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A B S T R A C T

In order to facilitate the shift towards sustainable practices and to support the transition to renewable energy,
there is a requirement for faster and more accurate predictions of solar irradiance. Surface solar energy
predictions are essential for the establishment of solar farms and the enhancement of energy grid management.
This paper presents a novel approach to forecast surface solar irradiance up to 24 h in advance, utilizing various
machine and deep learning architectures. Our proposed Machine Learning (ML) models include both point-
based (1D) and grid-based (3D) solutions, offering a comprehensive exploration of different methodologies.
Our forecasts leverage two days of input data to predict the next day of solar exposure at country scale.
To assess the models’ performance, extensive testing is conducted across three distinct geographical areas
of interest: Austria (where models were trained and validated), Switzerland and Italy (where we tested our
models under a transfer learning regime), and sensitivity to the season is also discussed. The study incorporates
comparisons with established benchmarks, including state-of-the-art numerical weather predictions, as well as
fundamental predictors such as climatology and persistence. Our findings reveal that the ML-based methods
clearly outperform traditional forecasting techniques, demonstrating high accuracy and reliability in predicting
surface solar irradiance. This research not only contributes to the advancement of solar energy forecasting
but also highlights the effectiveness of machine learning and deep learning models in being competitive to
conventional methods for short-term solar irradiance predictions.
1. Introduction

One of the major challenges of the ongoing transition towards
low-carbon energy supply is the integration of weather dependent
renewable energy sources into power systems (MacKay, 2009; Dubus
et al., 2018). In addition to improving energy storage capabilities and
demand flexibility, the integration of intermittent energy sources into
the energy mix would largely benefit from accurately anticipating the
future renewable power supply at diverse spatio-temporal scales (Mar-
tinot, 2016; Heptonstall and Gross, 2021) to adapt the response of
energy systems to their volatile nature (Samu et al., 2021).

Solar energy, for instance, is particularly affected by meteorological
phenomenons such as clouds and aerosols causing local and global
short-term fluctuations in energy generation (Kumar et al., 2020).
Therefore, the development of new techniques able to model and
predict the intermittent nature of the solar resource at ground level
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is of the utmost importance to potentially contribute to global energy
security, social equity, and environmental sustainability (Johnson et al.,
2020).

To this end, standard physics-based approaches have been tradi-
tionally employed to perform solar irradiance forecasts (Perez et al.,
2010, 2013). These algorithms have been largely evaluated in diverse
scenarios and conditions, consistently outperforming naive persistence
models. These methods are based on Numerical Weather Prediction
(NWP) techniques, that is physical models for modeling atmospheric
conditions, including cloud formation and dissipation, and cover fore-
cast horizons ranging from a few hours to 15 days ahead (Perez et al.,
2013; Aguiar et al., 2016; Haupt et al., 2018). However, such physics-
based forecasting technologies still face some difficulties currently
limiting their weather forecast skills. In practice, NWP models struggle
to assimilate cloud properties, model the complex dynamics of the
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system and are bound to the selected time scale, the geographic zone
of the study and the model’s input parameters.

Artificial Intelligence (AI) is now emerging as a promising alter-
native or addition to standard physics-based forecasting models. In
particular, approaches based on Machine Learning (ML) or Deep Learn-
ing (DL) allow to build on the extensive amount of in situ and remote
sensing atmospheric observations to improve weather forecasting. More
specifically, these algorithms have the potential to advance solar energy
meteorology (Paletta et al., 2023b) by leveraging historical solar irra-
diance measurements and cloud cover observations to learn complex
relationships and patterns that govern solar energy generation (Suc-
cetti et al., 2020, 2021). As explained in Gailhofer et al. (2021),
ML technologies can play a major role in the transition to a low-
carbon economy. In the context of the energy transition, for instance,
incorporating ML models into the forecasting process could provide
more accurate and reliable solar irradiance predictions, thus improving
the integration of increasing amount of solar energy in the electrical
grid.

The adoption of ML for solar irradiance forecasting has gained
traction in the renewable energy industry due to its capability to handle
the non-linearities and uncertainties associated with solar radiation,
while facilitating the fusion of various data sources such as in situ
atmospheric sensors, sky cameras, and weather satellites (Paletta et al.,
2023a).

ML techniques, such as Support Vector Machine (SVM), Random
Forest (RF), K-Nearest Neighbors (KNN), Categorical Boosting (Cat-
Boost) and Extreme Gradient Boosting (XGBoost) have already shown
promising results in various forecasting horizons, ranging from short-
term (e.g., 1 to 30-min ahead) to long-term predictions (e.g., day
ahead) (Voyant et al., 2017; Yagli et al., 2019; Zhou et al., 2021; Zhao
et al., 2022). For instance (Ayet and Tandeo, 2018) successfully em-
ployed KNN to deliver a probabilistic forecast of the Global Horizontal
Irradiance (GHI) up to 6 h in advance over a localized solar energy
source using a 5-year data.

Ramadhan et al. (2021) and Cornejo-Bueno et al. (2019) compared
physics-based models with some ML algorithms on hourly-sampled
solar radiation data, showing that such models generally perform better
when input parameters are appropriately selected. Solano et al. (2022)
compared the performances of several ML algorithms for solar radiation
forecasting using endogenous and exogenous input focusing on 1, 2 and
3 h lead times. Over a 6-year time window, they found out that an
ensemble feature selection approach outperforms plain SVM, CatBoost
and XGBoost algorithms for all prediction time horizons. Nespoli et al.
(2022) presented three ML models based on NNs and RF to detect the
clouds which will potentially obstruct the direct sunrays and predict
solar irradiance by means of satellite images and weather data. With re-
spect to the state of the art, their approach offers a lighter yet effective
way to forecast short-term peaks and drops in solar resource availability
at a particular location. However, the proposed algorithms has not been
extended beyond the 15 min ahead forecast horizon, which limits its
full applicability to solar energy management. Moreover, the MLP and
RF models used in the study do not consider the temporal dependencies
among data.

Recently, DL has emerged as the golden standard in solar radia-
tion forecasting. The competitiveness of DL over numerical and ML
models has been already demonstrated by several studies (Succetti
et al., 2021, 2020; Espeholt et al., 2022; Rosato et al., 2021). Many
Deep Neural Network (DNN) architectures have been proposed over
time, including Recurrent Neural Networks (RNNs), Long Short-Term
Memories (LSTMs) and Gated Recurrent Units (GRUs) for learning tem-
poral patterns, Convolutional Neural Networks (CNNs) to detect spatial
features, and a combination of both for a spatio-temporal analysis of
solar radiation variations.

For example, Aguiar et al. (2016) focused on hourly GHI forecasting
from 1 to 6 h ahead using a NN trained on both ground-based and

exogenous data, i.e. satellite GHI data, solar radiation and Total Cloud
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Cover forecasts provided by the European Centre for Medium Range
Weather Forecasts (ECMWF). They found out that the combination of
exogenous satellite and ECMWF data with ground data may improve
the accuracy of intra-day forecasts from 3 h onwards, whereas from 1
to 3 h ahead satellite data are sufficient to achieve satisfactory perfor-
mance. Narvaez et al. (2021) proposed a site-adaptation scheme to fuse
multivariate on-ground and satellite-based data, on which an Encoder–
Decoder LSTM sequence-to-sequence model is used to forecast solar
radiation. Results showed that the LSTM model outperformed other
ML models, as well as traditional approaches. However, a potential
limitation of this approach arises from the occasional unavailability of
in-situ data and the occurrence of missing data. In Jiang et al. (2019),
a DNN composed of a CNN and a Multi-Layer Perceptron (MLP) was
applied to extract spatial features from satellite imagery and estimate
hourly global solar radiation. While the task of estimating hourly solar
radiation is not inherently complex, the DNN architecture was effective
in characterizing varying cloud morphology. However, the model’s
potential could be further enhanced by incorporating temporal infor-
mation through RNN models, which are able to capture changes in solar
radiation patterns over time. A similar remark could be raised for Pérez
et al. (2021), who proposed an intra-day forecasting DNN model based
on CNN layers capable of providing up to 6 h ahead forecasts without
requiring real-time data measurements during training. The proposed
model used a series of time-dependant irradiance estimates near the
target location as the main input; these estimates were derived from
satellite images and were combined with other secondary inputs in the
DNN model. Although the DNN model outperformed NWP alternatives,
its use of CNN layers alone constrained its ability to effectively learn
complex temporal patterns in the data. Consequently, extending the
forecasting horizon beyond 6 h may not be feasible without introducing
RNNs into the model’s architecture. Finally, Michael et al. (2022)
proposed a hybrid short-term solar irradiance prediction model based
on a modified multi-step CNN-stacked LSTM architecture. The CNN was
charged of extracting relevant features from incoming irradiance data,
whereas a stacked LSTM network was used to predict the final output.
Such a model proved to be superior compared to other works proposed
in literature for 1 h ahead forecast, but no evaluation was performed
for longer forecasting horizons.

In this paper, our main contribution is a comprehensive study of the
most promising ML forecasting techniques for surface solar irradiance
from Earth Observation (EO) data. As shown in Fig. 1, we propose
and assess various models to predict solar irradiance data coming from
satellite measurements. We compare their performances with physics-
based forecasts and show that ML is competitive compared to standard
NWP products.

The rationale behind the use of satellite data only in this work is
motivated by the fact that unlike ground-based measurements, which
are accurate but only available for few locations, EO data allow to
map surface solar irradiance at the global scale with relatively high
spatial and temporal resolution (Huang et al., 2019). In particular,
geostationary satellites are able to acquire atmospheric observations all
around the globe with a sub-hourly temporal resolution. The resulting
data have advanced our understanding of the Earth’s solar energy
distribution, cloud cover dynamics, and weather patterns. By providing
insights into the diurnal and seasonal variations of solar irradiance
across different regions, this information is crucial for various applica-
tions such as solar energy planning. Furthermore, satellite data allows
for accessible and continuous monitoring of solar energy production in
isolated areas where ground-based instruments may be challenging to
deploy and maintain (Yagli et al., 2020).

Fig. 2 illustrates the applicability of various solar forecasting meth-
ods based on diverse types of input data and for various spatio-temporal
scales (Kumar et al., 2020; Nielsen et al., 2021). In this study, we
aim to predict the surface solar irradiance up to 24 h ahead at sub-
hourly frequency, a time window for which satellite-based data-driven

models and NWP models exhibit comparable forecasting skill, whereas
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Fig. 1. Flowchart of our forecasting procedure: surface solar irradiances obtained from Meteosat data are extracted over the region of interest (elevation with gray shadings, top
plots). For grid-point predictions (bottom plots), a 2-day time series (bottom left, 48 h) is used as input for ML models, providing a day ahead (bottom right, 24 h) prediction.
statistical models processing in situ measurements are most effective
for shorter-term lead times (Perez et al., 2010, 2013; Aguiar et al.,
2016; Haupt et al., 2018; Pérez et al., 2021; Nielsen et al., 2021), as
illustrated in Fig. 2. A day-ahead prediction is important for enabling
decision-making in energy management, especially for energy storage
purposes (Qing and Niu, 2018).

We propose a new benchmark to evaluate and foster the develop-
ment of ML approaches for the task of solar irradiance forecasting using
satellite-derived data. To the best of our knowledge, no works appeared
in the state of the art dealing with such a long lead time and without
ancillary data. Moreover, we show how some of the ML models are
able to compete and even to reach better performances with respect to
physics-based models.

Our final objective is to assist in the effective management of the
electricity grid. Additionally, as last contribution, we provide openly
our pipeline encompassing diverse areas of interest, which can be used
to evaluate future models. The availability of consistent global solar
irradiance prediction may facilitate the development and assessment
of solar energy projects on a large scale, contributing to the transition
to cleaner and sustainable energy sources.

As a case study we consider the Austrian region, that is representa-
tive for the European energy system (Simoes et al., 2017), for training
and validation of ML models, and we also present forecast results on
Switzerland (which has similar geographical characteristics) and Italy
(located further south and with different geography) to investigate
potential geographic issues limiting transferability.

The conversion of the energy mix to increasingly include renewable
energy sources is one of the staples of the Green Transition (Söderholm,
2020) and Austria was used as a prototype for the ESA Green Transi-
tion Information Factory (GTIF) initiative.1 This tool allows users to
interactively discover the underlying opportunities and complexities of
transitioning to carbon neutrality by 2050 using the power of Earth
Observation, cloud-computing and cutting edge analytics. The cloud-
based integrated GTIF environment enables: (1) Decision-makers to
assess and monitor the effectiveness of policies, and evaluate politi-
cal objectives and outcomes using GTIF-provided data, indicators and
interactive exploration tools. (2) Industry to develop novel solutions
to foster the Green Economy, supported by space technologies, and
connect to relevant national and international stakeholders within the
wider GTIF ecosystem. (3) Citizens to engage and understand the needs
for their actions through interactive exploration tools and captivating
scientific narratives across key Green Transition domains.

1 https://gtif.esa.int/ (last access, December 2023).
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Fig. 2. Schematic illustration of the forecasting error achieved with models relying on
ground, satellite and NWP-based data, as a function of time. Relative skill based on the
works by Voyant et al. (2017) and Kumar et al. (2020), among others, but represented
qualitatively since different metrics are used in the literature.

2. Material and methods

This section presents the data that have been used for training, val-
idating and testing the proposed solutions, as well as all the procedure
we applied to preprocess the raw data and to create the final dataset.

2.1. Observational and weather model data

The main dataset we use in this work is a satellite-based climate data
record (CDR) provided by the Climate Monitoring (CM) Satellite Appli-
cation Facility (SAF) of the European Organisation for the Exploitation
of Meteorological Satellites (EUMETSAT). The Surface Solar Radiation
dataset — Heliosat (SARAH-2, v2.1) provides surface incoming solar
radiation (SIS, units W m−2) derived from the geostationary Meteosat
satellites for the period 1983–2017 (Müller et al., 2015; Pfeifroth et al.,
2018, 2019). SIS is defined as the radiation flux (irradiance) reaching a
horizontal plane at the Earth surface in the 0.2–4 μm wavelength region.
The dataset covers the region between ±65◦ latitude and Spanning
±65◦ longitude (including Europe, Africa, the Atlantic Ocean), and
data are provided in the form of a regular 0.05◦ × 0.05◦ latitude–
longitude grid at a thirty-minute resolution. The coverage is reported in
Fig. 3, showing SIS maps collected at different times of the day in June

https://gtif.esa.int/


A. Sebastianelli et al. Remote Sensing of Environment 315 (2024) 114431 
Fig. 3. The spatial coverage covers the Meteosat disk: (a) 2017-06-06 00:00 UTC, (b) 2017-06-06 04:00 UTC, (c) 2017-06-06 08:00 UTC, (d) 2017-06-06 12:00 UTC, (e) 2017-06-06
16:00 UTC, (f) 2017-06-06 20:00 UTC.
2017. To obtain a continuous CDR, passive observations of the visible
channels of the first (Meteosat visible-infrared imaged, MVIRI) and sec-
ond (Spinning enhanced visible-infrared imager, SEVIRI) generations of
EUMETSAT satellites have been processed with a two-step approach.
The modified Heliosat algorithm (MAGICSOL) is used to derive an
effective cloud albedo (CAL, Cano et al., 1986), taking into account
the viewing geometry and sensor calibration characteristics, including
the matching between the MVIRI and SEVIRI channels, which are not
identical (Müller et al., 2015).

The presence of clouds affects the solar radiation reaching the
surface, and the derived CAL variable is then used to derive SIS
values and other radiative parameters. The method includes empirical
adjustments, also based on ground measurements. Atmospheric effects
are modeled with look-up-tables calculated by radiative transfer model
simulations, accounting for the presence of aerosols, water vapor, and
ozone and varying surface albedo by means of climatologies. The
product is not free from uncertainties, as for example errors are larger
over bright surfaces, such as desert regions or snowy areas, since
clear-sky and cloudy-sky reflection are similar. It is also worth noting
that orography is not taken into account for clear-sky calculations,
while this is important for radiative transfer modeling (Erickson, A.,
PhD Thesis, personal communication). Another source of error stems
from the presence of aerosols, since ground measurements are sparse
and aerosol loading influences solar radiation, especially in cloud-free
conditions. The use of climatological aerosol data in the retrieval model
affects the representation of interannual and longer term changes in the
product.

Long-term observations of surface radiation and other meteorolog-
ical parameters are carried out in many stations across the globe,
but the quality of the measurements is uneven. The Baseline Surface
Radiation Network (BSRN) (Driemel et al., 2018) currently comprise
about 50 stations providing high-quality measurements with a high
temporal frequency, with a common formatting and subject to quality
4 
control procedures. While multiple radiative parameters are measured,
here we focus on the global shortwave radiation (SWD), measured by
pyranometers, to compare with satellite-derived values.

Numerical weather prediction (NWP) data are commonly used for
forecasting the renewable energy production from hours to days ahead.
To provide a fair comparison with state-of-the-art weather prediction
models, we considered forecasts produced by the European Centre
for Medium-Range Weather Forecasts (ECMWF) with the Integrated
Forecasting System (IFS) model, which has been operational since the
1980s’ and continuously updated over time. The quality of the forecasts
has steadily improved over time, owing to model development and
improved data assimilation methods, and its accuracy over the Alpine
region is known to be relatively high (Haiden and Trentmann, 2016).
As discussed by Yang et al. (2022), ECMWF irradiance forecasts are at
par or perform better than other state-of-the-art systems. We retrieved
the surface solar radiation (variable ssrd) from high resolution (HRES)
forecasts initialized at 00 UTC for the period 2012–2017. Over this
period, the vertical model resolution has not changed and we down-
loaded data at the spatial resolution used in 2012 (over a regular 0.15◦

× 0.15◦ latitude–longitude grid), including hourly ECMWF forecasts
(units J m−2). A temporal linear interpolation was used to obtain a
twice-hourly frequency, and nearest-neighbor upsampling by a factor
3 (from ∼15 to ∼5 km) was used to match the Meteosat data charac-
teristics (Leirvik and Yuan, 2021). Surface irradiance (units W m−2) is
then computed starting from the interpolated quantities over 30 min
intervals. For simplicity, no post-processing or bias-correction methods
are applied.

2.2. Basic comparison of irradiance datasets

In this work we mainly focus on satellite irradiance data, but it
is informative to compare them with quality-checked BSRN measure-
ments to assess the accuracy of remote sensing observations with
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Fig. 4. Cumulative distribution functions (CDFs) for surface solar irradiance from station, satellite (SAT) and numerical weather prediction (NWP) datasets at the Sonnblick site.
Based on data for the period 2012–2017, divided by meteorological season.
high-quality ground-level measurements. For this, we consider the long-
term record from the Sonnblick station, located in the Swiss Alps
at high elevation (3109 m). Additional information on the station
instrumentation is available from Olefs (2013). Since seasonality is
a major source of cloudiness variability, we analyze the data after
stratification by meteorological season (December to February, DJF —
winter; March to May, MAM — spring; June to August, JJA — summer;
September to November, SON — autumn). To compare the various
datasets, irradiance values resampled to 30-min periods – characteristic
of the satellite product – and time series are extracted for the nearest
grid-point to the Sonnblick geographical coordinates.

From Fig. 4 we note that inter-dataset differences are more marked
in the winter and spring seasons, with the satellite-derived dataset
underestimating irradiance in all conditions. We note that weather
observations at Sonnblick are provided2 to the Global Telecommuni-
ation System, hence one can expect them to match forecasts well,
t least closer to forecast initialization (Haiden et al., 2018). Maxi-
um irradiances for both satellite and NWP datasets are lower than

tation measurements, likely due to effects of spatial resolution and
he characteristics of the Sonnblick site. Another effect is likely due
o the occurrence of clouds, which can have very fine spatial and
emporal scales, and the best agreement among the products is obtained
n summer for values below ∼500 W m−2.

Summary statistics for the distribution quantiles given in Table 1
onfirm the findings obtained from the CDFs. The value of point mea-
urements from the BSRN dataset generally exceed those from other
atasets, which is partly expected given the exposition of the mountain
ite. The order of magnitudes of the three products are generally con-
istent, with lower values in DJF and larger in JJA, and satellite-based
rradiances differ the most from observation in the MAM season. This
an be explained by the fact that in the Swiss Alps snow accumulation
an be significant in late winter and spring, and the high surface albedo
an negatively affect the performances of the retrieval algorithm. The
ear-round difference between satellite and NWP irradiances reaches ∼
50 W m−2 for the 95th quantile of the distribution (Q95). We note
hat the high elevation and surface conditions of Sonnblick make it
challenging area for satellite and models alike, and as expected the

greement between satellite and NWP-based irradiance is better year-
ound in surrounding lowlands, as illustrated in Supplement A (Fig. A.1
nd Tab. A.1).

2 https://www.sonnblick.net/en/science/networks/wmo-gts/ (last
ccessed, December 2023).
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Table 1
Seasonal statistics (quantiles Q from 5 to 95) for BSRN, satellite (SAT) and numerical
weather prediction (NWP) datasets at the Sonnblick site. Based on data for the period
2012–2017, divided by meteorological season.

(a) DJF (b) MAM

Data Q5 Q25 Q50 Q75 Q95 Data Q5 Q25 Q50 Q75 Q95

BSRN 20 100 210 336 515 BSRN 28 174 376 600 883
SAT 17 36 80 183 343 SAT 29 88 203 403 699
NWP 20 76 175 286 444 NWP 26 145 350 580 793

(c) JJA (d) SON

Data Q5 Q25 Q50 Q75 Q95 Data Q5 Q25 Q50 Q75 Q95

BSRN 23 123 303 569 932 BSRN 22 106 230 401 672
SAT 29 127 308 542 816 SAT 25 69 159 330 588
NWP 22 136 337 560 767 NWP 21 90 216 374 567

2.3. Methods

In order to comprehensively evaluate the effectiveness of ML models
in solar irradiance forecasting, we have selected various shallow and
deep architectures which are usually employed for time series predic-
tion tasks. They are hereafter briefly described and accompanied with
references for the reader interested in deepening the theoretical and
mathematical aspects of each model.

LSTM: it is a RNN variant renowned for its superior ability to
capture sequential dependencies and long-range temporal patterns
(Hochreiter and Schmidhuber, 1997). By using a system of memory
cells, gates, and buffer mechanisms, LSTM excels in learning hidden
patterns among time series data while mitigating vanishing gradient
issues, making it a powerful candidate for modeling complex solar
irradiance fluctuations.

GRU: it is another variant of the RNN architecture, with a simplified
gating mechanisms compared to LSTM (Cho et al., 2014). Its stream-
lined design allows for efficient learning and prediction of temporal
sequences, making it a valuable algorithm in solar irradiance predic-
tion, where swift adaptation to changing conditions is of paramount
importance.

bLSTM: The bidirectional LSTM (bLSTM) enriches the predictive
power of traditional LSTMs by processing input sequences in both
forward and backward directions simultaneously (Graves and Schmid-
huber, 2005). This dual perspective enhances the model’s grasp on
temporal dynamics, allowing it to discern intricate relationships within
solar irradiance data and yield more accurate forecasts.

https://www.sonnblick.net/en/science/networks/wmo-gts/
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ConvLSTM: The Convolutional LSTM (ConvLSTM) combines the
capabilities of CNNs and LSTMs, enabling it to capture both spatial and
temporal features in solar irradiance datasets (Obiora and Ali, 2021).
This architecture has proved to be particularly beneficial for multi-
site solar radiation forecasting due to its inherent ability to analyze
complex interactions across multiple locations while correlating them
with temporal variations.

RF: The RF algorithm employs an ensemble of decision trees, col-
lectively harnessing diverse input features to make informed predic-
tions (Breiman, 2001). Its capacity to handle complex interactions
and non-linearities within solar irradiance data makes it a versatile
contender for accurate forecasting, especially when fast training and
inference times are required.

CB: The Categorical Boosting or CatBoost (CB) algorithm integrates
decision trees and gradient boosting theory to create a more robust
ensemble model (Prokhorenkova et al., 2018). Decision trees are em-
ployed as base learners to capture intricate data patterns, whereas
the gradient boosting technique is used to refine these base models
iteratively. This way, the CB algorithm is able to model complex
interactions within data by continually adjusting and optimizing its
predictions, striking a balance between model complexity and gener-
alization. Additionally, CB is highly effective for analyzing extended
solar irradiance time series due to its efficient CPU utilization.

To run comparisons with naive and physics-based approaches, we
ave chosen to consider NWP, Climatology (per pixel average irra-
iance level over 35 years) and Persistence (average of the previous
wo days) models. The comparison between NWP and ML models
as performed over 47 timesteps starting from 30 min since forecast

nitialization, e.g., for a forecast initialized at 00 UTC, from 00.30 UTC
o 23.30 UTC of the same day.

.4. Experimental settings for ML-based models

.4.1. Data preparation
Data reshape: the models of interest, that have been introduced

n Section 2.3, are designed to take as input a SIS time series over
wo consecutive days in order to forecast the subsequent day of surface
ncoming solar radiation (SIS) values. In practice, considering a dataset
∈ R𝑇×𝑊 ×𝐻×𝐶 , where 𝑇 = 35 ∗ 364 ∗ (24 ∗ 2) represents the number of

vailable satellite acquisitions (35 years, 364 days, 48 acquisitions per
ay, one every 30 min), 𝑊 and 𝐻 are respectively the width and height
n pixels of the Meteosat disk, and 𝐶 the number of channels (𝐶 = 2 in

this study, i.e. SIS and day of year), results in creating a new dataset
𝐷2 = {𝑋, 𝑦} ∈ {R𝑇 ∗×96×𝑊 ×𝐻×𝐶 ,R𝑇 ∗×48×𝑊 ×𝐻×𝐶}, where 𝑇 ∗ represent the
number of sequences of 3 days (96 + 48 acquisitions) available in 𝑇 ,
𝑋 and 𝑦 are the inputs and the ground truths respectively.

Data normalization: before proceeding with the training of the
ML-based models, we normalized our data using a max-scaler with
he maximum values inferred using the whole dataset and rounded by
xcess.
Data Loader: in order to deal with the large amount of spatio-

emporal data, we developed a data-loader that dynamically selects
patial (i.e., a certain location) and temporal (e.g., a certain date)
ndices at run-time. It is worth highlighting that models such as the RF,
RU, CB, and LSTMs are structured to work with data at pixel level,

hus the number of samples in the dataset is much higher compared
o image-based solutions such as the ConvLSTM. On the other hand,
ata are spatially correlated, hence to increase the diversity of the
raining set we randomly selected pixels for different locations across
he domain. This further motivates the need for an efficient data loader,
ble to deal with 1D and 3D data structures alike. For pixel-based
odels, all pixels are used in validation/testing to reconstruct complete

patial maps.
Dataset split: we trained the models only on data from Austria from

983 to 2011, while we validated the models using data from Aus-
◦ ◦ ◦ ◦
ria (9 –7.5 E, 45.5 –49.2 N) from 2012–2017. The choice depends
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Table 2
Hyperparameter settings for models training.

GRU LSTM bLSTM ConvLSTM RF CB

Learning rate 0.002 0.002 0.002 0.0002 – 0.02
Layers/Depth 4 4 4 4 – 8
Hidden size (per layer) 10 10 10 48 – –
Batch size 1024 1024 1024 96a – –
Loss function MAE MAE MAE MAE MAE RMSEb

Training epochs 30 30 30 50 20 20
Network size ∼3𝑘 ∼4𝑘 ∼9.5𝑘 ∼67𝑘 300 100

a The ConvLSTM model working with relatively more complex data samples, the batch
size was decreased in order to fit memory requirements.
b CatBoost currently only supports the RMSE loss for multi-regression tasks.

mostly on the fact that NWP models are constantly updated, and to be
more fair in their comparison, we have chosen the most recent years
for validation. Finally, we tested the models on two states not included
in the training dataset, Italy (6.5◦–19◦ E, 36.5◦–47◦ N) and Switzerland
(5.6◦–0.8◦ E, 45.5◦–49.2◦ N), again for the period between 2012 and
2017.

2.4.2. Models’ hyperparameters
In order to achieve a fast and good convergence, the neural models

were trained using the Adam optimization algorithm (Kingma and
Ba, 2014). The training hyperparameters were fine-tuned through an
extensive grid search procedure. A summary list of the models’ hyper-
parameters is illustrated in Table 2.

All the experiments were performed using Python 3.9 on a machine
equipped with an Intel 11th Gen Intel(R) Core(TM) i7-11800H 8-Core
CPU at 2.30 GHz and with 32 GB of RAM, using for training and
inference a NVIDIA GeForce RTX 3080 GPU with 16 GB of dedicated
vRAM. The neural network models were implemented in PyTorch, RF
is implemented with sci-kit learn.

3. Results

In this section, we show the overall robustness and skills of selected
ML and DL models as viable alternatives for standard physics-based
methods. A spatial analysis is conducted to highlight the difficulties
in predicting solar irradiance with respect to the orography of the
territory, known to be an important feature (Erickson, A., PhD Thesis,
personal communication). Additionally, we illustrate the performance
of the models across different seasons, allowing us to determine when
each model exhibits its optimal capabilities. This seasonal analysis
provides valuable insights into the dynamics of ML model behavior.

3.1. Overall forecast results

The results are organized and presented via sets composed of three
consecutive months, forming triplets. This grouping approach allows
for a comprehensive analysis of how the models performed in relation
to different seasons throughout the studied period. Analyzing the re-
sults in this manner provides a more nuanced understanding of the
models’ capabilities and limitations across various seasons. It allows
us to discern patterns, fluctuations, and potential correlations between
the models’ performance and the changing seasons. This information is
invaluable for assessing the adaptability and reliability of the models in
real-world scenarios that may exhibit distinct seasonal characteristics.

We compare the overall forecast results of all the models, i.e. the
results of a 24 h-ahead prediction averaged over time sequences span-
ning from 2012 to 2017. The bLSTM model outperforms other models
in terms of normalized mean absolute error (nMAE). Note that normal-
ization is done separately by season, since annual variations are very
large, therefore results are given as percentages for easier comparison.

This indicates that the bLSTM is the most accurate model for forecasting
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Fig. 5. Error (nMAE) values calculated for the validation period (2012–2017) for Austria divided by seasons. For all season, the bLSTM is outclassing the other models including
the standard Numerical Weather Prediction (NWP).
solar irradiance values, at the cost of increased resources for training
compared to other pixel-based models we tested (not shown).

Overall, the results and the study suggest that ML models, partic-
ularly deep networks, have the potential to significantly improve the
accuracy and reliability of solar irradiance forecasting. These models
can help to address the challenges posed by the highly intermittent
nature of ground-level solar radiation, making them a valuable tool for
the enhanced integration of renewable sources in the energy mix.

We compared our results against numerical weather prediction
models, that are widely used for solar applications (Moreno-Garcia
et al., 2019) including hours-ahead solar power forecasting. However,
the reliability of their predictions can be impacted by complex local
conditions (such as complex terrain) and timing accuracy of events
such as cloud occurrence. Combining weather model data with machine
learning techniques is currently attracting much interest in the field of
renewable energy meteorology (Markovics and Mayer, 2022). We also
compared our results against naive forecasting models, e.g., the average
ay obtained from the long-term record (climatology) – result obtained
y averaging the full time-series (climatology) – and by averaging the
nput sequence (persistence).

Results are not only valid for the main region of interest, Austria, as
hown in Fig. 5, but also for other countries like Switzerland, Fig. C.6,
hat exhibit similar meteorological conditions, and Italy, located further
outh and hence characterized by different climates Fig. C.15. Indeed,
or the latter one, all the models had a more complex and diverse
ata space to work with, resulting in slightly poorer results for the
ransfer learning task (Nie et al., 2024). It should be noted, however,
hat the ConvLSTM is performing better over the wider Italian domain
omparing to smaller regions, indicating that the domain size is key for
patial convolutional network as shown by Nielsen et al. (2021).

.2. Spatial analysis by region

A widely used indicator for solar energy management is the energy
ntegral (irradiation) available at a certain location (MacKay, 2009).
his quantity is dependent on the time of the year, as in cloud-free
onditions more energy is available in summer than in winter. Unlike
ime-resolved predictions, we cannot diagnose short-term fluctuations
rom time integrals, but they are nonetheless important for evaluat-
ng models for day-ahead predictions. The following section presents
raphical results of the selected models across the four seasons focus-
ng on Austria, while, for spacing and readability reasons, results for
witzerland and Italy are reported in the Supplement. These results
re divided in two series of plots for each season, the first one depicts
ntegrals calculated over the whole prediction period (24 h), the sec-
nd series shows error maps, i.e, the difference between each model
rediction and the ground truth.

Finally, the last set of plots display yearly averaged results (Figs. 12,

3 and 14). The spatial analysis provides a detailed understanding

7 
of the distribution of errors across different regions of Austria. This
facilitate the identification of areas where the models perform well
and areas where they need improvement. The analysis would also help
determine the factors that contribute to errors in SIS forecasting. For
example, solar irradiance levels over areas with complex terrain or
persistent cloud coverage may be more challenging to predict.

By complementing the error heat-map with other spatial data such
land use/land cover maps (accessible through GTIF), the analysis could
provide insights into the environmental factors that affect SIS. This
information could be used to improve the accuracy of the models
by incorporating additional environmental data. The analysis could
also help identify the temporal patterns in errors, such as seasonal
variations or changes over time. This can be used to improve the models
by incorporating temporal data or adjusting the model parameters to
better capture fine-scale variations. The results for winter and fall times
can be found in Supplement B, while the results for summer and spring
times are presented below.

Spring time. Figs. 6 and 7 show results, as forecast irradiation over
24 h, for each model at a specific date during winter time for 2013.
We can observe from Fig. 6 that results are close to the ground truth
especially if looking at models like GRU and bLSTM, and even if maps
of differences Fig. 7 are showing peaks of under- and over-estimation.
Focusing on Fig. 6, we can see that these two models are the two better
at catching spatial patterns, giving a more reliable prediction and over-
passing other models especially NWP and persistence. Moreover we can
observe that models like NWP and Persistence are struggling at catching
spatial patterns, resulting into smooth and/or under-estimated results.
Finally, Fig. 8 shows results at pixel level for a point located to the
Sonnblick station. These results shows that, even if all the models on
average are good at forecasting SIS, in general the huge variability is
particularly difficult to catch. This aspect will be better detailed in the
discussion section.

Summer time. Summer time is the best case scenario, as during this
season the presence of clouds is limited in the area of interest and
simple baselines, such as persistence, would work relatively well. We
can see this from Fig. 9, were for most of the models the results are
almost perfectly matching the ground truth, even if also in this case the
bLSTM is better at catching even the smallest patterns. Moreover Fig. 9
shows also that other models like RF, CB and Climatology are heavily
under-estimating the SIS variable, while NWP is producing a flat result.
This results are also in this case confirmed and better highlighted by
Fig. 10. Pixel level results in Fig. 11 are particularly interesting in this
case, since it is possible to see that all the models are working well,
mostly because of the season and fair weather on that specific date.
Moreover by comparing results at pixel level to results at image level
it is possible to note a strong discrepancy between some models and
the ground truth, especially in the north-eastern area. For this reason
looking at individual location may be not entirely informative, and

spatial analysis is more useful to assess and compare models’ results.
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Fig. 6. Daily surface irradiation over Austria at spring time for 2013-05-03 (validation dataset). The satellite ground truth is indicated as GT, for the other acronyms refer to text.
Fig. 7. Difference maps obtained by comparing the ground truth (GT) and the models’ prediction at spring time for 2013-05-03 (validation dataset).
Fig. 8. Pixel level results, on Sonnblick, for 2013-05-03 (validation dataset). Observed data is shown with the gray line.
Fig. 9. Daily surface irradiation over Austria at summer time for 2013-08-01 (validation dataset).
3.3. Yearly averaged results

To gain an overall sense on the model capabilities, we discuss in this
sections annual averaged model results. For time-averaged results, we
selected our best model and compared it with NWP and ground truth
8 
(GT), as shown in the top row of Figs. 12, 13 and 14. As evident, on
average, the bLSTM closely approximates the ground truth, as observed
in the difference map (bottom row), preserving the majority of spatial
features. This is in contrast to the NWP model, which tends to smooth
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Fig. 10. Difference maps obtained by comparing the ground truth and the models’ prediction at summer time for 2013-08-01 (validation dataset).
Fig. 11. Pixel level results, on Sonnblick, for 2013-08-01 (validation dataset).
Fig. 12. Yearly averaged irradiation for 2013 (top), DEM and difference maps of the former (bottom), for Austria (validation dataset).
the prediction, and appears to be influenced by surface elevation (here
obtained from a digital elevation model, DEM).

For the case of Austria, Fig. 12, the bLSTM has a negative bias
(∼−0.5 kWh∕m2) while preserving most of the spatial features shown
in GT, differently from the NWP model, showing a certain elevation-
dependent bias.

For the case of Switzerland (where we applied transfer learning,
i.e. performed inference without updating models’ weights) in Fig. 13 it
is possible to note that bLSTM is producing more accurate results, this
can be noted also in the difference map, showing differences close to
zero. As for the Austrian region, the NWP prediction is giving spatially
homogeneous fields with a larger bias.

Finally for the case of Italy, where we also applied transfer learning,
we can note that there is a spatial gradient across longitude both in
bLSTM and NWP, Fig. 14. For the bLSTM this can be related to the
process of transfer learning a model that has been trained on a slightly
9 
different distribution for the data, even though this model is returning
also in this case better results than NWP. For this wider area the
latitudinal variation of the surface irradiance is likely also important.

4. Discussion

In this study, several ML models are benchmarked in the context of
day-ahead solar irradiance forecasting using EO data. The two preced-
ing days derived from Meteosat geostationary satellite data and day of
year are used as inputs. Our findings suggest that ML-based models can
effectively complement existing solar irradiance forecasting tools for
this time horizon (Kumar et al., 2020). Model performances could likely
be boosted by accounting for local characteristics, such as elevation and
terrain slope (Erickson, A., PhD Thesis, personal communication). As
reported before (Montero-Martin et al., 2020), elevation is however not
the main source of error in satellite-derived irradiance.
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Fig. 13. Yearly averaged irradiation for 2014 (top), DEM and difference maps of the former (bottom), for Switzerland (test dataset).
Fig. 14. Yearly averaged irradiation for 2016 (top), DEM and difference maps of the former (bottom) for Italy (test dataset).
The models were benchmarked against NWP, Climatology, and
Persistence models, and were evaluated based on the nMAE. Results
show that the tested deep-learning architectures (GRU, bLSTM, and
LSTM models) outperform the other models, with the bLSTM model
achieving the lowest error. This means that for pixel-based predictions
there is an advantage in using well-tuned deep recurrent architectures.
The spatial analysis highlighted how pixel-based predictions tend to
produce higher variability, which is likely due to differences in the
input data, while as expected (Nielsen et al., 2021) results for models
with spatial convolutional cells tend to be more homogeneous. On the
10 
other hand, the seasonality analysis confirmed that there are significant
dependencies on the time of the year, as weather conditions are more
persistent in summer than in colder seasons. Due to the characteristics
of the satellite retrieval algorithm and NWP model development, it is
not possible to explore here the effects of long-term changes in surface
irradiance (Wild et al., 2021). To this aim, additional data sources, in
particular atmospheric aerosols and surface properties (such as land
cover), should be taken into account.

Future research should focus on further improving the accuracy,
robustness and efficiency of these models (Cowls et al., 2023), as well



A. Sebastianelli et al. Remote Sensing of Environment 315 (2024) 114431 
as exploring their potential applications in other EO-based frameworks.
For example, it would be interesting to explore the use of multivari-
ate prediction models (e.g., Gao et al., 2022) that incorporate high
frequency in situ measurements, together with satellite data, also by-
passing complex retrieval algorithms (Serva et al., 2022). In particular,
using a more sophisticated loss function (Basri et al., 2020; Shifaz et al.,
2023) would likely help obtaining a more realistic representation of
high-frequency components that can be evaluated with domain-specific
metrics (Vallance et al., 2017). In this way irradiance forecasts could be
more performing also on sub-hourly basis, which we found to be diffi-
cult for our sequence-to-sequence models. The ability to timely predict
rarer events, such as fast solar power variations, is indeed a crucial
aspect of solar forecasting for which ML models trained on standard
loss functions tend to underperform (Paletta et al., 2021). Additionally,
investigating the integration of advanced ensemble techniques com-
bining numerical predictions with the capabilities of various ML-based
models could enhance the predictive power of these algorithms, while
providing diverse scenarios for power systems operators to build on.
Finally, future works could extend the spatial predictions to tie in with a
larger context. For instance, they could explore the use of satellite data
to provide insights on solar radiation across wider geographical areas,
to be processed with a cloud-aware prediction models (Sebastianelli
et al., 2022).

5. Conclusions

The seamless and dependable distribution of variable renewable en-
ergies into the power grid is critical to facilitate the transition towards a
low carbon economy. Solar power, for instance, is strongly impacted by
the cloud cover dynamics over plant sites. To improve the reliability of
this energy source, power systems heavily rely on solar forecasting tools
to best adapt the response of the electric grid to upcoming fluctuations,
from minutes to days and beyond. However, current approaches based
on physics models still have difficulties in accurately predicting solar
radiation at ground level due to its volatile behavior.

We demonstrate the potential of ML-based techniques for reliable
day-ahead prediction of surface solar irradiance, with deep learning
models performing best across different seasons and geographical set-
tings. Trained models can also effectively be deployed to perform
prediction over unseen regions. Among possible improvements, the use
of multivariate models, physically grounded loss functions, and com-
binations of different data sources (e.g. weather prediction models and
ground-based observations), should be explored in future research. This
could help improve the accuracy of solar irradiance forecasting from
minutes to days ahead by taking into account regional characteristics
and global weather patterns, providing actionable insights with low
latency.

We believe that this study provides valuable insights into the use of
ML for surface irradiance forecasting, and that further research on this
topic is required to facilitate the integration of solar energy in the grid
to implement large-scale decarbonization strategies.
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