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A B S T R A C T   

Cities are nowadays facing compelling environmental and climatic challenges that threaten human health and 
well-being; for this reason, enhancing their sustainability and resilience has rapidly ascended to the top of the 
global and regional political Agenda. The Urban Green Infrastructure represents a key factor in enhancing the 
environmental quality of cities, and its planning should be steered by a scientifically-sound operationalisation of 
the Ecosystem Services concept. In this work, we assess the Ecosystem Services mismatch for air quality regu-
lation in four Italian Municipalities (Milan, Bologna, Rome, and Bari), considering the O3 and PM10 pollution; the 
study frames a geographical gradient (North-South) and has been conducted on a seasonal basis. We propose a 
composite-indicatorbased approach for estimating the supply and demand of said Ecosystem Services, including 
the dimensions of air quality and human health, using both geospatial and tabular data. The spatial and temporal 
features of mismatch allow distinguishing concerns depending on vegetation quantity (green space areas) and 
quality (functional diversity), structure of urban settlements and cross-cutting criticalities among cities, and to 
highlight common indicators of mismatch and priority areas for upcoming interventions. 

We found that northern cities (Milan and Bologna) suffer a high mismatch, as a result of poor air quality and 
limited vegetation abundance and functional diversity; southern cities experienced lower demand related to air 
quality; however, the high mismatch is driven by urban settlement structure and population vulnerability. We 
also found that compact urbanisation, namely dense urban fabric and the increasing buildings’ height, is linked 
to a marked mismatch regardless of the city’s dimension and geographical location. 

We believe such an effort is a fundamental step for translating the Ecosystem Services conceptual framework 
into the development plans of cities, and thus into concrete actions. 

Plus, as far as we know, this is one of the first studies explicitly linking urban structure indicators (e.g. building 
heights and compactness of the urban settlements) to the Ecosystem Services’ mismatch.   

Abbreviations: ACE, Census Areas; BH, buildings’ height; CESDM, Comprehensive Ecosystem Supply-Demand Mismatch; CI, Composite Indices; CLMS, Copernicus 
Land Monitoring Service; DCC, distance from the city centre; DGA, distance from the closest green area; DI, Demand Index; DU, percentage of high-density urban 
fabric; ESDM, Ecological Supply-Demand Mismatch; ESs, Ecosystem Services; GCP, Green Cover Percentage; In, average income; LAI, Leaf Area index; LULC, Land 
Use Land Cover; MDU, percentage of medium-density urban fabric; NBSs, Nature-Based Solutions; PCA, Principal Component Analysis; S2MSI2A, Sentinel 2 Mul-
tiSpectral Instrument (Level) 2A; SCP, Semi-automatic Classification Plug-in; SI, Supply Index; UGI, Urban Green Infrastructure; UPUF, percentage of Urban and Peri- 
Urban forests; Vp, Vegetation potential. 
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1. Introduction 

Urban areas are hotspots of human housing and activities and 
currently host about half of the world’s population; global urbanisation 
is still ongoing, with growth prospects estimating that, by 2050, 70% of 
people will live in cities (The World Bank, 2022). Although covering 
around 3% of the global land, urban areas are responsible for >70% of 
CO2 emissions (Wu et al., 2020), thus exacerbating the ongoing climate 
change. Urbanisation is generally associated with the alteration of the 
energy budget and modifications to the biogeochemical and water cy-
cles, as well as the emission of pollutants in soil, water, and atmosphere 
(Grimm et al., 2008; Semeraro et al., 2021). As a result, urban living 
conditions often include air pollution, heatwaves, floods, and noise 
pollution (Morillas et al., 2018; Raymond et al., 2017), which are all 
considered to be a massive threat to human health and well-being. 

More specifically, air pollution caused by domestic heating, vehic-
ular traffic, and other anthropogenic activities is considered the largest 
environmental health risk factor in Europe (EEA, 2022). The urban 
environment promotes the formation of primary and secondary air 
pollutants such as PM10, NO2 and O3 (Krzyzanowski et al., 2014; Sicard 
et al., 2018), which exert a remarkable impact on human health by 
causing and aggravating respiratory and cardiovascular diseases (EEA, 
2022). To properly face the hazard of pollution, the EU has launched the 
Zero pollution action plan (European Commission, 2021), with the 
ambitious goal, amongst others, of improving air quality and reducing 
by 55% the number of premature deaths attributed to air pollution 
before 2030. 

Air pollution is critical in Italy as well. Currently, for PM10, PM2.5 and 
NO2, only a few Italian-monitored cities comply with the World Health 
Organization (WHO) threshold values for human health protection 
(Legambiente, 2022). Despite being traditionally depicted as a pollutant 
with a rural character (Gerosa et al., 2009), O3 will likely acquire an 
increasingly urban connotation under current climate projections. Many 
tree species commonly used for urban greening emit substantial 
amounts of Biogenic Volatile Organic Compounds (BVOCs) that are 
known for their potential to act as O3 precursors, and whose emission is 
positively correlated to temperature (Chen et al., 2020). The progressive 
warming of urban areas (i.e. urban heat islands) may then cause a larger 
relative increase in O3 concentrations in cities (Sarrat et al., 2006). This 
effect may further be reinforced by the successful implementation of 
policies aimed at reducing pollutant concentrations, especially NOx, in 
urban areas, so that the ozone chemistry in this context will become 
increasingly regulated by BVOCs emissions (Fitzky et al., 2019). 

For Italy, in terms of air quality, there is a clear distinction between 
the Po Valley plain and the rest of the territory. The Po Valley, an al-
luvial plain that covers most of northern Italy, has widely been recog-
nized as one of the most polluted regions of Europe throughout all year 
(Filippini et al., 2021; EEA, 2022), both for the presence of highly 
developed industrial and agricultural areas, and unfavourable weather 
and climatic conditions that promote the air pollutants’ accumulation 
(Diémoz et al., 2019). Otherwise, in central and southern Italy, cities are 
more exposed to high solar radiation that in turn promotes photo-
chemical smog; however, air pollution is generally not exacerbated by 
any specific adverse condition (Legambiente, 2022). For Italy, PM and 
O3 were responsible for 52,000 and 6,000 premature deaths respectively 
for the year 2020, which is more than any other European country (EEA, 
2022). 

Nature-Based Solutions (NBSs), i.e., solutions inspired by the func-
tioning of ecosystems and supported by them, represent a viable tool for 
the sustainable management of cities. NBSs take advantage of the high 
efficiency of natural processes to provide societal and environmental 
benefits (Cohen-Shacham et al., 2016; Orioli et al., n.d) and are 
increasingly used to address the environmental criticalities of urban 
areas (Raymond et al., 2017). Urban Green Infrastructure (UGI), that is, 
urban and peri-urban forests, hedges, and street trees, falls under the 
umbrella of the NBSs and may help address the above-mentioned 

challenges by providing multiple Ecosystem Services (ESs), such as PM10 
and O3 removal from the atmosphere and extreme summer temperature 
mitigation (Fares et al., 2020; Manes et al., 2016, 2012; Marando et al., 
2019). Enhancing the environmental quality of cities and promoting 
human health and urban regeneration through NBSs is nowadays a well- 
established priority of the global political agenda. Goal 11 of the United 
Nations (UN) 2030 Agenda for Sustainable Development (United Na-
tions, 2015) explicitly remarks the need for more high-quality and 
accessible public green spaces in cities; the EU Biodiversity Strategy for 
2030 (European Commission, 2020) sets the goal of planting at least 3 
billion trees in the EU by 2030, and calls all cities with at least 20,000 
inhabitants to develop an ambitious greening plan In Italy, with the 
National Recovery and Resilience Plan (PNRR) funded by the Next 
Generation EU, a total of EUR 330 million were allocated to the “Urban 
and extra-urban forestry plan”, which sets the goal of planting at least 
6.6 million trees in 14 Metropolitan Cities by 2030. 

In this framework, there is an urgent need for studies aimed at 
defining policy priorities and best management practices to properly 
establish the upcoming green areas and to fully exploit the associated 
ESs provision. To operationalise the ESs conceptual framework, a multi- 
dimensional analysis of the ecological and social context is required 
(Winkler et al., 2021). One way to carry out such an analysis consists of 
comparing the biophysical and spatial estimate of ESs provided by urban 
green, that is called the supply, with the demand, defined as the quality 
and quantity of services required by the society in that specific context 
(Villamagna et al., 2013). Once ESs supply and demand have been 
estimated, the ESs balance, that is the “difference between societal de-
mand for ecosystem services and the capacity of ecosystems to provide 
these services in a sustainable manner” (Cumming et al., 2013), can be 
spatially defined. Eventually, mismatch areas, which are those showing 
unmet demand, should be set as priority areas for the implementation of 
interventions aimed at enhancing their sustainability (Baró et al., 2015; 
Sebastiani et al., 2021). 

The ESs mismatch, which has often been associated with dense, 
highly populated urban areas (Baró et al., 2016; González-García et al., 
2020), negatively affects the resilience of urban ecosystems, leading to 
poor environmental conditions and deteriorating the quality of life 
(McPhearson et al., 2022; Winkler et al., 2021). Depending on the ES, 
the mismatch is generally characterised by seasonal trends that should 
be addressed too (Schmalz et al., 2016). For example, PM10 pollution is 
generally relevant in winter, when phenomena such as domestic heating 
and thermal inversion take place, whereas O3 concentrations are 
particularly worrying during summer, as these highly depend on the 
persistence of stable atmospheric conditions and solar radiation (Euro-
pean Environment Agency, 2018a). Despite the importance of the tem-
poral dimension of supply and demand, this aspect has often been 
overlooked (Yao et al., 2021). 

The objective of this study is to assess the ESs mismatch for air 
quality amelioration, intended as the abatement of O3 and PM10 pollu-
tion, in four Italian Municipalities (Milan, Bologna, Rome, and Bari). 
Given the expected seasonality in ES provision, for O3 and PM10 we 
quantified both the ES supply and demand in winter and summer 
respectively using a Composite-Indicator-based approach, and then 
combined these to evaluate mismatch areas in each Municipality. Based 
on this comprehensive index, priority areas could be proposed and in-
dicators of mismatch at the city or national level pointed out. 

2. Material and methods 

2.1. Study area 

The study was carried out in four Italian Municipalities located along 
a north-south gradient, to represent the urban diversity and the differ-
ential pollutant distribution along the Italian peninsula. For northern 
Italy, we selected Milan and Bologna; for central and southern Italy, we 
selected Rome and Bari respectively. Land Use and Land Cover (LULC) 

L. Fusaro et al.                                                                                                                                                                                                                                  



Ecological Indicators 155 (2023) 110928

3

classifications are reported in Fig. 1. 
Milan (45◦ 28′ 38′’ N, 9◦ 10′ 53′’ E) is one of the largest Municipalities 

in northern Italy, spanning 181 km2. It hosts 1.3 million inhabitants, 
with a mean population density of about 7566 in/km2, peaking at 
around 12,000 in/km2 at the city centre. The Municipality of Milan has a 
high degree of soil consumption, which equates to about 58% (ISPRA, 
2022) of the total surface, whereas urban and peri-urban green areas 
cover about 8.7% (derived from Copernicus Land Monitoring Service, 
CLMS, Urban Atlas). Milan also displays a remarkable diversity of eco-
nomic sector and a strong manufacturing industry (Armondi and Di Vita, 

2017), and is considered one of, if not the most, economically developed 
cities in Italy (dell’Agnese and Anzoise, 2011). 

Bologna (41◦ 7′ 7′’ N, 16◦ 51′ 7′’ E) lies on 141 km2 and has a pop-
ulation of about 390,000 inhabitants; the population density is on 
average 2,779 in/km2, with peaks of 11,000 in/km2 at the city centre. 
The soil consumption is attested at 33.8% (ISPRA, 2022) of the total 
municipal surface, whereas green areas cover about 11% (derived from 
CLMS, Urban Atlas). Both Milan and Bologna are in the so-called Padana 
Plain, which is known for its extremely low air quality (Traversi et al., 
2009). 

Fig. 1. Land Use and Land Cover classification for the four Municipalities. The black lines delineate the limits of Census Areas (ACEs), a common territorial base for 
data aggregation defined by ISTAT (Istituto Nazionale di Statistica). 
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Rome (41◦ 54′ 39′’ N, 12◦ 28′ 54′’ E) is the Italian Capital, and it’s 
located in central Italy. It is by far the largest municipality of Italy, 
spanning 1,285 km2; the urban core is about 25 km far from the Tyr-
rhenian coast. Rome hosts about 3 million dwellers, showing an average 
population density of around 2,200 in/km2, with peaks of 9,000 in/km2 

in the city centre and lows of 1,000 in/km2 in peripheral areas. Soil 
consumption is currently at 23.6% of the total municipal area (ISPRA, 
2022); urban and peri-urban green areas occupy about 12% of the total 
surface. 

Bari (41◦ 7′ 7′’ N, 16◦ 51′ 7′’ E) is situated in southern Italy, on the 
Adriatic coastline, occupying 117 km2. It has a population of about 
326,800 inhabitants, with a mean density of around 2,700 in/km2. Soil 
consumption amounts to 43% of the total municipal surface, and urban 
green areas are very rare, covering about 1%, which is amongst the 
Italian lowest (Sanesi and Chiarello, 2006). 

It’s noteworthy that all 4 cities have a compact urban core charac-
terised by high settlement concentration and population density, and 
several dispersed urban settlements towards the suburban areas (Salvati 
et al., 2018). 

2.2. Selection of ES supply and demand indicators 

We focused our attention on tropospheric ozone (O3), which shows 
higher concentration during summer and is considered a threat to both 
human and environmental health (Karlsson et al., 2017), and Particulate 
Matter (PM), a typical winter pollutant that is mostly critical in northern 
Italy. Composite Indices (CIs) were used to quantify the supply and 
demand for O3 and PM10 removal provided by vegetation; each CI 
resulted from the aggregation of multiple single indicators. Such an 
approach allows for summarising multidimensional phenomena (e.g. air 
pollution, population density and vulnerability, green cover) into one 
single numeric value without dropping any underlying information (The 
Organisation for Economic Co-Operation and Development (OECD) 
(2008)). 

To adopt a coherent spatial unit among the four Municipalities, we 
used the Census Areas (ACEs) defined by ISTAT (Istituto Nazionale di 
Statistica) as the common territorial base for data aggregation (Fig. 1). 
ACEs provide a sub-municipal partition of the cities driven by infra-
structural constraints (main roads, railways) and geographical barriers 
(rivers, canals, ridges, ditches), as well as demographic and social data. 
Each ACE has a population ranging from 13,000 to 18,000 citizens. The 
ACE 0 refers to the non-contiguous residual parts of the municipal ter-
ritory where population densities are generally low. Therefore, CIs were 
calculated at the ACE scale. For an exact representation of ACEs’ 
boundary and numbering refer to the Supplementary Material (Figs. S1 
and S2). 

To build the CIs we first defined a theoretical framework that 
allowed us to select several relevant indicators. 

To compose the Supply Index (SIi) we used the formula illustrated in 
Eq. (1). 

SIi =
Vpi

AACEi
(1) 

Vpi is the vegetation potential to adsorb pollutants (O3 and PM10 
expressed in Mg*y− 1) in each ACEi; AACEi is the area of the corre-
sponding ACEi (expressed in ha). Vpi for O3 removal was computed 
following the approach adopted by Manes et al. (2012), which uses Land 
Cover data as well as data of the stomatal conductance of different 
Functional Groups of vegetation and the length of the photoperiod. Vpi 
for the PM10 removal was estimated using a removal model first pro-
posed by (Nowak, 1994), and subsequently re-adapted by Manes et al. 
(2016), which integrates Land Cover data, Leaf Area Index (LAI, 
m2m− 2), deposition velocity of PM, and information on the phenology of 
different Functional Groups of vegetation. The Land Use Land Cover 
(LULC) maps (spatial resolution of 10 m) for the four Municipalities 
were obtained through a supervised classification; a detailed review of 

the classification process and a description of the classification accuracy 
assessment are presented in paragraph 2.3. Mean seasonal LAI data from 
winter 2019 (spatial resolution of approximately 300 m) was obtained 
from the Copernicus Global Land Service) database. Following Sebas-
tiani et al. (2021) we ran the model simulating a uniform pollutant 
concentration of 1 μg/m3 for the entire study area (both for O3 and 
PM10), thus providing a measure of the potential of vegetation (Vpi) to 
ameliorate air quality under homogeneous pollution conditions. 

The models used to derive the O3 and PM10 removal potentials were 
implemented in GRASS GIS using a spatially explicit approach that 
allowed for the reaggregation of output data according to the chosen 
territorial base (ACEs). More details relative to the models are reported 
in the Table S3 of Supplementary Materials. 

The Demand Index (DI) integrates two dimensions: the first one is 
related to the population exposure to the target pollutant, described by 
the average seasonal pollutant concentration and the population den-
sity; the other includes a measure of the population’s vulnerability. To 
compute the latest, we assumed the vulnerable population to be 
composed of the elderly (>65 years) and young people (<10 years), as 
both categories are at greater risk of the adverse health effects given by 
excessive pollution exposure (Combes and Franchineau, 2019; Mudway 
et al., 2019). We integrated the two indicators using a simple linear 
combination method (The Organisation for Economic Co-Operation and 
Development (OECD) (2008)); before the aggregation, which is pre-
sented in Eq. (2), both terms were re-scaled on a range from 0 to 100 
using the min-max procedure. 

DIi =
[C]i + (dpopi*fvi

)

2
(2) 

Here, [C]i refers to the normalised average winter and summer 
concentrations (µg/m3) for O3 and PM10 respectively in each ACEi, ob-
tained from integrated air quality modelling systems provided by the 
Regional Environmental Protection Agency (ARPA). We decided to carry 
out elaborations on different single-seasonal bases, as the two pollutants 
display a marked seasonality that heavily influences their impact on 
public health at two different moments of the year. Data on population 
density (dpopi, in/ha) and population vulnerability (fvi) were obtained 
from ISTAT and aggregated at the ACE level. 

For better comparability, SIi and DIi were normalised according to 
the min-max procedure and then converted into a range from 0 to 100, 
following Eq. (3): 

Xi =
xi + min(x)

max(x) − min(x)
*100 (3)  

where xi refers to a generic variable that changes along with index i, and 
Xi its corresponding normalised value. 

2.3. Land Use Land Cover classification and accuracy assessment 

The LULC maps for the four Municipalities were obtained through a 
supervised classification performed using Sentinel-2 level 2A products 
(S2MSI2A) from the summers of 2016 and 2019. The S2MSI2A product 
provides atmospherically corrected surface reflectances; tiles are deliv-
ered in cartographic geometry. The satellite images were processed 
using the open-source SeNtinel Application Platform (SNAP), Sentinel-2 
toolbox, distributed by ESA/ESRIN (European Space Agency (ESA) 
(2015)). S2MSI2A product bands were resampled to a spatial resolution 
of 10 m. 

Using the available LULC and vegetation maps such as Corine Land 
Cover 2018 (European Environment Agency, 2018b) and Carta della 
Natura (Casella et al., 2008; Angelini et al., 2012; Cardillo et al., 2021) as 
reference products, Regions Of Interests (ROIs) were collected for each 
LULC class; the average spectral signature was calculated to train a 
Maximum Likelihood Algorithm. Six LULC classes were identified: 
artificial surfaces, cultivated and uncultivated land (including pastures, 
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bare land or sparsely vegetated areas), water bodies, and three Func-
tional Groups of vegetation – evergreen broadleaves, deciduous broad-
leaves, and conifers. Given the intrinsic heterogeneity exhibited by the 
artificial surfaces’ reflectance, which makes the classification process 
rather cumbersome, and the interest in focusing on green cover for ESs 
assessment, the class of artificial surfaces was obtained from a national 
land consumption cartography published by the Italian Institute for 
Environmental Protection and Research in 2019 (ISPRA, 2021), which 
mapped impervious surfaces with a geometric resolution of 10 m, 
through photointerpretation of S2 imagery and ground-validation. The 
LULC classifications retained the S2MSIL2A product’s spatial resolution 
of 10 m. 

Each classification was evaluated through an accuracy assessment. 
Following Oloffson et al. (2014), we derived the total number of training 
samples (N) for the collection of ground-truth data as follows: 

N =

[∑c
1(Wi*Si)

S0

]2

(4) 

Wi is the mapped area proportion of LULC class i, which is derived 
directly from the classification; Si is the standard deviation of stratum i; c 
is the total number of classes; S0 is the expected standard deviation of 
overall accuracy. Si were calculated following Cochran (1977): 

Si =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ui(1 − Ui)

√
(5)  

where Ui refers to the user accuracy (defined as the proportion of 
correctly mapped area of class i to the total area mapped as class i). We 
assumed a minimum acceptable Ui of 0.8 (80% user accuracy), whereby 
we obtained Si = 0.4 for all classes in the four Municipalities, and an 
expected S0 of 0.01 following Congedo (2021). To stratify the sample 
proportionally to the relative area of each class in the four Municipal-
ities, while also allocating an adequate number of Training Samples (Ni) 
to those classes with a limited surface (e.g. green cover), we calculated 
Ni as the average between estimates provided by assuming an equal 
distribution (6) and a weighted distribution (7). 

Ni =
N
c

(6)  

Ni = N*Wi (7) 

Training samples were randomly generated and distributed using the 
Semi-automatic Classification Plug-in (SCP) available for the open- 
source software QGIS. Based on reference maps and photointerpreta-
tion, each training sample was assigned to a class. Through the accuracy 
assessment function provided by SCP, several accuracy statistics were 
calculated, including overall accuracy, user accuracy, producer accuracy 
and Kappa hat (Congedo, 2021). Overall accuracy proved in all cases to 
be above 80%, which is commonly interpreted as an acceptable measure 
(Anderson et al., 1976). Details on the specific sample design imple-
mented for each Municipality, error matrices the accuracy statistics are 
provided as Supplementary Material (Tables S4 − 11). 

2.4. Evaluation of Ecosystem Services’ mismatch 

The evaluation of the Ecological Supply-Demand Mismatch (ESDM) 
allows for a direct comparison between the ecological function (supply) 
and the human demand and may help identify areas with an ES provi-
sion deficit or surplus. The ESDM for each ES has been calculated as 
follows: 

ESDMi = SIi − DIi (8)  

where SIi and DIi refer to the normalised Supply and Demand Indicator 
values of ACEi. The ESDM provides an immediate interpretation of 
surplus (ESDM >0), balance (ESDM ≅ 0) and deficit (ESDM <0) in ES 
provision. 

Finally, following Chen et al., (2019), we calculated the 

Comprehensive Ecosystem Supply-Demand Mismatch (CESDM) as the 
arithmetic mean of ESDM values obtained for the two ESs in each ACE: 

CESDMi =
1
n

∑n

j=1
ESDMi (9)  

where n is the number of ESs being analysed (in our case n = 2). The 
theoretical lower and upper limits of CESDM are therefore − 100 
(extreme mismatch for both ESs) and +100 (extreme surplus in both 
ESs). Subsequently, based on CESDM scores, we classified each ACE 
according to its ESs balance, applying the criteria reported in Table 1. 

2.5. Drivers of mismatch 

We investigated the relationship between the CESDM and green 
cover for each ACE by using linear regression; we than explored the 
CESDM variability explained by green areas, structural and socioeco-
nomic variables through the Principal Component Analysis (PCA). 
Linear Regression was performed in R-studio with Green Cover Per-
centage (GCP) as the independent variable, and CESDM as the response 
variable. GCP was calculated as the percent surface area covered by 
vegetated pixels in each ACE, as obtained in the LULC classifications 
illustrated in Fig. 1. Expecting a positive relationship between GCP and 
CESDM, we were interested in assessing how green space relates to 
achieving balance between ES supply and demand. Intersection between 
the fitted regression lines and the interval of balance (− 15< CESDM 
≤15) was thus evaluated, together with the level of significance in the 
regression. PCA is a technique that reduces the dimensionality of large 
datasets while retaining most of their variation (Jolliffe, 2005); there-
fore, it allows us to understand the main components able to explain the 
observed variability inside the dataset (Ringnér, 2008). We included the 
following variables in the analysis: percentage of high-density urban 
fabric (DU, %), percentage of medium-density urban fabric (MDU, %), 
buildings’ height (BH, m), percentage of Urban and Peri-Urban forests 
(UPUF, %), distance from the city centre (DCC, km), distance from the 
closest green area (DGA, m), and average income (In, € y− 1). We plotted 
the ACEs according to PC1 and PC2, to better visualise the behaviour of 
the prior groups formed according to the CESDM score (see Table 1) 
concerning the selected variables. 

DU, MDU, UPUF, and DGA were estimated using the Copernicus 
Urban Atlas database (European Environment Agency, 2018c); income 
was assessed using 2020 income declaration data collected and provided 
by the Department of Finance of the Italian Ministry of Economy and 
Finances. 

3. Results 

3.1. Evaluation of ES supply, demand, and mismatch 

The four Municipalities show substantial differences in the supply of 
O3 removal. Milan (Fig. 2A) strikes the attention since about 81% of the 
territory falls within the low supply interval (0≤ S ≤20) with the only 
exception of ACE 0 which is located in the external part of the Munici-
pality (for further details about ACEs location refer to Fig. S1). The 
demand remains high mainly in the central quadrants of the city: 6% of 
the Municipality falls in the upper interval (80< D ≤100), whereas the 

Table 1 
ACE classification was applied depending on the Comprehensive 
Ecosystem Supply-Demand Mismatch (CESDM) score intervals.  

CESDM intervals ESs mismatch ranking 

− 100≤ CESDM ≤ − 50 High deficit 
− 50 < CESDM ≤ − 15 Moderate deficit 
− 15< CESDM ≤ 15 Balance 
15< CESDM ≤50 Moderate surplus 
50< CESDM ≤100 High surplus  
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Fig. 2. Spatial distribution of the Supply, Demand and Ecological Supply-Demand Mismatch (ESDM) Indicators of O3 removal in A) Milan; B) Bologna; C) Rome; 
D) Bari. 
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Fig. 3. Spatial distribution of the Supply, Demand and Ecological Supply-Demand Mismatch (ESDM) Indicators of PM10 removal in A) Milan; B) Bologna; C) Rome; 
D) Bari. 
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interval 60< D ≤80 includes around 19%. 40 % of the territory ad-
dresses the medium demand level and around 34% is ascribable to the 
lower interval (0≤ D ≤20), about half of which is represented by ACE 0. 
Accordingly, negative ESDM values for O3, between − 100≤ ESDM ≤
− 15, were found throughout the city, especially in its central part. Only 
ACE 0 presented a positive value (S > D). 

For PM10 removal (Fig. 3A), 88% of the municipality has a very low 
provisioning capacity (0≤ S ≤20) paired with high demand, especially in 
the central part and in the northeast quadrant of the city where 4% of 
ACEs fall in the high interval (80< D ≤100). The intermediate intervals 
40< D ≤60, 60< D ≤80 are equally represented in the Municipality 
(~45%). It is interesting to notice that for PM10, differently from what 
was found for O3, the “green belt” included in the ACE 0 does not reach a 
complete positive balance (S > D). 

For Bologna, relative to O3 (Fig. 2B), 48% of the total Municipality 
falls in the high supply intervals (80< S ≤100), almost entirely deter-
mined by the presence of ACE 0 (45% of the territory), whereas the 
central ACEs, that fall into the low supply intervals, also shows a higher 
demand. This leads to a strong mismatch in the central part of the city 
(8% of the total extension) which decreases radially towards the pe-
riphery. The PM10 provisioning (Fig. 3B) presents a more critical situ-
ation since there is only one ACE associated with the higher supply, and 
36% of the city belongs to 0≤ S ≤20 interval. The spatial trend of de-
mand is quite similar between O3 and PM10, with a high level of demand 
concentrated in the city centre. Accordingly, the mismatch spatial 
pattern is quite superimposable between O3 and PM10, with some dif-
ferences as only one ACE presents surplus for PM10 (only ACE 62, see 
S1); for O3 and PM10 respectively 9% and 20% of the Municipality falls 
in the lowest ESDM interval (− 100≤ ESDM ≤ − 50). 

A large portion of the Rome Municipality is characterised by the 

medium supply capacity interval (40< S ≤60) for O3 removal (Fig. 2C), 
whereas the most urbanised areas (see Fig. 1) present scarce supply, thus 
falling in the lower two intervals. In particular, the city centre and the 
South-East quadrants show very low supply and the highest demand 
values. As for PM10 (Fig. 3C), 35% of the Municipality falls in the lower 
interval of supply, whereas the ACE 0, which covers 63% of the territory, 
falls into the 40< S ≤60 interval. The high demand is located in the ACEs 
positioned in the central and the South-East quadrants of the city. The 
mismatch highlights a different situation for O3 and PM10. For the 
former, about 60% of the 147 ACEs present a deficit, with 9% of ACEs in 
the worst interval (-100≤ ESDM ≤ − 50). Those ACEs are located both in 
the centre area and also in Ostia, a neighbourhood in the South-west part 
of the municipality situated along the coast. ACEs that show a surplus (S 
> D) are partially located in the peripheral part, or in the proximity of 
urban green areas as the ACE 80 which is a large natural protected area 
(see Fig. S1). The mismatch for PM10 is more pronounced than for O3, 
indeed, 92% of the ACEs present a deficit. Those ACEs are well repre-
sented in the Eastern part of the Municipality, but also in the centre and 
the north quadrants. 

The Municipality of Bari has a good supply distribution in the pe-
ripheral areas for O3 removal (Fig. 2D): 68% of the territory falls in 80<
S ≤100 interval, even if it is important to underline that 49% of those 
high-supply areas are represented by ACE 0. Only a small central area 
falls in the 0≤ S ≤20 interval (7% of the municipality). On the demand 
side, there is a quite clear trend with 76% of the Municipality that falls in 
the lower demand classes. PM10 removal (Fig. 3D) is more critical 
compared to O3. Indeed, apart from ACE 0, most of the ACEs both in 
peripheral and central areas fall in the lower class of supply (0≤ S ≤20). 
Instead, the demand for PM10 is lower relative to what has been found 
for O3, with only 21% of Municipality included in the higher demand 

Fig. 4. Spatial distribution of the Comprehensive Ecosystem Supply-Demand Mismatch (CESDM) indicator in A) Milan, B) Bologna, C) Rome and D) Bari.  
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intervals. It is interesting to notice that in Bari the % of the territory 
included in high mismatch intervals (from − 50< ESDM ≤ − 15 up to 
− 100< ESDM ≤ − 50) does not differ too much between O3 and PM10, 
(around 22% for the former and 29% for the latter), but the spatial 
distribution and thus the more critical areas, are located differently. For 
O3 the North-West area has higher mismatch; for PM10 the central one. 
However, for both pollutants, the more extensive part of the Munici-
pality (ACE 0) falls in the surplus areas. 

The comprehensive mismatch (CESDM) is shown in Fig. 4. In Milan 
(Fig. 4A), deficit areas are prevalent, with about 75% of the territory 
experiencing moderate to high mismatch, concentrated in two main 
quadrants of the city (i.e. North-East, South-West). It is interesting to 
notice the tight contiguity of ACEs presenting the highest deficit. This 
spatial pattern is present in Bologna too (Fig. 4B), where the higher 
deficit is localised mostly in the central areas and covers about 40% of 
the territory. In Rome moderate and high deficit areas outnumber sur-
plus ones. 17% of the 147 ACEs fall in the high deficit interval (− 100≤
CESDM ≤ − 50) whereas only the 8% and 2% fall in the balance or 
moderate surplus intervals respectively. As for Bari, coastal areas pre-
sent a high deficit and the peripheral ACEs show a surplus; around the 
18% of the Municipality falls in the high/moderate deficit and balance 
intervals. 

3.2. Drivers of spatial mismatch 

Fig. 5 reports the relation between the Green Cover Percentage 
(GCP) for each ACE and the CESDM, showingfour distinct trends. As 
expected, in all Municipalities we found a positive correlation between 
GCP and CESDM, although R2 varies remarkably. In Milan, GCP values 
are distributed over a large interval (0–29.2%), while CESDM values are 
mostly concentrated below the balance interval. There is a considerable 
variation in the data that is not explained by the regression model, as 

highlighted by R2, which is rather low (0.33), especially if compared to 
the other Municipalities. Empirically, balance is found for ACEs with 
GCP values around 20%; however, the regression model indicates that 
balance is reached at 32%. In Bologna, GCP varies in the 0–17.3% in-
terval, while CESDM values span most of the range (from − 89 to 85). 
Most of the variability in the data is explained by the regression model 
(R2 = 0.79). The difference between the empirical (2%) and the 
modelled (6%) values of GCP that satisfy a condition of balance is not as 
large as in Milan. In Rome, the range for GCP and CESDM is very similar 
to Milan (0–29.4% and − 100 – 32 respectively). As opposed to the latter, 
although most ACEs have a GCP <10% and their respective CESDM 
values fall below the balance line, there is a conspicuous number of ACEs 
that are in a condition of balance. With the majority of the variability in 
the data explained by the regression model (R2 = 0.61), the empirical 
versus fitted balance is found at around 5% and 10% respectively. Lastly, 
Bari is the municipality with the narrowest domain and the smallest GCP 
values (0–6.6%). The regression model predicts well the observed data 
(R2 = 0.89). Empirical and modelled balance is found for GCP equal to 
3% circa (Table 2). 

Fig. 6 shows PCA’s biplot for all of the municipalities. The ACEs 
clustered by high mismatch for air quality are located along a contin-
uous gradient, PC1, that could be linked to the urban structure, as it 
shows increasing building height and share of the dense urban fabric. 
Throughout all cities, the ACEs in Balance, Moderate and High surplus 
conditions have higher scores on PC2, which is instead linked to the 
abundance of urban green areas. Medium-density built-up areas and 
Income fall in the third axis, which explains about 10–15 % of the 
variance in Milan and Rome, whereas in Bari and Bologna it is mostly 
represented by Income. It is interesting to notice that for all case studies 
the variance is explained by the same factors except for Bologna, in 
which the distance from green areas (DGA) contributes to positive 
CESDM. 

Fig. 5. Relation between Green Cover Percentage (GCP) on comprehensive supply–demand mismatch (CESDM) for each ACE in the four Municipalities. Regression 
analysis was applied and the output was reported in the inset. The grey band indicates the balance between supply and demand (- 15 < CESDM ≤ 15). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. PCA of the four Municipalities (A: Milan; B: Bologna; C: Rome; D: Bari) based on urban structure: distance from city centre (DCC, km) buildings height (BH, 
m), dense urban, (DU,%), medium-dense urban (MDU, %), distance from a green area (DGA, m); ecological and economic features: urban and peri-urban forest 
(UPUF, %), income (In, € y− 1). Each dot represents an ACE; colours refer to the overall mismatch condition (CESDM). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Factor loadings of PCA of the four studied municipalities. Significant loadings (>0.33) are highlighted in bold. List of abbreviations: urban structure: distance from city 
centre (DCC, km) buildings height (BH, m), dense urban, (DU,%), medium-dense urban (MDU, %), distance from a green area (DGA, m); ecological and economic 
features: urban and peri-urban forest (UPUF, %), income (In, € y-1).  

Milan PC1 PC2 PC3 Bologna PC1 PC2 PC3 

DCC 0.454 − 0.204 0.156 DCC 0.514 0.076 0.016 
DGA − 0.160 ¡0.686 − 0.284 DGA 0.205 0.554 0.429 
BH ¡0.485 0.170 − 0.059 BH ¡0.544 0.079 0.004 
In − 0.388 0.322 ¡0.486 In − 0.262 − 0.283 0.865 
DU − 0.435 0.052 0.307 DU ¡0.529 0.021 − 0.256 
MDU 0.345 0.165 ¡0.725 MDU 0.151 ¡0.541 − 0.040 
UPUF 0.273 0.570 0.187 UPUF 0.165 ¡0.554 0.019 

Total Variance 53.92 20.78 9.73 Total Variance 44.96 31.19 11.45 

Cumulative 53.92 74.70 84.43 Cumulative 44.96 76.15 87.60  

Rome PC1 PC2 PC3 Bari PC1 PC2 PC3 

DCC 0.426 − 0.154 0.054 DCC 0.471 − 0.047 0.178 
DGA 0.278 ¡0.506 − 0.134 DGA 0.396 0.429 − 0.203 
BH ¡0.564 − 0.173 − 0.189 BH ¡0.468 0.321 − 0.180 
In − 0.304 0.315 ¡0.637 In − 0.256 − 0.281 ¡0.781 
DU ¡0.446 ¡0.390 0.108 DU ¡0.380 0.330 0.195 
MDU 0.364 0.114 ¡0.639 MDU 0.358 − 0.305 ¡0.343 
UPUF − 0.016 0.652 0.342 UPUF − 0.252 − 0.655 0.360 

Total Variance 36.44 24.26 14.23 Total Variance 47.52 19.28 14.48 

Cumulative 36.44 60.70 74.93 Cumulative 47.52 66.79 81.27  
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4. Discussion 

4.1. City-specific features that affect the mismatch of ES 

ESs supply and demand perspective can be a key means to implement 
sustainable land management strategies based on mismatch analysis. In 
this study, we analysed four Italian Municipalities as case studies to 
identify mismatch areas for air quality amelioration services, consid-
ering the seasonality of the selected air pollutants. The investigated 
Municipalities have different size, geographical location, historical 
backgrounds and urban planning traditions that resulted in a different 
rate of urban expansion (Zambon and Salvati, 2019). Milan experienced 
the highest mismatch among the four-study cases due to generalised low 
supply, especially for PM10 removal. Indeed, the removal of such a 
pollutant largely relies on evergreen tree species (Manes et al., 2014), 
which are rare in Milan, covering only 0.6% of the green areas in the 
Municipality. For management purposes, to enhance the PM10 removal 
potential, upcoming forestation practices should therefore aim at 
incrementing evergreen broadleaf species. Moreover, investing in these 
species that are constitutively more tolerant to oxidative stressors 
(Bussotti, 2008; Fusaro et al., 2021) represents an improvement in 
developing NBSs resistant and resilient to global change, also owing to 
the worsening scenarios forecasted by the IPCC (IPCC, 2023). 

The supply capacity should be enhanced as a priority in the northeast 
and southwest quadrants, where the demand is higher. As highlighted by 
the relation between GCP and CESDM, which can help to disentangle the 
effects of unsatisfactory supply or high demand, UGI should cover at 
least 30% of each ACE to equilibrate the deficit of ESs provisioning. The 
harsh mismatch can be linked to high pollutant concentrations in both 
winter and summer and population density, which contribute to build-
ing a high demand. It is interesting to notice that, unlike other case 
studies where the city centre coincides with a high mismatch (Baró et al., 
2015; Sebastiani et al., 2021; Shi et al., 2020), this doesn’t happen in 
Milan. This evidence can depend on the positive effects that the re-
strictions on the circulation of the most polluting car types, which 
entered into force for the first time in 2012 and recently implemented, 
have on air quality. Thus, besides the UGI, the Municipality of Milan 
underlined that investments in new solutions for the mitigation of air 
pollution are also crucial. 

In terms of PM10 removal, Bologna has a similar pattern to Milan, 
showing a higher mismatch relative to what surfaced for O3 removal. 
Indeed also in Bologna the evergreen functional group is very under-
represented, whereas deciduous species, which play a key role in O3 
removal (Fares et al., 2020; Manes et al., 2016) are abundant, especially 
in the southern quadrant. Comparing our results with Vignoli et al. 
(2021), who considered annual PM10 removal and found a strong 
negative mismatch only for some of the central ACEs (no. 73, 7, 81, and 
6, see Fig. S1), our findings highlighted that several other adjacent ACEs 
suffer from a similar condition. It is likely that, given the focus on the 
seasonality exhibited by the pollutants, our study highlights critical 
aspects derived from successive and prolonged events of low air quality. 

As expected, the mismatch analysis for the Southern Municipalities, 
namely Rome and Bari, highlights several differences relative to the 
other two case studies in the distribution of high deficit intervals of 
mismatch and their frequencies. As for Rome, Sebastiani et al. (2021), 
showed that the mismatch in PM10 removal was worse in the eastern and 
southern sectors of the Municipality, characterised by a high degree of 
urbanisation. Our work confirms this pattern also for O3. Indeed, most of 
the ACEs found to be in a high deficit condition (− 100≤ CESDM ≤ − 50) 
are situated in the eastern and southern quadrants, which combine a 
very low ES supply capacity with a higher demand. Green cover in these 
areas is extremely limited, while population densities and pollutant 
concentrations are the city’s worst. However, as highlighted by the 
relationship between GCP and CESDM, the mismatch is expected to 
reach a balance or slight surplus at GCP >10%. Moreover, our findings 
in the case study of Rome highlighted substantial dispersion, and even 

for low GCP percentage, the CESDM is close to the balance (Fig. 5). This 
evidence might suggest the need to establish functionally diverse green 
areas, which stabilises pollutant removal throughout the year and across 
different environmental conditions playing a crucial role in delivering 
ESs (Wood and Dupras, 2021), where native adapted evergreen vege-
tation can thrive and guarantee the continuous provision of ESs 
throughout the year (Salvatori et al., 2016). Of great concern is also the 
occurrence of climate-change-driven biotic and abiotic stressors which 
affect the most common tree species in the Municipality (i.e. Stone 
pines, Holm oaks and palms) which are rapidly reducing the vitality of 
large green areas (Zappitelli et al., 2023). This is particularly important 
in southern Europe, which is expected to experience pronounced 
changes in climate over the next few years, with local projections for 
Rome predicting a mean annual temperature increase of 2–6 ◦C by the 
end of the century based on the business as usual scenarios (CMCC, 
2022). Bari has by far the least share of green areas among the four 
Municipalities, with <9 m2/inhabitant. Nonetheless, despite the low 
supply potential, the deficit looks moderate (Fig. 2C, Fig. 3C, and Fig. 4), 
which can be explained by low demand. Indeed, pollutant concentration 
is moderate for both O3 and PM10, and even if the population density is 
in the range of medium cities in Italy (ISTAT, 2020), the proportion of 
the vulnerable population is lower than elsewhere, slightly exceeding 
30% in half of the ACEs, against the 80% found for Milan and Bologna, 
and the 60% for Rome. The scarcity of green areas also explains the steep 
slope of the regression line in Fig. 5, and suggests that the imple-
mentation of relatively small UGI (e.g UGI covers at least 5% of each 
ACE) may provide a huge contribution in filling the ESs deficit. In Italy, 
by 2050, the portion of the fragile population, namely people aged 65 
and over, could represent 34.9% of the total population (ISTAT, 2022), 
requesting higher efforts to improve air quality since air pollution is 
more harmful to vulnerable subjects such as the elderly people or pre-
adolescent children (Combes and Franchineau, 2019; Tétreault et al., 
2016). 

4.2. Urban patterns as indicators of intervention priority 

Urbanisation is a complex phenomenon that has implications for 
urban structure because of anthropic filters such as city size, population 
density as well as the age of the settlement, overall affecting the vege-
tation and it capacity to provide ESs according to geographic location 
(McDonald et al., 2020). The investigated Municipalities have different 
sizes, geographical positions, historical backgrounds and urban plan-
ning traditions that resulted in a different rate of urban expansion 
(Zambon and Salvati, 2019). However, there are some common urban-
istic indicators that represent the main drivers of mismatch. Indeed, 
beyond the wide biodiversity present throughout the Italian territory 
(Blasi et al., 2017) and the large differences among the Municipalities 
we considered, PCA pointed out that a certain bundle of urban features is 
associated with a high deficit of ESs provisioning. The presence of a 
dense urban fabric and the increasing buildings’ height are generally 
linked to a marked mismatch condition. These variables do generally 
show medium to high loadings, in most cases well above 0.33, for PC1. 
Hence, we can state that a greater degree of urbanisation, specifically 
the compact one supporting urban dwelling, is likely to be associated 
with ESs mismatch. Interestingly, this is true regardless of the city’s 
dimension, as it happens for both large cities like Rome and Milan, and 
for much smaller ones like Bologna and Bari. From a wider perspective, 
our results are attributable to the urbanisation and suburbanization 
processes that took place in Mediterranean cities over the last century. 
Indeed, as reported by Salvati and Carlucci, (2015), Mediterranean cities 
have largely followed the monocentric growth model, which is associ-
ated with high settlement concentration and population density, and 
intense economic activities. Likewise other European urban contexts, 
this scheme generates spatial decoupling between areas with high ESs 
demand and those with high supply (González-García et al., 2020). 
Furthermore this scheme hardly fostered interventions aimed at 
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preserving the environmental quality of cities, such as devolving space 
for urban green areas (Tomson et al., 2021). However, enhancing the 
vegetated areas to meet ES demand is not practical for the compact city 
centres assessed in the present study, suggesting the urgency to reduce 
the demand through more effective air quality policies. Among urban 
structures, also the so-called urban sprawl, that has taken place in 
Mediterranean regions lately (Salvati and Carlucci, 2016), has favoured 
the ESs mismatch due to a decrease in ESs supply in areas with growing 
population (Dupras and Alam, 2015; Yuan et al., 2019). Therefore, a 
new urban growth model, able to increase the abundance of urban and 
peri-urban forests without disregarding the socio-economic needs of 
urban dwellers, should be adopted. Indeed, especially for Regulating ES, 
the presence of urban and peri-urban forests (UPUFs), as well as their 
proximity and accessibility, is considered to be a crucial factor in 
determining the ESs mismatch balance or surplus (Marando et al., 
2019). Therefore, we can safely state that living outside the city centre, 
far from densely urbanised areas, is the most determining factor in 
shaping the ESs mismatch. In our case study, the percentage of UPUFs 
together with the distance from the closest green area (DGA), generally 
shows significant loadings on PC2, identified as the axis linked to 
“balance”, “moderate surplus” and “ high surplus” areas. It is interesting 
to notice that for Milan and Bologna UPUFs and DGA have a different 
impact in shaping the ESs mismatch compared to Rome and Bari. This 
result may represent a development pattern typical of northern cities, 
with pronounced urban sprawl related to industrial areas, and the cen-
tral and southern urban areas, in which, as in the case of Rome, the 
periphery is mostly devoted to rural activities (Fig. 1). It should be 
pointed out that our study did not consider private gardens, which have 
proven to be important in the ESs delivery at the city scale (Balzan et al., 
2021). Although quantitative analysis of the socio-economic distribu-
tion of ESs has been poorly addressed, a few pieces of evidence highlight 
that the environmental quality tends to decrease by social deprivation 
(Mullin et al., 2018). In our cases study income does not play a crucial 
role in explaining the mismatch distribution. Indeed income loadings for 
both PC1 and PC2, except for Milan, tend to be low and often below the 
0.33 threshold. 

5. Limitations and shortcomings 

To provide a national perspective in the mismatch analysis, we had 
to adopt a common territorial base to retrieve and analyse the data 
consistently in the four Municipalities. We adopted ISTAT’s ACEs, a 
national territory partition applied to the main urban areas, carried out 
on demographic principles that aggregate the rural areas of the Mu-
nicipalities, where population densities are much lower than inside the 
urban core, into one single polygon (ACE 0), disproportionately larger 
than any other ACE. This technical aspect meant two things. On one 
hand, the spatial resolution of the data in the rural belts is very different 
from that of the urban core, ultimately conditioning the level of detail in 
the demand indices construction. Secondly, the clean-cut separation 
between the urban core and the peri-urban areas does not depict well 
how ES provision changes along the urban-rural gradient, and the 
buffering role that the urban-rural interface holds concerning ES pro-
vision, which is a relevant aspect for the spatial analysis of ES mismatch. 
The CESDM, an effective benchmark for representing complex issues, 
calculated as the arithmetic mean of ESDM of each ES (Chen et al., 
2019), framing the ESs at the integral level, might assign different 
combinations of supply-demand to the same mismatch raking. Thus 
mapping mismatch through this complex index entails a thoughtful 
analysis of a single ESDM. When adopting this methodology, it is 
necessary to consider that the accuracy of the results can be subjected to 
uncertainty and flaws derived from raw input data and simplification of 
the modelled processes. 

6. Conclusions 

We explored the spatial distribution and seasonality of the main 
threats to air quality (O3 and PM10) in four Italian Municipalities, to 
operationalise the ESs mismatch framework. This approach has been 
applied to solve three main purposes:  

1) Assess city-specific features that can act as drivers of ESs negative 
mismatch.  

2) Highlight potential common indicators of mismatch across different 
municipalities.  

3) Pinpoint priority areas concerning upcoming forestation strategies 
that will be implemented in the Italian urban areas over the next 
years. 

The results show that the northern municipalities (Milan and 
Bologna) experienced the worst conditions, as most of their surface is 
included in “moderate” to “high deficit” areas due to a combination of 
high demand on the side of pollutants concentration, and moderate 
supply linked to low functional diversity. Bridging these results with the 
national urban forestation plan and the guidelines about the species 
recommended for forestation, we suggest in these areas investing efforts 
in planting evergreen species is essential. Beyond being effective to 
optimise the provisioning of air quality improvement, this functional 
group can be important to foster the continuous delivery of multiple 
Ecosystem Services such as climate regulation. On the other side, 
southern cities experience different situations: Rome is characterised by 
high mismatch areas concentrated in quadrants of the cities where the 
demand is high in terms of population density. Bari presents a different 
case among those analysed: both supply and demand are low, except for 
a higher concentration of fragile populations that build up the mismatch 
in several ACEs in the city centre. In this Municipality it will be crucial to 
take action to heavily implement the percentage of green space, which is 
among the lowest in Italy, through investments in Green Infrastructure. 
Combining different Functional Groups can guarantee optimal ESs 
supply and resilience to climate adverse conditions that are going to 
markedly affect southern Italy in the next future (Nardella et al., 2023). 
The multi-city approach can support addressing the intrinsic complexity 
of these issues to achieve the formulation of general guidelines for 
designing and managing urban spaces sustainably. With this in mind, 
the output of Principal Component Analysis (PCA) provides insights into 
general urban features that affect the mismatch of air quality. The de-
gree of urbanisation and compact residential neighbourhoods are often 
associated with ESs mismatch, and both the presence and distance from 
the green spaces are crucial in providing air quality regulation. The 
required extent of each ACE’s Green Cover ranges from approximately 
5% in Bari to about 30% in Milan. Our study is the first comprehensive 
attempt to frame the Italian context across different urban realities and, 
despite the high specificity of the territory, our findings experimentally 
confirm what was stated in previous studies (Mascarenhas et al., 2019; 
Sebastiani et al., 2021), in which the dense urban fabric was considered 
irreconcilable with a positive ESs supply–demand balance. 
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