I

Consiglio Nazionale delle Ricerche

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

An Operator for Composing Deductive
Databases with Theories of Constraints

D. Aquilino, P. Asirellj,

C. Renso e F. Turini

Nota Interna B4-42
Dicembre 1994

An Operator for Composing Deductive
Data Bases with Theories of Constraints

D. Aquilino * P. Asirelli! C. Renso F. Turini?

Abstract

An operation for restricting deductive databases represented as
logic programs is introduced. The restrictions are represented in a
separate deductive database. The operation is given an abstract se-
mantics in terms of the immediate consequence operator. A transfor-
mational implementation is given and its correctness is proved with
respect to the abstract semantics.

1 Introduction

Deductive Databases can potentially solve many problems in the field of data
and knowledge management. However, in order to make the approach really
viable, it is necessary to define an environment at least as rich as the one
which has been developed for other kinds of database management systems.

At present, in the database area, a lot of attention is devoted to studying
the possibility of combining different databases or, in any case, databases
which have been developed within other projects, and that may be resident
at different sites. The goal generally can be seen from the point of view
of building applications by means of cooperative, interoperable and/or dis-
tributed databases. Our claim is that one approach to the above problems is

*Intecs Sistemi SpA, Via Gereschi 32, 56125 Pisa, Italy, aquilinoQpisa.intecs.it

Hstituto di Elaborazione dell’Informazione-CNR, Via S.Maria 46, 56126 Pisa, Italy,
asirelliQiei.pi.cnr.it

!Dipartimento di Informatica, Universita di Pisa, Corso Italia 40, 56125 Pisa, Italy,
{renso,turini}@di.unipi.it

the definition of an environment that provides a set of basic operators, with
a clear formal semantics, for the combination of different databases.

One interesting point is the ability of defining a particular view of the
database as a refinement of its relations.

The notion of view we have in mind should allow one, among other pos-
sible operations, to impose dynamically a set of restrictions on a database
in order to filter elements which do not satisfy certain properties out of the
relations of the database. More precisely, we propose an operation that,
given a deductive database and a set of restrictions, computes a new deduc-
tive database, the relations of which are the original ones properly filtered
according to the restrictions.

It is worth noting now that the restrictions are represented as a deduc-
tive database itself, i.e. as a collection of deductive rules which establish
conditions about the belonging of a tuple to a relation. In other words,
the database of restrictions can be seen as an incremental refinement of the
original database.

Given that we represent deductive databases as logic programs, our aim
is the definition of an operation that, given two logic programs - the original
database and the one containing the restrictions - computes a new logic
program that behaves as the restricted database.

The following example clarifies the expected behavior of the operation.
We have a theory graph which defines two extensional relations, node and
edge, that represent a graph, and two intensional relations, path and
bidirectional_edge, with the straightforward meaning.

Theory Graph

node(a) edge(d,c)
node(b) edge(b,a)
node(c) edge(a,b)
node(d) edge(b,d)

edge(d,b)

path(X,Y) « edge(X,Y)
path(X,Y) « edge(Z,Y),path(X,Z)

bidirectional edge(X,Y) « edge(X,Y), edge(Y,X)

which is graphically represented as follows

a e

d

We can now constrain the above database by means of rules which impose

further restrictions on the relations. For example the rule
node(X) « path(a,X)

establishes that we accept only nodes that are reachable from the node a.

The following rule establishes that in the constrained graph each node has
degree al least two
node(X) « bidirectional.edge(X,Y), bidirectional edge(X,Z)

In the following, we show the results of some queries on the theory graph
w.r.t. the constraints.

The query « node(b) satisfies both constraints, while the query « node(d)
satisfles the first constraint but not the second one.

The approach presented in this paper stems from two separate lines of re-
search:

e the general study of operators on logic programs [7]

e the transformational approach to constraints handling in deductive
databases [4]

The study of operators on logic programs consists in the abstract defini-
tion of a suite of operations, in the study of their formal properties, in the
design of several implementation strategies, and in the application to several
problems in the field of knowledge representation and software engineering.

The transformational approach to integrity constraints checking was de-
fined in [4] for databases represented by positive logic programs. There, the

3

theory of constraints was not a logic program itself but a conjunction of for-
mulas denoting the ”if then” part of relations. The assumption to constraints
satisfaction was that the constraints should have been logical consequences
of the database, i.e. the formulas ought to be true in the minimal model of
the database. According to this view, the considered approach defined a new
logic program, "modified” by the constraints formulas, so that the minimal
model of the resulting database was a model of the theory of constraints as
well. The approach of [4] was afterwards extended by [8] to deal with strat-
ified logic program, in view of programming by exception as an approach to
default reasoning.

The paper is organized as follows. In Section 2, we describe a complex ap-
plication of the incremental restriction of deductive databases in the field of
building software engineering tools. In Section 3 we present the operation
of restriction via its abstract semantics. The abstract semantics is given
compositionally in terms of the consequence operators associated to the de-
ductive data base and the database containing the restriction rules. Section
4 discusses an implementation of the operator based on a transformation of
the database and the restricting database into a new constrained database.
We establish also the correctness of the implementation with respect to the
abstract semantics. Section 5 presents the comparison of our approach with
other approaches in the literature and discusses future work.

2 A Motivating Example

The use of constraints as a restriction in deductive databases [4] has been
experimented in Gedblog which is a multi-theory deductive database man-
agement system [3]. Gedblog supports the consistent design and prototyp-
ing of graphic applications through an incremental development and/or by
combining pre-defined theories and constraints. Knowledge is expressed as a
deductive database spread into multiple extended logic theories. Each theory
entails a piece of application data model and behavior by means of

e facts and rules to express the "general” knowledge;

¢ integrity constraints formulas to express either "exceptions” to the gen-
eral knowledge, or general "requirements” of the application being de-
veloped; /

e transactions to express atomic update operations that can be performed
on the knowledge-base.

A very interesting and practical experiment in using Gedblog has been
carried out by realising a graphical editor for Oikos process structure [2].
Oikos is an environment that provides a set of functionalities to easily con-
struct process-centered software development environments. In the following
a brief description of Oikos is provided. This description will highlight the
characteristics that have a direct impact with the realization of the Oikos
editor.

In Oikos [1] a software process model is a set of hierarchical entities.
Each entity is an instance of one of the Oikos classes and represent a mod-
elling concept. Classes are: Process, Environment, Desk, Cluster, Role and
Coordinator.

An entity can be either structured (i.e. formed by other entities) or
simple (i.e. a leaf in the model structure). Oikos defines a top-down method
to construct process models using two descriptions of the entities: abstract
and concrete. The abstract entities are introduced first and then refined in
the concrete ones. At the end of the modelling activity an enactable model
is obtained by adding to the defined entities the needed details. The method
establishes some constraints about the entities and their use as sub-entities
during the model refinement.

All entities mentioned above, with the exception of coordinators, have an
angelic counterpart, that is, an abstract specification of their contribution to
the process activity.

The Oikos Process Editor consists of several databases. There are two
kinds of theories:

o the ones representing the Oikos model;
e the ones imposing constraints on the modelling process.

The theory Oikos-instance contains a specific instance of a Oikos pro-
cess and the theory Oikos-model describes the types of the entities of the
Oikos model and some relations between them (consistency, refinement...).
In the following we will refer to the union of this two theories as the Oikos
model. The theory Oikos-constraints contains all the contraints on the
Oikos processes.

The following theory defines the entities of the process and it binds each
entity to the corresponding kind. For example the first rule states that the
compound entity slc is of type process.

Oikos-instance

compound(slc,process)

management (manager, env)

angel(v_v, ang_env)

angel(c_e, ang_env)

part_of (slc,process,v_v,ang_env)
part_of(slc,process,c_e,ang_env)
angel(rolel,ang_role)
part_of(slc,process,rolel,ang_role)

The following clauses define which kinds are concrete:

Oikos—-model

concrete_kind(process).
concrete_kind(env).
concrete_kind(desk).
concrete_kind(cluster).
concrete_kind(role).
concrete_kind(coord).

and which are compound:

compound_kind(process) .
compound_kind(env) .
compound_kind(desk) .
compound_kind(cluster).

The following rule states that each concrete entity is necessarily compound:

concrete(Name,Kind) <-- compound(Ndme,Kind)

Then there are abstract types:

abstract_kind(ang_process).
abstract_kind(ang_env).
abstract_kind(ang_desk).
abstract_kind(ang_cluster).
abstract_kind(ang_role).

and management ones:

management_kind(process) .
management_kind(env) .
management_kind(desk).

The definition of the consistent predicate states that the entity given as the
second argument can be defined inside the entity which appears as the first
argument.

consistent(process,ang_process).
consistent(process,ang_env).
consistent(process,ang_cluster).
consistent(process,coord).
consistent(env,ang_cluster).

The following clauses states that the second argument is a refinement of the
first argument.

is_refinement (ang_process,process).
is_refinement (ang_env,env).

We can now discuss a number of constraints on the database that are given
as rules restricting the relations of the database.
An Oikos compound entity has compound kind and at least a coordinator:
Oikos-constraints

1) compound (Name,Kind) <-
compound_kind (Kind),
part_of(Name,Kind,Coord,coord).

A Oikos angelic entity has abstract kind and is part of a concrete one:

2) angel (Name,Kind) <-
part_of (Namel,Kind1,Name,Kind),
compound_kind(Kind1),
abstract_kind(Kind).

A Oikos entity which has parts is compound and the relationship between
kinds is consistent (predicate ’consistent’):

3) part_of(Namel,Kindi,Name2,Kind2) <-
compound (Name1,Kind1),
consistent(Kind1,Kind2).

Name2 may be a refinement of Namel if Namel is angelic, Name2 is concrete
and the kind of Name2 is’a refinement of the kind of Namel (predicate
'is_refinement’):

4) refinement(Namel,Name2) <-
angel(Namel,Kindl),
concrete(Name2,Kind2),
is_refinement (Kind1,kind2).

Each process has a management entity:

5) compound(Name,process) <-
management (Name,Namel,Kind),
management _kind(Kind) .

Here we consider some examples of successful and failing queries. Suppose to
add a set of new instances to the theory Oikos-instance. Let Oikos-new-inst
be the following:

Oikos-new-inst

part_of (deskl, desk, slc, process).
compound(rolel,role).
refinement(process,desk).
angel(coordl, coord).

The new instance of the Oikos process is the theory Oikos-instance U
Oikos-new-inst. Notice that the query « part_of(deski, desk, slc, process)
succeeds if we evaluate it in the unconstrained Oikos process (Oikos-instance
U Oikos-new-inst U Oikos-model), while it fails when we evaluate it in the
constrained theory:

(0Oikos-instance U Oikos-new-inst U Oikos-model) /;c Oikos-constraints
where A/;cB denotes the operation of restricting A by means of B.
In fact constraint number 3 constraints the facts of the part_of relation.
In our case desk is a compound kind (see Oikos-model), but desk in not
consistent with process, that is, we cannot have a process inside a desk.

An analogous case is the query « compound(rolel,role). The constraint
1 is not satisfied, because role does not have a compound kind definition in
Oikos-model.

The query « refinement(slc,desk1) does not satisfy the constraint 4 be-
cause slc is not an angel.
Finally, the query « angel(coordl,coord) fails because of the failure of the
constraint 2 which states that coordl must be a part of a compound_kind
and it must also be an abstract_kind.

3 Abstract definition

We are now in the position of giving an abstract definition of the operation
/1c that restrict a deductive database by means of a database of constraints.
The abstract definition is given via the notion of immediate consequence oper-
ator. The immediate consequence operator Tp associated to a logic program
P is a function that points out which consequences are deducted from a given
interpretation by the program P in a single inference step. The abstract defi-
nition of an operation on logic programs can then be given in a compositional
way by defining the immediate consequence operator of the resulting logic
program as a composition of the immediate consequence operators of the
argument programs.

We recall now from [7] the basic definition of immediate consequence
operator and the definition of two basic operations on logic programs: union
and intersection.

For a logic program P, the immediate consequence operator T'(P) is a
continuous mapping over Herbrand interpretations defined as follows [10].
For any Herbrand interpretation I:

AeT(P)I) < (3B: A« Beground(P) A BC1I)

where B is a (possibly empty) conjunction of atoms.

The semantics of program operations is given in a compositional way by
extending the definition of T with respect to the first argument. We as-
sume that the language in which programs are written is fixed. Namely, the
Herbrand base we refer to is determined by a set of function and predicate
symbols that include all function and predicate symbols used in the programs
being considered.

For any Herbrand interpretation I:

T(Pu@)I) = T(P)I) v T(@))
T(Pn@)I) = T(P)I) n T(Q)U)

The above definition generalises the notion of immediate consequence opera-
tor from programs to compositions of programs. The operations of union and
intersection of programs directly relate to their set-theoretic equivalent. The

10

set of immediate consequences of the union (resp. intersection) of two pro-
grams is the set-theoretic union (resp. intersection) of the sets of immediate
consequences of the separate programs.

Let us now go back to the new operator we want to define. Informally, a
program P constrained by another program Q) is obtained by the union of two
parts. One is the intersection of the two theories, that forces the theories
to agree during the deduction. But the intersection alone is not enough,
because some clauses would be missing in the result. In particular, we miss
all the clauses which are defined in P and not constrained by Q. Those are
of two kinds: the ones which do not have a definition in Q, and those which
have a definition in Q that constrains only a subset of atoms potentially
derivable in P. In the last case the clause defining a given predicate r in P
is not fully instatiated while the definition of r in) has at least a ground
argument. In order to include both the first and the second kinds of clauses
in the resulting program we define a new operator /yrc. The definitions of
these new operators are given as follows.

Definition 1 T(P /1c Q) = M. T(P [u1c Q)(I) U T(P 1 Q)(I)

Definition 2 T(P /e Q) = M. T(P.)(I) U (T(P)(I) \ T(Q)(Bpr))

where
P, contains the predicate definition of P which are not defined in Q
P, contains the predicate definition of P which are also defined in Q, such
that P = P;U Py and Bp is the Herbrand Base associated to P

We are mainly interested in a transformational definition of the /;¢c op-
erator. However, although the above definition, based on set-theoretic differ-
ence, is easy to understand, it is not easy to implement in a transformational
way. Hence, we need to find another abstract definition of the operator,
equivalent to the previous one, easier to implement. Of course, we want to
show that the two abstract definitions coincide. The idea is to exploit the
observation that the operation of set-theoretic difference can be turned into
a combination of intersection and complement. In our case, the complement
of a program is not defined, so we need first to give an abstract semantics
and a trasformational definition for it.

Definition 8 T(P /gic Q) = ALT(P)(I) U T(P: 0 (Q,P))(I)

11

where the semantics of (Q,P)° is defined as follows
Definition 4 T((Q,P)°) = M. Bp,\ T(Q)(Bp)

We denote with Bp, the subset of the Herbrand base of P obtained by
selecting those predicate names which have a definition in Q

Theorem 1 Let P, Q be programs, Py and P, defined as above, A be an
atom. Then

A€ T(P)(D) U T(P: 0 (QP))(I) <= A € T(P)() U (T(P)(1) \
T(Q)(Br))

Proof

A € (T(P)(I) U T(P2 N (Q,P)*)(D))

<= definition of P,

A € (T(P1)(I) U T(P N (Q,P)9)(D))

&= definition of U and N

A e (T(P)(I) v (A e T(P)I) A A€ T((Q,P)))))
<= definition of T((Q,P)°)(I)

A e T(P)(I) v (A eTP)I) A A € (B T(Q)Bp)))
<= definition of set difference

AeTP)D V(A€ T(R)I) A A € Bpoh A ¢ T(Q)(Br))
<= definition of N

A€ TR V (A€ T(P)(D) N Bes A A ¢ T(Q)(Br))
<= definition of Py and Bpx

A e T(P)(I) V (A € T(P)(I) A A ¢ T(Q)(Bp))

<= definition of set difference

A € T(P)(I) v (A € T(P2)(I) \ T(Q)(Bp))

<= definition of U

A € (T(P)(I) U (T(P2)(1) \ T(Q)(Bp)))

12

4 Transformational Definition

We address now the problem of providing an implementation for our abstract
operator. There are several possibilities for implementing operations on logic
programs and they can be classified in two broad categories: an interpretation
oriented approach, and a compilation oriented approach. As discussed in [7]
the first one can rely upon either metaprogramming techniques or the design
of specific abstract machines, whilst the second approach consists in designing
proper transformations which map logic programs into logic programs. In
this paper we give a transformation oriented implementation of the operator
/1c. We first recall from [7] the transformational implementation of U and
N. We overload the symbols U and N and we use them also for denoting the
transformations.

Given two programs P and @, the program corresponding to the union PUQ
is just the set theoretic union of the clauses of the two programs:

PuQ = {A«~B | (A—~BeP)V (A~ BeQ)}.

On the other hand, the implementation of the N operation exploits the basic
unification mechanism of logic programming. Given two programs P and
Q, a clause A « B belongs to P N Q if there is a clause A’ « B’ in P
and there is a clause A” « B” in Q such that their heads unify, that is
39 : 9 = mgu(A’,A”), and A = (4')Y, and B is obtained from (B’, B”)J
by removing duplicated atoms.

PNQ = {A—B | (A =B €P)A (A =B €Q)A
9 = mgu(A',A”) A (A= A'Y) A (B = B9UB"Y))}.

For example, consider the programs

P Q R
r(z,y) «— s(z) t(z) — r(z,y) « s(z),¥(y)
s(f(z)) — s(z) —

The program corresponding to the program expression (PUQ)NR is obtained
as follows:

PUQ (PUQ)NR
r(z,y) « s(z) r(z,y) < s(z),4(y)
s((f)(w)) - s(f(z)) <

Hz)

13

We are now in the position of giving the definition of the constraining
operator.

Definition 5 P /;¢c Q = PU (PN @)U (PN Q)

where
P; and P, are defined as above and Q¢ is defined as follows.

Definition 6 For each predicate p in Q let C, be the set of clauses defining it.
Then we define a correspondent set of unit clauses C,' in ¢F in the following
way:

o if C, is a ground unit clause

p(th ey tn) L
then Cp' is
p(Xl, ey Xn) G X1 ?é tl

P(Xl; ,Xn)(—'Xn# tn

o if C, = p(Xi, ..., Xn) is a unit clause where X; is a variable and X;
X; Vij€[l,...n] then C] is the empty set

e if C, = p(Xa, ..., Xu) is a unit clause where X; is a variable Vi € [1,
... n] and X; = X; for some i,j, then C, is

p(X1,...,Xn)<-—X,'#Xj

e if C, =p(h, ..., Xs) is a unit clause containing both ground and non
ground arguments, then C', is obtained by applying the rules defined
above for each argument, according to its nature.

o if C, =plt, ..., ta) & q(51, -+, Sm), -+, T(n1, ...,) is a clause
of @, not necessary ground, then C, is obtained by “forgetting” the
body q(s1, ..., Sm), --., 7(v1, ..., v) and applying the method to the
remaining unit clause

14

e if C, is a set of clauses cl, c2, ..., cm defining the predicate p, then
C,' is obtained in the following way:

G =clN ceZ,N ..., N emt

Then Q¢ is the set of all the clauses in C,’ for each predicate p defined in Q

From now on we will use the ground predicate with two arguments: the first
is the Herbrand base with respect to which we instantiate the program given
as the second argument which is a program. So, Ground(Bp)(Q°) denotes a
set of ground unit clauses which derive all the facts (€ Bp) that cannot unify
with the heads of the clauses in Q

Observation 1 Consider the program () obtained from @ taking only the
heads of the clauses of Q. If we trasform @ into a program in Constraint
Logic Programming (with ’=’ constraints), then @ is obtained by replacing
each ’=’ symbol occurring in the body, with the # symbol.

Now, we want to show that a ground atom A is an immediate consequence of
the trasformed program Q° with respect to an interpretation I if and only if
A belongs to T((Q,P)°)(I). In order to give the proof, we need a preliminary
result

Lemmal A « € Ground(Bp)(QF) <> A ¢ T(Q)(Bp) N A € Bp,

Proof
By contradiction
Suppose A is p(t1, ..., t,) € T(Q)(Bp). This means that it is a ground
instance of a head of a clause in Q). The head of the clause in Q can have one
of three possible forms:

1) p(t1, ., tn) «

2) p(Xl, ey Xn) Lo

3) p(X1, ceey tn) —
Then, in Q° there must be the complement of it. In case 1) in Q° there must
be:

p(Xl, ...,Xn) (—'Xl ?é t]_, cevy Xn#— t}n,
but this is a contradiction because A « € Ground(Bp)(Q°) by hypothesis.
In case 2) either the variables are all different or some of them are the same.
In the former case no new definitions of p are introduced.

15

In the latter case, if X; = X;, then in Q¢ there will be
p(Xy, ..., Xp) — Xi # X

that contradicts the hypothesis.

Finally, in case 3), in Q¢ there will be:

p(X1, oy Xp) = Xy # ta,
and this is a contradiction because A — € Ground(Bp)(Q°) by hypothesis.

&

The following theorem establishes the correctness of the complement opera-
tion with respect to the natural interpretation in terms of set-difference with
respect to the universe.

Theorem 2 Given a program @, let R be the program obtained from the
transformation Q°. Then T(R)(I) = Bp. \ T(Q)(Bp)

Proof

Let A an atom

A e T(R)(I)

<= definition of T

dB| A « B € Ground(Bgr)(R) AB C 1
<= R contains only facts
A « € Ground(Bgr)(R)
<= lemma 1

A ¢ T(Q)(Bp) N A € Bp,
<= definition of \

A € (Bpx \ T(Q)(BP))

&

We are, at last, in the position of proving the correctness of the transforma-
tion oriented implementation of /;c with respect to its abstract semantics.

16

Theorem 3 Let P, Q be programs and P, P, defined as in the previous
section. Then .

Plic @ =PU (P.N)V (PN Q) is correct w.r.t. T(P [1c Q)
Proof

The correctness of union and intersection was proved in [6]. The correctness
of the ¢ operator is established by theorem 2.

The following example clarifies the trasformational approach

Example 1 Let us consider the programs

P Q

Ala,a)— A(ay) « Cla,y)
Ala,b)—

B(b,b)

B(c,c)

C(b,a)—

A(zy)— B(zy)

We split P into P, and P, as stated in section 3

P1 PZ

B(b,b) Ala,a)—
B(c,c)— Alab)—
Cb,a)— A(zy)— B(z,y)

The complement of @, built according to the definition 6, is

&
Alzy) —z# a

17

The first step is to compute the theory obtained from the intersection of P,
and (F. Namely, we want to obtain those rules the head of which has a
predicate defined in @, but are not constrained by Q. This is the case in
which @ constraints a specific instantiation of rules of P. So,

PN ¢
A(zy) « = # a, B(z,y)

The second step is to build P N Q, that is, all the clauses of P which agree
with the constraints.

PN Q

Ala,a) — C(a,a)
A(a,b) — C(a,b)
A(ay) — B(a,y),C(a,y)

Thus, the transformed program which satisfies the constraints is

PU (PN @)U (PN Q)
A(z,y)— = # o, B(z,y)
A(a,a)— C(a,a)
Afa,b)— C(a,b)
A(a,y)— B(a,y),C(a,y)
B(b,b) —

B(c,c)—

C(b,a)—

5 Conclusions

We have presented an operation for the definition of restricting views of
deductive databases, represented as logic programs. The approach allows
for the definition and use of databases as theories of constraints for another
existing database. The main advantage of the approach is that the database
and the theories of constraints can be defined separately by different users
and at different stages of the development of an application. The example
of Section 2 illustrates exactly this point: deductive databases supporting

18

software engineering tools are incrementally restricted by means of theories
of constraints.

The operation of restriction has been given an abstract semantics. The
semantics has been given compositionally, in terms of the immediate con-
sequence operators associated to the deductive database to restrict and the
databases containing the restriction rules. An implementation of the oper-
ation has been presented. Such an implementation is based on a transfor-
mation of the database and the restricting database into a new constrained
database. The correctness of the implementation with respect to the abstract
semantics has been proved.

The example od Section 2 is part of a complex application developed in [4].
The transformed program resulting from the implementation of operation /¢
is also obtainable by the so called Modified Program Approach of [4] supported
by GEDBLOG [3]. The novelty is that the transformation is now associated
to an operation on logic program with a clear formal semantics. We consider
this as step towards the design of a semantically well founded environment
for prototyping and developing deductive databases. The development can
be carried on by using the operation of these paper and other ones to put
together theories developed either elsewhere, or by different users, or resident
in different sites, i.e. a formal basis to study applications obtained by means
of cooperative, interoperable and/or distributed databases.

A transformational approach for constraints and default reasoning is de-
scribed in [8]. Although the transformation is similar to the one proposed
here and in GEDBLOG, no formalization in terms of operation on logic pro-
grams is given. On the other hand in [8] also normal stratified logic programs
are dealt with. We are currently looking at a similar extension, in which
the operations are extended to handle normal programs. From an abstract
viewpoint, the definition of the semantics is given by referring to Fitting’s
immediate consequence operator [9]. From an implementational viewpoint
we are considering both a transformational approach based on intensional
negation [5] and an interpretation oriented approach.

References

[1] V. Ambriola and C. Montangero. Oikos: Constructing process-centered
sdes, software process modelling and technology. In A. Finkelstein,

19

8]

[10]

J. Kramer, and B. Nuseibeh, editors, Research Study Press. J. Wiley
and sons, 1994.

D. Apuzzo, D. Aquilino, and P. Asirelli. A Declarative Approach to
the Design and Realization of Graphic Interfaces. Technical Report
B4-39, October 1994, IEI-CNR Internal Report, 1991. submitted for

publication.

P. Asirelli, D. Di Grande, P. Inverardi, and F. Nicodemi. Graphics by
a logic database management system. Journal of the Visual languages
and Computing, 1994. to appear.

P. Asirelli, M. De Santis, and M. Martelli. Integrity constraints in logic
databases. Journal of Logic Programming, 3:221,232, 1985.

R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. A trasforma-
tional approach to negation in logic programming. Journal of Logic
Programming, 2:201-228, 1990.

A. Brogi. Program Construction in Computational Logic. PhD thesis,
University of Pisa, March 1993.

A. Brogi, A. Chiarelli, P. Mancarella, V. Mazzotta, D. Pedreschi,
C. Renso, and F. Turini. Implementations of program composition op-
erations. In International Conference on Programming Languages Im-
plementation and Logic programming. Springer-Verlag, 1994. V

R.A. Kowalski and F. Sadri. Logic programs with exceptions. In DHD
Warren and P. Szeredi, editors, 7th International Conference on Logic
Programming, Proceedings, pages 598-613. The MIT Press, Cambridge,
Mass., 1990.

Fitting M. A kripke-kleene semantics for general logic programs. Journal
of Logic Programming, 2:295-312, 1985.

van Emden M. H. and R. A. Kowalski. The semantics of predicate logic
as a programming language. Journal of the ACM, 23(4):733-742, 1976.

20

