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Uniaxial and biaxial structures in the elastic Maier-Saupe model
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We perform statistical mechanics calculations to analyze the global phase diagram of a fully connected version
of a Maier-Saupe-Zwanzig lattice model with the inclusion of couplings to an elastic strain field. We point out the
presence of uniaxial and biaxial nematic structures, depending on temperature T and on the applied stress σ . Under
uniaxial extensive tension, applied stress favors uniaxial orientation, and we obtain a first-order boundary along
which there is a coexistence of two uniaxial paranematic phases, and which ends at a simple critical point. Under
uniaxial compressive tension, stress favors biaxial orientation; for small values of the coupling parameters, the
first-order boundary ends at a tricritical point, beyond which there is a continuous transition between a paranematic
and a biaxially ordered structure. For some representative choices of the model parameters, we obtain a number
of analytic results, including the location of critical and tricritical points and the line of stability of the biaxial
phase.
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I. INTRODUCTION

Nematic elastomers are an interesting class of soft-matter
systems, with an interplay of the effects of nematic order
and of elastic properties of rubber materials [1]. At fixed
and sufficiently low temperatures, elastomer systems display
stress-strain curves with a plateau that resembles a liquid-gas
transition. Since the pioneering work of de Gennes and collab-
orators [2–4], the couplings between elastic and orientational
degrees of freedom have been recognized as the essential
ingredient to account for the behavior of elastomers. More
recently, it has been argued that it is also important to introduce
quenched random fields, which are supposed to smooth the
first-order transition, and which are related to the phase history
of the cross-links of the polymer network [5–11]. In a recent
work, some of us performed mean-field calculations for a basic
Maier-Saupe lattice model, which was supplemented by the
addition of an elastic strain field and of random fields [12,13].
At the qualitative level, it has been possible to account for many
of the experimental properties of uniaxial nematic elastomers.
We were then motivated to revisit this elementary lattice model,
with the addition of a simple form of elastic coupling, and with
no random fields. The fully connected version of this model
system, as we define in Sec. II, is amenable to detailed and
standard statistical mechanics calculations [14,15]. We show
that the introduction of a coupling to an external strain field is
sufficient to provide a mechanism to change and depress the
standard first-order nematic transition, and make contact with
the plateaus in the stress-strain curves of nematic elastomers.
In Sec. III, we obtain a number of analytic results for the stress-
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temperature phase diagram of some simple representative
cases. We show the existence of a rich behavior, including
critical and tricritical points and the continuous transition to a
biaxial nematic structure.

As in the original phenomenological treatment of de Gennes
and collaborators [4], the external stress in the elastic nematic
model system plays a similar role to that of an applied magnetic
(electric) field in the corresponding uniaxial nematic system.
A magnetic field couples to the nematic order via a constant
χa that can be either positive or negative [3]. Positive values
of this susceptibility (χa > 0) correspond to positive tensions
(extension) in the elastic model. In the phase diagrams, either
in terms of stress or in terms of fields and temperature, there
is a line of first-order transitions that ends at a simple critical
point [16]. Negative values of the susceptibility (χa < 0) lead
to a field-induced biaxial phase.

It is interesting to remark that Ye, Lubensky, and co-
workers have considered a minimal model [17,18], at the
phenomenological level, which provides a robust description
of the elastic semisoft response of nematic elastomers. In
addition to the uniaxial strain field, these authors also add a
transverse strain component, which might as well be produced
in the cross-linking Küpfer-Finkelmann procedure of prepar-
ing elastomer samples [19]. They point out that this minimal
model is analogous to the formulation of a nematic system
in the presence of crossed electric and magnetic field, which
also leads to a rich phase diagram, with critical and tricritical
behavior, and the possibility of the existence of a biaxial phase.
In the present work, however, we consider a minimal lattice
model, and we keep the restriction to an elastic strain field
along the uniaxial direction.

In the elastic model of the present work, negative tensions
(compression) may lead to a stress-induced biaxial phase.
In Fig. 1(a), for sufficiently weak and typical values of the
coupling parameters, we draw a sketch of a representative
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FIG. 1. Sketch of the stress-temperature phase diagram of a
uniaxial nematic system for small (a) and large (b) values of the
coupling parameters. Solid and dashed lines correspond to first- and
second-order transitions. We indicate critical and tricritical points.

phase diagram of a uniaxial nematic system in terms of applied
stress (along the uniaxial direction) and temperature. For larger
values of the coupling parameters, the tricritical point collapses
at the first-order boundary, and the topology of this diagram
may be drastically changed [Fig. 1(b)].

II. THE ELASTIC MAIER-SAUPE MODEL

In the Maier-Saupe approach to the nematic transitions, we
consider a lattice of N sites and write the energy

HMS = −A
∑
(i,j )

∑
μ,ν=x,y,z

S
μν

i S
μν

j , (1)

where A > 0 is an interaction parameter, the first sum is
over nearest-neighbor pairs of lattice sites, and the local
“quadrupolar” degrees of freedom are given by

S
μν

i = 1
2

(
3n

μ

i nν
i − δμν

)
, (2)

where −→
n i is the unit director associated with a nematogenic

molecule at site i = 1,2, . . . ,N , and δμν is the Kronecker delta.
In the mean-field calculations of this work, we assume a

fully connected version of this Maier-Saupe model, given by
the energy

EMS = − A

N

∑
1�i<j�N

∑
μ,ν=x,y,z

S
μν

i S
μν

j , (3)

where the first sum is over all pairs of lattice sites, and the
parameter A is suitably scaled to preserve the existence of

the thermodynamic limit. We further assume that the local
directors −→

n i are restricted to the Cartesian axes,

−→
n i =

⎧⎨
⎩

(±1,0,0),
(0,±1,0),
(0,0,±1),

(4)

which leads to a three-state statistical model. This choice of
discrete orientational degrees of freedom, which resembles an
approximation used by Zwanzig to treat the Onsager model for
the nematic transition, leads to a problem that is amenable to
quite simple statistical-mechanics calculations (and to simple
simulations as well). Moreover, it is known that this elementary
MSZ model leads to essentially the same qualitative results as
were obtained from slightly more involved calculations for
the original Maier-Saupe model with a continuous distribution
of orientational degrees of freedom [15,20]. We should keep
in mind, however, that the continuous symmetry may be
strictly necessary to describe some special features of these
systems, such as the soft transitions observed in liquid-crystal
elastomers [13]. It is possible that the soft or semisoft re-
sponse of nematic elastomers depletes the biaxial nematic
state.

According to the notation of our previous article [12],
the energy of a microscopic configuration of the elastic
Maier-Saupe lattice model is written as a sum of three
terms,

E = EMS + Eelastic + Ecoupling, (5)

where EMS is given by Eq. (3). Here we ignore the quenched
random fields originating in the aligning stresses that are
generated at the time of cross-linking. Hence, positive stresses
lead to a nematic director that is aligned with the axis of
deformation.

The theory of rubber elasticity, as developed by Warner and
Terentjev [1], leads to the elastic free energy per site of a lattice
polymer,

frub = 1

2
μs

(
λ2 + 2

λ

)
, (6)

where μs > 0 is a linear shear modulus and λ is the distortion
factor of a uniaxial, volume-preserving, deformation. To keep
the calculations as simple as possible, and restrict the analysis
to an elementary model that is still capable of qualitatively
accounting for the effects of strain, we expand frub about the
minimum, λ = 1, and keep quadratic terms only. We then
discard an additive term, (3/2)μsN , and write the elastic
energy,

Eelastic = 3
2μsN (λ − 1)2. (7)

We now discuss the couplings between orientational de-
grees of freedom and a uniform external strain along a certain
direction. According to previous work [12], we introduce a
global tensor,

Mμν = 1
2 (3mμmν − δμν), (8)

which characterizes a global uniaxial deformation, where the
stress is applied along the unit vector −→

m (which is distinct from
the local nematic directors). If we use the Warner-Terentjev
theory [1], and we keep the dominant contribution near the
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minimum λ = 1, the coupling term of the energy is written as

Ecoupling = −B

N∑
i=1

∑
μ,ν

MμνS
μν

i , (9)

with

B = μsδ(λ − 1), (10)

where the parameter δ gauges the strain anisotropy (and is
usually assumed to be positive).

We emphasize that rubber elasticity is a primarily entropic
phenomenon. Polymer chains optimally arrange themselves
according to high-entropy configurations instead of config-
urations that lower an interatomic or molecular potential.
Therefore, the elastic and coupling terms in Eq. (5) come from
a degeneracy factor associated with the configurations of the
polymer network, and they should be regarded as effective
energy terms [12,13]. Also, the linear chain modulus is usually
taken as proportional to temperature, so in this work we assume
that

μs = nskBT , (11)

where T is the temperature, kB is the Boltzmann constant, and
ns is the relative number of polymer strands.

The thermodynamic properties of this elastic MSZ model
can be obtained from a canonical partition function in the stress
ensemble, which is given by

Y = Y (T ,σ,N,{Mμν}) =
∫

dλ exp[Nβσλ]

×
∑
{−→n i }

exp[−β(EMS + Eelastic + Ecoupling)], (12)

where β = 1/kBT , σ is the global engineering stress, and the
sum is over all configurations of the local nematic directors.
Taking into account Eqs. (3), (7), and (9), and discarding
irrelevant terms in the thermodynamic limit, we write

Y =
∫

dλ exp

[
Nβσ − 3

2
Nβμs − 3

2
Nβμs (λ − 1)2

]

×
∑
{−→n i }

exp[−βEeff], (13)

with

Eeff = − A

2N

∑
μ,ν

(
N∑

i=1

S
μν

i

)2

− B

N∑
i=1

∑
μ,ν

MμνS
μν

i , (14)

where A > 0 is a constant dimensional parameter, and the
expression of B is given by Eqs. (10) and (11),

B = nskBT δ(λ − 1). (15)

We now resort to well-known techniques of statistical
mechanics. If we use a set of Gaussian identities to deal with
the quadratic terms, and change to more convenient variables,

it is straightforward to write∑
{−→n i }

exp[−βEeff]

=
∫

[dQμν] exp

[
−

∑
μ,ν

βAN

2
Q2

μν

]
(Z1)N, (16)

with the short-hand notation∫
[dQμν](· · · ) =

∏
μ,ν

∫ (
βAN

2π

)1/2

dQμν(· · · ), (17)

where Z1 is a single-particle partition function,

Z1 =
∑
−→
n

exp

{
β

∑
μ,ν

[AQμν + BMμν]Sμν

}
. (18)

Performing the sum over the nematic directors according to
the six possibilities of Eq. (4), we finally have

Z1 = 2 exp

[
−βA

2

∑
μ

Qμμ

]

×
∑

μ

exp

[
3

2
βAQμμ + 3

2
βBMμμ

]
. (19)

We now use these expressions to write

Y =
∫

dλ

∫
[dQμν] exp[−βNgf ], (20)

where the free-energy functional is given by

gf = − σλ + 3

2
μs + 3

2
μs(λ − 1)2 + 1

2
A

∑
μ,ν

Q2
μν

+ 1

2
A

∑
μ

Qμμ − 1

β
ln 2

− 1

β
ln

{∑
μ

exp

[
3

2
βAQμμ + 3

2
βBMμμ

]}
. (21)

It should be remarked that gf is a function of temperature T ,
global external stress σ , and the components of the tensor Mμν ,
as well as of the strain distortion λ and the components of the
tensor order parameter Qμν . The thermodynamic free energy
per site, g = g(T ,σ ), comes from a saddle-point calculation,
which amounts to a minimization of gf with respect to λ and
{Qμν},

g = g(T ,σ ) = min
λ,{Qμν }

gf (T ,σ ; λ,{Qμν}). (22)

From the saddle-point equations, we have

Qμμ = 1

2

(
3eμ∑

ν eν

− 1

)
, (23)

where

eμ = exp
[

3
2βAQμμ + 9

4βBm2
μ

]
, (24)

and mμ is a component of the unit vector −→
m associated with

the global tensor Mμν . It is easy to see that Qμν = 0 for μ �= ν,
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and that Qμν is a traceless tensor,∑
μ

Qμμ = 0. (25)

The derivative with respect to λ leads to the remaining saddle-
point equation,

− σ

μs

+ 3(λ − 1) − 3

2
δ
∑

μ

m2
μ Qμμ = 0. (26)

At this point, the problem is formulated in quite general
terms. We use Eqs. (23) and (26) to obtain the nematic order
parameter Qμμ and the distortion λ in terms of temperature T ,
external stress σ , global strain Mμν , and the parameters of the
model. If there are multiple solutions, we have to search for the
absolute minima of the functional gf (T ,σ,{Mμν}; λ,{Qμν}).
Several choices of parameters and particular cases can be
analyzed rather easily.

III. CALCULATIONS FOR SOME SPECIAL CASES

We now use the standard representation of the nematic
tensor order parameter,

Q =
⎛
⎝− 1

2 (S + η) 0 0
0 − 1

2 (S − η) 0
0 0 +S

⎞
⎠. (27)

Also, we assume that the global external strain is applied along
the z direction,

−→
m = (0,0,1). (28)

From the saddle-point equations (23) and (26), it is straight-
forward to write the mean-field equations of state,

S = 1 − 3

2 + exp [9 β (B + S)/4] sech(3 β η/4)
, (29)

η = 3 tanh (3 β η/4)

2 + exp [9 β (B + S)/4] sech(3 β η/4)
, (30)

and
σ

μs

= 3(λ − 1) − 3

2
δS, (31)

where B is given by Eq. (15), and we are setting A = 1 to
simplify the notation. The free-energy functional can be written
as

gf = −σλ + 3

2
μs + 3

2
μs(λ − 1)2 + 1

2

(
3

2
S2 + 1

2
η2

)

− 1

β
ln 2 + 3

4
μsδ(λ − 1) − − 1

β
ln

[
2 exp

(
−3

4
βS

)

× cosh

(
3

4
βη

)
+ exp

(
3

2
βS + 9

4
βB

)]
. (32)

From Eq. (31), we have

(λ − 1) = σ

3μs

+ 1

2
δS. (33)

Therefore, the coupling parameter B to the strain field is given
by

B = μsδ(λ − 1) = 1
3σδ + 1

2μsδ
2S, (34)

so that the strength of this coupling depends on the stress.
For δ > 0 and σ sufficiently large, the system prefers to align
uniaxially (there is a stable uniaxial solution,S �= 0 andη = 0).
For negative and sufficiently large values of the stress σ , with
positive strain anisotropy, δ > 0, we anticipate the possibility
of a biaxial arrangement (S �= 0 and η �= 0).

A. Uniaxial transitions

In zero stress, σ = 0, we have B = μsδ
2S/2, so that S = 0

(with η = 0) is a solution of the saddle-point equations. At
low temperatures, however, this fully disordered solution is
unstable, and there appears a thermodynamic stable, uniaxially
ordered solution, S �= 0 and η = 0. For σ �= 0, however, the
solution S = 0 is no longer acceptable.

In the stress-temperature phase diagram, assuming δ > 0,
we anticipate the existence of a line of coexistence of two
distinct and uniaxially ordered phases. Along this first-order
line, as the temperature increases, there is a decrease of the
difference 
S between the scalar order parameters associated
with the coexisting phases, which finally vanishes at a simple
critical point. This depression of 
S is one of the hallmarks
of the behavior of elastomers [1]. Given the parameters of
the model, we can draw a number of graphs of the solution
S versus temperature T for various values of the external
stress σ (see the figures in the article by Liarte, Yokoi, and
Salinas [12]). Also, we can draw graphs of stress σ versus
strain e = λ − 1, at constant temperature, which are shown to
display characteristic plateaus, as it is experimentally observed
in nematic elastomers.

The formulation of this problem is so simple that we can
resort to an earlier analysis for the field behavior of the Landau
expansion [21] in order to analytically locate the critical point
in the σ -T phase diagram. According to the usual assumptions
of the mean-field approach, the scalar order parameter S in the
neighborhood of the critical point may be written as

S = Sc + s, (35)

where Sc is the value of S at the critical point and s is a small
quantity. We then insert this form of S in the equation of state
(with η = 0, since there is no biaxial phase), and we obtain the
expansion

a + b s + c s2 + c s3 + · · · = 0, (36)

where the coefficients a,b, . . . are functions of σ , T , and the
parameters of the model. At the critical point, that is, with
δσ = δσc and T = Tc, we should have

a = b = c = 0, d �= 0. (37)

From these equations, we obtain the critical parameters Sc, σc,
and Tc.

We now sketch these calculations. From the equation of
state, with η = 0, we write

S = −1 + exp (M)

2 + exp (M)
, (38)

where

M = 9
4β

[
1 + 1

2nsT δ2
]
S + 3

4βδσ, (39)
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and we remark that we are assuming a positive anisotropy, δ >

0, and the number of polymeric strands per molecule, ns > 0,
is also a characteristic positive parameter. We then have the
equation of state

9

4
β

[
1 + 1

2
nsT δ2

]
S + 3

4
βδσ = ln

1 + 2S

1 − S
. (40)

Inserting the form of S, given by Eq. (35), and expanding in
powers of 
S, we have

9

4
β

[
1 + 1

2
nsT δ2

]
Sc + 9

4
β

[
1 + 1

2
nsT δ2

]
s + 3

4
βδσ

= ln
1 + 2Sc

1 − Sc

+
[

2

1 + 2Sc

+ 1

1 − Sc

]
s

+ 1

2

[
− 4

(1 + 2Sc)2 + 1

(1 − Sc)2

]
s2 + O(s3). (41)

At the critical point, we write

a = 9

4
βc

[
1 + 1

2
nsTcδ

2

]
Sc + 3

4
βcδσc

− ln
1 + 2Sc

1 − Sc

= 0, (42)

b = 9

4
βc

[
1 + 1

2
nsTcδ

2

]
−

[
2

1 + 2Sc

+ 1

1 − Sc

]
= 0, (43)

and

c = −1

2

4

(1 + 2Sc)2 + 1

2

1

(1 − Sc)2 = 0. (44)

From Eq. (44), we have

Sc = 1
4 . (45)

We then use Eq. (43), and we write the critical temperature,

Tc = 27

32

[
1 − 27

64
nsδ

2

]−1

. (46)

This critical temperature increases with the parameter ω,
given by

ω = nsδ
2,

which gauges the strength of the coupling and diverges for
ω → 64/27 = 2.3703 . . . , which is an indication that the
contact with the experimental situation is restricted to relatively
small values of ω. We can also write an expression for the stress
at the critical point,

δσc = 4
3Tc

[
ln 2 − 2

3

] = (0.035 31 . . . )Tc,

which is a linear function of Tc. We remark that this is a positive
and relatively small stress field, and that it does not make
physical sense for ω > 64/27.

As is pointed out by Warner and Terentjev [1], the engineer-
ing shear modulus of polymeric chains, at room temperature,
is of the order of 104–106 GPa, which is at least five orders
of magnitude smaller than the corresponding shear modulus
of the usual solids. Therefore, taking into account that 0 <

δ < 1, at least for prolate elastomers, we claim that physically
realistic and accessible results will be restricted to quite small
values of the parameter ω = nsδ

2. In some recent numerical

simulations for a uniaxial nematic elastomer on a lattice, Pasini
and co-workers [22] assumed that ns ≈ 0.3. In the next section,
we use a typical small value, ω = 0.2, to draw some graphs to
illustrate our main findings.

It is certainly interesting to make contact with the phe-
nomenological expansions of the free energy, which have been
written by several authors, e.g., Selinger, Jeon, and Ratna [7,8].
Let us then consider the special uniaxial situation and write an
expansion of the functional gf , given by Eq. (32), with η = 0,
as a power series in the scalar order parameter,

gf = gf (0) + A1 S + A2 S2 + A3 S3 + · · · , (47)

where the coefficients A1,A2, . . . depend on the thermody-
namic field variables, T and σ , and on the model parameters. It
is straightforward to write the expressions of these coefficients.
For example, A1 is given by

A1 = 3

8
μsδ

2 − 3

2

−1 + exp
(

3
4δσ

)(
1 + 3

4μsδ
2
)

2 + exp
(

3
4βδσ

) . (48)

From this equation, we see that A1 = 0 for σ = 0, regardless
of the value of the distortion, which confirms the existence of
a disordered phase at sufficiently high temperatures. It is not
difficult to relate the coefficients of the Landau expansion (47)
with the corresponding coefficients of Eq. (36). In particular,
A3 �= 0 indicates the characteristic first-order nature of the
nematic transition. Also, we can use the Landau expansion
to check and confirm the location of the critical point in the
σ -T phase diagram.

B. Biaxial transitions

If the external stress is sufficiently large, and negative,
with the usual positive strain anisotropy, δ > 0, the nematic
directors tend to be parallel to the x-y planes, which gives
rise to biaxial ordering. In the σ -T phase diagram, we then
predict the existence of a line of second-order transitions to a
low-temperature biaxial phase.

This second-order line in the σ -T plane can be located from
an analysis of the general equations of state for small values
of the order parameter η. Taking into account Eqs. (29), (30),
and (31), we write the expansions

S = S0 + S2η
2 + O(η4) (49)

and

1 = E1 + E2η
2 + O(η4), (50)

where the coefficients S0,S2,E1,E2, . . . depend on stress,
temperature, and the parameters of the model system.

The line of stability of the biaxial solution, η2 �= 0, comes
from the equation

1 = E1, (51)

which leads to the expressions

9

4
β − 2 = 2S0 + 1

1 − S0
(52)

and

2S0 + 1

1 − S0
= exp

[
9

4
βS0 + 3

4
βδσ + 9

8
nsδ

2S0

]
, (53)
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FIG. 2. Critical line (E1 = 1, green) of the biaxial solution, and
limit of stability of the biaxial solution (E2 = 0; blue, dot-dashed) for
a typical parameter value, ω = nsδ

2 = 0.2. The intersection defines
the tricritical point.

where we have set A = 1 and assumed that the shear modulus
depends linearly on temperature. It is then straightforward to
obtain the limit of stability of the biaxial solution,

(σδ)crit = 4T

3
ln

(
9

4T
− 2

)
−

(
1 + 1

2
nsδ

2T

)

× (3 − 4T ). (54)

At this line, we have η = 0 and S = S0, with

S0 = 1 − 4T

3
. (55)

Note the asymptotic value σδ → −∞ for T → 9/8 = 1.125.
We now look at the condition E2 = 0, which is associated

with a quartic term of a Landau expansion, so that the second-
order biaxial transition is unstable for E2 < 0. In the σ -T phase
diagram, the quartic line E2 = 0 is given by

(δσ )stab = 4T

3
ln

[(
1 − 3

8T

)
1(

1 + 1
2nsδ2T

)
]

−
(

1 + 1

2
nsδ

2T

)
(3 − 4T ). (56)

Conditions E1 = 1 and E2 = 0, which correspond to the
intersection of curves (σδ)crit and (δσ )stab versus temperature,
determine the location of a tricritical point, which comes from
the equation

9 − 8T = 8T − 3

2
(
1 + 1

2nsδ2T
) , (57)

so that we have the physical solution

Ttri = 9 ω − 24 + √
576 + 240 ω + 81 ω2

16 ω
, (58)

where ω = nsδ
2.

In Fig. 2, we draw (σδ)crit and (σδ)stab as a function of
temperature for ω = nsδ

2 = 0.2, which is a typical small
value of the parameter ω. The intersection of the critical
line (E1 = 1, green) with the limit of stability of the biaxial
solution (E2 = 0; blue, dot-dashed) defines a tricritical point.
A number of calculations [23–25], including our own work for
the Maier-Saupe-Zwanzig lattice model [16], indicate that the

FIG. 3. Free energy as a function of the nematic order parameter S

at the tricritical point, for ω between 0.1 (top curve) and 0.58 (bottom
curve). The vertical axis is shifted so that g(S0) = 0.

qualitative features of the stress-temperature phase diagram,
for sufficiently small values of the coupling ω, are also present
in the field-temperature phase diagram of a uniaxial nematic
system.

In Fig. 1(a), we have drawn the stress-temperature phase
diagram for sufficiently small values of the coupling ω. As
this coupling parameter increases, the triple and tricritical
points approach each other, until they coalesce at ω = ωtop.
We can describe this topology change by considering the free
energy, given by Eq. (32), as a function of S, at the tricritical
point. In Fig. 3, we show a plot of S versus the free energy
g, for ω between 0.1 (top curve) and 0.58 (bottom curve),
with the vertical axis shifted so that g(S0) = gtri = 0. Note
that the solution S = S0 in Eq. (55) becomes metastable at
the threshold coupling ω = ωtop. The value of the threshold
coupling ωtop comes from the solutions of equations g(S) =
g(S0) and the equation of state (38), for S ( �= S0) and ω, at the
tricritical point. Our numerical calculations yield ωtop ≈ 0.59
and Stop ≈ 0.72. For ω > ωtop, the stress-temperature phase
diagram consists of just a first- and second-order transition
line. The first-order transition ends at a simple critical point,
and the second-order critical line ends at this first-order border
[see Fig. 1(b)].

The existence of a biaxial phase as well as the asymptotic
limit of the second-order transition to a paranematic region
can be easily checked in the infinite stress limit. From the
equations of state, for σδ → −∞, with T �= 0, we obtain the
limiting values

S → − exp
(− 3

4βS
)

cosh
(

3
4βη

)
2 exp

(− 3
4βS

)
cosh

(
3
4βη

) = −1

2
(59)

and

η → 3 exp
(− 3

4βS
)

sinh
(

3
4βη

)
2 exp

(− 3
4βS

)
cosh

(
3
4βη

) = 3

2
tanh

(
3

4
βη

)
. (60)

This second equation already indicates the characteristic up-
down symmetry of the biaxial phase in this discrete model
system. There is a second-order transition at the temperature
Tc = 9/8 = 1.125, which is the previously found asymptotic
value of the critical temperature. Using the standard notation
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for the nematic order parameter, as in Eq. (27), we have

Q =
⎛
⎝− 1

2 (S + η) 0 0
0 − 1

2 (S − η) 0
0 0 S

⎞
⎠

=
⎛
⎝ 1

4 − 1
2η 0 0

0 1
4 + 1

2η 0
0 0 − 1

2

⎞
⎠, (61)

which is a biaxial tensor except at the trivial limits η = 0 (at the
second-order transition) and η = ±3/2 (at the ground state).

IV. CONCLUSIONS

We have analyzed the global phase diagram of a fully
connected version of a Maier-Saupe-Zwanzig lattice model
with the inclusion of couplings to an elastic strain field.
This is perhaps the simplest model system to be amenable
to standard statistical mechanics calculations to investigate
elastic effects on a nematic phase transition. We show the
presence of uniaxial and biaxial nematic structures, depend-
ing on temperature T and on the applied stress σ . If the
applied stress favors uniaxial orientation, we obtain a first-
order boundary, along which there is a coexistence of two
uniaxial nematic phases, and which ends at a simple critical
point. We locate this critical point in terms of the model

parameters. This picture is in qualitative agreement with the
experimental findings for the behavior of the nematic order
parameter of elastomers in a stress field. However, in the
presence of a compressive stress, which favors biaxial orien-
tation, we show the existence of a biaxially ordered region.
Depending on the strength of the couplings, there is a first-order
boundary, but it ends at a tricritical point, beyond which there
is a continuous transition to a biaxially ordered structure. We
point out the analogy with the behavior of a nematic system in
the presence of an applied magnetic (electric) field, depending
on the strength of the field and on the sign of the anisotropy.
Some of our analytic results, for the critical and tricritical
points, for example, may turn out to be a helpful guide to
experimental work. In the future, we plan to perform Monte
Carlo simulations to make contact with published numerical
work [22], and to investigate the persistence of these qualitative
results in a scenario of short-range interactions.
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