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Abstract
We study amixture of two superfluidswith density–density and current–current (Andreev–Bashkin)
interspecies interactions. TheAndreev–Bashkin coupling gives rise to a dissipationless drag (or
entrainment) between the two superfluids.Within the quantumhydrodynamics approximation, we
study the relations between speeds of sound, susceptibilities and static structure factors, in a generic
model inwhich the density and spin dynamics decouple. Due to translational invariance, the density
channel does not feel the drag. The spin channel, instead, does not satisfy the usual Bijl–Feynman
relation, since the f-sum rule is not exhausted by the spin phonons. The very same effect on one
dimensional Bosemixtures and their Luttinger liquid description is analysedwithin perturbation
theory. Using diffusion quantumMonteCarlo simulations of a systemof dipolar gases in a double
layer configuration, we confirm the general results. Given the recent advances inmeasuring the
counterflow instability, we also study the effect of the entrainment on the dynamical stability of a
superfluidmixturewith non-zero relative velocity.

1. Introduction

Mixtures of different kinds ofmiscible superfluids arise in various areas of physics, starting from the first
experiments on 3He– 4Hemixtures [1], through possible applications to astrophysical objects [2, 3], all theway
to themore recent developments in thefields of superconductivity [4], cold atoms [5–7] and exciton-polariton
condensates [8].

The statistics of each component of themixture can be arbitrary, andBose–Bose, Bose–Fermi, and Fermi–
Fermimixtures were all successfully realised experimentally in cold gases. In these experiments, also the
chemical nature of the components can vary: the use of two different elements, of different isotopes of the same
element, and of different internal states of a common isotopewere demonstrated. The ability to reach
simultaneous quantumdegeneracy in such awide variety of atomic species in cold gases experiments allows for
the realisation of very diverse interactions between the two component superfluids.

One of themost elusive effect of coupled superfluids is the existence of a non-zero entrainment between
them. The presence ofmutual transport has been pointed out for the first time in the 1970s byAndreev and
Bashkin [9], correcting some previous work on three-fluid hydrodynamics [10, 11]. Themost prominent feature
of such an effect, nowadays known asAndreev–Bashkin effect (AB), is that the superfluid current ji of one
componentwill in general depend also on the superfluid velocity vj of the other component, or, in otherwords,
that the superfluid density is a non-diagonalmatrix, ijr , namely,

j v , 1i ij jr= ( )

with the indices i j, 1, 2= { } labelling the species and implicit summation on repeated indices.We shall refer to
the off-diagonal element 12r of the superfluid densitymatrix as the superfluid drag. Phenomenologically, a
nonzero 12r carries important implication in the dynamics of vortices of a superfluidmixture. Notably, it is
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predicted that the circulation leading to the stable vortex configurations change abruptly as 12r is varied, giving
rise to stablemultiply circulating vortex configurations [12].

Despite its introductionwas inspired by the problemof 3He and 4He superfluidmixtures, the lowmiscibility
of these twofluidsmakes this systemhardly achievable in experiments. TheABmechanismhas instead recently
found applications in the domains of astrophysics and of cold atom systems. In the astrophysical literature, it has
been hypothesised that the AB effect could be the source of several peculiar behaviours in neutron stars cores [2],
whichmodernmodels predict to be composed of amixture of neutrons and protons, both in a superfluid phase
(see [13, 14] and reference therein). Cold atom experiments, on the other hand, thanks to their flexibility and
tunability, could open theway to a directmeasurement of superfluid drag, albeit this will still require some
careful analysis andmitigation of commondrawbacks. For instance, calculations within the Bogoliubov theory
for Bose–Einstein condensates with typical repulsive interaction—where quantumfluctuations are depressed—
predict the AB to be very small [15, 16]. Quantum fluctuations can be enhanced by increasing the interactions,
but this would also intensify three-body losses, which could be in turn suppressed by confining the system in low
dimensional geometries or introducing an optical lattice, as studied, e.g., in [17, 18]. However, optical lattices
break translational invariance, thus strongly reducing the superfluid density even aT=0.We recall that, in
continuous space (andwith time-reversal symmetry), the superfluid density approaches the total density asT is
lowered to zero (see, e.g., [19]).

Aside frommaking the ABmechanism efficient, a very important question is how tomeasure experimentally
its strength. The dynamical protocols typically proposed require the ability to initialise a superfluid current in
one component and then observe the onset of dissipationless transport in the other one, initially at rest. For best
results, these kind ofmeasurements would likely require a ring geometry and can be of difficult interpretation,
since a number of decay processes are present [20, 21].

In the present work, we address some of the abovementioned issues. In particular, we derive some relations
between the superfluid drag and othermeasurable quantities, such as the susceptibilities of the system and the
speeds of sound. For systemswith 2 symmetry between the two species, inwhich spin and density channels
decouple, the density channel follows the usual relations, whereas we showhow theABbreaks the usual Bijl–
Feynman relation for the spin channel. Ourfindings open theway tomeasuring the superfluid drag
experimentally using standard static and dynamic observables.

To provide support to our theoretical predictions, we study quantitatively a specificmodel which can show
large entrainment, i.e., a dipolar Bose gas trapped in a bilayer configuration. Using the diffusion quantumMonte
Carlo (QMC)method, we extract the dispersion relations, the susceptibilities, the structure factors and the
superfluid densities.We show that they satisfy, in a proper regime, the expression derived in the general theory.
In particular, it is shown that the standard expression relating the square of the spin speed of sound to the inverse
of the susceptibility is inapplicable and it should be corrected by a factor proportional to the superfluid drag.
Another possible quantity which could reveal the presence of a superfluid drag is the shift in the position of the
dynamical instability.We report a general stability analysis of themixture, and derive a simple analytical
expression for the onset of the dynamical instability to linear order in the drag.

Asmentioned above, theABmechanism could play amore prominent role in lowdimensionality.We
discuss themodifications to Luttinger liquid theory necessary to describe coupled one dimensional superfluids.
Wefind that, in analogywith the general description, the spin Luttinger parameters, as derived bymeans of
perturbative or ab initio calculations, receive a correction from the superfluid drag, which could become
particularly relevant in the strongly interacting (Tonks–Girardeau) regime.

The paper is organised as follows. In section 2we recall themain aspects of theAB effect, which are then
analysedwithin aminimal quantumhydrodynamic toymodel in section 3. The relations among experimentally
relevant observables are derived. The Luttinger liquid theory for one dimensional coupled superfluid is
corrected for the presence of AB in the same section.Numerical evidence in support of our theoreticalfindings
are reported in section 4, wherewe analyse the presence andmagnitude of the superfluid drag in a bilayer system
of dipolar bosons. In section 5we study the dynamical instability of themixture with respect to the relative
velocity between the twofluids. Conclusions and future perspectives are drawn in section 6. For the sake of
completeness, the derivations of some relations used in themain text are postponed to the appendices without
affecting the comprehension of themain results.

2. Andreev–Bashkin effect

Microscopically, the current drag originates from the interactions between two superfluids, leading to the
formation of quasi-particles with nonzero content of either of the two species. It is then easy to understand that
the transport properties of the two components are not independent: the flowof one componentmust be
accompanied bymass transport of the other component [9].
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Some important relations concerning the superfluid densities in equation (1) can be easily obtained by
considering the kinetic energy contribution in the expansion of the ground state energy in terms of the
superfluid velocities [22]. Due toGalilean invariance, if if is the phase of the superfluid order parameter for
component i, ofmassmi, its velocity is given by mvi i i f= ( ) and the energy due to the superfluid velocities
can bewritten as

E x
m m

d
2

. 2D

ij i j
ij i j

2
ò åd r f f=  · ( )

By performing aGalilean boost with velocity V, the phases are shifted to m V ri i i f f¢ = - ( ) · , and the

energy change, tofirst order in V, is E E xP V dDòd d¢ = - · , with mP i i i i12 r r f= å + ( ) the
momentumdensity. Since on the other hand onemust have n nP 1 1 2 2f f=  +  , with n1,2 the number
densities, the superfluid densitiesmust satisfy

m n . 3i i i 12r r= + ( )

Introducing the effectivemasses m1,2* through n m mii i i i
2 *r º , we obtain

n m
m

m
1 , 4i i

i

i
12 *
r = -

⎛
⎝⎜

⎞
⎠⎟ ( )

which provides the relation between the superfluid drag and the effectivemasses and a constraint for the effective
mass ratio.

3.Quantumhydrodynamicmodel

In general, the presence of effectivemasses changes the relation between static and dynamical properties of the
system, and the possibility for some excitationmodes to exhaust the sum rules. Let us consider a superfluid
mixturewith an energy density e n n,1 2( ). Expanding the energy around its ground state value to second order in
the density fluctuations xiP ( ) and adding it to equation (2)we obtain a hydrodynamicHamiltonian for two
miscible superfluids,

H
m m

x
1

2
d , 5

ij
ij

i

i

j

j
ij i j

D 
òå r

f f
a=

 
+ P P

⎛
⎝⎜

⎞
⎠⎟· ( )

where thematrix e n nij i j
2a = ¶ ¶ ¶ contains the information on inter- and intra-species interactions of the two

fluids.Hamiltonian(5) by requiring that thefields if and jP satisfy canonical commutation relations for bosons,
i.e., x y x y, ii j ijf d dP = -[ ( ) ( )] ( ).

For the sake of clarity, we take the two superfluids to be equal: iir r= , iia a= , m mi = and n n 2i = , with
n N Vº the total number density of the system (see appendix A for the non-symmetric case). Due to the
assumed 2 symmetry, the dynamics of thismodel decouples if we rewrite it in terms of the new fields

2 , 2 . 6d s d s1 2 1 2f f f=  P = P  P( ) ( ) ( )( ) ( )

Thefields dP and df represent the fluctuations in total density and global phase, respectively. In a similar
fashion, sP and sf encode thefluctuations of the difference in density of the two species (magnetisation) and
their relative phase (spinwave), respectively.We use the labels d(s) to indicate the density (spin) channel of the
system’s excitations. The new fields inherit the canonical commutation relations and act as two independent
hydrodynamicmodes, obeying theHamiltonian

H
m

x
1

2
d , 7

i d s
i

i
i i

D

,

2
2

òå r
f

a=


+ P
=

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )

where d s 12r r r= ( ) and d s 12a a a= ( ) . TheHamiltonian is nowdiagonal in the two channels, and the
dispersion relations for the twomodes are linear in themomentum k, of the form

m
k i d s, , . 8i i2

2
2 w

a r
= =( ) ( ) ( ) ( )

The quantity mi i
2a r can be identifiedwith the speed of sound of eachmode. For the densitymode, we have

c
m

n

m2
, 9d

2 12
2 12 12

r r
a a a a=

+
+ = +

( )
( ) ( ) ( )

where in the last equality we used that, atT=0, the total superfluid density is equal to the totalmass density of
the system.Wenote in particular that cd is independent of the superfluid drag. On the other hand, the spin speed
of sound is
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c
m

n

m

m

m2

2
1 , 10s

2 12
2 12 12

*

r r
a a a a=

-
- = - -⎜ ⎟⎛

⎝
⎞
⎠

( )
( ) ( ) ( )

which explicitly depends on 12r .
From theHamiltonian (7), the static response to density and to spin probes are simply given by d sa ( ), which

can be identifiedwith the inverse compressibility d
1k- and inversemagnetic susceptibility s

1c- , respectively.We
thus obtain the relations

c
n

m2
, 11d

d

2

k
= ( )

c
m

n

m

m

m2

2
1 . 12s

s s

2 12
2 *

r r
c c

=
-

= -⎜ ⎟⎛
⎝

⎞
⎠ ( )

These relations suggest that, by independentlymeasuring cs and sc , it is possible to obtain the strength of the
mass renormalisation, i.e., themagnitude of the superfluid drag.Note that cs is expected to vanish for m m2* = ,
which imposes a bound m m2*  . From equation (4), this bound translates into mn 412 r , thus anticipating
result(23), of whichwewill provide an additional derivation below.

The previous analysis has important consequences with respect to Bijl–Feynman relations (f-sum rule)
linking the dispersion relations to the static structure factors (see, e.g., [23]). From the above discussion, it turns
out that the f-sum rule for the density channel is exhausted by the phononmode, while for the spinmode this is
not the case, leading to the effectivemass correction in the determination of the dispersion relation. In
particular, the zero temperature spin structure factor at lowmomenta reads

S k
k

mc m

k

m2 2
, 13s

k

s
s

0 12
12

r r
r r c=

-
= -

( )
( )

( ) ( )

which does not satisfy the Bijl–Feynman relation.Notice that the linear term in k of the Ss(k) can vanish, either
because of a vanishing susceptibility or because of a saturated drag, i.e., 12r r= . The former (latter) case
corresponds to a vanishing (diverging) spin speed of sound. The fact that the drag and the interspecies
interaction act independently on the spin speed of sound (see equation (10)) is general, and applies beyond the

2 symmetry we assumed in this section. In particular, the standard condition for the onset of phase separation
(i.e., sc  ¥ for 12a a= ) still holds (see appendix A).

On the other hand, due to translational invariance, the density structure factor satisfy the Bijl–Feynman
relation and it reads

S k
nk

mc

k

m
mn

4 2
2 . 14d

k

d
d

0
k= =

( ) ( )

Let us conclude this section by brieflymentioning the effect of the ABphysics on the specific heat of the
mixture. At low butfinite temperature, wemay expect that thermalfluctuations do not change the low energy
spectrum significantly. Then the low temperature dispersion relations are still linear, of the form, k c ki i =( ) ,
i d s,=( ), andwe assume, within the hydrodynamic picture, that the highestmomentum that can be thermally
excited is k k T cT i B i, = . In the low temperature limit andD spatial dimensions, these assumptions lead to the
specific heat

C T
c c

1 1
, 15v

D

d
D

s
D

µ +
⎛
⎝⎜

⎞
⎠⎟ ( )

which carries a dependence on 12r through the sound velocity in the spin channel. A large superfluid dragwill
therefore lead to a strong increase of the specific heat.

3.1.One dimensional systems andLuttinger liquid
Since the superfluid drag is due to quantum fluctuations, one can think about increasing themby increasing the
interactions, i.e., quantumdepletion andmutual dressing. This can be easily seen in theweakly interacting
regime, where analytical expressions for the superfluid drag have been nicely obtainedwithin a Bogoliubov
approach by Fil and Shevchenko [15, 16]. In a three-dimensional system, three-body losses strongly limit the
possible increase of the interaction strengths. On the other hand, in one dimension, it is possible to reach strong
quantum regimes, including the so-called Tonks–Girardeau regime. The low-energy excitations of one-
dimensional gases are described in terms of Luttinger liquids [24]. For the sake of simplicity, we consider two
equal Luttinger liquids coupled together, with speed of sound c0 and Luttinger parameter K 10  . By
introducing both the density–density and the current–current couplings as a perturbation, we canwrite
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H
c

K
K m

g
2

1
. 16LL

i
x i i

x x

1,2

0
0

2

0

2
12

1 2
2 12 1 2ò òå f r

f f
= ¶ + P +

¶ ¶
+ P P

=

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( )

As before, we can easily diagonalise theHamiltonian (16) by introducing thefields for the in-phase and out-of-
phasefluctuations.We obtain a standard expression for coupled Luttinger liquids

H
c

K
K2

1
, 17LL

i d s

i
i x i

i
i

,

2 2òå f= ¶ + P
=

⎡
⎣⎢

⎤
⎦⎥( ) ( )

where the density parameters read

mc n c K g2 , 18d
2

0 0 12= +( ) ( )

mK n c K g2 , 19d
2

0 0 12= +( ) ( )

and for the spin sector we get

mc n m c K g2 4 , 20s
2

12 0 0 12r= - -( )( ) ( )

mK n m c K g2 4 . 21s
2

12 0 0 12r= - -( ) ( ) ( )

In the above expressions, n is the total density of the system, andwe have used the fact that, for a translationally
invariant system, c K n m2d d = (see also [25]), which implies that c K m n m0 0 12

2r+ = . Therefore, cd and
Kd do not depend on the off-diagonal superfluid density and for the compressibility we have

K c n mc2d d d
2k = = ( ). On the other hand, the spin channel parameters acquire a dependence on 12r , as seen

before in the general case. In fact, the susceptibility reads K c n mc4 2s s s s12
2c r= = -( ) ( ), to be compared

with equation (12). The correction due toAB in equation (20), in the strongly interacting limit can therefore
deeplymodify the standard perturbative analysis [26, 27] and theRG flow for coupled Bose Luttinger liquids.
Note, once again, that the previous equations imply a bound on the value of the superfluid drag, nm 412 r ,
which coincideswith the one coming from equation (12) in the previous section. RecentMonte-Carlo
simulations on one dimensional Bose gases confirmour results [29].

4.Magnitude of the drag and numerical evidence

The information on the superfluid drag can be extracted fromQMC simulations based on the path integral
formalism. In this formalism, in fact, the superfluid density can be related to the statistics of winding numbers of
particles’ paths around the simulation domain [28]. By extending this result to two species in the same
simulation box (see appendix B for details), we obtain the relation

L

D
m W m W m m W W2

2 , 22

T

D2

1
2

1
2

2
2

2
2

1 2 1 2

1 2 12

r
b
r r r

= á ñ + á ñ + á ñ

= + +

-
[ ]

( )

linking the total superfluid density Tr to thewinding numbersW1,2 of the two species. Here we are considering a
simulation volume LD at inverse temperature T1b = . For zero temperature results,T is taken smaller than all
the other energy scales of the system and the results are checked a posteriori for convergence.

From equation (22), the superfluid drag can be interpreted as the covariance between the superfluid densities
of the two components. Then, thanks toCauchy–Schwarz inequality, 12

2
1 2r r r , and assuming the symmetric

case, inwhich 1 2r r= , we obtain an upper bound on themagnitude of the drag,

4
, 23T

12 1 2r
r

r r=( ) ( )

which also bounds the effectivemass to m m2*  . As already noted above, the condition of saturation of this
bound corresponds to a vanishing speed of sound in the spin channel (see equations (10)–(12)).We shall also see
below that the saturation of this bound is a limiting case in the dynamic stability of themixture (see
equation (42)).

4.1.QMCresults for bilayer dipolar gases
Lattice simulations already showed evidence of superfluid drag effects [18, 22]. It was shown that the drag
depends on the lattice geometry, increases with the increase of interspecies interactions and attains itsmaximum
for non-equalmasses of the two particle species. The presence of the lattice explicitly breaks the translational
invariance, thus deeplymodifying themechanism leading to a dissipationless drag. In particular, for
incommensurate fillings, the drag between the twofluids is essentiallymediated by the presence of
vacancies [22].

5
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Themagnitude of the superfluid drag, normalised by the total superfluid density, spans thewhole range
allowed by bound (23). However, onemust point out that the presence of the lattice causes the depletion of the
total superfluid density; in particular, on a lattice, it is no longer true that the total superfluid density coincides
with the total particle density at zero temperature [19]. In this context, it is noteworthy tomention the analytical
results of [17], which compute the superfluid drag starting from the physical parameters of the lattice in aweak
coupling approximation. The authors report a superfluid drag nm12r , normalised to the totalmass density, of
the order of 10−5

–10−4 for weak tomoderate intercomponent scattering amplitude. Quantitatively similar
QMC results are reported in [18]. It is important to keep inmind that these low values are primarily due to the
small total superfluid density on the lattice.

In the following, we focus on a systemof dipolar Bose gases confined in a bilayer geometry in continuous
space, with the dipole orientation pinned perpendicular to the planes, as sketched infigure 1. This system is
similar to the one studied in [30], which pointed out the presence of entrainment between the superfluid
currents of two charged superfluids in a bilayer configuration. The relative strength of interspecies interactions
as compared to intraspecies ones can be tuned by changing the distance between the two layers. As it will be
shown later infigure 3, for an extended range of this control parameter, the superfluid drag can reach very large
values. Dipolar particles in a bilayer configuration are particularly advantageous under a variety of aspects.
Confining themolecules in a two-dimensional geometry and imposing a repulsive dipolar interaction strongly
reduces the detrimental two-body chemical reactions [31]. At the same time it allows to exploit the anisotropy of
the dipolar interaction, which is partially attractive between particles on different layers. Introducing the
distance h between the two layers, the interaction between two particle ofmassm and dipolemoment d on
different layers can bewritten as

V r h d
r h

r h
, , 242

2 2

2 2 5 2
=

-
+

( )
( )

( )

where r is the relative distance in the plane ofmotion. For dipolar gases, it is very useful to introduce the
characteristic length r md0

2 2= . The various regimes of the system are characterised by the interlayer
parameter h r0 and the in-layer parameter n ri 0

2, with ni the single layer density. Static and dynamic properties of
this systemwere recently investigated in [32, 33]. In particular, it has been found that a transition from two
coupled superfluid (atomic phase) to a pair superfluid (molecular phase) takes placewhen the attractive
interaction is strong enough.Wewill show that, by approaching the transition point while remaining in the
atomic phase, the drag superfluidity becomes prominent.

To recover the description of equation (5), we point out thatmiscibility is here to be intendedwith respect to
the position of the particles projected in the direction orthogonal to the layers’ planes. Dipolar Bose gases in a
double layer configuration do not show any phase separation [32]. This is intuitive, since any potential with
V q 0q 0 =( )∣ (inmomentum space) admits a bound state in two dimensions. The interlayer potential (24) has
the peculiarity to haveV q 0q 0 ==( )∣ , whichmakes the bound and scattering states of the system atweak
coupling rather peculiar [34]. The dipolar bilayer Bose gas was found to be the first example of a two component
Bose gas which can formpairs without collapsing (i.e., forming clusters) [32] as it occurs, e.g., inmixtures with
contact interaction only.

Besides serving as a testbed for the numerical study of the superfluid drag in a homogeneous geometry and
being a new system showing theAB physics, the dipolar bilayer configuration can represent one of the best-case
scenarios for the experimental observation of the presence of superfluid drag. Recent experiments using dipolar
molecules consisting of two atoms of Erbium-168 demonstrated the availability of condensates with large
magneticmoments, up to r 1600 a0 0» , with a0 the Bohr radius [35]. This value is still almost one order of
magnitude smaller with respect to the typical wavelength of the lasers used to confine the Er2molecules in arrays
of 2D layers. Experiments on stable polarNa–Kmolecules [36], which sportmuch larger r0,may help in
overcoming this problem. The recent proposal of sub-wavelength confinement [37]may further stretch the

Figure 1. Schematic representation of the bilayer dipolar bosonicmodel. Particles obeying Bose–Einstein statistics are confined in two
parallel layers. The dipoles are pinned perpendicularly to the layers’ planes and parallel to each other, yielding entirely repulsive on-
plane interactions and partially attractive out-of-plane interactions.
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experimentally accessible range of values of h r0, albeit it is not of easy implementation for dipolarmolecules.
Therefore, experimental realisation of a bilayer systemof strongly interacting dipolar superfluids is reasonably
within reach of current or near-future technology.

We study the systembymeans of diffusionQMC,which allows us to extract both the thermodynamics and
the low energy spectrumof the system.DiffusionQMC is based on solving the Schrödinger equation in
imaginary time, thus projecting out the ground state of the system (for a general introduction on themethod see,
e.g., [38]). The contributions of the excited states are exponentially suppressed and the ground-state energy is
recovered in the limit of long propagation time. The simulations are performed for 60 particles with the same
parameters as in [32, 33]. For some quantities, this number of particles is sufficiently large to be close to the
thermodynamic limit; for some others, residual finite-size correctionsmust be taken into account, as it will be
explained inmore details later.

In this framework, a number of observables of interest can be obtained in a straightforwardway. The value of
the gapΔ and of the spin susceptibility sc are obtained from the dependence of the ground-state energy on the
polarisation P N N N1 2= -( ) . The latter is tuned bymoving particles from layer 1 to layer 2while keeping the
total number of particles N N N1 2= + constant. In the limit of small polarisation P, the energy can be
expanded as

E P E N P N
n

P0
2

. 25
s

2

c
= + D +( ) ( ) · · ( )

In the gapless phase ( 0D = ) the dependence on the polarisation is quadratic, while in the gapped phase it is
linear. Similarly, the compressibility dk atT=0 can be obtained from the volume dependence of the energy for
an unpolarised gas,

E
, 26d

1
2

2



k = -

¶
¶

- ⎛
⎝⎜

⎞
⎠⎟ ( )

where  is theD dimensional volume of the system ( L2 = in the 2D geometry at hand).
The study of structure factors provides away of accessing the dynamic properties of the system.Weuse the

technique of pure estimators [39, 40] to compute the intermediate scattering function

S
N

k k k,
1

, , 0 , 27t r t r= á - ñab a b( ) ( ) ( ) ( )

with k k r, exp ij
N

jr t t= å -a aa( ) { · ( )}and rja the position of particle j in layerα. The intermediate scattering

function provides information on the correlations in imaginary time τ and is themain ingredient to compute the
static structure factor S Sk k, 0ºab ab( ) ( ).We consider a balanced systemwithNA=NB and study the
symmetric and antisymmetric structure factors,

S k S k S k , 28d s 11 12= ( ) ( ) ( ) ( )( )

corresponding to the density and spin channels of the discussion above, respectively. The compressibility and
the spin susceptibility can be compared to the respective static structure factors in the lowmomentum limit, in
order to verify the sum rules. The structure factors further provide information on the excitation spectra: their
long imaginary time asymptotic behaviour can befitted to an exponential decay of the form

S Zk, e . 29d s
kd st t~  ¥w t-( ) ( ) ( )( )

( )( )

Whenphononic excitations are present, kd sw ( )( ) is linear for smallmomenta, with the slope directly related to
the speeds of sound of the density and spin channels, respectively, through k c kd s d sw ( )( ) ( ) .

It is instructive to show that, in a gapless systemwithout the drag, exactly the same information on the speeds
of sound can be recovered from the static structure factors S kd s, ( ), the low-momentum excitation spectra

kd s,w ( ), the compressibility dk and the susceptibility sc . The speeds of sound obtained from the different
methods are shown infigure 2 for the density(a) and spin(b)modes. The densitymode is gapless for any value
of the interlayer separation h. The speed of sound of this channel, as obtained from structural, energetic and
thermodynamic quantities, always yields compatible values throughout the explored range of h. Finite-size
effects reduce the speed of sound, which for large h (decoupled layers) appears to lie below its asymptotic value.
The latter is obtained from the equation of state of amodel with a single species at half the density (so called
‘atomic’ limit). In the computations, the dipolar interaction potential was truncated at a distance equal to half
the size of the simulation box. By adding themissing ‘tail’ correction to the compressibility, it is possible to
recover correct atomic limit asymptotics, as shown in thefigure. The situation is quite different for the spin
channel, where the gap opens for h r 0.350  and differentmethods cannot be consistent in that parameter
range. For large values of the interlayer separation, h r 0.60  , we recover once again the atomic limit and
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different quantities are consistent with one another.Manifestly, it is not the case for parameter range
h r0.35 0.60  , which still corresponds to a gapless phase but is in the vicinity of the transition point. In this

region there is no consistency between the speeds of sound obtainedwith differentmethods and, importantly,
the f-sum rule is not satisfied. The reason for this is appearance of the superfluid dragwhichwe analyse inmore
details below. It is interesting to note that the finite-size effects aremore pronounced in the densitymode
compared to the spinmode. Oneway to understand this is that the spinmode probes the response to the
polarisation, which does not change the system volume, while the density (compression)mode is the response to
a change in volume. The tail correction, being sensitive to the change of the volume, is able to account for the
finite-size discrepancy.

Finally, in order to directly probe the superfluidity properties of the system,we introduce thewinding
number related to speciesα,

W
r

d
d

d
, 30

i

N
i

1

2

0
òåt t

t
t

= ¢
¢

¢
a

a

t a

=

( )
( )

( )
( )

( )

where i a( ) indexes particles belonging to speciesα only. Taking the limit of long propagation time, the statistics
of thewinding numbers are related to the superfluid densities. In particular, we evaluate the symmetric and
antisymmetric combinations

N

W W
2 lim

2
. 311 2 12

1 2
2

r r r
t t

t
+  =

á  ñ
t¥

[ ( ) ( )] ( )

According to equation (22), when the plus sign is considered, the quantity above is an estimator of the total
superfluid density of the system, Tr . In our zero temperature simulation, this quantity is always compatible with
the totalmass density, as it should be in continuous space, and in contrast with the low total superfluidity
observed in lattice simulations.When theminus sign is considered, on the other hand, we directly probe the
magnitude of the superfluid drag. This observable asymptotically attains the value Tr in the non interacting
(h  ¥) limit. In the symmetricmixture case, borrowing the same notations of section 3, this quantity reduces
to nm12r r-( ) , and is reported infigure 3. For low interactions (large h), it is compatible with unity and drops
to zero as interactions are ramped up. This corresponds to 4T12r r= , i.e., with bound (23). Itmust be noted
that, for h h r0.35c 0< » [32], the system enters themolecular phase, so that not all the drop in 12r r- can be
ascribed to an increase of the drag, but onemust also keep into account the emergence of themolecular
condensate. Indeed, the descriptionwe put forward holds only as long as the system is still in the atomic phase.
Interestingly, the saturation of the bound (23) (or, alternatively m m2* ) appears to coincide with the
transition to themolecular phase inwhich bound state physics start dominating.

By independentlymeasuring Ss(k), sc and sw (hence cs), we can show that the usual Bijl–Feynman
approximation is not applicable to systems in the presence of the superfluid drag. To this end, we use
equations (12), (13) to express 12r r-( ) in terms of the observables listed above, and then compare it with the

Figure 2. Speeds of sound as a function of interlayer spacing h for nr 10
2 = , as extracted fromdifferent observables. (a) Speed of sound

of the densitymode, cd. (b) Speed of sound of the spinmode, cs. The Feynmanmethodmakes use of the static structure factor
S k k mc2=( ) ( ), computed at the smallest k compatible with periodic boundary conditions. The speeds c S ka a[ ( )], with d s,a = { }
the channel index, are computedwith thismethod. The data show that the f-sum rule is exhausted by the phononmode in the density
channel, whereas this does not hold in the spin channel, the arrow indicating the divergence of c S ks s[ ( )]. The speeds c wa a( ), computed
from the excitation spectrum, assume a linear phononic dispersion relation k ckw =( ) with kwa ( ) obtained from equation (29). The
speeds cd dk( ) and cs sc( ) are computed from mc nd d

2 1k= - and mc ns s
2 1c= - , with dk and sc obtained from equations (26) and (25),

respectively. The speed of sound in the atomic limit coincides in the two channels. It is obtained from standard thermodynamic
relations using the equation of state E nr0

2( ) (taken from [41]) of a single layer systemwith half the density of the bilayer system.
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direct winding numbermeasurement. Figure 3 reports the data corresponding to the three independent
expressions

nm

mS k

k

c S k

k
c

4
2 , 32s

s

s s s
s s s

12
2

2
2r r

c
w

w c
-

= = =
( ) ( ) ( ) ( ) ( )

wherewe are indicating by cs sw( ) the speed of sound in the spin channel as extracted from thefit to equation (29).
The data show fair agreement among the above expressions and between them and the directmeasurement of

12r r- . A notable exception are the data for c S ks s s
2 c[ ( )] , where c S ks s[ ( )] is the speed of sound in the spin

channel, computed as if Bijl–Feynman relation held.We observe that this expression leads to thewrong
behaviour in the regionwhere 12r r- differs fromone, i.e., where the drag effect ismore prominent.

In bothfigures 2 and 3, the errobars in the quantities extracted from the static structure factor and the
winding number come from statistical averaging. Spectral frequency, compressibility and susceptibility have
additional contributions to the error due to the use offitting procedures, equations (25) and(29). The errors are
effectively increased in some of the results, due to cancellation of opposite trends as a function of h. Thefinite-
size effects are important for a quantitative agreement, as can be seen fromfigure 2(a). It is not obvious that
different quantities have similar finite-size correction, whichmight eventually be responsible for some
remaining differences between various estimations in figure 3.

5.Dynamic stability

Given the recent advances inmeasuring the spin superfluidity and its critical dynamics, we devote thefinal
section to explore the consequences of the presence of a superfluid drag termon such phenomena. Both long
living spin oscillations [42] and critical spin superflow [43] for Bose–Bosemixtures as well as for Fermi–Bose
superfluidmixtures [44] have beenmeasured in theweakly interacting regime. The agreement with the available
estimates [45, 46] is reasonable but rather far frombeing quantitative.

In the following, we determine the critical relative velocity required to trigger the dynamical instability of a
binarymixture of superfluids at zero temperature. To this end, we generalise equations (2) and(5) and the
results of [46, 47] by considering the energy functional

E n n
m n

m m m
e n n x, , ,

2
, d 33D

1 2 1 2

2
12

2
2 12

1 2
1 2 1 2
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ò åf f

r
f

r
f f=
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 +   +

a

a a

a
a⎪

⎧⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭[ ] ( ) · ( ) ( )

with e n n,1 2( ) the internal energy density.We subtracted 12r from the diagonal kinetic terms, so that the
condition (3) on the total density is automatically satisfied. Considering nα and fa as conjugate variables, the

Figure 3.The quantity 12r r-( ), extracted fromdiffusionQMCdata using different estimators. The direct winding number
estimator (diamonds and dashed line to guide the eye) is comparedwith indirect estimators. The lattermake use of the relations
derived in the quantumhydrodynamicmodel of section 3 (see also equation (32)). The data sets are in satisfactory agreement with one
another, with the exception of the estimator c S ks s s

2 c[ ( )] , which tends to diverge as themolecular phase is approached (shaded region).
The origin of the errorbars and of remaining finite-size effects are discussed in themain text.
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Hamilton equations m n Et d df¶ =a a a and m E ntf d d¶ = -a a a, yield (implying a b¹ )

n n mv v v , 34t
1

12r¶ = - +  -a a a a a b
-( ) [ ( )] ( )
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m
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2 2
, 35t
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⎡
⎣⎢

⎛
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⎞
⎠⎟

⎤
⎦⎥· ( )

where mv  f= a a( ) are the superfluid velocities, nm = ¶ ¶a a the chemical potentials andwe defined
n12h rº ¶ ¶a a, implicitly assuming that 12r is a well-behaved function of the densities. The previous systemof

hydrodynamic equations is satisfied by a steady state solution of uniform velocity,matter and drag fields, such
that all gradient terms vanish.With a slight change of notation, we perturb about this solution by expanding the
density and velocityfields as

n n n e , 36tqri+a a a
w- ¯ ( )( )

v v v e , 37tqri+a a a
w- ¯ ( )( )

and only keep thefirst order in thefluctuations, whereas, since it is already small with respect to n ma a, we only
keep the zero-th order in 12r . Substituting these expansions into equations (34) and (35), we obtain

n n
m

v q v q v v q, 3812w
r

- = - -a a a a
a

a b[ ¯ · ] ¯ · ( ) · ( )

m
nv v q

q
, 39

1,2
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a g
ag g
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wherewe abbreviated nm mº ¶ ¶ab a b¯ (hence 12 21m m= , as expected by the symmetry of interactions). In
equation (39), we neglected the termproportional to ha, as the leading order is O n v,12 12r ra a( ), and the zeroth
order, homogeneous by hypothesis, vanishes under spatial differentiation.

Eliminating nα and vα in the systemof equations (38), (39) leads to
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wherewe set v qwW º -a a¯ · and c n m2 mºa a aa a¯ , the latter being the speed of sound of a single superfluid.
We also define

c
n n

m m
, 4112

4 1 2

1 2
12
2mº

¯ ¯ ( )

which has got the dimension of a speed andmeasures the strength of inter-species contact interactions. By
assuming a linear dispersion Cqw = , the one above is a sixth order equation for the speed of soundC of the
mixture, which determines its stability. In particular, the presence of complex roots flags a dynamical instability.
By setting 012r = , equation (40) reduces to the problemof the stability of amixture interacting only via contact
interactions, whichwas studied in depth in [46].

This equation simplifies considerably when rewritten in a symmetric frame of reference inwhich
v v q v q2 1 2= = -¯ · ¯ · , so that the projection of the relative velocity of the twofluids along q is simply v.When
n m n m1 1 2 2= , this choice corresponds to the frame of reference of the centre ofmass of the system. A brief
analysis of the case v=0 is reported in the appendix A.

5.1. Symmetricmixture
Some insight into the dynamic stability of themixture can be gained by considering a 2 symmetricmixture, in
which n n=a¯ ¯, m m=a and maa are the same for both species (hence also the speeds of sound coincide, c c=a ).
The stability equation (40) then simplifies to a biquadratic equationwhose roots can be readily calculated.
Restricting to positive relative velocities, the condition that the two-fluid speed of sound be real then yields the
critical relative velocities for the stability of themixture:

v

c

c
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c
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c2 12
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2
12r
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For c 012 12r= = , the system is unstable for v c2> , confirming the results of [45–47].When the relative
velocity v lies within vc1 and vc2, themixture becomes unstable, as schematically shown infigure 4.
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It is worth reminding that the stability analysis presented here is validwithin hydrodynamics, i.e., assuming a
linear dispersion relation. The inclusion of nonlinear terms can give rise tofinitemomentum instabilities above
the upper critical velocity, as it was pointed out in the case of a Bose–Bosemixturewithout superfluid drag [48].
Whether suchfinitemomentum instability occurs in the sameway also in presence of AB corrections is beyond
the scope of the present paper and it will be discuss elsewhere. Nevertheless for large enough drag,

c c
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⎤
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The lower critical velocity is vc2, which depends on the entrainment: in this regime, it should be possible observe
a shift in the onset of the dynamical instability. In particular for 4T12r r= , i.e., when the condition (23) is
saturated and the spin speed of sound vanishes, themixture is unstable already at vanishing relative velocities.

For completeness, we compare the critical velocities for the dynamic stability (42)with the speeds of sound
of the density and spinmodes, equations (9), (10), respectively, which provide the critical velocity for the
energetic (Landau) instability.With the notation of this section, they read

c c c c c c, 1 4 , 44d s
T

2 2
12
2 2 12 2

12
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r
= + = - -

⎛
⎝⎜

⎞
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and they are also reported infigure 4. Although it occurs at a lower critical velocity, the energetic instability
would not obfuscate the dynamical instability. A counterflow experiment would only slightly trigger the Landau
instability, which in any case would developmuchmore slowly than the dynamical one. Experimentalmethods
based on the generation of soliton trains [43, 49, 50]were shown to be able to cleanly identify dynamical
instabilities of the kind discussed in this section.

6. Conclusions

In the present work, we studied the physics of a superfluidmixture in the presence of current–current
interactions, which lead to the so-called Andreev–Bashkin effect (AB). Ourminimal quantumhydrodynamic
theory highlights the consequences of the presence of the superfluid drag 12r as an off-diagonal coefficient of the
superfluid densitymatrix. In particular, for 2 symmetricmixtures, inwhich the density and spinmodes
decouple, we predict the density channel to remain unaffected; the spin channel, on the other hand, exhibits
corrections of linear order in 12r in both static quantities, such as the spin susceptibility sc , and in dynamic
quantities, such as the speed of sound of the spinmode, cs. A prominent consequence of these corrections is that
Bijl–Feynman theory, relating cs to sc , is no longer satisfied in the presence of AB corrections, as shown by
equation (13). In light of these results, we identify the speeds of sound and the susceptibilities as being themost
promising observables in order to experimentally study the AB effect. The quantumhydrodynamic theory
further provides an upper bound to the value of 12r , whichmust remain less than a fourth of the total superfluid
density 2T 1 2 12r r r r= + + (alternatively, in the language of the effectivemass, m m2*  ). The same bound

Figure 4. Stability diagram for a superfluidmixture with contact interactions such that c 0.612 = and all speeds expressed in units of c.
The spin speed of sound cs is always below the density speed of sound cd (seeequation (44)). The former delimits the energetically
unstable (EU) region (solidfilling). The dynamically unstable (DU) region (gridfilling) lies between the critical velocities vc1 and vc2,
see equation (42). The threshold relative velocities for both EU andDUvanish for 1 4T12r r = .
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appears also in the path integral formulation of superfluid densities, extended to amixture of two superfluids, as
well as a limiting case of the critical velocity (42) for the dynamic stability of themixture.

Theminimal toymodel employed in section 3 also gives insight on lowbut finite temperature properties
such as the specific heat, which is expected to depend on the drag through a factor cs

D- inD dimensions. In
general,finite temperature has a detrimental effect on the possibility of observing AB-related phenomena [15],
due to the reduction of the superfluid density and to the emergence of dissipative drag between the two
components. In this respect, the quantities we suggest to focus on tofind experimental evidence of the presence
of entrainment aremuchmore suitable than trying to directly detect the current induced by one component on
the other. It is worthmentioning that a recent experiment [52]was able to record the dynamics of both
superfluid and normal fractions of a weakly interacting Bose–Bosemixture, as well as the finite temperature
polarisabilities.We believe that experiments such as this one pave theway towards the detection of subtle
superfluid effects such as the ABdrag.

As a check on the predictions of the quantumhydrodynamicmodel, we numerically investigated a systemof

2 symmetric bilayer dipolar bosons, with repulsive interactionswithin each layer and partially attractive
interactions between the two layers. The diffusionQMCmethod allows the simultaneousmeasurement of
several observables, separately on the density and spin channels. By inverting the theoretical relations between
the static and dynamic observables, and the superfluid drag, we can compare indirect estimators of 12r with the
direct estimator based on thewinding numbers. Figure 3 shows a good agreement between direct and indirect
measurements of nm12r r-( ) . A notable exception is when one extracts the speed of sound of the spin
channel using the Bijl–Feynman relation, which, as aforementioned, breaks down if 012r ¹ .

Wefinally analysed the stability of the superfluidmixture. The condition for the onset of the (static) phase
separation instability only involves the density channel, and hence is notmodified by 12r . On the other hand,
when the twofluids are put in relativemotion, for some values of the relative velocity themixture becomes
dynamically unstable. The critical velocities, reported in equations (42), carry a dependence on the superfluid
drag. This result extends the previous ones [45–47]which analysed a systemwith contact interactions only.

In the light of recent experimental works [7, 32, 44], it is reasonable to claim that, albeit theAB is expected to
be a subdominant effect, itmay still bewithin reach of current experimental technology. It further opens up the
game to interesting newphenomenological effects: for instance, if one is able to phase imprint a vortex on one
species of themixture, onemay expect at least part of the vorticity to be transferred in a dissipationless fashion to
the other species. This sympathetic stirring of a superfluidmixture could become a useful tool in the study of
vortex dynamics in superfluidmixtures. The stability conditions we put forward in section 5 and appendix A
may also have consequences in astrophysics, and in particular on the rotation profiles of neutron star cores [3].
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AppendixA.Quantumhydrodynamics for a non-symmetricmixture

Weconsider equation (5) in themore general case inwhich the two species are not symmetric ( 11 22r r¹ ,

11 22a a¹ and m m1 2¹ ). Hamilton equations lead to the equation ofmotion for phase fluctuations,

x
m m

k x¨ , A1i
i l

il lj j
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f a r f= -
⎛
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and the quantity in parentheses can be identifiedwith thematrixCij of the squared speeds of sound.
Writtenwith respect to an eigenbasis ofCij, the system exhibits two non-interactingmodeswhich obey a

linear dispersion relation c k2 2w =  . The speeds of sound c 2
, eigenvalues ofCij, generalise equations (9), (10).

Obviously, contrary to section 3, the two independentmodes are not ‘pure’ density and spin channels, due to the
lack of 2 symmetry.
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In terms of the coefficients ofmatrixCij, the eigenspeeds of sound read
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The system is stable as long as c 2
 are positive, which leads to the inequality C C C C 011 22 12 21- > , or, in terms of

themodel’s coefficients,

0. A311 22 12
2

11 22 12
2a a a r r r- - >( )( ) ( )

The second factor in this equation is always positive, thanks to the bound on themagnitude of the superfluid
drag (see discussion leading to equation (23)).We thus obtain a condition on the strength of the density–density
interactions, namely 011 22 12

2a a a- >( ) , thus recovering thewell known criterion for the onset of the phase
separation instability [51].

Appendix B. Relation betweenwinding numbers and superfluid densities

Following [29], we imagine a slab offluid sandwiched between two parallel boundaries,movingwith respect to
thefluidwith velocity v .We canwrite the densitymatrix of a two-species system in a frame comovingwith the
boundaries as

R R R R, , e , B1v
Hvr b¢ = á ¢ ñb-( ) ∣ ∣ ( )

H
m

m
V

p v

2
, B2v

j

N
j

1,2 1

2

å å=
-

+
a

a

a= =

a ( )
( )

{ }

whereV comprises both inter- and intra-species interactions, both assumed to depend on positions only. (Greek
indices identify the species, while Latin indices count particles.)The change in totalmomentum in the frame of
reference of the boundaries is due to the response of the normal component Nr of thefluid, hence, calling

v0 0r r= = , the densitymatrix in the frame of rest of the fluid,

N m N m Mv v P
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v
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r

r
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[ ]
[ ]
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and is equal to oneminus the total superfluid fraction, which can then bewritten in terms of the variation of the
free energy as

Mv
. B4T v

0
1

2
2

r
r

=
¶

¶( )
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Wecanwrite the densitymatrix in Fourier space and relate the densitymatrix 0r in the frame of rest to vr ,
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Under periodic permutations of the particles,

e e , B6v
m L m Lv W v Wi i

0
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whence
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e e . B7m m L m m LW W v W W v
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Expanding to leading order the previous expression, onefinally gets

v L

d
m W m W

1

2
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2 2
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b
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and, using equation (B4) and ML d
0r = - ,

L

d
m W m W , B9s

d
tot

2

1 1 2 2
2r

b
= á + ñ
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( ) ( )

yielding equation (22).
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