Extending GKS to a distributed
architecture.

R. Bettarini
G. Faconti
L. Moltedo

Rapporto internc C85-1

CNUCE- CNR- PISA
Copyright Gennaio 18985

Ezxtendimg GKS to a distributed architecture.

i

R. Bettarini {*¥), G.Faconti(¥*), L.Holtedo({*¥%)

{¥) CNE - Istituto CNUCE - Pisa

{**) CHR - Istituto Applicazioni Calcolo - Eoza

Pisa, 12/7/198%

Extending GKS to a distributed architecture

The Italian HNational Research Council {CER) is a public imstitution
that promotes research activities in many disciplines fron
mathematics to engineering, from physics to chenistry, and several

other fields of application.

The growing demand by scientific and technical users for
computing facilities has made the institution of CRR computer
centers indispensable in geographical areas where users exceed a

certain critical threshold.

The ever greéiﬁg and diversifying demands from the field of
research, the limitation of finantial xesoarées, and the cost of
hardvare and saftaare equipments make it difficult. for one single
computer center to provide the extensive range of facilities

required by. the different fields of application.”™
<l

The interworking of several computers through a public data
network allows for the integration of facilities offered by
individual computing centers, with a consequent qualitative and

guantitative enlargement of the overall computing facilities which

could othervise be impossible.

Since 1979, CHR has been experimenting on network services based

on a packet switching distributed computer network called RPCHET

Introduction

v Introduction

Extending GKS to a distributed architecture

{{Caneb2]). The encouraging results of the experimentation of
RPCHNET and the emerging of standard protocols for the data exchangs
betveen systems led to the decision of adopting a netwofk
architecture which fully complies with the Open Systen
Interconnection Reference Hodel {{OSIref],[ISO0SI]). At this
purpose a projet called OSIRIDE has been started in order to

develop and implement the new architecture {({Can8lia],{CanBdb]).

As the demand for graphics facilities to be évailable at the
OSIRIDE computers ié the strongest one inside the Institutes of
CNR, the management of graphical resources is a major probles. In
order to offer a uniform accessible set of graphical services to
unsophisticated users, and uniform tools to professional staff for
the development and the management of such serviceé, the Graphical
Gernel System (GKS) ([Bono82]),[Hopg83],[ISOGKS]) will be.ado?tea as
the base system with the added capability, through the workstation
concept, of running in a distributed architecture; that is, the
possibility for any graphical appl%cation irn any computer to access

the graphical resources in any of the other computers of the

I3

netvork.

- In this paper, some major problems encountered in the definition
of the model of the distributed GKS are pointed out, together with

the presentation of an extension of that model.

Extending GKS to a distributed architecture

In order to allow GKS to be considered for distribution over a
computer network it must be described in further details: that is,

a4 more refined layer model may be investigated.

Five layers can be identified from the functional description of

the system as represented in PFig. 1.

Application Layer

Language Layer

Keme! Layer

Workstation Layer

Device Layer

Pig. 1. Layer model of GKS

The Application Layer provides a means for the.application
processes to access the graphi€al environment. The interface to

the next layer is defined by the language bindings.

The Language Layer provides a specific language syntactlc
support for the abstract GKS functions. It also perforams conversion
functions between the data types of that language and GKS data
types. Its intefface to the Kermel lLayer is described by the

functional specifications of the Graphical Kernel’ Systen.

JLlayering techniques ‘ ‘ 4

Extending 6KS to a distributed architecture

The Kernel Layer is defined by the GKS functionality. 211 the
GKS functions start to execute in this layer but might be
terminated in layers of lov crder. In particular, the
no:malization transformations belonging to output primitives and
their inverse for locator and stroke input are performed in this
layer. It also handles Workstation Independent Segment Storage
processing, and GKS Description Table and State List nanagement.
An interface called Workstation Interface ([Beno847]), exists
between Kernel and Workstation lLayers separating the device
independent part of the system from the workstation dependecies.
As this separation is actuglly described only from a logical point
of view, the interface should be yet clearly defined as if it

coincides to a'large degree with the Computer Graphics Hetafile

functionality ([ISOCGH]).

®

The Workstation Layer performs clipping and workstation
transformation functions. It also handles segment operations, and

Workstation Description Table and State List management.

The Device Layer provides Several services which depend on the
device capabilities im order to translate the GKS functioms into

sequences of functions that can be interpreted by physical devices.

The set of functions contained in the last two layers may
greatly différ betveen implementations as itydeéends on thé
physical device capabilities. In fact, the availability of
nicroprocessors and memory éomponents at relatively low cost,
allovs for the implementability of yreat amounts of compunting

-

layering techniques

Extending GKS to a distributed architecture

power into a graphics workstation; the local computing capabilities

can then range from a microcoded System to one providing full

.operating system support.

The definition of Application and“iénguage‘Layers is not
strictly related with the objectives presented in this paper and
vill not longer be discussed. In the follovings the term

application will address an application progran including those

layers.

We will note moreover mention amother way, beside the language
- binding, by vwhich the application program may access the GKS Kernel
functionality, that is the character coéed binding ([Hayn843). The
cgaracter coded binding of GKS is defined as a segﬁence of 7-bits
or 8-=bits charaétgr codes representing nessages sént to,and ftom
between an application prograr and another process which handles

the graphic functionality of GKS.

2.2 HANDLIEG OF REHOTE WORKSTATIONS

The layer model discussed in the previous paragraph allows for the
distribution of GKS functionality in a variety of +systen
architectures as the wvorkstation interface nakes it possible to

Layering technigques : S

Extehdiﬁg GKS to a distributed architecture

exchanye data between the Kernel and the Rorkstation Layers of

difierent implementations ([Beno8d }).

host | graphics

ost termmnal

personal | graphics

computer monitor
host | personal dgraphics
computer - monitor

host |—meoe host graphics
""""""" terminal
Fig. 2. Graphics systen configurations

Several configurations can be exploited other than those
' e
represented in Pig. 2 ([Wagg84]} ; however severe limitations to the

usability of the systen are found when the network becomes more

complex,

Three major limitations can be pointed out from the fuanctional

specifications of GKS:

1= The Kernel must know at opening time the number and the list of

available workstation types.

@

layering techniques

Extending'GKS to a distributed architecture

This constraint imposes that all the devices eligible for use by an
appligation in the network must be known in advance and
consequently the network architecture must be frozem at a certain
time. This means that any change in the configuration of a node

needs to be reflected in all the nodes of the network.

2. During execution of an output primitive the Kernel sends data

to any active workstation in'the netvork one at a time,

The mapping between the connection identifier of a workstation and
the physical address of the cbrresponding physical device is done
outside from GKS. The Kernei itself keeps oﬁly track of the names
of the active workstations and cannot be acknowledged if multiple

vbrkstations refer to the same node.in the network. As a

consequence the same data are sent multiple times with different

@

‘Layering techniques

identifiers on the same connection line degrading performances of

the network.

3. The deferral state of a workstation is affected by interactions

’ t

occurring in other workstatlons if it is set to BRIG.

This constraint imposes that the Kernel inquires the deferral state
of any actlve wvorkstations when an interaction with a logical input
device gets underway on any workstation in order to made visible

the effects of the stacked functions if any.

Extending GKS to a distributed architecture

3-0__GES IH AE OPEN_SYSTEH INTERCONNRCTION EBVIROEHEHET

The computer network of CNR (OSIRIDFE) allows for the interworking
of different computers from several firms and provides services to
clustered small computers through a Front End Processor.

Subnetvorks {(as Local Area Netvworks) may also be interconnected in

such a way that they appear as part of one Global Network.
In the first OSIRIDE implementation, the Global Network will

include ITAPAC (the Italiaa Public Packet Switching Network) and

Ethernet subnetworks as shown in FPig. 3 {{Can84a]).

GKS in an Open Systen Interconnection environment 9

“xtending GKS to s distributed architectare

R,

i hos
§ -
S hGStg /11
;\ /l i{"’”’""’“" "‘
N ;. ! ,
N / /| |
7 P i o
.\\ //' // T
ITAPAC FEP
] -~ X.25 A
host |~
i
— ; Gate
, { !
| |
. L
i
* ! ! l j] Ethernet
b ;
P
L——-—w L—-&o——-—d
Fig. 3. OSIRIDE environment

A GKS implementation is planned to be available at each

computing center connected to ITAPAC through OSIRIDE.

GKS in an Open System Interconnection environment

10

Srtending 5ES to a distributed architecture

3.1 THE LAYEE BODEL 7F THE DISTRIRUTED GRAPHICAL KERHEL SYSTEE

In order to allow an applicatiorn ruaning in one of the mentioned
computing centers to use a graphics device connected to another
computing center, a model for a distributed GKS has been defined
which is slightly different that the one presented in paragraph

"2.1 The layer model of the Graphical Kernel Systen".

A nev layer called the Sorkstation Hanager has been inserted

between the Kernel and the Workstation Layers as shown in Pig. 4.

Application Layer

Language Layer

Kernel Layer-

—_neaaria

Workstation Man‘ager Layer L

Workstation Layer

Device Layer

Fig. 4. Layer model of distributed GKS

Ads a consequence the functionality of the Horkstation Interface
i1s made available to the Workstation Layer through the ¥orkstation

- ¥anager Laver.

GKS in an Open System Interconnection environment . 11

Extending GKS to a distributed architecture

A possible distribution of the GKS layers is shown in Fig. 5.

Host
Application
________________ Dumb
Kernel Host ‘ Rumb
\ g g WS |Device
ron
k a
3 8
\ toe L] Intelligent
/ftx r Workstiaiion
ITAPAC 3]
X.25 2 ws |
. |
' |
Workstation : . :
Manager boeend Device ﬁgg??égs
Workstation
Device.
Key- Créphics Mouse
board [Monitor
Personal Computer:
Fig. 5. Distribution- of GKS layers in the network

GKS in an Open Systen Interconnection environment 12

Extending GKS to a distributed architecture

3.2 COBHURICATION BETHYEEN KERNEL AND HORKSTATIOHE HAHAGER

Inside the Kernel and the Workstation Manager a set of logical
functions, relevant to the network, can be identified which deals

with communication aspects. This set of functions is seen by the

network as the applicatiom emtity.

The functionality of the application entities is to allow
Kernel/Workstation Manager communications and to minimize the

‘

accesses to the network services.

The Kermnel application entity may recognize that multiple
~vorkstations belong to the same Workstation Hanager and perfornms
only one data transfer of output primitives together with the

workstation identifiers for those workstations.

The Horkstatiorn Manager application entity allows for the
- transfer of one stream of input events fron multiple workstations

on Kernel reguest as it will be explained in paragraph "3.3

"Modifications to GKS data structure®,

‘GKS in an Open Systen Interconnection environment

13

%

Extending GKS to a distributed architecture

3.3 HODIFICATIONS T0 GKS DATA SIRUCTURE

The internal functioning of the model of the distributed GKS

requires a few modifications to the GKS data structure.

3.3.1 GES_Description Table

As the Kernel Layer can't handle information such as the number and
the list of available workstation types, the corresponding entries
are removed from the GKS Description Table: a Rode}Description
Table is defined instead, carrying on those information in the

Workstation Manager at a given ncde of the computer network.

This modification implies that any check on the workstation type
is deferred to the Workstation Manager during execution of the
OPEN_WORKSTATION function.)

Similarly the INQUIRE_LIST_OF_AVAILABLE_HORKSTATION_TYPBS function
réquires the indroduction of a new bparameter identifying the node
which is the object of the query. To maintain the compatibility
with applications written for the standard GKS, it is defined as an

optional parameter: when it is nissing an implicit reference is

riade to the local computer configuration of graphics devices.

GXS in an Open Systen Interconrection environment 14

Extending GKS to a distributed architecture

3-3.2 GRS _State list

A second modification is introduced in the GKS State List. In order
to provide the Kernel with the Capability of handling interaction
from a logical input device when #orkstations exist with deferral
state set to BNIG, a new entry is defined in the table containing

the names of the workstation which are in this state of deferral.

3.3-.3 Event Input Queus

The last modification introduced in the GKS data structure affects
the input level ¢ of the system and it becomes active when a

logical input device is set to mode EVENT.

The EVENT input enables a‘SpeCific operating environment in
which the opérator interacts asynchronously with gge system by
generatlng entries in an EVENT queue handled by the Kernel through
an. lndependent process. Entries are reroved from the gueue by the

AWAIT_EVENT function and then intergpreted by the GET<input class>

functlons._

As to minimize the flow of data through the computer network,
the EVENT input is implemented by enabling the workstations to

handle their own event gueue and to notify the Workstation Hanager

GKS in an Open System Interconnection environment 15

Extending’GKS to a distributed architecture

0L thelr state. Any time the Kernel emnpties its event input yueue,
the Workstation Kanagers are requested to send all the‘input
Generated at nodes if any; the events are registered in the Kernel
event queue according to their creation date {{ Beno841]). Input
queue overflow error is handled at Xernel level in the standard
w¥ay, and at Workstation level by the workstation program itself

vhich inhibits any further input until more room is made available.

-

GKS in an Open Systen Interconnection environnment]

Zxtending GKS to a distributed architectare

Es]
]

|

) _COHCLUSIOES

The growisy demand for graghics facilities from the community of

scientific and technical users imposed the Italias National

Fesearch Council to face the problem of standardizing the services

of computer graphics offered by its computing centers.

The obvious ansvear has been the adoption of the GKS standard

the base system for the developmené of graphics applications.

The limitation of fimantial sesources and the cost of hardvare
and softwvare equipments, as well as communications efficiency led
to the decision of developing a distributed rodel of GKS to be

implemented on a computer network.

Although the functioﬁality of GKS is specified in details, a
large degree: of freedonm is left in defining the internals of the
system so that it bas been'pos;;ble to define a distributed model
which maintains the stand;rd interface towvard the application

prograns.

As a conseguence of the special attention dedicated to the

application interface, any graphics program developed for the

standard GKS will run on the distributed environment witn no

modification.

CONCLUSIONS

as

i7

Extending GKS te a distributed architccture

Pt Pl o Y

[6ued76] Guedj RBA, Tucker H, "Hethodology in Computer Graphics?®,

Proceedings IFIP HGS5.2 Borkshop SEILLAC I, North Holland, 1976

[0SIref] Data Processing, Open System Interconnmection, Basic

Beference Hodel, ISO/TC 97/SC 16 N-537.

[Bono82] Bono P, Encarnacao J, Hopgood FRA, 'GKS - The first
graphics standard’, IEEER Computer Graphics and Applicatioms,

vol 2 no 5.

{Fole82] Féley dD, Van Dam A, Fundamentals of interactive compéteﬁ

graphics, Addison-Wesley.

[CaneB82] Caneschi F, Lenzini L, Menchi C, 'Status and evolution of
the RPCHET network in an operational environment?, Proceedings
ol

of ICCC82, North Holland.

[Hopg83] Hopygood FRA, Duce DA, Gallop JR, Sutcliff nc,

Introduction to the Graphical Kernel System, Academic Press.

[Stra83] sStraayer D, 'Computer Graphics Standardss Fhere they

are', Tekniques, vol 7 no 3.

Leferences and bibliography i

“fxtending GKS to a distributed architecture

[IS00SI] Draft International Standard, Ianformatiocn Droccos . i,
Open System Intercommection, Functional Description, I350/7C

97/5C 16, ISO/DIS 8348.

[XIS06KS] bDraft Interpational Standard, Information Processing,
Graphical Kernel Systee ({GKS), Functional Descriptiom, IS0/TC

97/5C 5, IS0/DIS 7942

‘[Beno84] Structure of a Horkstation Interface,Position Paper for

WG 2 meeting in Benodet, DIN-NI-5.9.4, ISO/TC 97/SC 5/4G 2 - N

238. ;

~=

[#agg8&] Waggomer NC, Tucker C, Nelson JC, 'NOVA%*GKS, A
Distributed Implementation cf the Graphical Kernel Systemn®,

SIGGRAPH"84 Conference Proceedings, vol 18 no 3.

[ISOCGE] Draft International Standard, Information Processing,
Computer Graphics, Hetafile for the Storage and Traamsfer of
Picture Description Information, Punctional Specification,

IS0/TC 97/SC 21, ISO/DIS B632.

[Enca84] Z=ncarnacao J, 'Interface and Data fIransfer Formats in

Computer Graphics Systems?!, EUROGRAPHICS®84.

[CanB8a] Caneschi F, Gregori E, Lenzini L, “enchi C, Zucchelli E,

Inplementing the OSI standards: the OSIRIDE Project, CKHUCE.

References and bibliography ii

Extending GKS to a distributed architecture

- {CanB8b] Caneschi F, ISIDE, or the OSIRIDE Access Hethod,

OSIRIDE/FDT/02.

[Hayn8&] Maynard JH, A (revised) character coded binding of GKS,

Comnittee correspondence, ANSI/I3H3/84-115 R 1

References and bibliography iid

