreement with those observed for f = 3 and 4. We note that in both
the low- and high-density limits, the theoretical arguments we put
forward are not sufficient to explain the c-dependence exhibited by
the numerical data.

B. Poisson ratio and elastic moduli
The elasticity of polymer networks is usually characterized by

the shear modulus, G.1 Since the polymer gels are in general com-
pressible, they possess a finite bulk modulus, K, and a Poisson ratio
νP that is smaller than 1/2.84 Here, we use the method used in
Ref. 39 to estimate G and K from the fluctuations of the box size
in the three spatial dimensions, making it possible to compute ν
through the relation

νP =
3K − 2G
6K + 2G

. (18)

Using theoretical arguments building on the Flory–Huggins the-
ory and the elasticity of the phantom network, it has been shown
that the Poisson ratio of gels goes from νP ≃ 0.25 for swollen

FIG. 10. (a) The Poisson ratio νP and (b) the shear modulus G of the network as functions of monomer density ρ for different values of f and c. Inset: bulk modulus K. The
dashed line corresponds to a ρ3 behavior.
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samples to νP ≃ 1/2 for rubbers and melts, which are essentially
incompressible.84,85 Figure 10(a) shows that the polymer networks
we investigate have a Poisson ratio between ≃0.20 and ≃0.25 in
the maximally swollen state and then, within the numerical noise,
increases monotonically as density increases, therefore comparing
favorably, at least on a semiquantitative level, with the theoretical
figures reported above. Interestingly, the dependence on c and f is
rather weak and mostly masked by the statistical uncertainties.

The ρ-dependence of the shear modulus G, shown in Fig. 10(b),
is much stronger than that of ν. Indeed, the relation G∝ ρ3 approx-
imately holds in the whole density range and in particular at high
density. Unraveling the different contributions that make up the
shear modulus of a polymer network is a long-standing open prob-
lem in polymer physics,8–13 especially when short chains are present,
as it is the case here. Indeed, previous simulations of polydisperse
and disordered phantom networks have established that classical
elasticity theory86 fails to describe the elastic behavior of the sys-
tem when short chains are abundant.32 Moreover, the structures of
the networks varies with density, a fact that prevents using classi-
cal elasticity theory to extrapolate the shear modulus G from small
to large densities, or vice versa. As a result, both the phantom and
affine network models fail to capture even the qualitative behavior
of the network elastic moduli. In light of this, we can nonethe-
less seek to rationalize the ρ3 dependence of the shear modulus
by attempting to connect it with the behavior of the localiza-
tion length as follows: We start by recalling that in the simulated
systems, the localization length of the cross-links behaves similar
to the total localization length [Fig. 7(b)] as λ f ∝ ρ−1 (see Fig. 12
in the Appendix). In line with the results shown in Sec. IV A
[in particular Eq. (16)], we then assume that the squared localiza-
tion length of the particles is inversely proportional to an effective
spring constant that depends on the density, λ2

f ∝ K−1
el (ρ), so that

Kel(ρ)∝ ρ2. By interpreting Kel as the entropic spring constant of
a chain of length Nel ∝ K−1

el and assuming that the shear modu-
lus is proportional to the density ρ/Nel of these effective chains,1
we find

G(ρ)∝
ρ

Nel
∝ ρ3, (19)

in agreement with the observed ρ-dependence and the deviations
at small ρ observed in Fig. 9(c). In the inset of Fig. 10(b), we also
report the bulk modulus K, which behaves roughly as G. This is
expected as νP only changes slightly in the density range studied,
and from Eq. (18) one has K/G = 2(1 + νP)/[3(1 − 2νP)]. We recall
that scaling arguments1 predict K ∝ ρ3/(3−d f ), d f being the fractal
dimension of the network. Recent simulations of compact nanogel
particles73 and bottle-brush polyelectrolytes72 yielded d f = 2. This
fractal dimension is consistent with that theoretically predicted for
randomly branched polymers with excluded volume interactions65

and further implies K ∝ ρ3, which is indeed the density scaling
observed here. We note that a different behavior, compatible with
d f = 1.7 (the fractal dimension of linear chains in good solvent), was
recently reported for tetra-PEG gels.87 Altogether, the results indi-
cate that the nature of the system and of its assembly process can
affect the observed fractal dimension and, by extension, the scaling
of the elastic modulus too.

V. DISCUSSION AND CONCLUSIONS

Up to the present day, most simulation studies of polymer net-
works have considered structures that are ordered, monodisperse
(with a unique strand length), or both.26–31 Even in the case of net-
works produced through random cross-linking of precursor chains,
it is very difficult, due to the slow chain dynamics, to reach a fully
bonded state in which dangling ends are absent.13–18,20 By contrast,
here we used a method to generate disordered, polydisperse net-
works that are almost defect-free from the assembly of bivalent and
f -valent (cross-links) patchy particles.32,34,35 In the present study, all
the networks satisfied more than 99.8% of all possible bonds and
no more than 4% of the monomers were part of dangling ends,
but it is in principle possible, with a larger computational effort, to
obtain disordered fully bonded networks (100% of bonds formed)
with no dangling ends. Moreover, the assembly process is an equi-
librium one: As a result, the final structure of the network depends
only on the percentage c of cross-links, on their valence f , and on
the assembly density ρinit. Another interesting property of these net-
works is that the distribution mn of strand lengths is independent
of density and only depends on f and c. However, we showed that
the number of topological kinks depends rather strongly on density
and increases approximately as a power law: This makes it possible
to tune the entanglement length by changing the assembly density
while keeping the average strand length Ns constant. We further
note that the same model considered here can be used to study the
influence that f and c have on the local network structure, e.g., ring
statistics. Likewise, the model can be used to investigate how short-
range attractions that mimic the solvent quality during the assembly
will impact the final network.

By analyzing the dynamical properties of the networks on the
level of the strands, we found that the dynamics of long strands is
qualitatively consistent with the tube model. Moreover, we ratio-
nalized the behavior of the ratio between the localization length
of the cross-links, limt→∞⟨r2

f (t)⟩, and the localization length of
the middle monomers of the strands, limt→∞⟨r2

mid(t)⟩, finding a
crossover between a phantom network model-like behavior at low
density and a mean-field-like regime at high density where each
particle can be described as being connected via an effective spring.
Finally, we discussed the elasticity of the networks, showing that
the values of the Poisson ratio we observe are in line with exper-
imental values and that the peculiar ρ-dependence of the net-
work shear modulus we observe, G∝ ρ3, can be interpreted in
light of the behavior of the localization length of the particles
discussed above. We mention that the study of how the localiza-
tion length and its relation to the shear modulus change when
the network is subject to deformations is a promising direction
for future work. Overall, the results presented here show that
the assembly method we have used yields polymer networks that
display realistic properties and thus can be used to model inter-
esting phenomena where the polydisperse and disordered nature
of the networks become important, such as polymer–nanoparticle
composites88 or double networks.89 However, the peculiar scal-
ing (or apparent scaling) behavior we found here cannot be
straightforwardly understood by using classic polymer theories
in view of the presence of short chains that are abundant in
the systems investigated.32 Therefore, the results we have shown
here should be taken as motivation for future theoretical efforts
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attempting to describe the behavior of realistic disordered polymer
networks.
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APPENDIX: ADDITIONAL RESULTS
1. Persistence length of the precursor system

To characterize the persistence length of the patchy particle
model, we started from a monomer solution and used the step-
growth polymerization42 to assemble chains of patchy particles.

For the latter, we next calculated the bond–bond orientational
correlation function ⟨ cos(θs)⟩, defined as90

⟨cos(θs)⟩ ≡ ⟨
bk ⋅ bk+s

∣bk∣ ∣bk+s∣
⟩, (A1)

where bk ≡ rk+1 − rk is the kth bond vector and ⟨⟩ denotes ensemble
average taken over all bond vectors separated by a chemical dis-
tance s (i.e., over all those pairs of bond vectors belonging to the
same chain and with sequence separation s). The results are shown
in Fig. 11. At all the considered values of ρinit, the bond–bond corre-
lation function has an approximate exponential decay for 1 ≤ s ≤ 6,
which we exploited to extract the persistence length, Lp, from the
best fit of the data to the functional form

⟨cos(θs)⟩∝ e−sb/Lp, (A2)

where b is the bond length and Lp is the persistence length. The
bond length depends weakly on ρinit: It takes the value b = 1.2 for
ρinit = 0.05 and decreases by only ≃5% when ρinit is increased to
0.85. The best fit procedure yields a persistence length that decreases
monotonically with density, ranging between 2.7 for ρinit = 0.05 and
1.8 for ρinit = 0.85, as shown in the inset of Fig. 11.

2. Localization length
In Fig. 12, we report the localization length of the bivalent parti-

cles [λ2, panel (a)] of the cross-links [λ f , panel (b)], and of the middle
monomers of the odd-length strands [⟨λmid⟩n, panel (c)]. We note
that the total localization length λ is given by λ2

= cλ2
f + (1 − c)λ2

2
and that since c is small in the simulated systems, we have λ ≃ λ2, i.e.,
the total localization length is approximately equal to the localization
length of the bifunctional particles.

FIG. 11. Bond–bond orientational correlation function for systems of divalent
patchy particles assembled at different densities ρinit. Inset: persistence length Lp

obtained by fitting the first 5 points of each curve to Eq. (A2).
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FIG. 12. Localization length of the bivalent particles (a), the cross-links (b), and the middle monomers of the odd-length strands (c). The dashed lines represent the function
(2ρ)−1 and are reported to facilitate the comparison between the three panels.
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