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A B S T R A C T   

The detection of aflatoxin B in raw food materials represents a topic of great interest worldwide because of the 
huge health and economic impact of aflatoxin contamination. In this paper, we present an original approach to 
aflatoxin detection, using a portable instrument to acquire fluorescence images, among other spectral responses. 
The acquired images are processed by combining a color space conversion from the RGB scale to Y′CbCr, and a 
neural network approach to encode a vector of features. After a feature reduction using a Receiving Operating 
Curve method, two-class and three-class classification tasks of contaminated vs non-contaminated samples are 
accomplished. This procedure has been applied to artificially contaminated grained almond samples in the range 
of 0–320.2 ng/g, achieving an overall classification accuracy between 84.7% and 93.0%, depending on the 
number of classes. Thus, in this setting, we show that good classification performance can be achieved using only 
an image acquisition and analysis approach. The proposed procedure can represent a cheap, rapid, non- 
destructive yet sensitive method for the assessment of aflatoxin B contamination in food matrices, and its 
monitoring and tracing throughout the food chain.   

1. Introduction 

Aflatoxins (AFs) are toxic secondary metabolites mostly produced by 
the fungi Aspergillus flavus, Aspergillus parasiticus and Aspergillus nomius 
(Fernández-Ibañez et al., 2009), that have a strong negative impact on 
crops and food. There are four major types of aflatoxins, AFB1 
(C17H12O6), AFB2 (C17H14O6), AFG1 (C17H12O7) and AFG2 (C17H14O7), 
highly toxic due to their deleterious effects on humans and animals, and 
AFB1 is the most common and dangerous one. The classification in ‘B′ 
and ‘G′ types, refers to the blue and green fluorescence emission pro-
duced by these compounds under UV light illumination. Numbers 1 and 

2 indicate major and minor compounds, respectively (Hussein and 
Brasel, 2001; Weidenbörner, 2001). The interest in methods for 
detecting AFs contaminations in a rapid, very sensitive, and 
non-destructive way is currently increasing as it is important to control 
food safety along the entire food production chain, and ensure health 
and economic benefits. In fact, AFs are known carcinogens, associated 
with liver and lung cancer in humans, and immunosuppressive agents 
(Benkerroum, 2020; IARC, 1993). AFs are also found in several kinds of 
food commodities, like cereals (i.e. corn, soybean, wheat, maize, and 
rice), nuts, and dried fruits. AFs may be produced at various stages of the 
food chain: before harvest in fields, during the harvest process, and 
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during storage or transportation. Therefore, the availability of portable 
sensors capable of detecting the presence of AFs along the entire food 
chain is of great importance. In addition to cereal contamination, the 
presence of AFB1 can be detected in oilseeds such as peanuts, almonds, 
walnuts, and sesame seeds (Bhat and Reddy, 2017), and also in products 
such as chili peppers. Due to the above, about 120 countries worldwide 
regulate AFs levels in food and feed (Jallow et al., 2021). In the USA, AFs 
levels in food and feed products are regulated by the Food and Drug 
Administration (FDA, 2000) which sets the limits of contamination 
levels at 20 ng/g or more, depending on the food commodity, while the 
European legislation has set limits as low as 8 ng/g for AFB1 in almonds, 
and 10 ng/g for total AFs (Commission Regulation (EC), 2006). In the 
European Union there are several actions and projects focused on the 
detection and management of mycotoxins (and aflatoxins in particular), 
such as the Mycokey (www.mycokey.eu), MycoTwin (www.mycotwin. 
eu), and MyToolBox (www.mytoolbox.eu) projects. 

Furthermore, climate change has been reported to be a driver of 
emerging food and feed safety issues worldwide, and its expected impact 
on the presence of mycotoxins, and AFs in particular, in food and feed is 
of great concern (Battilani et al., 2016). Currently, AFs detection and 
quantification methods are based on analytical tests, including mass 
spectrometry, gas chromatography, thin-layer chromatography, 
high-performance liquid chromatography, and enzyme-linked immu-
nosorbent assays (Köppen et al., 2010; Singh and Mehta, 2020). These 
methods are characterized by high detection accuracy and specificity, 
but require the destruction of samples, and are not suitable for field 
detection. Moreover, such procedures are costly, time consuming, and 
require specialized personnel to perform the analysis. Thus, the ability 
to detect AFs in a rapid, specific, non-destructive, and easy way repre-
sents a challenge for several food industries and control bodies. Several 
methods have been proposed in this perspective, mainly based on optical 
methods like spectroscopy and imaging (Tao et al., 2018). 

Spectral approaches have shown very good results, the most prom-
ising being fluorescence spectroscopy, near infrared spectroscopy, and 
hyperspectral imaging. These approaches require optimization of the 
acquisition conditions, and appropriate chemometric models to analyze 
the results. Recent progress in machine learning-based data analysis 
greatly improved the classification ability of models based on acquired 
data and allows for trustable detection systems (Bartolić et al., 2022; 
Chakraborty et al., 2021; Han and Gao, 2019; Zhou et al., 2021). Im-
aging approaches are of utmost importance to inspect many different 
food commodities as accurately and rapidly as possible, and in a 
non-invasive way: several imaging approaches have been explored over 
the last few years, mostly involving hyperspectral imaging in different 
spectral ranges. Since AFs usually have a superficial or surface distri-
bution, these approaches have been widely applied recently (Kimuli 
et al.,2018; Zhongzhi, 2019; Zhongzhi and Limiao, 2020; Zhu et al., 
2016), again in combination with machine learning analysis methods. It 
must be underlined that very powerful, hyperspectral imaging is 
expensive from a point of view of data acquisition and processing power. 
Moreover, data extraction is not always straightforward, especially in 
the context of food analysis and processing (Ravikanth et al., 2017). 
Therefore, the possibility of using alternative imaging techniques, that 
are cheaper and faster, can be of great interest for the on-field and 
on-line detection of AFs contamination (Wu et al., 2018; Wu and Xu, 
2020). 

The possibility of using fluorescence imaging can represent a valid 
alternative to hyperspectral approaches, but proper image pre- 
processing is needed to select the most significant features. As an 
example, the autofluorescence of the food matrices may produce con-
tributions that are possibly misleading, and this event must be taken into 
account. In this paper, we present a portable optical system based on an 
RGB CMOS camera, with UV LED illumination, and a novel processing 
strategy to analyze fluorescence images. By exploiting a change of color 
scale and then applying a deep neural network approach, we can 
highlight better the information needed to discriminate even small AFs 

concentration levels. Almond samples artificially contaminated with 
AFs can be classified with an accuracy of up to 90%. Notably, all that is 
needed to acquire the fluorescence images is a CMOS camera and a UV 
LED illumination at 375 nm, so that a sensor fully dedicated to fluo-
rescence imaging can be achieved in a portable, very simple, and non- 
expensive manner. 

2. Materials and methods 

2.1. Production of AF-contaminated almonds 

To establish a calibration curve, we prepared a series of contami-
nated almond substrates using a procedure that mimics natural 
contamination. The shelled almonds (cultivar Genco, farm Marilù Per-
rone, Conversano, BA, Italy) were inoculated with a strain of Aspergillus 
flavus (ITEM 7828, available in the fungal collection of the Institute for 
Science of Food Production - Italian National Research Council, ISPA- 
CNR) that produces only Aflatoxin B1 and B2, according to the experi-
mental conditions reported elsewhere (Bertani et al., 2020; Zivoli et al., 
2014). Different aliquots of this contaminated sample were mixed with 
blank ground almonds to prepare 9 × 80 g of ground almonds containing 
different levels of AFB1 and AFB2. All almond samples were slurred for 
5-min with 160 ml of water, freeze-dried, ground, and analyzed by 
HPLC-FLD (high-performance liquid chromatography with fluorescence 
detector) to measure accurately the levels of AFB1 and AFB2 (limit of 
detection 0.2 ng/g). The HPLC-FLD analyses were performed with an 
Agilent 1100 series (Agilent Technologies, Inc., Wilmington, DE, USA), 
consisting of a binary pump (G1312A), an autosampler (G1313A) with a 
100 μL loop, a fluorescence detector (G1321A) fixed at 365 nm λex and 
435 nm λem, a thermostatic column oven set at 30 ◦C, and software for 
Microsoft Windows 2000 (HP ChemStation). The column used was a 
150 mm × 4.6 mm i.d., 3 µm, Luna PFP (2) (pentafluorophenyl-propyl) 
(Phenomenex, Torrance, CA, USA) with a 3 mm i.d., 0.45 µm pore size 
guard filter (Rheodyne, Cotati, CA, USA). The results of AFB1 and AFB2 
levels measured in the 9 samples of ground almonds and in the control 
samples are reported in Table 1. We underline that 5 out of the 9 samples 
have a contamination level ≤ 10 ng/g, which is the EU limit for total AFs 
in almonds, pistachios, and apricot kernels intended for direct human 
consumption or use as an ingredient in foodstuffs. 

2.2. Image acquisition 

The image data set was acquired in a measurement campaign per-
formed in spring 2021 at the premises of the Institute for Photonics and 
Nanotechnologies - Italian National Research Council, IFN-CNR. Images 
were acquired on ground samples using a custom-built portable sensor 
prototype (Georgoulas et al., 2019; Groß et al., 2019) developed within 
the framework of the EU H2020 PhasmaFOOD project (www.phas 
mafood.eu). During a single measurement run, several spectroscopic 
signals and images were acquired from the same spot: UV excited 

Table 1 
Levels of AFB1 and AFB2 in samples of ground almonds used in this study. ND: 
not detected (LOD: 0.2 ng/g).  

Sample AFB1 (ng/g) AFB2 (ng/g) AFB1 +AFB2 (ng/g) 

Almond 1 
(Control, uncontaminated) 

ND ND  

Almond 2 291 ± 8.7 29.2 ± 1.5 320.2 ± 8.9 
Almond 3 39.3 ± 1.2 5.9 ± 0.3 45.2 ± 1.2 
Almond 4 16.4 ± 0.5 1.9 ± 0.1 18.3 ± 0.5 
Almond 5 12.5 ± 0.4 1.2 ± 0.06 13.7 ± 0.4 
Almond 6 9.9 ± 0.3 0.8 ± 0.04 10.7 ± 0.3 
Almond 7 8.3 ± 0.2 0.6 ± 0.03 8.9 ± 0.3 
Almond 8 6.0 ± 0.2 0.4 ± 0.02 6.4 ± 0.2 
Almond 9 4.2 ± 0.1 0.2 ± 0.01 4.4 ± 0.1 
Almond 10 2.6 ± 0.1 0.1 ± 0.01 2.7 ± 0.1  
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fluorescence spectra, diffuse reflectance spectra in the visible (VIS) and 
near-infrared (NIR) range, together with fluorescence, VIS and NIR 
images. The prototype integrates a UV–VIS mini-spectrometer 
(C12880MA, HAMAMATSU PHOTONICS K.K., Hamamatsu City, 
Japan), an NIR mini-spectrometer, prototype from IPMS Fraunhofer 
Institute (Pügner et al., 2016), and a miniaturized RGB CMOS camera 
(MU9PC-MH, XIMEA GmbH, Münster, Germany). The illumination 
sources consist of white-light LEDs (Mini Toppled LCW MVSG.EC, 
Osram GmbH, Munich, Germany), Xenon-based micro-lamps (MGG 
8321–700-B2), and two UV LEDs emitting at 375 nm ( NSSU100DT, 
Nichia Corporation, Tokushima, Japan). Optical filters to select excita-
tion spectral bands were included as well, namely a band pass filter in 
front of the UV LEDs (360/23 BrightLine HC, Semrock Inc, Rochester, 
NY, USA), with a wide pass band centered at 360 nm, and a specified 
blocking optical density (OD) of 6. The prototype measurement geom-
etry ensured a fixed distance between the surface of the sample, and the 
CMOS camera and the other sensors. For the acquisition of fluorescence 
images, the integration time for the camera was set at 3 s, after fixing at 
15 mA the current supply to the UV LED to obtain a stable emission. 
Images were acquired in a single shot, in a jpg image file format with a 
resolution of 2592 × 1944 Pixels (5.04 MPixels). 

For each level of contamination, two duplicates of the sample were 
prepared, splitting the grained almonds into separate Petri dishes, and 
identified as ‘A′ and ‘B′ samples. At least 30 images for each contami-
nation level were acquired (different spots on the same sample to take 
into consideration the food matrix inhomogeneity), and after a prese-
lection step, a total of 300 images (157 ‘A′ sample set and 143 ‘B′ sample 
set) were included in the dataset. Proper shielding from environmental 
light was ensured throughout all acquisitions. 

2.3. Image analysis 

The analysis of the acquired images is structured into four main 
steps: image preprocessing (Fig. 1), image encoding by transfer learning 
(Fig. 2), two-class pattern recognition by optimized Linear Discriminant 
Analysis (LDA) (Fig. 3), and three-class recognition by optimized LDA 
(Fig. 4). 

2.4. Image preprocessing 

The original images present a large area, and only a limited part of it 
is illuminated by LED sources. Moreover, during acquisition, in some 
cases the edges of the Petri dishes containing the sample were illumi-
nated partially and their reflection appears in the resulting image in the 
form of greenish components (Fig. 1). 

To standardize the images, an automatic crop of the image was 
performed around the center of the illumination spot by extracting a 
square region of 500 × 500 pixels. This step enabled also to reduce ar-
tifacts that may have occurred due to reflections of the excitation LEDs 
(bright spots in the top left and right corners on the left side of Fig. 1). 
Each squared image was then subjected to a color transformation 

processing from RGB to Y′CbCr color space (Poynton, 1996). The Y′CbCr 
space is a family of color spaces used as a part of the color image pipeline 
in video and digital photography systems. Y ′ is the so-called luma 
component which is derived by the luminance (the greyscale conversion 
of the RGB image) by nonlinear gamma correction, while Cb and Cr are 
the blue-difference and red-difference chroma components. Being a 
relative color space, Y′CbCr is useful to ensure uniformity, and in our 
context, the Cr component is fundamental to eliminate the presence of 
the green shadow on the background. After preliminary simulations, the 
Y′CbCr color domain was preferred over others, such as the Hue Satu-
ration Value (HSV). This approach determined an improvement of the 
statistical robustness of the results counteracting the possible fluctuation 
of the experimental set-up conditions. The contrast-enhanced version of 
the derived Cr image is shown on the right part of Fig. 1 (Gonzalez and 
Woods, 2007). 

2.5. Image encoding by transfer learning 

Each image, transformed as described above, is sent to a pre-trained 
Convolutional Neural Network (CNN) with the aim of extracting an 
automatic image encoding signature. To do this, we exploited the CNN 
ShuffleNet (Zhang et al., 2017), as shown in Fig. 2. The selected network 
demonstrated to be an extremely computation-efficient CNN architec-
ture specifically designed for mobile devices with very limited 
computing power. The architecture utilizes two new operations, point-
wise group convolution and channel shuffle, to greatly reduce compu-
tation costs while maintaining accuracy. During simulations, the 
performance of ShuffleNet has been compared with well-known Deep 
Learning architectures such as Alexnet (Russakovsky et al., 2015) and 
Resnet101 (He et al., 2016), demonstrating to be superior in the accu-
racy of classification. By using a pre-trained CNN, we avoided not only 
overlearning problems, and the consequent need to augment the 
training dataset, but also reinforced the robustness of the platform for 
the analysis of food quality by a network reuse paradigm. Each image is 
coded into a vector of numerical descriptors extracted at a specific 
network layer. More in detail, we used the layer node_161 of the Shuf-
fleNet that returns a code vector of 13328 features. Among the pooling 
layers in the ShuffleNet architecture (node-4, node-15, node-64, 
node-161, and node-200) node-161 was an acceptable trade-off between 
the number of features extracted and the achieved performance. 

2.6. Two-class classification problem 

In order to recognize automatically the presence of AFs in the sam-
ples, we outlined a two-class problem in which we defined as class 0 all 
images with a concentration of AFs below the limit of detection of HPLC 
measurement (LOD: 0.2 ng/g), which we named conventionally as 0 ng/ 
g, and as class 1 all remaining images (≥2.7 ng/g). A cross-validation 
procedure based on a sample-out logic was implemented using in turn 
images from sample set‘A′ and from sample set ‘B′ from all concentra-
tions, for the training and testing steps respectively. 

The high number of features extracted made it necessary to imple-
ment an automatic feature selection procedure. In particular, we 
implemented a supervised AUC-based algorithm in which the Area 

Fig. 1. Preprocessing steps followed for each image analyzed: Crop, Color 
Space Conversion, Contrast Enhancement. Fig. 2. Image encoding procedure using CNN: ShuffleNet.  
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Under the roC (AUC) (Zweig and Campbell, 1993) value of each feature 
is calculated over the training dataset and used to select only the most 
significant features. Very high or very low AUC values are indicative of a 
high discrimination ability. The most significant features are used to 
construct a Linear Discriminant Analysis (LDA) model (McLachlan, 
2004) to recognize class 0 samples from class 1 ones (Fig. 3). 

2.7. Three-class classification problem 

The wide range of contamination levels (0–320.2 ng/g) suggests the 
need to perform also a three-class recognition task in which we identi-
fied three distinct categories: class 0 (uncontaminated samples),; class 1 
(moderately contaminated samples), concentration (2.7 – 18.3 ng/g); 
class 2 (relevantly contaminated samples), concentration > 18.3 ng/g. 
The AUC-based method is standardly thought for a two-class problem, 
because the AUC value is directly related to the capacity to discriminate 
samples in a given distribution by using a single threshold value. In this 
case, we adapted the approach to the three-class problem by the 
following two-step procedure: first, we calculated the AUC of features 
discriminating class 0 from the others, and we denoted this value as 
AUClow. Then, we repeated the procedure by calculating the AUC values 
of features discriminating class 2 from the others, and we denoted this 
value as AUChigh. Finally, we collected the combination of the feature 
sets selected by using independently AUClow and AUChigh criteria. 

The selected features are used to construct a three-class LDA model 
using the cross-validation strategy already implemented in the two-class 
problem, as shown in Fig. 4. 

2.8. Data analysis details 

The data analysis has been performed using Matlab 2020b (Math-
Works, Natick, MS, USA) using an Intel core i7, 9th generation, with the 
following characteristic processing times:  

• Average time required to pre-process each image is 0.05 s,  
• Average time to encode each image by transfer learning is 0.73 s  
• Time needed for the AUC calculation is 13.70 s  
• Time required to construct the model and classify the test partition is 

0.37 s 

3. Results and discussion 

The results of the developed classification algorithms are visualized 
by confusion matrices. We recall that the total image data set consists of 
300 images, 157 from the ’A’ sample set and 143 from the ’B’ sample set. 

3.1. Two-class recognition 

In the two-class classification problem, we considered two case 
studies. In Case study 1, the 143 images of the ’B’ sample set were used 
to train the algorithm, and the 157 images of the ’A’ sample set were 
used to test it. Of the test images, 15 have no detectable contamination, 
and the remaining 142 images have contamination levels ≥ 2.7 ng/g. As 
previously defined, class 0 identifies uncontaminated samples and class 

1 contaminated samples (contamination≥ 2.7 ng/g). The corresponding 
confusion matrix is shown in Fig. 5(a). 

93.0% of the samples are correctly classified, and only 11 samples 
are misclassified (7.0%). In this last group, false negatives (contami-
nated samples classified as non-contaminated, i.e. the most alarming 
ones) correspond to contaminations that are mostly below the EU 
maximum permitted levels (2.7,4.4,4.4,4.4,8.9,13.7 ng/g). 

Case study 2, instead, used images from the ’A’ sample set as the 
training set, and images from the ’B’ sample set as the testing set. In this 
case, the testing set is composed of 15 images of not contaminated 
samples (Class 0) and 128 images with contamination ≥ 2.7 ng/g (Class 
1). The results are summarized in the confusion matrix shown in Fig. 5 
(b). It is interesting to note that the overall classification rate is 91.6%, 
while 8.4% of the misclassified samples are assigned almost equally to 
the two classes. 

3.2. Three-class recognition 

Regarding the three-class recognition problem, again two case 
studies were analyzed considering alternatively the datasets from sam-
ple sets ‘A′ and ‘B′ as training and testing sets. In this case, we defined 
class 0 as uncontaminated samples, class 1 as samples with contami-
nation 2.7 ng/g ≤ C ≤ 18.3 ng/, and class 2 as samples with contami-
nation ≥ 40.0 ng/g. 

In Case study 1, the sample set ‘A′ images used to test the classifi-
cation algorithm consist of 15 images of uncontaminated samples, 110 
images of samples with contamination levels ≥ 2.7 ng/g and ≤ 18.3 ng/ 
g, and 32 images of samples with contamination level > 18.3 ng/g.  
Fig. 6 shows the confusion matrix of the three-class problem, Case study 
1. 84.7% of the samples are correctly classified, and 15.3% are mis-
classified. However, considering the negative (uncontaminated) classi-
fied row, only 3.2% are false negative samples, with a contamination 
level < 18.3 ng/g. None of the highly contaminated samples were 
classified as negative. 

Case study 2, represented by the confusion matrix shown in Fig. 7, 
presents 90.9% of correctly classified images and 9.1% of misclassified 
ones. In this case, the sample set ‘A′ images have been used to train the 
algorithm, and sample set ‘B′ images to test it. Among sample set ‘B′ 
images, 15 are of uncontaminated samples, 100 images are from 
contamination levels ≥ 2.7 ng/g and ≤ 18.3 ng/g, and 28 images are 
from samples with contamination > 18.3 ng/g. Also in this case, the first 
row of the confusion matrix, corresponding to the images classified as 
uncontaminated, shows that only four images are classified as false 
negative samples (2.8%), and no images of the highly contaminated 
(>18.3 ng/g) samples are classified as negative ones. 

The overall performance of the analysis is very good: in the worst 
case, we have an 84.7% classification accuracy (three-class classification 
task, Case study 1), and in the best one, we have 93.0% of correctly 
classified images (two-class classification task, Case study 1). Notably, 
samples classified as false negatives in most cases have a contamination 
level lower than the EU limit for total AFs in almonds. 

It is also worth highlighting that the applied transformation of im-
ages from RGB to Y′CbCr to improve reproducibility is original in this 
field of mycotoxin detection. To the best of our knowledge, the RGB to 

Fig. 3. Two-class classification task. Starting from the feature vector extracted from each image in the training set, an Area Under the roC (AUC)-based feature 
selection criterion was used, and a Linear Discriminant Analysis (LDA) architecture was trained and applied for automatic sample recognition. 
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Fig. 4. Three-class classification task. Starting from the feature vector extracted from each image in the training set, a novel two-step Area Under the roC (AUC)- 
based feature selection criterion was used, and a Linear Discriminant Analysis (LDA) architecture was trained and applied for automatic sample recognition. 

Fig. 5. Confusion matrices for two-class classification tasks. Class 0: uncontaminated; Class 1: contamination≥ 2.7 ng/g. (a) Case study 1. Testing set: 157 Images 
from sample set ‘A′, Training set: 143 Images from sample set ‘B′. (b) Case study 2. Testing set: 143 Images from sample set ‘B ‘, Training set: 157 Images from sample 
set ‘A′. The green boxes are the True Negative and True Positive outputs, i.e., the rightly classified samples. Orange ones are False Positives and False Negatives. The 
light-blue boxes report the percentages of rightly (in green) and wrongly (in red) classified samples for each column/row. The grey box reports the overall rightly (in 
green) and wrongly (in red) classified samples. 

Fig. 6. Confusion matrix for three-class classification task, Case study 1. Class 
0: uncontaminated samples; Class 1: contamination 2.7 ng/g ≤ C ≤ 18.3 ng/g; 
Class 2 contamination ≥ 40.0 ng/g. Testing set: 157 images from sample set ‘A′. 
Training set: 143 images from sample set ‘B′. For the confusion matrix legend, 
see Fig. 5. 

Fig. 7. Confusion matrix for three-class classification task, Case study 2. Class 
0: uncontaminated samples; Class 1 contamination 2.7 ng/g ≤ C ≤ 18.3 ng/g; 
Class 2 Contamination ≥ 40.0 ng/g. Testing set: 143 Images from sample set ‘B′. 
Training set: 157 Images from sample set ‘A′. For the confusion matrix legend, 
see Fig. 5. 
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Y′CbCr color space conversion has been used in limited applications for 
food analysis (Liu et al., 2019). 

The approach proposed in this work is clearly different from the 
literature. Although there are similar works for some aspects, with re-
gard to the specific application and use of fluorescence (Lunadei et al., 
2013) and the processing adopted (Pareek et al., 2023), the potential of 
deep learning and adequate processing to achieve high-performance 
with a low-cost measurement system, has not been exploited so-far. 

When comparing with the approach proposed by Lunadei et al. 
(2013), also based on fluorescence imaging, where the light source was 
provided by six Wood lamps, which are much more expensive than the 
UV LEDs used in our approach, the image acquisition was performed in a 
multispectral imaging configuration that is more data and 
time-consuming. Finally, the analysis was performed on single seeds 
from highly contaminated batches (190 ng/g for pistachio nuts), while 
in our case, thanks to the use of processing based on deep neural net-
works, the system is able to classify contamination values of the grained 
almonds around the EU-allowed limits (10 ng/g). 

Pareek et al., 2023, propose a similar approach for data processing, 
based on RGB image color conversion (in their case is RGB -> HSV), 
feature selection based on Ant Colony Optimization algorithm, and a 
multilayer perceptron neural network (MLPNN) for the classification 
task. In their work, the data analysis approach is applied to visible im-
ages of maize kernels with the aim of separating whole kernels from the 
broken ones, and the classification task is applied to morphological 
issues. 

The novelty of our work rests in all those differences that, with a 
relatively low-cost system, enable to obtain performances comparable 
with much more expensive techniques that represent the current state- 
of-the-art for this kind of application. 

Although the results obtained exploiting the new color space domain 
are very promising, more extensive experimental studies should be 
performed. Aspects such as new Neural Networks processing should be 
investigated, and new experiments should be planned where on-the- 
field naturally AFs-contaminated samples, and/or additional kinds of 
contaminations, will be considered. 

4. Conclusions 

The main objective of this paper is to demonstrate the possibility of 
detecting aflatoxin contamination in almond samples, even at very low 
levels, in a fast, cost-effective, and non-invasive way, simply by using 
fluorescence imaging combined with a deep neural network approach. 
To achieve this we considered a set of artificially aflatoxin B-contami-
nated almond samples: the acquired fluorescence images were processed 
by converting the color space from the RGB scale to Y′CbCr and then 
using a neural network approach to perform a two-class and a three-class 
classification problem. The best classification accuracy obtained in the 
two-class problem is 93.0% and in the three-class problem is 90.9%, 
suggesting that fluorescence imaging can be considered as a tool for the 
rapid screening of food matrices for the presence of AFs. The fluores-
cence images were acquired using only UV LEDs and an RGB CMOS 
camera in a suitable arrangement, providing a low-cost and sensitive 
sensor that can be employed in any applications where a rapid, on-field 
and non-destructive testing is required. Previously, we demonstrated the 
feasibility of fluorescence spectroscopy as a tool for the detection of AFs 
in almonds in a very simple and portable setup with classification ac-
curacies up to 94.0%, and with a threshold set at 6.4 ng/g (Bertani et al., 
2020). As a further development of our research on portable optical 
methods for the identification of AFs in food matrices, the fusion of data 
coming from spectroscopic and imaging techniques will be implemented 
to make the classification model more robust. 
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