
Federated Learning for Data Spaces: a
Privacy-Enhancing Strategy based on Data Visiting

Manlio Bacco1, Margherita Di Leo2, Albana Kona1, Mattia Santoro3, Paolo Mazzetti3

1European Commission, Joint Research Centre (JRC), Ispra (VA), Italy
2Arcadia SIT, under contract with the European Commission, JRC

3Institute of Atmospheric Pollution Research—National Research Council of Italy (CNR-IIA), 50019 Sesto Fiorentino, Italy

Abstract—This work explores the paradigm of data visiting
that, through privacy-enhancing technologies, shows the potential
to access and use data otherwise inaccessible. Building on the
ongoing EU initiative to design, implement, and run sectorial
data spaces, we consider federated learning as one the most
promising approaches for the objective above. We propose a
domain-agnostic strategy that can be extended and adapted to
different needs. We conclude by analysing the limitations and
challenges of the approach we propose.

Index Terms—data visiting, privacy-enhancing technologies,
federated learning, data spaces

I. INTRODUCTION

In 2020, the European Commission (EC) unveiled the
European Strategy for Data, a vision advocating for the
establishment of specialized data ecosystems, namely data
spaces, across various sectors. These ecosystems are designed
to facilitate the sharing and reutilization of diverse data
types—ranging from governmental and private sector data
to research outputs and information contributed by citizens-
with the ultimate objective of establishing a single market
for data. To guarantee the successful establishment of data
spaces, the strategy is built upon a robust foundation of
overarching legislative actions, such as the Data Governance
Act [1], the Data Act [2] and funding programs such as Digital
Europe [3]. Collectively, these efforts will play a pivotal role
in facilitating the rollout of common European data spaces,
ultimately contributing to the dynamism and competitiveness
of the European data economy [4].

Central to this strategy is the adoption of the ’data visiting’
paradigm, also known as compute to data, which refers to
the possibility of using data where they are, without moving
them to a different location before use. Hence, it is the
algorithm (or, more generally, the computational process) that
moves where the data are stored, and not vice versa (i.e.,
data to compute) as common nowadays. This approach is
particularly useful when dealing with large volumes of data
that are impractical or inefficient to transfer due to their size,
privacy concerns, or regulatory restrictions [5]. In traditional
data analysis, data is transferred over networks to the analyst’s
local environment, which can be time-consuming and pose
security risks. With data visiting, operations are performed
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on the data where it resides. Data visiting supports FAIR
(Findable, Accessible, Interoperable, Reusable) data sharing
principles [6] by allowing users to access and work with data
from multiple sources without duplicating or moving it, thus
saving time, preserving bandwidth, and enhancing security
compared to traditional data analysis.

Data visiting is gaining popularity in fields like healthcare
and scientific research where data privacy and scale are
critical concerns. It is also increasingly common practice in
federated systems. A federated data system involves estab-
lishing governance authorities within each data domain, such
as customer data/production data, and business units, such
as marketing/customer services. Data spaces implement by
design the federated data governance paradigm. They are
distributed systems defined by a governance framework that
facilitates secure and trustworthy data transactions between
participants, emphasising trust and data sovereignty [7].

The federated nature of data spaces aligns well with the use
of Privacy-Enhancing Technologies (PETs) [8], which can be
applied to protect sensitive (such as personal, business, and
so on) data while still enabling collaborative data use and
analysis. In data spaces, data intermediaries are organisations
with a variety of roles [9], [10], such as intermediation of
technical solutions and infrastructures, making use of legal
constructs (e.g., data trusts), or other collective governance
mechanisms (e.g., data cooperatives). In this work, technical
solutions and infrastructures are of interest because they offer
building blocks to use data in a privacy-preserving fashion.

This work is organised as follows. In Section II, we survey
the state of the art when it comes to PETs and focus on
exemplary use cases in the literature. In Section III, we provide
a short analysis of the pros and cons of centralised and
distributed Machine Learning (ML) approaches, considering
privacy as key requirement. Then, we focus our attention on
Federated Learning (FL) in Section IV. FL can be a key
strategy for data visiting, and we present how it works and
discuss its advantages and disadvantages. In Section V, we
propose a domain-agnostic architecture for the use of data
visiting strategies, especially in data spaces, and we present
its potential use in a forestry use case. Finally, in Section
VI we look at challenges and limitations of the approach we
propose, and then we conclude in Section VII.



II. STATE OF THE ART

In this section, we focus on PETs and exemplary use cases
in the literature. As anticipated in Section I, the federated
governance model of data spaces provides an ideal framework
for implementing PETs. In data spaces, each domain can tailor
PETs to specific needs, data, and use case requirements. Key
technologies that can be integrated into data space architec-
tures to enable privacy-preserving data use, collaboration, and
analysis include the following ones, among others [8]:

• Secure Multi-Party Computation: it allows multiple par-
ties to jointly compute a function over their inputs without
revealing the inputs to each other. This enables collab-
orative data analysis without exposing the underlying
sensitive data.

• Differential Privacy: it can be used to add noise to data
outputs, allowing data to be shared or analysed while
providing strong privacy guarantees for the individuals
represented in the data.

• Zero-Knowledge Proofs: they allow one party to prove
that a statement is true, without revealing any additional
information. This can be used to verify data or model
properties without exposing the underlying data.

• Federated Learning (FL): a distributed solution fully
described in Section IV, it implements the compute-to-
data paradigm.

PETs, for instance FL, are highly relevant and beneficial in
e.g., healthcare use cases [11]. FL has been successfully used
for rare disease detection [12], leveraging data from multiple
sources to train accurate AI models while preserving patient
privacy. FL proves to be well-suited in such a scenario for
several reasons. Firstly, rare diseases have small sample sizes,
making it difficult to train accurate AI models. FL aggregates
data from multiple institutions without moving them, allowing
models to be trained on larger and heterogeneous datasets
[12]. Secondly, patient data are not moved nor shared by
healthcare institutions because of privacy concerns. FL ad-
dresses this by only sharing model updates (not data), still
allowing collaborative model training [13], [14]. Thirdly, FL
has shown good scalability, meaning that collaboration can
be carried out also in large settings, as in [13], showing how
data of rare cancer boundary detection from 29 institutions has
ensured meaningful results for rare diseases.Anyway, uneven
data distribution, common across different institutions, can
be a challenge for FL, but novel techniques improve the
achievable accuracy [14].

Another interesting use case for FL is forestry [15], [16].
Take the case of the EU, in which forest field data are collected
by National Forest Inventories (NFIs) and used for a wide
range of purposes, e.g. to assess the health and condition of
forests, to monitor changes in forest cover, and to plan sustain-
able forest management practices; to obtain information on the
diversity of tree species, ecological processes and biodiversity
conservation; and so on. Governments and policy-makers use
NFI data to develop policies related to forest conservation and
natural resources management, while scientific research uses

it to understand the dynamics of forests and their ecosystems.
Looking at data collection, we emphasise how plot data are
manually collected in the field, making the process costly and
poorly feasible in vast areas; anyway, high-quality data like
manually collected ones are crucial for model calibration, thus
they hold great value. NFI data are considered sensitive for
several reasons, thus unlikely to be publicly available. To add
to the complexity, terms and conditions of use vary according
to the country. Deriving information at a regional level is
a critical objective, but it requires the integration of field
measurements with remote sensing data. For these reasons, it is
important to access manual measurements to calibrate models
based on remote imagery. At present, common solutions see
data being degraded before being shared, coordinates of the
plots being shifted, and noise being added. However, by doing
so, the data utility for modellers drops dramatically. This is to
say that there is an obvious trade-off between privacy and
utility [17]: the more privacy is preserved, the less utility
(accuracy) is achieved in modelling. Such a trade-off stands
also for FL, but models can be trained on unobfuscated NFI
data because only model updates (not raw data) are shared
among participants. As in the healthcare case, the aggregation
of data from heterogeneous sources has a beneficial effect on
the quality of the models, thus overcoming the limitations of
small plot-level datasets collected in the field. Such collabo-
rative frameworks also foster a collaborative model develop-
ment across countries and institutions, leveraging the diverse
forestry-related expertise, thus leading to more robust and
accurate models for assessing forest health, carbon stocks, and
other key metrics. FL also has the potential to accommodate
the different terms and conditions of data access and usage
across countries, indeed enabling a harmonized modelling
framework despite the heterogeneous data landscape.

Fig. 1: Federated Learning: the data consumer deploys an
orchestrator that controls a set of clients performing local
training on data from several providers. Once completed,
the results of the collaborative training are returned to the
consumer in the form of a trained learning model.

We conclude the analysis of the state of the art by consid-
ering the case described in [18], in which the authors propose
a software solution for the deployment of FL in data spaces.
Using parking data as a use case, they instantiate a data space



TABLE I: List (not exhaustive) of available FL frameworks.

Name Code repository
CrypTen https://github.com/facebookresearch/CrypTen

FATE https://github.com/FederatedAI/FATE
FedN https://github.com/scaleoutsystems/fedn

Flower https://github.com/adap/flower
FLSim https://github.com/facebookresearch/FLSim
LEAF https://github.com/TalwalkarLab/leaf

IBM FL https://github.com/IBM/federated-learning-lib
NVIDIA FLARE https://github.com/NVIDIA/NVFlare

OpenFL https://github.com/securefederatedai/openfl
PySyft https://github.com/OpenMined/PySyft
Substra https://github.com/substra

TFF https://github.com/google-parfait/tensorflow-federated
FedML https://github.com/FedML-AI

infrastructure and the components they developed to run FL.
Reference [18] shares with this work the aim of a better
understanding of the potential uses of FL, technical feasibility,
and practical implications of FL in data spaces, concluding that
especially economic feasibility remains an open issue. In the
following section, we discuss centralised solutions as opposed
to distributed ones.

III. CENTRALISED, DISTRIBUTED ON-SITE, AND
FEDERATED SOLUTIONS

Before moving to a deeper analysis of FL, we discuss
the main differences among centralised, distributed on-site,
and federated solutions for ML. We focus on privacy as key
requirement guiding the discussion, and we refer the reader to
Fig. 2 to visualise the three approaches.

In [19], the authors state that centralised solutions have
enormously grown in the last years because of continuous
streams of data being uploaded into cloud systems. Once
collected, data can be used by ML-based systems for different
purposes. Amazon, Google, and Microsoft are examples of
ML-as-a-service providers in cloud systems. However, eaves-
dropping attacks pose privacy concerns for users. Given the
risks of moving data to a centralised entity, on-site ML
techniques have been proposed. The idea is to distribute
a pre-trained/generic model to devices (clients) that, after
deployment, can further refine (personalise) it using local data.
Following such an approach, data never leave the host, thus
mitigating risks and providing advantages over centralised
solutions when it comes to privacy. Anyway, it must be
noted that there is no benefit from other peers’ data because
local refinements are never shared. Additionally, if external
algorithms (e.g., models) have to run on sensitive data, a
secure processing environment (SPE) is needed to reduce
risks coming from external code. To make other nodes (peers)
benefit from local data while still preserving privacy, FL has
been introduced. Also in the case of FL, SPEs are needed, but
each node can also benefit from peers’ model refinements. We
proceed to a more thorough description of FL in Section IV.

IV. FEDERATED LEARNING AS PRIVACY-ENHANCING
DATA VISITING STRATEGY

FL is a technique in which multiple parties (clients) col-
laborate to train a global model in federated settings, using
local datasets that only designated clients can access and use.
The task is carried out under the coordination of a central or-
chestrator. Local datasets are not shared among the clients and
with the orchestrator, thus respecting data privacy. The process
is depicted in Fig. 1, which shows the necessary components
to be deployed (one orchestrator, N clients performing local
training at N different data locations). A digital infrastructure,
e.g., HPC, GPUs and other solutions, may be needed to run
the learning processes, as elaborated in Section V. The costs
associated with the use of FL are related to the achievable
utility level and the increased complexity of the system [20].

FL proves of particular interest when information is stored
in data islands, as common nowadays. Cloud computing and,
more generally, centralised approaches, foresee data use in
central locations into which data are collected, then processed
and analysed. The collection of data in a central repository
makes it a valuable target to attack, especially in the presence
of sensitive data. Because of that, data providers may be
unwilling to share data because of privacy concerns and fears
of unauthorized access, misuse, or loss. If we put concerns
and threats aside for a moment, several techniques can be
used to extract value from data hosted in a central location.
For instance, machine learning techniques can be used to
train models. However, it is rather difficult for data providers
to monitor access to their data and prevent or revoke it
if necessary. Thus, compared with centralised training, FL
enables data to be collaboratively used in controlled settings.

Some aspects must be emphasised to fully evaluate the pros
and cons of FL. On the utility side, i.e., the accuracy of the
global model, it must be noted that centralised settings may
provide better results [20] but at the expense of data being
shared. On the complexity side, the process of setting up
and deploying an orchestrator and multiple clients has higher
economic and technical costs, although frameworks for easy
deployment and use are rapidly progressing. In Table I we
provide an overview of available FL frameworks to show the
increasing variety of products and services available today.

In Section V, the architecture we propose for using FL in
data spaces is described, and in Section VI we better elaborate
on the limitations and challenges of the approach we describe.

V. A STRATEGY FOR IMPLEMENTATION

As anticipated, there are already lots of frameworks im-
plementing FL (see Table I) and proposals for infrastructures
supporting data visiting, such as the one in [21]. Generally,
such frameworks require the deployment of a client module at
each Data Provider’s (DP) infrastructure. Clients are controlled
by an orchestrator in charge of coordinating the training
tasks carried out by each client. Thus, all participating DPs
must agree on the specific framework(s) to be used and
maintain/update the client deployment on their infrastructure.
This results in a tightly coupled architecture, which may be



Fig. 2: Comparison of high-level architectures of centralised, distributed on-site, and FL solutions.

difficult to achieve and maintain in the current landscape of
heterogeneous data-sharing systems and initiatives, including
the Common European Data Spaces. This section proposes
a high-level domain-agnostic architecture flexible enough to
accommodate the varying needs of DPs and run different FL
implementations on their infrastructure.

One of the key features needed to enable FL is the pos-
sibility to move code -e.g., training code implemented by an
FL client- to the data (compute to data). This requires being
able to utilize different computing infrastructures (e.g., cloud
infrastructures, HPC, etc.) for the execution of computational
processes. The architecture (technical blueprint) introduced in
the Green Deal Data Space (GDDS) [22], here used as a
reference approach, introduces a set of useful logical com-
ponents. By acting as intermediaries, the GDDS architecture
components implement the necessary functionalities to enable
the GDDS Digital Ecosystem (DE). Among these components,
the Data Processing Enabler (DPE) is specifically dedicated
to enabling the execution of scientific models, including ML-
based models, on different computing infrastructures. The DPE
can be invoked by data consumers, which submit the execution
request of their algorithm implementations, and it takes care
of setting up the execution environment on the computing
infrastructure, triggering the execution, and saving the output.
A possible implementation of the DPE concept is the Virtual
Earth Laboratory (VLab) [23] [24], an orchestrator framework
enabling the execution of scientific environmental models
in a multi-cloud environment. As said above, FL learning
implementations must orchestrate the FL clients. To this aim,
a DPE requires a set of enhancements specifically tailored to
support one (or more) FL client-server framework(s).

We recall the NFI-related example introduced in Section

II, which aims at enabling access to NFI data to calibrate
geospatial machine learning models that underpin the devel-
opment and delivery of forest indicators while maintaining the
confidentiality of plot locations. Figure 3 depicts a UML com-
ponent diagram showing how different components interact in
the training phase of the NFI use case. The Forest Monitoring
Downstream Service (FMDS) is an application developed to
calculate forest indicators using an ML-based model. Each DP
(i.e., NFIs) provides a Data Source (a service providing data
discovery and access functionality) and a Computing Infras-
tructure (accessible via infrastructure-as-a-service/platform-as-
a-service APIs). The FMDS queries the Data Catalog for forest
data. After discovering the required data, it submits a FL
request to the DPE. The latter relies on the DPs’ Computing
Infrastructures to execute the FL client application, thus locally
accessing the data for training purposes without moving them.
The Dataset Transformer component can be used by the DPE
for any data transformation which might be required (e.g.,
format encoding).

The main advantages of the architectural design we propose
are its flexibility and extensibility. The flexibility stems from
the possibility of allowing the participation of different DPs
without imposing any specific technological solution (i.e., FL
framework); the only requirement for DPs is to provide a
Computing Infrastructure that the DPE can use. Besides, the
architecture can be extended to support new FL frameworks
without the need to modify the interaction with either the Data
Consumers or Providers.

VI. LIMITATIONS AND CHALLENGES

In this section, we briefly touch upon the limitations and
challenges of FL and the strategy we propose. As antici-



Fig. 3: UML diagram of the proposed architecture: the FMDS use data by several Data Providers (NFIs in our example)
without moving it by executing FL instances on the DP (client-side) Computing Infrastructure under the DPE orchestration.

pated, the use of FL -and in general PETs- must take into
account a lower accuracy (utility) if compared with centralised
techniques; how much such a limitation could be critical
depends on the specific domain and case. Another aspect to
be considered is that setting up an infrastructure, like the
one we propose, has development and maintenance costs to
be considered; however, in several scenarios, a PET-enabled
approach could represent the only viable option to use data,
which otherwise would be inaccessible. The interoperability
of the different FL client-server frameworks to be supported
in our proposal, as cited in Section V, is an additional aspect
to be carefully considered.

Explicitly considering FL, open challenges must be care-
fully considered when data distribution is uneven or non-IID
(non-independent and identically distributed) across DPs. In
fact, non-IID data can lead to significant differences in the
data distributions across clients; this statistical heterogeneity
makes it challenging for the global model to perform well on
each client’s specific task. The uneven data distribution can
cause model drift, where the global model diverges from the
optimal model for each client due to the biased gradients from
clients with limited data. Furthermore, non-IID data can make
it difficult for the federated learning algorithm to converge to
a good global model, as the gradients from different clients
may be conflicting [25], [26]. Adding to that, when data are
unevenly distributed, it becomes challenging to detect class
imbalances in the aggregated gradients, as the training data is
not directly observable by the server [27].

Another class of challenges is interoperability at the seman-
tic level. Consider again the the NFI data case we presented
above: datasets from member states (MS) are collected follow-

ing different protocols, using different units, different formats,
different coordinate systems, etc. according to country-specific
inventory designs. While this practice preserves comparability
over the years in an MS, it makes it hard to compare
data of different MS. Creating a pipeline for conversion and
harmonization of data is no trivial task due to metadata
being in different languages and of different quality, and even
different definitions are applied by NFIs [28], [29]. This, and
other classes of challenges we do not discuss in this work,
may be addressed by data intermediaries as foreseen in the
data space ecosystem, opening new market opportunities for
them. Finally, we stress that trust and governance are to be
considered in any case. Data visiting still requires agreements
and trust relationships among participants, which takes time to
build. The same goes for the definition of a commonly agreed
governance mechanism.

VII. CONCLUSIONS

In this work, we explored data visiting as a strategy to use
data otherwise inaccessible. This is in line with the idea of
a data market, enabled by the use of PETs in the context
of data spaces. We focussed on FL as the most relevant
technique for the forestry use case we use as a reference, in
which the sensitive data from the EU NFIs can be leveraged
to train a global model to be used to support environmental
efforts and the Green Deal initiative. We proposed a domain-
agnostic architecture to run FL and explored the limitations
and challenges for it to be increasingly effective in future.
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