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Robust and tunable topological Josephson junctions (TJJs) are highly desirable platforms for investigating the
anomalous Josephson effect and topological quantum computation applications. Experimental demonstrations
have been done in hybrid superconducting-two dimensional topological insulator (2DTI) platforms, sensitive
to magnetic disorder and interactions with phonons and other electrons. In this work, we propose a robust
and electrostatically tunable TJJ by combining the physics of the integer quantum Hall (IQH) regime and of
superconductors. We provide analytical insights about the corresponding Andreev bound state spectrum, the
Josephson current and the anomalous current. We demonstrate the existence of protected zero-energy crossings,
that can be controlled through electrostatic external gates. This electrostatic tunability has a direct advantage to
compensate for non-ideal interfaces and undesirable reflections that may occur in any realistic samples. TJJs in
the IQH regime could be realized in graphene and other 2D materials. They are of particular relevance towards
scalable and robust Andreev-qubit platforms, and also for efficient phase batteries.
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I. INTRODUCTION

Topological Josephson junctions (TJJ) were proposed in
the seminal work of Fu and Kane [1], merging Joseph-
son physics with topologically-protected helical edge states.
These TJJ have been suggested to host Majorana bound
states [2], envisioning applications in fault-tolerant quan-
tum computers [3–6], but also intriguing quantum devices
for phase-coherent caloritronics [7–12]. Experimental re-
alizations of TJJ have been proposed by placing two
superconducting electrodes on top of topological insulators
[13–17]. Two-dimensional topological insulators (2DTIs) are
characterized by counter-propagating spin polarized (helical)
edge states protected under time-reversal symmetry (TRS)
[18,19]. However, these topological states are known to be
fragile quantum states of matter, suffering from magnetic
disorder [18], Coulomb impurities [20], electron-electron
interaction [21], or electron-phonon interactions [22]. In con-
trast, integer quantum Hall (IQH) systems with chiral edge
states are, by their very fundamental nature, very resilient
to the presence of impurities, random electrostatic poten-
tials, or interactions [23–25]. Of particular interest for this
work, recent experimental achievements have demonstrated
the capability of combining QH systems with superconduct-
ing contacts [26–40]. Experimental realizations of quantum
Hall-based Josephson junctions have been reported mainly
using graphene [41–46] and semiconductors [36,47].
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FIG. 1. Sketch of IQH TJJ proposal and associated ABS spec-
trum. (a) IQH bar of dimensions W ×L at filling factor ν = 2, coupled
to two superconducting electrodes with phase difference φ. Oppo-
site spin-polarized chiral upper and lower edge states are coupled
through CAR processes. Nonideal interfaces allowing for normal
reflections are characterized by an amplitude ρ. The gate voltage Vg

electrostatically controls the phase difference θ between the spin-
polarized right-propagating edge states. A tunneling amplitude r
allows a coupling between right and left propagating edge states.
(b) Model for 2DTI TJJ, based on LAR processes between opposite
counter-propagating spin-polarized edge states. (c) ABS spectrum as
a function of φ at different θ = {0, π/2, π} in the IQH TJJ for r = 0
and ρ = 0. For θ = 0, both 2DTI and IQH TJJ feature exactly the
same doubly-degenerate ABS spectrum. θ �= 0 lifts the degeneracy
in the IQH TJJ spectrum, demonstrating full electrostatic control of
the topological properties of the IQH TJJ.
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In this work, we propose a TJJ in the IQH regime, with
a Hall bar at filling factor ν = 2, coupled to two supercon-
ductors with gap order parameter �. For perfect Andreev
reflections at the boundaries, we demonstrate that this TJJ in
the IQH regime features exactly the same doubly-degenerate
Andreev bound state (ABS) spectrum as a 2DTI TJJ with
protected zero-energy crossings. We discuss the mechanisms
giving rise to this specific ABS spectrum and show that they
are fundamentally different for IQH and 2DTI TJJs. Whereas
2DTI TJJ ABS spectrum results from local Andreev reflection
processes (LAR) at the boundaries with a single edge, IQH
TJJ ABS spectrum originates from crossed Andreev reflec-
tions (CAR) at the boundaries between the two edges.

In contrast to 2DTI TJJ, our proposal in the IQH is
expected to be more robust to magnetic disorder, electron-
electron and electron-phonon interactions, and allows for
electrostatic control of the ABS spectrum and its zero-energy
crossings. This platform can be used to investigate time-
reversal protected physics in cleaner conditions determined
by 2DEG/graphene-based quantum Hall physics. Remarkably,
we show that the IQH TJJ exhibits a Josephson current tun-
able through the gate voltage, allowing to control anomalous
current at φ = 0. These features are promising to implement
scalable architectures with multiple Andreev qubits [48,49],
as compared to break junctions [50], nanowire-based setups
[51,52], or quantum dot systems [53–55].

II. MODEL FOR AN IQH TJJ

Our proposal for an IQH TJJ consists of an integer quantum
Hall bar with filling factor ν = 2, coupled to two s-wave
superconducting electrodes with phase difference φ [56].
We use a free-fermion theory as it is usually appropriate
for the transport properties in quantum Hall bars, see also
Appendix A. The IQH bar with ν = 2, due to a finite Zeeman
term, can be characterized by two chiral spin-polarized edge
states, propagating spin up (blue) and spin down (red) on each
edge, see Fig. 1(a). The only way an incident electron (hole)
can be Andreev-reflected as a hole (electron) with opposite
spin is by involving both edges of the Hall bar, as depicted
at the interface with the right superconductor in Fig. 1(a)
(equivalent processes also involve the left interface). This
mechanism is known as crossed Andreev reflection (CAR)
[57] and corresponds to a nonlocal injection/absorption of a
Cooper pair from the superconductors to the weak link. In
contrast, the helicity of the edge states in 2DTI TJJs imposes
excitations with opposite spin to move in opposite directions
on each side of the weak link. Therefore, at the interfaces with
the superconducting regions, each pair of helical states are
coupled through local Andreev reflection (LAR) processes,
involving degrees of freedom of a single edge. Hence, upper
and lower edges can be considered as two independent sectors,
see Fig. 1(b).

One of the key advantages of the IQH TJJ with respect
to the 2DTI TJJ is its tunability via a top voltage gate Vg

(in green on the sketch). In this setup, Vg controls the filling
factor of the region underneath the gate, modifying the path
of the inner edge state. In particular, when the filling factor
induced by Vg is equal to one, the inner edge state has to
propagate around the border of the gate. As a consequence,

particles propagating along this modified edge state acquire a
Vg-controlled dynamical phase θ = kF �L proportional to the
length difference �L between the outer and inner edges. Here
we assume, for simplicity, that the Fermi velocity is the same
for both spin-up and spin-down particles. Any difference in
velocity would cause particles to acquire an effective dynami-
cal phase (which can also depend on the magnetic flux), even
without the gate. Without loss of generality, this additional
dynamical phase could be included in θ .

As an additional feature, it is important to note that the
top gate, as it penetrates the sample, also enables the spin-
down channel of the lower edge to approach the upper edge.
This permits tunneling to occur between the opposite sides
of the Hall bar. In our model this process is described by a
tunneling amplitude r. If |r|2 = 0 no tunneling occurs, while if
|r|2 = 1 spin-down excitations are completely back-reflected
on the opposite edge, thus destroying the Josephson coupling
between superconductors [58].

In realistic samples, ordinary reflections occurring at the
interfaces with the superconductors between the upper and
lower edges may take place. For example, an electron (or hole)
in the upper edge may coherently reach the opposite edge as
indicated in Fig. 1(a) by black dotted lines at the interface
with the left superconductor. These processes are in direct
competition with the CAR processes operating at the same
interface. To investigate this aspect, we account for normal
reflections at the left and right interfaces with reflection am-
plitudes ρL, ρR. When |ρL,R|2 = 0, no ordinary reflections can
occur and particles can only undergo perfect CAR, whereas
|ρL,R|2 = 1 corresponds to only ordinary reflections taking
place, completely spoiling the Josephson coupling. Interest-
ingly, we show below that left-right symmetry in the device,
corresponding to ρ ≡ ρL = ρR, is sufficient to protect zero-
energy crossings in the ABS spectrum even in the presence of
normal reflections.

III. ABS SPECTRUM

We derive and analyze the properties of the ABS spec-
trum of the IQH TJJ within a scattering matrix (S matrix)
approach. The IQH bar is described as a normal metal weak
link by a block-diagonal S-matrix SN in the electron-hole
subspace, whereas CAR processes at the interfaces with the
superconducting electrodes are captured by an off-diagonal
S-matrix SA. Exact forms of these S matrices are provided in
Appendix A. The ABS spectrum corresponds to the energies
εp, which are solutions of the self-consistent secular problem
given by

Det

[
1 − α(εp)SA exp

(
i

[
εp

�

L

ξ
1 + π�

�0
τz

])
SN

]
= 0. (1)

Here, α(εp) = exp(−i arccos( εp

�
)) represents the energy-

dependent Andreev reflection factor [59]. The term
exp(i[ εp

�
L
ξ
1 + π�

�0
τz]) corresponds to the phase acquired

by particles due to the finite length of the junction, which
also takes into account the presence of the magnetic flux
� = LW B (�0 = h/2e represents the flux quantum) [60].
Here 1 and τz represent the identity and z-Pauli matrices in
the particle-hole space. However, it is important to note that
this term equals one in the limit of a short junction, i.e., when
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FIG. 2. ABS spectrum (top panels) as a function of the superconducting phase difference φ and color plot of the figure of merit σ (bottom
panels) in the φ-θ plane. From left to right panels, tunneling probabilities from the lower edge to the upper edge is varied, |r|2 = {0, 0.5, 0.9}.
Top panels: ABS spectra as a function of φ obtained for |ρ|2 = 0 (black solid curves), and |ρ|2 = 0.5 (dashed red curves). Notice that the
positions of zero-energy crossings are the same for dashed and solid curves (they do not change with ρ). As tunneling amplitude r is increased,
Josephson coupling decreases, leading to a gapped spectrum for |r|2 = 0.9. Bottom panels: red regions represent σ = −1, white regions
indicate σ = +1. Black horizontal thick lines correspond to θ = π/2, used to plot the ABS spectra.

L � ξ . We would like to emphasize that in the subsequent
analysis, we will assume a fixed magnetic field, without
investigating the effect of a modulation of the magnetic
flux through the junction. In the latter case, one would need
to consider other effects, such as the change of the filling
factor or nonuniversal effects occurring at the interfaces with
the superconductors. The index p = {1, 2, . . . ,} labels the
different ABS discrete solutions. L is the length of the IQH
weak link and ξ = h̄vF /� is the superconducting coherence
length with � being the superconducting gap. In the limit of
a short junction (L � ξ ), with no ordinary reflections at the
interfaces (ρ = 0) and no tunneling (r = 0), the energies εp

are found analytically (see Appendix B for more details) and
are shown in Fig. 1(c). In the case Vg = 0, no phase difference
θ is present, and one recovers the doubly degenerate ABS
spectrum of a 2DTI TJJ with εp = ±�|cos(φ/2)| [1,61].
Figure 1(c) clearly shows the zero-energy crossing at φ = π

for θ = 0. Notice that the ABS spectrum of the IQH TJJ is
doubly degenerate. It corresponds to the ABS spectrum of
the two independent copies of the ABS spectra of the two
edges of the 2DTI TJJ sketched in Fig. 1(b). This degeneracy
can be lifted by tuning the dynamical phase θ controlled by
Vg. As shown in the central panel of Fig. 1(c), for θ = π/2,
one of the two copies of the spectrum gets rigidly shifted
to the left, and the ABS spectrum presents two zero-energy
crossings at φ = π and at φ = π/2. Importantly, such an
electrostatic control cannot be easily implemented in a
2DTI TJJ.

At this stage, we have shown that fundamentally different
processes underlie the physics of the 2DTI TJJ and of the IQH
TJJ: LAR versus CAR processes, presence or not of TRS, and
helical versus chiral nature of the edge states, respectively.
Hence, it is truly remarkable that our proposal of an IQH TJJ
exhibits the same ABS spectrum as the 2DTI TJJ, with an
additional tuning parameter θ .

IV. PROTECTED ZERO-ENERGY CROSSINGS

We now investigate the protection of the zero-energy cross-
ings of the IQH TJJ, in presence of ordinary reflections
(ρL, ρR �= 0) and in presence of finite tunneling r. We first
consider the case ρL = ρR ≡ ρ. For ρ �= 0, our numerical
calculations show that energy gaps open at finite energy, while
ABS crossings at zero energy remain unchanged. This is illus-
trated in the top panels of Fig. 2 where we represent the ABS
spectrum as a function of φ for |ρ|2 = 0 (black solid curves)
and |ρ|2 = 0.5 (red dashed curves). These results indicate
that zero-energy crossings in the ABS spectrum are protected
against perturbations which do not break left/right symmetry
in the system, i.e., when ρL = ρR. We further verified that
zero-energy crossings at a fixed θ disappear when ρL �= ρR,
even if they only differ by a phase. Interestingly, the electro-
static parameter θ specific to the IQH TJJ can be tuned to
ensure the presence of zero-energy crossings for any complex
value of ρL and ρR (see Appendix C for more details).

We then observe that the figure of merit σ—introduced in
[61] for a 2DTI TJJ to gauge the parity of the ABS spectrum—
also allows us to single out remarkable protection features of
the zero-energy crossings of the IQH TJJ ABS spectrum in
presence of finite tunneling r. This figure of merit σ = ± can
be computed analytically for our model and is shown to not
depend on ρ (see Appendix B for the definition and details):

σ = sign

⎧⎪⎨
⎪⎩cos−1

⎡
⎢⎣−

√
1 − |r|2 sin(φ)√

−2
√

1 − |r|2 cos(φ) − |r|2 + 2

⎤
⎥⎦
⎫⎪⎬
⎪⎭.

(2)

The bottom panel in Fig. 2 show σ as a function of the
superconducting phase difference φ and of the dynamical
phase θ , for different values of the tunneling probability
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(|r|2 = {0, 0.5, 0.9} from left to right). The black horizontal
thick lines correspond to θ = π/2, used to plot the corre-
sponding ABS spectra (top panels). Zero-energy crossings
correspond to the values of φ in the region plot for which
the horizontal black line intercepts the boundaries at which
σ changes its sign (see vertical dotted lines). Again, these
zero-energy crossings do not change with ρ for fixed r. The
figure also indicates that the distance between the zero-energy
crossings reduces when increasing |r|2, until the zero-energy
crossings disappear and are replaced by a gap at zero energy,
see for instance the last panel for |r|2 = 0.9. No crossing
occurs at θ = π/2, but changing the electrostatic parameter θ

would allow one to recover zero-energy crossings. Hence, it is
possible to tune θ to compensate for higher r, and therefore to
protect the zero-energy crossings over a wider range of tunnel-
ing amplitudes. In particular, for θ = π , the two zero-energy
crossings always occur at φ = 0 and φ = π , independently
of |r|2 if |r|2 �= 1. The electrostatic control of the IQH TJJ
make the zero-energy crossings robust against the presence of
back-scattering within the IQH bar, as long as the Josephson
coupling is not fully suppressed, i.e., as long as |r|2 < 1.

It is important to emphasize that we have assumed the
short junction limit, where L � ξ . This allowed us to derive
analytical results for the ABS spectrum (Sec. III), compare
the behavior of the zero-energy crossing of the ABS spectrum
with the parity figure of merit (Sec. IV), and obtain analytical
expressions for the current phase relationship (CPR) and crit-
ical current (as demonstrated in Sec. V). However, while the
assumption of a short junction is a strong one for the exper-
imental implementation of the system, we have numerically
confirmed that the zero energy crossing of the lower energy
ABS does not change with respect to the short-junction case,
regardless of the value of L. In this sense, we assert that the
topological protection of such crossings is not specifically tied
to the short-junction limit.

V. JOSEPHSON CURRENT

Characterizing the Josephson current as a function of
the parameters of the setup is key to access the property
of the IQH TJJ. In IQH systems it has been measured in
Refs. [32,36,36,41–47].

Assuming short junctions (L � ξ ), we recall that the
Josephson current J (φ), or current phase relation (CPR), is
given by [59,62] J (φ) = − 2e

h̄

∑
p tanh(εp/2kBT ) dεp

dφ
, where T

is the temperature and εp are the ABS energies. For the IQH
TJJ, we obtained an exact expression of J (φ) in the limit of
negligible normal reflections (i.e., |ρ|2 = 0). This provides
analytical insights on the role of the different parameters of
the system, in particular θ and r:

J (φ) = − J0

√
1 − |r|2 sin

(
θ
2 + φ

)
√

|r|2 cos
(

θ
2 + φ

)2 + sin
(

θ
2 + φ

)2
×
∑
γ=±

γ cos [�γ (φ, θ )]tanh

{
�

2kBT
sin [�γ (φ, θ )]

}
(3)

FIG. 3. Current-phase relationship of the IQH TJJ for r = 0 and
ρ = 0 (main panel), in units of J0 = 4e�/h̄. The different colored
lines correspond to different gate voltages which change the θ values
as reported in the label. In the inset we show the effect of different
values of tunneling |r|2 = 0.1, 0.5, 0.9 (solid, dashed, and dotted
lines, respectively) for a given value of θ = π/2. The temperature
is chosen to be very low, namely kBT � �.

with �γ = θ
4 + γ π

4 + γ tan−1 [
√

|r|2 sin ( θ
2 +φ)√

|r|2 cos ( θ
2 +φ)

2+sin ( θ
2 +φ)

2
] and

J0 = 4e�
h̄ . Zero-energy crossings in the ABS spectrum corre-

spond to abrupt jumps in the Josephson current, clearly shown
in Fig. 3 (see Refs. [63–65] for the equivalence in 2DTI TJJ).
In analogy to the ABS spectrum, the Josephson current can be
controlled by the voltage gate Vg, which acts similarly to the
manipulation of spin-orbit coupling in Refs. [64–68]. Let us
note that the presence of back-scattering within the IQH bar
(|r|2 �= 0) smooths the CPR behavior in a comparable way to
temperature or other mechanisms of losses [69], as shown in
the inset of Fig. 3.

Remarkably, the CPR also presents a finite anomalous
component at φ = 0, JA ≡ J (φ = 0). We show its behavior
as a function of the phase difference θ controlled by Vg and
as a function of back-scattering (parameter |r|2) in Fig. 4. It is
maximal for |r|2 = 0 and vanishes when the Josephson cou-
pling disappears (|r|2 = 1). We note that JA is a 2π -periodic
odd function of θ , i.e., JA(θ ) = −JA(−θ ), implying that JA =
0 for θ = π mod[π ]. This anomalous component is a common
feature of topological Josephson junctions [63,64,70], also
discussed in presence of magnetic fields or ferromagnetic
exchange [71–75]. This property opens the way to exploit
the IQH TJJ as a gate controlled phase battery without engi-
neering complex interplay between spin-orbit and magnetic
field. Phase batteries were envisioned and recently demon-
strated experimentally to efficiently provide a constant phase
difference between two superconductors in a quantum circuit
[76–78]. This should highly increase the scalability and tun-
ability of the device.

Another important quantity which characterizes the IQH
TJJ system is represented by the critical current defined as
JC = maxφ{|J (φ)|}. Starting from Eq. (3), and considering the
limit of high temperature (i.e., kBT � �) [79], the critical
current takes the form JC � J0

�
2kBT |cos (θ/2)|. This coincides

with the result obtained in Ref. [69] where the critical current
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FIG. 4. Anomalous Current JA in units of J0 = 4e�
h̄ as function of

θ and the tunneling probability |r|2 for ρ = 0.

has been used as a signature of entanglement symmetry ma-
nipulation of Cooper pairs (CPs) in the condensate exchanged
between the superconducting leads. The critical current JC is
of particular relevance as it not only reflects the strength of
the Josephson coupling, but it also has a fundamental role in
fixing the minimal kinetic Josephson junction inductance. It
is therefore relevant in the design of dispersive and resonant
measurement setups; for instance, in the context of Andreev
qubits. Andreev qubits were first proposed in Refs. [48,49],
and are of particular interest for applications in quantum in-
formation [80–82]. Recently, in the context of Andreev qubits,
nanowires-based Josephson junctions with strong spin-orbit
coupling have been proposed and investigated [51,52], as well
as quantum dot systems [53–55]. In Appendix D, we discuss
the microwave excitation spectrum of our IQH TJJ in the
realistic case of finite-length weak link (L = ξ ), which could
be used to store and elaborate quantum information. On top of
exhibiting key properties for implementing an Andreev qubit
similarly to the above mentioned platforms, our setup allows
for a much refined electrostatic control of the ABS spec-
trum. This would be beneficial for the scaling to a multiple
qubits platform with respect the atomic break junctions [50]
or nanowire-based setups [50,52].

VI. EXPERIMETAL ASPECTS

In this section, we briefly discuss some key aspects of our
experimental setup. Previous studies, such as Ref. [83] and
Ref. [84], have shown the ability to spatially separate the
ν = 2 edge modes for spin up and spin down at a magnetic
field of about 4.5 T and of about 2.5 T, respectively. More
recently, the authors of Ref. [47] have examined an InAs
quantum well in contact with Nb superconducting leads and
found that the system demonstrates well-developed quantized
Hall plateaus at a temperature of 300 mK and a magnetic
field of 3 T, resulting in a filling factor of ν = 2. The elec-
tronic density was also controlled using a gate voltage, which
allowed a filling factor of ν = 1 at a gate voltage of −1 V,

and ν = 2 at a gate voltage of 3 V. These experimental results
demonstrate that the proposed setup is realistic with current
technology.

Regarding the size of our system, we can estimate the
coherence length of the Cooper pairs using the value of the
Nb gap (�Nb = 1.23 meV) and the Fermi velocity in the edge
state (vF ≈ 106m/s) to be ξ = (h̄vF )/(π�Nb) ≈ 200 nm. It
is important to note, however, that the strong magnetic field
and imperfect coupling with the quantum Hall edge states may
further reduce the effective gap, thus increasing the coherence
length. Therefore, assuming a length L of our IQH TJJ of a
few hundred nanometers, which is achievable using current
lithography techniques, would be sufficient to realize the pro-
posed setup.

Furthermore, regarding the width W of the bar, it is worth
noting that it can exceed ξ as the CAR is mediated by the
Andreev reflections taking place on the edge states traveling
across the entire interface with the superconductors.

VII. CONCLUSION

In this paper we have investigated how to realize an arti-
ficial time-reversal-symmetric topological Josephson junction
with a paradigmatic time-reversal-broken phase, i.e., the IQH
state at ν = 2, coupled to superconductors via CAR processes.
First, we have demonstrated how the two models map one
into the other, showing the emergence of topological protected
zero-energy crossings. Our IQH platform has the advantage
of being much more robust against impurities or other per-
turbations that destroy the perfect conductance quantization,
and provides better prospects in terms of scalability. Specific
to this proposal, the IQH TJJ can be manipulated by electric
means and does not require spin-orbit effects or careful ma-
nipulation of the magnetic field orientation. We investigate
in details how the coupling between upper and lower edge
states and the gate voltage control the ABS spectrum, the
protected zero-energy crossings, and the Josephson current.
We also show how an anomalous Josephson current can be
generated and controlled by the gate voltage, without re-
quiring complex interplay between spin-orbit coupling and
magnetic fields. We also discuss the role of other nonideal-
ities such as imperfect interfaces with the superconductors.
Examples with filling factor ν = 2 have been demonstrated
both in 2DEG samples [85,86] and in 2D materials, such as
graphene [33,87].
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APPENDIX A: SCATTERING MATRICES

We use a free-fermion theory (the scattering theory) since it
is usually appropriate for the transport properties in quantum
Hall bars. Indeed, experiments, see for example Ref. [83],
show that at equilibrium and in the linear regime, the prop-
erties of the system are well predicted by the noninteracting
theory. This is true even in the presence of interchannel tun-
neling or equilibration, where one can expect a possible role
of the interactions. In fact, in order to detect an effect of
the interaction between edge channels, one needs typically
long edges with lengths of tens micrometres as discussed in
Ref. [88]. In other words, our junction is too short to expect to
see these effects.

The system is modeled by specifying the scattering ma-
trices (S matrices) which describe the weak link SN and the
interfaces with the superconductors SA, that can be written in
the electron-hole space as

SN =
(

s0 0
0 s∗

0

)
, SA =

(
0 rA

r∗
A 0

)
. (A1)

Diagonal blocks represent the coupling between electron and
electron (or hole and hole), while off-diagonal blocks account
for the electron-hole coupling. In Eq. (A1), the Andreev ma-
trix rA (r∗

A) relates the holes (electrons) impinging onto the
superconductors to the corresponding electrons (holes) going
back in the opposite edge of the weak link and depends on the
superconducting phases ±φ/2 acquired at the left/right super-
conductors. As an example, the S-matrix r∗

A of Eq. (A1), which
relates impinging electrons with Andreev reflected holes at
interfaces with superconductors, takes the following form:

⎛
⎜⎜⎜⎜⎜⎝

b↑
+

b↓
+

b↑
−

b↓
−

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 eiφ/2

eiφ/2 0
0 0
0 0

0 0

0 0

0 e−iφ/2

e−iφ/2 0

⎞
⎟⎟⎟⎠

r∗
A

⎛
⎜⎜⎜⎜⎜⎝

c↑
−

c↓
−

c↑
+

c↓
+

⎞
⎟⎟⎟⎟⎟⎠
(A2)

(a similar equation can be written for the S-matrix rA [59]).
Here we indicated by cσ

± and bσ
± the incoming and outgoing

electrons and holes, respectively, with ± labeling the direction
of propagation of particles (+ for right movers, − for left
movers) with spin σ =↑,↓.

The S-matrix SN , on the other hand, is block-diagonal.
Specifically, the block-matrix component s0, which re-
lates incoming and outgoing electrons only, is constructed
(see Refs. [89,90]) from the combination of S matrices:

s0 = sL ◦ sM ◦ sR. (A3)

Here sM is the S matrix which describes the presence of
the gate acting only on spin down particles, while sL/R ac-
counts for the possible presence of ordinary reflections at
the interfaces with the superconductors. More specifically, the
matrices sM and si (with i = L, R), introduced in Eq. (A3), can

be written in following form:⎛
⎜⎜⎜⎜⎜⎝

c↑
−

c↓
−

c↑
+

c↓
+

⎞
⎟⎟⎟⎟⎟⎠

out

=

⎛
⎜⎜⎜⎝

0 0

0 r

1 0

0 tLR

1 0

0 tRL

0 0

0 r

⎞
⎟⎟⎟⎠

sM

⎛
⎜⎜⎜⎜⎜⎝

c↑
+

c↓
+

c↑
−

c↓
−

⎞
⎟⎟⎟⎟⎟⎠

in⎛
⎜⎜⎜⎜⎜⎝

c↑
−

c↓
−

c↑
+

c↓
+

⎞
⎟⎟⎟⎟⎟⎠

out

=

⎛
⎜⎜⎜⎝

ρi 0

0 ρi

τi 0

0 τi

τi 0

0 τi

ρi 0

0 ρi

⎞
⎟⎟⎟⎠

si

⎛
⎜⎜⎜⎜⎜⎝

c↑
+

c↓
+

c↑
−

c↓
−

⎞
⎟⎟⎟⎟⎟⎠

in

(A4)

with

sM =

⎧⎪⎨
⎪⎩

r = eiθ/2 cos (ω)

tRL = −eiθ sin (ω)

tLR = sin (ω)

si =
{

ρi = cos (ηi )

τi = i sin (ηi ).
(A5)

Here the S-matrix sM depends on two angle parameters:
ω ∈ [0, π/2] which controls the reflection amplitude r of
spin down particles between different edges, and θ ∈ [0, 2π ]
(controlled by the gate voltage Vg) which is the dynamical
phase acquired by spin down particles moving around the
gated region. The S-matrix si is controlled by the parameter
ηi ∈ [0, π/2] which determines the amplitude ρi of ordinary
reflections at the interface i = L, R. If ηi = π/2, then ρi = 0
so only CAR can occur, while if ηi = 0 no CAR can occur and
only ordinary reflections can take place at the interface.

APPENDIX B: ANALYTICAL EXPRESSION
OF ABS AND FIGURE OF MERIT σ

We provide the analytical expressions of the ABS eigenen-
ergies obtained in the limit of a short junction (L � ξ ) with
no ordinary reflections at the interfaces (ρ = 0). The ABS
energies have been obtained by solving the self-consistent
secular problem [59]

Det[1 − α(εp)SASN ] = 0, (B1)

with SA and SN defined in Eq. (A1), and α(εp) =
exp (−i arccos ( εp

�
)) being the energy-dependent Andreev re-

flection factor. Their explicit expressions take the following
form:

εp = �|sin (�±)| (B2)

with

�± = θ

4
± π

4
± tan−1

⎡
⎢⎣

√
1 − |r|2 cos

(
θ
2 + φ

)
√

|r|2 sin
(

θ
2 + φ

)2 + cos
(

θ
2 + φ

)2
⎤
⎥⎦.

(B3)

Due to particle-hole symmetry, each eigenstate with energy
εp has a counterpart with energy −εp, so for each value of
the phase φ, we have four solutions of the ABS energies. We
used Eqs. (B2) and (B3) to plot the ABS spectrum in Fig. 1(c)
and Fig. 2 (black solid curves in top panels) in the main
text. We have also derived an analytical solution of the ABS
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FIG. 5. ABS spectrum in the case of an asymmetric junction
when r = 0 with ρL = √

0.5 and ρR = √
0.2 for different values

of θ . When θ = π

4 (black solid curves), a zero energy gap is open.
By changing θ, the gap closes in one point for θ = π

2 (blue dashed
curves) and two points for θ = 3π

4 (red dotted curves).

eigenenergies also for ρ �= 0, but the expressions do not bring
additional understanding. They are available upon request for
interested readers.

The figure of merit σ , given in Eq. (1) of the main text, has
been obtained starting from its definition provided in Ref. [61]
as the ground-state fermion parity number:

σ (φ, θ ) = sign

[
Pf
(
rAs0 − sT

0 rT
A

)
√

Det[is0]

]
ε=0

. (B4)

Here Pf(·) is the Pfaffian of an antisymmetrized matrix built
from rA and s0, see Eqs. (A3) and (A4). According to
Refs. [1,61], this figure of merit σ = ± can take two possible
values corresponding to an even (σ = +) or odd (σ = −)
number of electrons in the ground state of the system, and
can change its value only at zero-energy crossings of the ABS
spectrum. In our setup, it does not correspond to the parity
of the ground state, but nevertheless allows us to single-out
remarkable protection features of the zero-energy crossings
of the IQH TJJ ABS spectrum. We computed the Pfaffian in
Eq. (B4) in presence of ordinary reflections ρ �= 0, showing
analytically that it does not depend on ρ, see Eq. (1) in the
main text. It would be interesting to understand in future
works the validity and interpretation of σ for more diverse
setups.

APPENDIX C: ASYMMETRIC JUNCTION

In the main text we demonstrated that the occurrence of
zero-energy crossings is protected as long as the system is
left/right symmetric, i.e., when ρL = ρR. In particular, when
r = 0, a zero energy gap cannot be opened in the ABS spec-
trum for any value of θ (see left panels of Fig. 2 of the
main text). When the junction is asymmetric, i.e., ρL �= ρR,
the situation radically differs as it becomes possible to open a
gap even when r = 0. We illustrate this in Fig. 5. However, by
tuning θ (for any choice of ρL and ρR) it is possible to close
the gap again. In other words, by properly gating with Vg the
IQH TJJ, we can restore the protected crossing by effectively
compensating the right/left asymmetry. In Fig. 5, we show the
ABS spectrum of the junction when r = 0 with ρL = √

0.5

FIG. 6. ABS spectrum (left panels) and ABS excitation spectrum
(right panels) of the Andreev qubit for an IQH TJJ for two different
values of θ = 0 (top panels) and θ = π (bottom panels). The red
and green lines in the ABS excitation spectrum correspond to two
different types of processes: a Cooper pair is broken exciting two
quasiparticles states in the ABS spectrum (red lines) or quasiparticles
state transition between two different ABS states. Other parameters
are L = W = ξ , B = 3 T , |ρ|2 = 0.1, and |r|2 = 0.

and ρR = √
0.2 for different values of θ (similar results can

be obtained when ρL and ρR are complex amplitudes with
different modulus and phase). The black solid curves repre-
sent the ABS energies as a function of φ when θ = π

4 . In this
case, a zero energy gap opens, i.e., no zero energy crossings
occur. However by varying θ , the lowest energy ABS moves
closer to the zero energy axis until it crosses it in one point
for θ = π

2 (blue dashed curves), for this parameter, and two
points for θ = 3π

4 (red dotted curves). This behavior shows
that, even if a zero energy gap opens for asymmetric junctions,
the emergence of the crossing at zero energy can always be
obtained by changing θ via the external gate voltage Vg.

APPENDIX D: ABS EXCITATION SPECTRUM:
ANDREEV QUBIT

In order to characterize the IQH TJJ as a potential platform
for implementing Andreev qubits, we investigate the ABS ex-
citation spectrum that can be probed in the microwave range.
For this application, it is realistic to consider a finite size weak
link (L = W = ξ ) with nonvanishing ordinary reflections at
the interfaces, i.e., |ρ|2 = 0.1, and an applied magnetic field
of B = 3 T . In Fig. 6, for two values of θ , we show the
ABS spectrum (on the left column) and the ABS excitation
spectrum (on the right column) as functions of the phase
difference φ. For the ABS excitation spectrum we distinguish
between two different types of transition lines. We show with
red arrows in the top left panel the Cooper pair breaking
processes where microwave absorption breaks a Cooper pair
exciting two quasiparticles in the ABS spectrum. With green
arrows in the top left panel we denote the single-particle
transitions where a trapped quasiparticle already occupying an
Andreev state is excited to another one. For the two different
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classes, the transition energies of the excitation spectrum can
be obtained by adding the energies of two different ABS levels
(in the case of red transitions) or by subtracting them (in the
case of green transitions).

The finite length of the weak link introduces higher energy
branches in the ABS spectrum. In particular, for θ = 0 (see
upper left panel of Fig. 6), we see that the ABS spectrum
presents two branches instead of just one as shown in the
case of short junction—see left panel of Fig. 1(c) of the main
text. Nevertheless, similarly to the short junction case, both
branches of the ABS spectrum here exhibit a zero-energy
protected crossing at φ = π . Notice also, that in this case the
ABS spectrum is degenerate, and its signature can directly be
seen in the ABS excitation spectrum (see upper right panel

of Fig. 6): the breaking of a Cooper pair (red curves) can
excite two degenerate states, hence allowing some of the red
curves to be exactly twice the energy of the spectrum of the
ABS.

For θ = π (bottom panels), instead, we get four nonde-
generate ABSs: two of them exhibit zero-energy protected
crossings at φ = 0, π [similarly to the short junction case as
shown in the right panel of Fig. 1(c) of the main text], while
two do not cross the zero-energy axis. This behavior reflects
in a richer structure of the ABS excitation spectrum as shown
in the bottom right panel of Fig. 6. This confirms the high
tunability of the IQH TJJ using electrostatic controls to be
exploited as a potential platform for the implementation and
manipulation of Andreev qubits.
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