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Abstract—In this paper we present a Wireless Sensor Network
(WSN), which is intended to provide a scalable solution for active
cooperative monitoring of wide geographical areas.

The system is designed to use different smart-camera pro-
totypes: where the connection to the power grid is available
a powerful embedded hardware implements a Deep Neural
Network, otherwise a fully autonomous energy-harvesting node
based on a low-energy custom board employs lightweight image
analysis algorithms. Parking lots occupancy monitoring in the
historical city of Lucca (Italy) is the application where the im-
plemented smart cameras have been deployed. Traffic monitoring
and surveillance are possible new scenarios for the system.

Index Terms—smart camera, parking monitoring, wireless
sensor network, deep learning, embedded vision sensors

I. INTRODUCTION

About 30% of rush hour traffic is generated by cars search-
ing for a parking lot [1], [2]. This is a common issue in every
big or medium size city. These cars increase the congestion
and the emission of noxious gases in the air; furthermore,
the long amount of this wasted time is a cause of stress and
late arrivals. An automatic system which monitors the urban
streets could be very effective in addressing this problem by
pointing on a map the areas in which a parking space is easier
to be found. Very often inductive field sensors installed under
the street or one to one infrared sensors in indoor parking
space are used to keep track of the status of the lots. These
technologies become highly ineffective due to the high costs
whenever large outdoor parking areas should be monitored. In
addition, they require major and invasive work to be installed
in existing parking areas and curb spaces, which are typical of
historical cities. To address these issues, the research project
SmartPark@Lucca aims at the development of a system based
on a network of “intelligent” cameras able to monitor one or
more parking areas of variable dimensions and at the validation
of the proposed technology in the medieval city of Lucca,
Italy. Processing of the pictures captured by the cameras is
performed on board of the smart cameras themselves, so that
no transmission of the pictures is required. Each camera is able
to evaluate with extreme precision the occupancy level of the
monitored parking area and to identify free or occupied spaces.
Given that a single camera is able to monitor dozens of spaces,
this infrastructure has a significantly lower cost, compared to
other solutions. Inside the medieval city of Lucca there are
places in which the wired electrical network is sometimes not

*All the authors are with the Institute of Information Science and Tech-
nologies (ISTI) of the National Research Council of Italy (CNR), Pisa, Italy,
Name.Surname at isti.cnr.it

present and it is not possible to put new artifact due to cultural
heritage constraints. In order to manage this scenarios, our
research project envisages the development of two solutions:
a Custom vision board and a Powered vision board. The
former solution is based on an embedded architecture that
has a low consumption and that allows us to use a battery
pack and a module for harvesting energy through a photo-
voltaic panel. The latter one is based on more commercial but
more powerful solutions available off-the-shelf. In Section II
the detail description of the smart camera prototype is given.
Related works and the computer vision logic implemented
in the different case scenarios are described in section III
Section IV illustrates the experimental results of the first year
of the project. They are mainly based on the single camera
performance, while for the cooperative sensing we present the
first available and encouraging results, whose extension will
be the main focus of the next, second, year of the research
project. Conclusion and future works conclude the paper.

II. MATERIALS

The ad hoc realization of the smart camera prototype started
from a deep study on the design of the architectural side. The
guiding principle has been to be able to use state of the art
computer vision technology using, at the same time, low cost
sensors and electronic components, so that, once engineered,
the device can be manufactured at low-cost in large quantities.

Another design requirement is represented by the ease of
installation of the device, thus, the protective shield that has
been considered for the sensor node is compact but able to
accommodate all the components of the device.

The last and optional requirement is represented by the
possibility to have a completely untethered device which
communicates via wireless technologies and which has no
need of electric power from the main supply. In this case the
system has to have very low power consumption.

Fig. 1. Design of the architecture of the sensor node



The design of the sensor node architecture is depicted in
Fig. 1. Each single sensor node is composed by two main units
that will be described in more details in the next sections:

• the Sensor Unit: the vision board equipped with the
camera sensor, the wireless communication module and
the logic for image analysis. This is the part of the sensor
devoted to the acquisition and processing of the images,
and to the communication of the results to the system
users.

• the (optional) Energy Harvesting Unit: a photo-voltaic
panel, the batteries and the charge controller, which
serves as a regulator for battery charging and allows an
optimal choice in terms of energy savings policies.

As mentioned above, in order to achieve all the goals we
used two different types of processing boards: the powerful
Nvidia Jetson when the node is connected to the grid and
a very low-powered custom board for the energy harvesting
scenario.

A. Powered vision board

The embedded processor is the NVIDIA Jetson TX2, an
ARM processor couples with parallel GPU which has out-
standing processing power for such size and consumption. It
is already the de-facto standard among similar custom drone
projects. It is mounted on a credit card sized carrier board from
Auvidea, because the original development kit is too large and
too heavy for this purpose. The connection with the ground
station uses standard Wi-fi channels.

B. Custom vision board

For the realization of the custom vision board, an embedded
Linux architecture has been selected in the design stage for
providing enough computational power and ease of program-
ming. A selection of ready-made Linux based prototyping
boards had been evaluated with respect to computing power,
flexibility, price and support. All the candidates have as com-
mon disadvantages high power consumption. It has been there-
fore decided to realize a custom vision component by design-
ing, printing and producing a new printed circuit board (PCB).
The new PCB has been designed to have the maximum flexi-
bility of use while maximizing the performance/consumption
ratio. A good compromise has been achieved by using a
Freescale CPU based on the ARM architecture, with support
for MMU-like operating systems GNU/Linux. The chosen
architecture has been proved to have an average consumption
measured at the highest speed (454MHz) less than 500mW .
A microSD slot is present, which is essential for booting the
system, booting the kernel and file-system associated (EXT4);
the board can be upgraded simply by changing the contents
of the microSD. In Fig. 2 the realized operational vision
board is shown. After a period of testing, the ArchLinux
distro has been choosen as embedded Linux operating system.
ArchLinux aims at being a lightweight Linux implementation
also targeted at embedded devices. Besides the i686 and x86-
64 architectures, which are officially supported, there are a
number of user-contributed architectures whose packages are

Fig. 2. The realized vision board for the energy harvesting sensor node

collected in ArchLinux User Repository (AUR). Development
and deployments are currently based on Linux Kernel 3.14.39.

C. Energy harvesting and housing

The developed and previously described board and camera
are housed into a polycarbonate IP67 shield, which is subject
to less electromagnetic attenuation with respect to metallic
cases. The other important component of the smart camera
is the power supply and energy harvesting system that con-
trols charging and permits to choose optimal energy savings
policies. The power supply system includes the lead (Pb) acid
battery pack and a module for harvesting energy through a
photo-voltaic panel. For the experimentation, a 12V panel
with a nominal power of 15W was used and managed by a
controller outputting up to 4A DC current. A 12Ah battery
has been normally used for tests. The vision board has also
been used to measure the charging status of the batteries. To
this end, an ADC Conditioning module has been used to adapt
the voltage level of the power supply system to the voltage
range of the vision board ADC input. In Fig. 3 an installation
of two sensors on the same existing pole is presented; in this
configuration, the sensors share the same battery and energy
harvesting module.

Fig. 3. An installed prototype with two complete sensor nodes



III. METHODS

The traditional image classification approach is based on
ad-hoc functions to search for special feature in the image,
like angles or straight lines, which is representative of the
certain objects [3]–[6]. Color features and a Support Vector
Machine (SVM) is used in [7] to distinguish the available spots
in a parking area. A classification based on color histogram of
three adjacent lots instead of a single one is presented in [8].
To deal with light changes Tsai et al. [9] trained a Bayesian
classifier searching for angles and edge features. A 3D model
of the parking area and a hierarchical Bayesian framework [10]
achieves good results during day and night. Jermsurawong et
al. [11] use an ad-hoc trained neural network to solve the
task. Using a video sequence instead of a single frame the
work proposed in [12] constantly update the transience map
of the parking area, while in [13] the authors show good results
dealing with partial occlusions. Recently Deep Convolutional
Neural Networks (DNN) achieved very good performance in
image classification [14]. Vehicles detection in high resolution
satellite images is presented in [15].

A. Deep learning approach

In this section, we present two solutions based on deep
learning and deployed on the powered vision board presented
in Section II-A. The first solution is used to monitor the
occupancy status of individual parking spaces in a parking
lot. The second one is used to globally count cars parked in
the parking lot.

1) Parking space classification: We propose a solution for
monitoring the occupancy status of individual parking spaces,
that uses a Convolutional Neural Network (CNN) to determine
if a parking space is free or occupied. This approach exploits
a network of smart cameras (computing boards equipped with
a camera module for acquiring images) where each smart
camera monitors the set of parking spaces included in the
portion of the parking lot seen by the camera. The system also
comprises a server that receives the occupancy information of
the parking spaces and visualizes them.

We used a modified version of the AlexNet CNN [24],
that is called mAlexNet [25], to perform the parking space
classification. This network is composed of three convolutional
layers and two fully-connected layers, and has been training
on the CNRPark-EXT dataset [21], a collection of roughly
150,000 bounding-box annotated images of vacant and oc-
cupied parking slots (called patches) in the campus of the
National Research Council (CNR) describing most of the dif-
ficult situations that can be found in a real scenario: the images
are captured by nine different cameras under various weather
conditions, angles of view and light conditions. Furthermore,
another challenging aspect is due to the presence of partial
occlusion patterns in many scenes such as obstacles (trees,
lampposts, other cars) and shadowed cars.

For each camera, we defined the Region Of Interest (ROI)
for all the parking spaces included in the field of view of that
camera. This operation is performed manually once before
deploying the system. At run-time, we use these ROIs to

segment the image captured by the smart camera to obtain a
set of patches comprising the individual parking spaces. Each
patch is then given in input to our CNN which processes it and
provides the occupancy status for the parking space coupled
with its confidence value.

All the processing is executed on board the smart camera.
No image is sent outside. The only information transmitted
to the server is the occupancy status for each parking space.
This preserves the privacy of the license plates and reduces
considerably the bandwidth needed for the system to run.

2) Cars counting: We also propose a deep learning-based
approach that is able to count the cars in captured images
without any extra information of the scenes, like the regions of
interest (i.e. the position of the parking lots) or the perspective
map. This is a key feature since in this way our solution is
directly applicable in unconstrained contexts. The proposed
approach is based on Mask R-CNN [18], a very popular deep
convolutional neural network, employed in many detection
systems. Unlike previous methods that tackle the localization
problem by building a sliding-window detector, Mask R-CNN
solves the problem by operating within the recognition using
regions paradigm [19], taking a full image as input and
producing as output labels for each detected object together
with bounding boxes and masks localizing them. The authors
differentiate between the convolutional backbone architecture,
used for features extraction over an entire image, and the
network head for bounding-box recognition (classification
and regression) and mask prediction that is applied to each
proposed region.

As a starting point, we considered a model of Mask R-
CNN pre-trained on the COCO dataset [20], a large dataset
composed of images describing complex everyday scenes of
common objects in their natural context, categorized in 80
different categories. In order to count vehicles, we considered
the detected objects belonging to the car and truck categories.
Since this network is a generic objects detector, we specialize
it to recognize the vehicles we want to count.

The first step has been the creation of a suitable labeled
training set. In the case of Mask R-CNN, these labels corre-
spond to masks. As a baseline, we used again the CNRPark-
EXT dataset [21]. In order to make this dataset useful for
our purposes, we aggregate all the patches belonging to the
same scene in a single full image, and then we add the
masks on the vehicles to be detected. Since mask creation
is a very time-expensive operation, we take advantage of
the output of the pre-trained model of Mask R-CNN. As
mentioned before, this network produces in output accurate
masks localizing objects, so the idea is to save these masks
automatically generated, parse them, changing the associations
between wrong categories and the underlying objects that
were instead vehicles we want to count, and, finally, manually
add some of the remaining masks for the cars that were not
detected. At this point, we retrained the network using this new
mask-labeled and task-specific dataset, freezing the weights of
the backbone, and saving the new weights of the head after a
few epochs.



Fig. 4. An example of an image captured by a camera, where we have applied
the masks localizing the vehicles present in the scene. Counting the instances,
we have an estimation of the total number of cars present in the monitored
car park.

Again, all the processing is executed on board the smart
camera, and this time the only information transmitted to the
server is the total number of vehicles present in the scene.
Optionally, it is possible to transmit also the coordinates of
the bounding boxes or the masks localizing the detected cars.
An example is shown in Fig. 4.

B. Lightweight image processing

The low powered custom board is not suitable for the
deep learning approach. Specific artificial vision algorithms
have been studied, designed and deployed for this board. The
application defines some Regions of Interest (ROI) in the
source image and uses a background model computed through
lightweight methods [16], [17]. An adaptive background is
computed because it proved to be the most robust for use in
uncontrolled outdoor scenes. The background is continuously
updated using both the previous background model and the
latest acquired actual image. In order to reach a strong belief
of the status of each the parking slot, we perform two
different image analyses, considering that an empty slot should
appear as plain asphalt without nothing inside. The first is
the so-called asphalt detection: periodically checking small
rectangular asphalt samples on the driveway (using the current
background image so that no moving vehicle is on the region
of interest) we identify similar hue and saturation values in
the rest of the image. For each ROI Rk the index ak(t) is
computed. This index is proportional to the ratio of asphalt
pixels with respect to the total number of pixels in the Rk.

Then a very neat image of the contours of the vehicles is ob-
tained with a Canny edge detection of the current foreground
image. Similar to the first one the computed index ek(t) is
proportional to the ratio of edge pixels in ROI Rk with respect
to the total number of pixels in Rk. The combination of the two
indexes creates the final belief of the sensor, which indicates
the probability of the occupation of the parking lot.

Pk(t) = ek(t) · (1− ak(t)) (1)

The occupancy status becomes effective only after being
observed consecutively for a specific number of acquired
frames.

IV. EXPERIMENTAL RESULTS

A. Parking space monitoring evaluation

The CNRPark-EXT dataset presented in [21] is used to
perform our experiments.

The Overall Error Rate (OER) is the metric proposed in [23]
and is defined as the ratio of total errors (i.e., False Positive
plus False Negative) and the total responses (i.e., False Positive
plus False Negative plus True Positive plus True Negative):

OER =
FP + FN

FP + FN+ TP+ TN
(1)

The CNN operates at single-frame level (the output is the
state of each slot based on the analysis of a single image); the
lightweight image analysis, instead, is a time-related system.
In order to compare the two methods, it seems reasonable
to consider every single frame output as the complete set
of the slots’ statuses; thus the denominator of 1 for the
second method corresponds to the multiplication of the slots
monitored and the total frames considered:

ErrorRate =

∑TotalFrames
i=1 (FPi + FNi)

TotalFrames ∗ TotalSlots
(2)

where FPi +FNi is the total number of errors made when
analyzing frame i.

The average error rate for the CNN-based method results to
be 0.4%, while the lightweight image analysis achieves 0.65%.
Although a number of papers in literature have been presented
on the topic, a fair comparison is difficult to be conducted,
since most of the approaches are far from being based on

Fig. 5. A) RoI for a set of parking lots are set up manually with the help
of a graphics tool. Small rectangles on the driveway define the samples for
asphalt detection B) Background image C) White regions represent areas
where asphalt is detected D) The output of the Canny edge detector



TABLE I
COMPARISON OF RELATED WORK

Reference Error rate (%) Features
Wu et al. 2007 [8] 6.5 Color
Sastre et al. 2007 [26] 2.2 Gabor filters
Bong et al. 2008 [27] 7.0 Color
Hichihashi et al. 2009 [28] 2.0 PCA
Huang and Wang 2010 [10] 1.2 Color
DeAlmeida et al. 2015 [23] 0.4 Texture
Proposed method 1 0.4 CNN
Proposed method 2 0.65 Edge and color

a “low-cost embedded platform”. Yet, their performance is
not radically different from the one achieved by our methods.
To the best of our knowledge, the approach presented in
[23], which is based on hand-crafted features (LPB and LPQ)
and targeted for high-end computers, has similar performance
with respect to our deep-learning approach but has a lower
generalization capability [21]. A comparison with some related
work can be found in Table I.

The CNN-based approach takes about 15 seconds to analyze
an image and compute its output, while the lightweight image
analysis takes about 2 seconds.

Cooperative monitoring: In order to test and validate the
cooperative sensing functionalities of the system, we focused
on the slots that were in the field of view of more than one
sensor. In particular, for each of these slots, event composition
was performed, i.e. aggregating the measures produced by
each sensor in charge of its monitoring. A weighted average
was used in aggregation; each sensor contributes to the average
with a weight proportional to the area in pixel of the region in
the image corresponding to the monitored slot. By evaluation
of the log of the network, it resulted that event composition
leads to a reduced number of fluctuations, allowing to filter
out events due to temporary occlusions in the fields of view.
In addition, event composition allowed to cope with potential
failures of one of the nodes, that have been tested switching

Fig. 6. Real-time output: red is busy, green is available, blue is uncertain due
to partial occupation or vehicle not integrated in the background yet

TABLE II
COOPERATIVE MONITORING RESULTS.

CAM A CAM B COOP.

ERRORS 4870 3674 804

% 6.2% 4.7% 1.0%

off artificially a sensor in the network. In Table II a resume of
the cooperative monitoring performance is reported. The mon-
itoring regards the slots which are watched by two cameras,
comparing each individual camera result only for the slots
monitored by both, versus the cooperative weighted results
(i.e. shown in the column COOP.). As it can be seen, the
results from single cameras are heavily improved, as the error
rates drop from 6% and almost 5% down to only 1% of errors,
counting on a total of 78, 840 events on which the occupancy
detection algorithm is called.

B. Cars counting evaluation

We performed our experiments using the test subset of
the CNRPark-EXT dataset [21]. Following other counting
benchmarks, we use Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) as the metrics for evaluating the
performance of our solution. MAE is defined as follows:

MAE =
1

N

N∑
n=1

|cgtn − cpredn | (3)

while RMSE is defined as:

RMSE =

√√√√ 1

N

N∑
n=1

(cgtn − cpredn )2 (4)

where N is the total number of test images, cgt is the actual
count, and cpred is the predicted count of the n-th image.
Note that as a result of the squaring of each difference, RMSE
effectively penalizes large errors more heavily than small ones.
Then RMSE should be more useful when large errors are
particularly undesirable.

The above two metrics are indicative of quantifying the error
of estimation of the objects count. However, as pointed out by
[22], these metrics contain no information about the relation of
the error and the total number of objects present in the image.
To this end, another performance metric is taken into account,
which is essentially a normalized MAE, that we call Mean
Occupancy Error (MOE) because in this work quantifies the
error in the evaluation of the occupancy of a car park, defined
as:

MOE =
1

N

N∑
n=1

|cgtn − cpredn |
num slotsn

(5)

where num slotsn is the total number of parking lots in
the current scene. We express this evaluation metric as a
percentage.

The results of the experimental evaluation are reported in
Table III.



TABLE III
RESULTS IN TERMS OF MAE, RMSE AND MOE.

MAE RMSE MOE
1.05 2.1 3.64%

Finally, we evaluate the execution time. Using the NVIDIA
Jetson TX2 described in Section II-A, we process a full image
in a time between 10 and 15 seconds, depending on the total
number of cars present in the scene.

V. CONCLUSION AND FUTURE WORK

This research has carried out in the framework of the
SmartPark@Lucca project, which aims at the development
of a system based on a network of “intelligent” cameras
able to monitor one or more parking areas of variable di-
mensions in the medieval city of Lucca, Italy. Given that
a single camera is able to monitor dozens of spaces, this
infrastructure has a significantly lower cost, compared to other
solutions. We presented the work done in the first year of the
project: the design and realization of a customizable smart
camera prototype and the computer vision logic to evaluate
the occupancy level of the monitored parking area and to
identify free or occupied spaces. The prototype can host a
powerful vision board to run state of the art Convolutional
Neural Network which achieve an error rate of 0.4%. Due to
cultural heritage constraints of the medieval historical center of
Lucca sometimes the wired electrical network is not present:
in this case an energy harvesting unit in combination with a
custom design very low consumption embedded vision board
is able to run lightweight image processing with a slightly
higher error rate of 0.65%. In both cases the processing of
the pictures captured by the cameras is performed on board of
the smart cameras themselves, so that no transmission of the
pictures is required. We presented also the very first result of
collaborative sensing that show how the overlapping of two
cameras improve the monitoring in case of fixed or temporal
occlusion. Cooperative sensing with three or more cameras
will be the main focus of the next, second, year of the research
project.
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