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Summary

New Science paradigms have recently evolved to promote open publication of scientific find-

ings as well as multi-disciplinary collaborative approaches to scientific experimentation. These

approaches can face modern scientific challenges but must deal with large quantities of data pro-

duced by industrial and scientific experiments. These data, so-called Big Data, require to introduce

new computer science systems to help scientists cooperate, extract information, and possibly pro-

duce new knowledge out of the data. E-infrastructures are distributed computer systems that

foster collaboration between users and can embed distributed and parallel processing systems

to manage big data. However, in order to meet modern Science requirements, e-Infrastructures

impose several requirements to computational systems in turn, eg, being economically sustain-

able, managing community-provided processes, using standard representations for processes and

data, managing big data size and heterogeneous representations, supporting reproducible Sci-

ence, collaborative experimentation, and cooperative online environments, managing security

and privacy for data and services. In this paper, we present a cloud computing system (gCube

DataMiner) that meets these requirements and operates in an e-Infrastructure, while sharing

characteristics with state-of-the-art cloud computing systems. To this aim, DataMiner uses the

web processing service standard of the open geospatial consortium and introduces features like

collaborative experimental spaces, automatic installation of processes and services on top of

a flexible and sustainable cloud computing architecture. We compare DataMiner with another

mature cloud computing system and highlight the benefits our system brings, the new paradigms

requirements it satisfies, and the applications that can be developed based on this system.
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1 INTRODUCTION

The progress and evolution of information technology have changed the way science is approached.1 The large amount of data produced by web

and mobile applications and by scientific and industrial experiments have required the introduction of new systems to process these data, extract

information, and generate new knowledge. These data are usually classified as big data2 and are characterised by at least six “V”s: large Volume, high

production (and requested processing) Velocity, Variability in terms of complexity, Variety of representation formats, untrustworthiness (Veracity)

of the information, and high commercial or scientific Value of the extracted information. In order to manage and process big data, non-conventional

computer science systems are required.

In the last decade, new science paradigms are born and have evolved to manage also big data and to promote collaborative experimentation and

publication of scientific findings. These paradigms, eg, Open Science,3 e-Science,4 and Science 2.0,5 have grown in time, and today their definitions

overlap on several points. Overall, they support the open publication of results, findings, and documents (possibly involving big data) related to scien-

tific research, and they also promote computer science systems that foster collaborative approaches to solve current complex problems of Science.

These new paradigms also indicate requirements for new computer science systems, which involve (1) collecting, analysing, and representing data
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to ensure their longevity and reuse; (2) open publication of all the elements of scientific research (processes, data, documents, etc.); (3) supporting

the three “R”s of the scientific method: Reproducibility, Repeatability, and Re-usability.

Big data processing is one important point among the requirements of new science paradigms. In order to make big data processing afford-

able, distributed computing has been extensively used in many domains. This kind of computing approach parallelises the computation on several

cores/processors or machines in a network of computers.6 Flexible approaches exist to distribute computing that tend to meet new science

paradigms requirements, but the current realisations are far from this goal (Section 2). Many distributed computing systems can manage specific

community requirements but are typically too tied to certain repositories and data formats and do not support collaborative experimentation. Fur-

ther, aspects like open publication of the results and the support of the three “R”s of the scientific method are seldom taken into account. Other

crucial indirect requirements include flexibility in deployment, sustainability of the overall computational system, management of heterogeneous

community requirements (eg, different programming language), and quick import of community-provided processes. These aspects require new

components to be added to standard distributed computing systems.

In this context, e-Infrastructures (e-Is) are computer science systems that can meet the requirements of big data and new science paradigms and

can build on top of distributed computing systems. An e-I is a network of hardware and software resources (eg, web services, machines, proces-

sors, and databases) that allows users or scientists residing at remote sites to collaborate and exchange information in a context of data-intensive

science.4 In an extended definition, an e-I includes the following facilities: (1) distributed storage systems (DSSs) and parallel (eg, high-performance

computing7) or distributed processing (eg, cloud or grid computing8) systems for big data; (2) services to manipulate, publish, harmonise, visualise,

and access data, which also manage heterogeneous policies and formats; (3) catalogues of the data and the resources accessible through the e-I;

(4) security and accounting services; (5) systems to support collaborative scientific research, through data sharing and social networking services.

The distributed computing systems used by e-Infrastructures parallelise the computations on a variable number of machines connected to the

e-I at the time of the computation. These computing systems should also satisfy a number of requirements once immersed in an e-Infrastructure.

In particular, they should (1) support the publication of the enabled processes (eg, scripts and compiled programmes) as a service, in order to allow

their programmatic exploitation by other services either provided by the e-I or by the communities using the e-Infrastructure; (2) support pro-

cesses implemented under several programming languages to facilitate the communities' exploitation and take over; (3) be interoperable with other

services of the e-I through a standard representation of the processes and of their parameters, in order to enable either complex workflows compo-

sition or simple chained executions; (4) save the provenance of an executed experiment, ie, the set of input/output data, parameters, and metadata,

in order to enable any authorised user to reproduce and repeat the experiment; (5) support data and parameters sharing through collaborative

experimental spaces to enact collaboration between users; (6) be economically and technically sustainable by enabling easy porting and deploy-

ment on several partners machines; (7) support federated authentication and authorisation and tailored accounting facilities, in order to promote

integration of existing technologies without compromising policies management and enforcement. Although many flexible and easy-to-install imple-

mentations of computational systems exist,9–11 no one is currently able to satisfy all these requirements. Limitations include poor interoperability

between services developed by different providers, difficulty to integrate processes written by non-experts in computer science (eg, biologists,

agronomists, students, and big data analysts), complexity to manage the too heterogeneous big data representations and a general scarce use of

standard representations to describe processes and data.

The aim of this paper was to describe an open-source cloud computing system (gCube DataMiner12) that shares many features with

state-of-the-art computational systems and also in satisfying the requirements of new science paradigms, and in particular the e-Infrastructures

requirements listed above. The presented platform adds functionalities for collaborative experimentation, standard description of the hosted meth-

ods and of the executed processes, and flexible provisioning of resources. Thanks to these functionalities, gCube DataMiner is a fully working

peculiar system, currently managing tens of thousands requests per month.13 In particular, gCube DataMiner is able to (1) interoperate with the

services of the D4Science e-Infrastructure14; (2) use the web processing service (WPS15) standard to publish the hosted processes; (3) save the

provenance of an executed experiment using the Prov-O representation.16 Our system implements a cloud computing MapReduce approach for big

data processing and saves the output as well as the provenance information onto a collaborative experimentation space, which allows a user to share

this information with other colleagues. The DataMiner deployment is fully automatic and is spread across different machines providers (including

the European Grid Infrastructure Federated Cloud system17). We compare our system with another mature system used by the same D4Science

e-I 18,19 to execute processes provided by communities of practice in computational biology. We demonstrate the higher computing performance of

our system and its better flexibility to meet the requirements of e-Is on a use case of computational biology.

The paper is organised as follows: Section 2 gives an overview on big data, distributed and parallel computational systems, and explains to what

extent these currently meet the requirements of new Science paradigms. Section 3 describes our system and explains its approach to cloud com-

puting. Section 4 reports the performance of our system compared with another cloud computing system. Finally, Section 5 reports about current

and possible applications of our system and draws the conclusions.

2 OVERVIEW

Big data processing has been widely addressed using distributed computing techniques, because by definition this kind of data requires

non-standard computing resources to be managed and processed.20 Applications of distributed computing to big data have been described in many
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scientific papers.21,22 Indeed, extracting information from big data is crucial in business intelligence23,24 and in many fields where data mining is

needed.23,25 The extracted information may have high impact in several domains, including geospatial and biological data processing,25,26 because of

the large spectrum of possible stakeholders, ranging from students and scientists to decision makers.27 Crucial topics related to big data processing

systems are scalability, availability, data staging, transformation, quality assessment, and data heterogeneity management.21,28,29 Further, privacy

and access policies are important especially when data are shared or exchanged between users.30,31 These topics still require research effort to be

properly addressed,32 especially for what regards collaborative approaches to data analysis and the subsequent reasoning and actions to produce

knowledge in a multi-disciplinary context.33

Processing big data with a distributed computing system typically involves parallelisation of the computation (and possibly split of the data)

on several available cores/processors or machines of a network of computers. These resources intercommunicate and coordinate their actions to

achieve the common task of processing all the data. Distributed computing has been extensively used in many fields of science involving big data.

For example, in computational biology Open Modeller34 uses distributed computing for species distribution modelling, and Lifemapper 35 uses Grid

computing to predict the distribution of world's fauna and flora. Other initiatives, like the Map of Life,36 rely upon distributed computing for retriev-

ing and archiving species information. Distributed computing is also used to process geospatial data, especially when the required spatial resolution

is high or the analysis is made at global scale.37 Examples involve (1) discovering and integrating multi-disciplinary data for large-scale ecological

analyses,38 (2) comparing large-scale geographical distributions of environmental parameters,39 (3) analysing climate change impact on species

habitats,37,40 (4) forecasting fishing activity,41 and (5) forecasting dust storms.42 Cloud computing has been highlighted as one critical paradigm to

support the requirements of geospatial big data processing.42 An overall survey of the cloud computing resources that tackle geospatial big data

challenges is reported by Yang et al.43 For example, the elasticity demanded to cloud computing systems may address the production velocity and

the variety of big data, whereas the on-demand provisioning of resources enacts the implementation of ad hoc solutions to manage data veracity

and variety.43

General platforms for Big Data processing propose general-purpose high-throughput computing services44–46 that offer long-time computing as

a utility. Among these platforms, cloud computing systems47 have several deployment models (eg, private, community, public, and hybrid cloud) and

service models to provide computational and storage resources at many levels (application, platform, infrastructure).

Although these systems are powerful enough to manage a large amount of communities requirements, they do not natively meet modern Science

paradigms requirements. For example, domain-specific implementations like the ones mentioned above are typically too tied to a certain repository

and format and do not support neither data retrieval from many knowledge sources nor collaborative experimentation. As for the general-purpose

systems, many of them tend to meet modern science paradigms but not completely. For example, several systems stress on low maintenance, low

deployment costs, and high sustainability, granting reliability, easiness of installation, and usability at the same time. On the other hand, aspects like

managing different programming languages and importing community-provided processes are often neglected, although they are crucial to meet

the programming habits of the served communities.19 Overall, there is no system satisfying all the requirements reported in Section 1; nevertheless,

examples can be given of flexible systems that may potentially meet them.

Flexibility in deployment, installation, and support of different programming languages can be found in HTCondor,44 an open-source framework

to implement high-throughput and high-performance computing systems. However, HTCondor requires expertise to be properly configured and

does not natively support either reproducibility and repeatability of experiments or collaborative experimentation. Apache Hadoop48 provides

cloud computing and storage facilities and supports MapReduce computations. This system can be paired with many Apache packages and pro-

motes interoperability with other Apache services. Nevertheless, installing, configuring, and integrating new processes is not easy for non-expert

developers, although every programming language is potentially supported. Also, communication standards are not natively supported and only

unofficial attempts have been proposed.49 Simplification in cloud computations programming is promoted by Apache Spark,11 which extends the

Hadoop approach and features and allows building more complex workflows than MapReduce. Nevertheless, using interoperability standards is

still not supported.

Apart from software that allows building cloud computing systems, operational cloud computing platforms exist that provide on-demand inter-

operable machines and software to build new cloud services. Examples are Amazon EC2,50 Google Cloud Platform,51 and Microsoft Azure.52 These

support all the provisioning approaches of cloud computing (software, platform, and infrastructure as a service) but still require large effort for a

non-expert community of practice to build a cloud computing system based on communication standards.

Usage of Cloud computing in a collaborative e-Infrastructure is not frequent but some implementations exist, eg, Yabi 9 and other domain-oriented

systems.53–55 However, these do not publish their processes under recognised standards. On the other hand, services exist that use standards to

publish processes, but these do not natively support easy building of cloud computing systems. For example, 52North56 and Zoo-project57 support

WPS publication and easy chaining of processes, but are more oriented to easily integrate non-distributed processes than to design Cloud com-

putations. Services and software exist58–60 that embed clients for remote WPS services in order to demand large computations to these remote

systems. These system would greatly benefit from WPS-based cloud computing platforms.

3 METHOD

This section describes the components DataMiner relies upon and the details of the system. It also explains how DataMiner manages parallel and

cloud computations. Further, it describes a Web GUI that allows the users of an e-Infrastructure to interact with DataMiner.
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3.1 Components

DataMiner (DM) is immersed in the D4Science distributed e-Infrastructure, an e-I built by using the open-source gCube software.12 DM was born

to be interoperable with the services of this e-I. Theoretically, every process hosted by DM can use all the resources of the D4Science e-I. In this

section, we explain the main e-I components our system uses during and after the computations.

3.1.1 e-Infrastructure systems

The information system

The information system (IS) is a central service of most e-Infrastructures61–63 and of D4Science, too. It provides the e-I services with updated

information about the location and the status of the available and reachable resources (eg, databases, internal and external services, and appli-

cations). For example, it provides information about the IP addresses, the operating systems and the machine architectures of the computational,

storage, and geospatial services available in the e-I. These services possibly reside at different sites and are hosted by different providers (eg, Win-

dows Azure64 and the European Grid Infrastructure17). The IS acts as a registry of the e-I resources and manages their assignment to certain

communities of users. The D4Science IS is the main service that supports publication, monitoring, discovering, and access for the e-I resources.

Internally, it uses a resource management service to allocate and deploy/undeploy resources on the fly for users and services. The D4Science IS

automatically indexes Apache Tomcat Web services,65 after these have been endowed with appropriate non-invasive Java libraries of the gCube

software.66 As for the other resources, eg, databases and non-gCube services, indexing can be manually done by fulfilling online forms that are trans-

formed into IS resource profiles. The D4Science IS is indeed made up of a number of services that ensure high availability of the information and high

performance on concurrent queries for on-the-fly information retrieval. We leave the technical details of the D4Science IS to the previous study.67

The distributed storage system

A DSS is a network of services that allows storing a large quantity of data with a flexible management of information availability and

storage capability.68 The DSSs are not based on rigid schemas (like relational databases), but use different technologies, eg, column store

(eg, Cassandra 69) or document store (eg, MongoDB70), to manage even non-structured or semi-structured data. Typically, they use data partition-

ing techniques where one dataset is divided into several smaller packages and each is stored by one high-availability service. The drawback with

respect to most relational databases is that it is impossible to guarantee availability and consistency (ie, always retrieving the latest version of a

stored dataset) of the information at the same time (CAP Theorem71). The D4Science uses the MongoDB document store to host files and meta-

data and extends it by (1) adding smart management of metadata and using unique identifiers for the datasets, (2) enhancing the interoperability

of MongoDB with the e-I services, (3) enhancing access security, and (4) introducing temporary storage areas.72 The D4Science DSS adopts a par-

titioning strategy that uses a horizontally scalable architecture, with backup services for each storage node. This is the base layer of the D4Science

data sharing and computational services. Indeed, the storage system is used as a common storage area by the services and the users of the e-I. In

particular, it hosts software packages, files metadata, files in tabular (eg, CSV and Excel) and binary formats, and others.

Data sharing and collaboration facilities

The D4Science users and services are all endowed with an online workspace area. The workspace is a service that builds on the D4Science DSS and

is mainly used to upload, publish, and share data. In particular, virtual folders can be created (like in a virtual online file system), and each folder and

dataset can be shared with other specific users of the e-I or made publicly accessible through public URLs. Thus, the workspace is a shared online

file system that can act as a way for users to exchange data, metadata, software, parameters, and computational results. Beside this system, social

networking facilities are provided to users and services to foster collaboration. In particular, the D4Science social networking services produce

continuously updated lists of events/news, posted by users and applications through web interfaces. An emailing system allows exchanging messages

between users and services (for example, after a computation) and allows also users to invite other people to join the e-I.73

Geospatial data services

Services to manage environmental data are today integral parts of many e-Is.58,74,75 Environmental data are generally offered by several providers

under different formats. Usually, the formats promoted by the open geospatial consortium (OGC) are used, but these allow different representations

of the same data content (eg, web coverage service76 and OPeNDAP77 for raster data) and thus require services to manage several representations,

in order to retrieve and publish information. The D4Science includes services to discover (GeoNetwork OpenSource78) and access (Geoserver58

and Thredds 79) raster and vector geospatial datasets, eg, environmental and biological data. These services can possibly harvest information from

other OGC-compliant services and can publish data under OGC formats to visualise (eg, using the Web Map Service80) and to extract information.

The D4Science geospatial metadata are stored, indexed, and published on a GeoNetwork instance in ISO-19139 compliant format according to the

INSPIRE directives,81 in order to maximise the re-usability of the information by other e-Is.75 These metadata can be also discovered and retrieved

using the CSW and OAI-PMH standards. A Web application allows the D4science users to search for data and visualise/overlay maps 18.

Virtual research environments

Based on an e-Infrastructure, it is possible to define virtual research environments (VREs).82 The VREs are online collaborative environments,

each focussed on a specific topic or community and corresponding to a subset of resources of the e-I that are temporarily assigned to a group of

users. The D4Science allows creating VREs in short operational time, where users are endowed with processes, web interfaces, maps, and data that

are suited for their domain of study. For example, a VRE for marine biologists can contain web applications, databases, and maps that allow them
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to study marine-protected areas. Sharing data and information through the e-I services available in the VRE fosters multi-disciplinary activities.

This may result, for example, in the production of new degradation indicators for marine-protected areas. A VRE is usually moderated by a domain

expert, who can supervise and regulate the activities of the VRE participants by relying on proper e-I services.

3.1.2 Standards for services and executions descriptions

Web processing service

The web processing service (WPS) is an XML-based standard promoted by the OGC.83 In particular, it defines a standard to publish and discover

processes made available as a service. Processes can be algorithms, calculations, and models that possibly process geospatial data. Publishing a

process via WPS means assigning it a machine-readable information that describes the process metadata and the accepted parameters, the inputs,

and the outputs. This also allows building catalogues of processes using OGC-compliant cataloguing services (eg, GeoNetwork78). A WPS service

should be conceived to offer both simple and complex processes, because WPS descriptions are lightweight enough to enable very fast interactions.

The data to feed the processes can be made available either via public HTTP URLs or sent directly inside an HTTP-POST request. A WPS response

document is produced after a process execution and can contain other OGC documents, eg, geography markup language (GML) documents. The

WPS processes are also suited to be used in workflows that combine several of them, eg, the ones of the Galaxy, Taverna, and Knime84 Workflow

Management Systems.

The operations offered by a WPS service are mainly three15: (1) GetCapabilities, which allows to get the list of processes hosted by the service

(capabilities); (2) DescribeProcess, which returns a description of a process, of its input parameters, and expected output; and (3) Execute, which

allows executing a process by passing a list of parameters and input data, and getting the output embedded in an XML document.

The WPS standard presents limitations with respect to the requirements of e-Infrastructures. In particular, in an e-I the capabilities should be

specific of a certain community of practice, ie, the list of processes should change according to the context the service is serving (ie, the VRE). Instead,

WPS supports only one GetCapabilities operation per service. Further, WPS requires the output to be specified at process description phase, which

is not always the case for user-provided algorithms and for complex processes whose output is determined during the computation.85 Another

e-I requirement is to support security and accounting per user, in order to trace the activities and to allow interactions between selected users

only (eg, the VRE participants) or services. Finally, the WPS specifications do not give indications on how to implement a cloud computing system

completely based on WPS services, ie, WPS is still considered an interface to interact with non-distributed computational system, whereas several

benefits would be gained if all the services constituting a distributed computational system relied on WPS (Section 3.3). The WPS specifications

are independent on these considerations; nevertheless, these may affect the interaction with a service. In the next section, we will explain how our

system overcomes these limitations although based on WPS.

Provenance of a computation

Provenance is defined as the information about the entities, activities, and people involved in the production of a dataset or a “thing.”86 This infor-

mation allows assessing the quality and the reliability of the produced objects. When referring to computations and experiments, the provenance is

the set of information about input and output data, parameters, and metadata that allow to repeat or reproduce an experiment.87 Trusted datasets

(or experiments) are likely to be reused in several contexts, propagating correct citations at the same time. In that respect, provenance information

potentially maximises the longevity and re-usability of data and experiments.1 The authoritative W3C consortium promotes the PROV-O onto-

logical conceptual data model of provenance.16,88 An XML schema is also proposed (Prov-XML) to practically represent key concepts and produce

provenance documents for data and processes. Indeed, the PROV-O model is flexible enough to be applied to several domains and objects. The

main elements of the PROV-O model are (1) “entities” and “activities” with creation/usage/end times associated; (2) composite entities; (3) “agents”

responsible for entities and activities; (4) “bundles” that combine several provenance objects; (5) “properties” of entities; and (6) “collections”

of entities.

3.2 Architecture

DataMiner (DM) is a service based on the 52North WPS implementation,56 but it extends this implementation in order to meet the D4Science

e-Infrastructure requirements. The DM is developed with Java as a web service running on an Apache Tomcat instance,65 endowed with gCube

libraries. Further, DM offers a development framework to integrate algorithms and to interact with gCube-based e-Is (Section 3.3).

The complete DM architecture is made up of two sets of machines (clusters) that operate in a VRE (Figure 1): the master and the worker clusters.

In a typical deployment scenario, the master cluster is made up of a number of powerful machines (eg, Ubuntu 14.04.5 LTS x86 64 with 16 virtual

CPUs, 16 GB of random access memory, 100 GB of hard disk) managed by a load balancer that distributes the requests uniformly to these machines.

Each machine is endowed with a DM service that communicates with the D4Science IS to notify its presence and capabilities. The balancer is indexed

on the IS and is the main access point to interact with the DMs. The machines of the worker cluster have less local computational power (eg, Ubuntu

14.04.5 LTS x86 64 with 2 virtual CPUs, 2 GB of random access memory, 10 GB of disk) and serve cloud computations, as explained in the next section.

The master and the worker clusters are dynamically provisioned by the D4Science e-I through an orchestration engine based on the OpenStack

platform for cloud computing.89 Both the DM clusters are based on pre-cooked application templates predefined and registered on the IS, which

indicate: (1) the required resources, ie, servers, floating IPs, volumes, and security context (the VRE) to be used by a cluster; (2) the relations and
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FIGURE 1 Architecture of the gCube DataMiner system. On the right side, the architecture of the computational system is reported, with two
clusters of machines used for local and cloud computations, respectively. Also, a number of clients are indicated that are able to natively interact
with the system, ie, Java, R, QGis, Web browser, HTML pages through an OpenCPU service instance. On the left side, e-Infrastructure resources
are reported, which are indexed on the information system (IS) along with the DataMiner services and other possible external WPS services. All
the DataMiner services are able to write data on a distributed storage system and to organise/share the data through the D4Science
e-Infrastructure workspace

connections between these resources, eg, the assignment of a volume to a server. The orchestration engine is endowed with a management software

that uses Ansible scripts90 to configure multi-tier applications in a reliable and consistent manner. Autoscaling is planned to be released, based on the

metrics collected by the OpenStack Telemetry service.91 Changes to the clusters configurations are managed through the update of the templates

on the IS and are made by an e-I manager.

When a WPS request comes to the master cluster balancer, it is distributed to one of the cluster services (master DM). The DMs host processes

provided by several developers. In particular, two kinds of algorithms are hosted: “local” and ‘cloud” algorithms. Local algorithms are directly executed

on the master DMs and possibly use parallel processing on several cores and a large amount of memory. Instead, cloud algorithms use distributed

computing with a MapReduce approach and rely on the DMs in the worker cluster (cloud nodes). With respect to the standard 52 north implemen-

tation, DM adds a number of features. First, it returns a different list of processes according to the VRE in which the service is invoked. When an

algorithm is installed on a DM, it is also indexed on the IS as a resource. Thus, an e-Infrastructure manager can assign it to a number of VREs. When

invoked in that VRE, DM returns only the subset of hosted processes that have been assigned to the VRE. Thus, a VRE for agronomists will not report

algorithms suited for marine biologists or mathematicians and vice-versa. On the other hand, one may also want to create multi-disciplinary VREs

with algorithms belonging to different domains.

Although the load balancers are stateless services, the DMs are stateful services. In fact, when a computation starts, an asynchronous client can

ask about the status of the execution. The WPS protocol solves this issue by embedding a direct URL to the DM in the WPS answer produced to

acknowledge process acceptance. This URL points to the DM service that reports the status of the computation and the client will contact this

service directly. The drawback of this approach is that the WPS service should be directly reachable by clients.

Using a WPS standard in a cloud computing system allows a number of thin clients to use the processes. Third-party software (eg, the well-known

QGIS 60 and ArcMap92 for geospatial data manipulation) can be able to retrieve the capabilities of a WPS service and run remote processes. Further,

the gCube framework already offers clients for R and Java,93 and the WPS service can manage HTTP-GET requests. Thus, a process can be also

invoked using a common web browser, which makes it easy to repeat the execution of an experiment. Indeed, for each execution DM releases an

“equivalent HTTP-GET” request to repeat the experiment via web browser. Finally, an OpenCPU94 instance is provided in the D4Science e-I, which

transforms WPS objects into Javascript objects and allows for fast building of HTML applications.
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The DataMiner services rely on the security services of the D4Science e-I and require a user token95 to be provided for each operation. This token

is passed via basic HTTPS-access authentication, which is supported by most WPS and HTTP(S) clients. The token identifies both a user and a VRE,

and this information is used by DM to query the IS about the capabilities to be offered in that VRE, ie, the processes the user will be able to invoke

with that authorisation.

The DataMiner computations can take inputs from the D4Science workspace. Inputs can also come from workspace folders shared among several

users. This fosters collaborative experimentation already at the input selection phase. Inputs can also come from external repositories, because a file

can be provided either as an HTTP link or embedded in a WPS execution request. The outputs of the computations are written onto the D4Science

DSS and are immediately returned to a client at the end of the computation. Afterwards, an independent thread also writes this information on the

workspace. Indeed, after every successfully completed computation, a workspace folder is created that contains the input, the output, the parame-

ters of the computation, and a provenance document summarising this information. This folder can be shared with other people and used to execute

the process again. Thus, the complete information about the execution can be shared and reused. This is the main way by which DataMiner fosters

collaborative experimentation.

The DM processes can access to the resources available in a VRE by querying the IS. For example, it is possible to discover geospatial services,

maps, databases, and files. The DM Java development framework simplifies the interaction with the IS. Since the IS interface is HTTP-REST, too,

the interaction with the IS can be managed by the processes directly. Further, the DM development framework provides methods to transform

heterogeneous GIS formats into a numeric matrix and thus simplifies the effort to process geospatial data.39

DataMiner can also import processes from other WPS services. If a WPS service is indexed on the IS for a certain VRE, its processes descrip-

tions are automatically harvested, imported, and published among the DM capabilities for that VRE. During a computation, DM acts as a bridge

towards the external WPS systems. Nevertheless, DM adds provenance management, authorisation, and collaborative experimentation to the

original service.

3.3 Computing

DataMiner is able to execute processes written in several programming languages, eg, Java, R, and C. A process integration framework is

provided to developers 96 along with automatic tools to execute other programming languages through Java wrappers.97 Developing a DM

process requires extending one between two Java interfaces: the first (StandardLocalAlgorithm) is for processes that will run on one master

DM machine (possibly using several cores), the second (NodeAlgorithm) is for processes that will use the worker cluster with a MapReduce

approach.

The StandardLocalAlgorithm interface requires implementing an initialisation method (init()), a processing method (process()), and a

post-processing method (shutdown()). Inputs are declared in a specific method (setInputParameters()) with an associated type that is automatically

translated by DM into a WPS object, ie, a literal (integer, string, double, etc) or a complex input (CSV, XML, binary files, etc). The inputs are all passed

to the process as strings, which may contain the path to a file, the name of a table on a database (along with database coordinates), the value of a

literal input, etc. DataMiner is responsible for preparing the objects for a process. For example, it transforms CSV files into tables if required; oth-

erwise,it automatically downloads input files and passes their local paths to the process. Outputs are declared in a separate method (getOutput())

where the developer specifies the type and the list of the outputs that will be produced. If output cannot be defined before the execution of a process

(non-deterministic output), a Java Map object should be fulfilled with primitive or complex objects during the computation. This map will be trans-

formed by DM into a WPS complex data type containing a GML document. This GML document contains GML “feature collection members” 98 for

each output, with HTTP links associated with files (stored on the D4Science DSS) in the case of complex objects (Figure 2).

As for cloud computing algorithms (NodeAlgorithms), the interface requires specifying (1) a preliminary setup phase of the algorithm (setup(), part

of the Map process), (2) a post-processing method (postprocess()) that concludes the Reduce phase, and (3) a processing method that accepts indices

referring to a portion of the input to process. These indices are based on the assumption that the algorithm should process a Cartesian product of

two sets of elements (emphleft and right sets). Thus, the algorithm should provide the number of left elements (getNumberOfLeftElements()) and

of right elements (getNumberOfRightElements()) to process. DataMiner will autonomously establish which portion of these elements each cloud

node will process. The left and right indices associated with an input portion will be passed to the process method on the nodes. Thus, the Map phase

of the cloud computation is managed at service level (on a Master DM), not at process level. This allows refining or changing the DM Map algorithm

as soon as new features and services are available in the e-I (eg, to control or add resources), independently on the processes implementations.

Currently, this algorithm depends on the number of nodes available at the start of the computation. At the beginning of a computation, a Master

DM receives a processing request and executes the setup method of the process. Thereafter, the DM queries the IS for the current list of nodes

and the list of potential additional nodes that the e-I could instantiate according to the policies governing the VRE and the user’s computational

quota. The left x right product is divided into chunks that are equally virtually assigned to the estimated overall number of nodes (Map phase).

A WPS request is prepared for each chunk to be sent to the Worker cluster and the Master DM creates a thread pool for these requests. Each

node receiving the request will execute the process method on the indicated Left and Right elements. However, the size of the thread pool at the

start of the process is equal to the number of nodes that are really available. This number is less than the number of prepared threads, which is

indeed equal to the number of chunks. The pool size establishes how many threads should be instantiated concurrently, whereas the other ones will

be queued.
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FIGURE 2 Output of a DataMiner process that reports the results of an artificial neural network projection of the inputs (A,B) of an AND port.
The results are reported both as an in-line WPS complex data and as a public HTTP link pointing to the D4Science Distributed Storage System and
embedded in a GML document

During the computation, some machine could be unavailable. In this case, the other DM nodes will process more chunks. An internal queue on

each node limits the number of concurrent chunks that can be processed by the node (the default is four). The Master DM periodically queries the

IS to get the list of available nodes and possibly adjusts the size of the thread pool. If the number of chunks to process is still high after a certain

period, more machines are requested to the IS. In turn, the IS tries to instantiate new DMs through appropriate provisioning services. The Reduce

phase is called after all the chunks have been processed and follows the implementation of the postprocess() method of the process.

Each Master DM thread that processes a chunk of the computation is endowed with retry mechanisms that take care of possible computation

failures due to random factors, eg, a URL that is temporary unreachable, and a machine that exhausted the resources or that is busy. The maximum

number of retries is set to two times the number of available resources, because within this range the load balancer will likely send the request to a

fully working machine, if available.

The presented cloud computing approach assumes that all the DMs machines have the same processes installed. This may seem a strong

assumption, but it is managed by means of a fully automatic provisioning strategy (Section 3.2). In fact, a process running on DM is typically made up

of a Java archive (JAR) containing the process code and other dependencies, eg, auxiliary scripts, compiled programmes, Linux packages, and R pack-

ages. When a developer delivers a process, he/she should specify the set of dependencies required by that process. Auxiliary files should be made

available through the workspace and packages should be indicated by fulfilling proper forms.97 During the deployment phase on a DM instance, this

information is transformed into a sequence of Ansible playbook scripts90 that install the process and all the auxiliary packages on the DM machine.

This mechanism can be also invoked during a computation: based on the error returned by a computation on a node, the Master DM can recognise

that the node misses the process and then it invokes the Ansible installation scripts on that machine. This mechanism also makes the maintenance

of the DMs easier.

At the end of a computation, the produced complex outputs (files, images, etc) are saved on a temporary area of the D4Science DSS and returned as

HTTP links (possibly also embedded in the WPS answer if not too large). Afterwards, a separate thread creates a workspace folder where the inputs,

outputs, parameters, and provenance information are saved. A user will be able to retrieve a summary of the computation through the workspace,

where the computation folder will be a standalone, self-consistent information object containing all the information required to execute the
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FIGURE 3 Provenance of a DataMiner process that trained an artificial neural network. The computation is modelled as an “activity” and “entities”
are associated to inputs and output. The “entity” of the complex input (QName equal to d4s:IMPORTED) and output (QName equal to
d4s:COMPUTED) have internal links to the “activity” so that they can be separated from the provenance document while keeping a reference to
the computation that either used or produced them

experiment again or to be shared with other users. As for the provenance, a Prov-O XML document is produced for each computation in the

workspace folder (Figure 3). In this document, a process is represented as an “activity” with time and user information attached. The operator, the

VRE, the inputs, and the parameters are all represented as “entities.” The output is an entity, too, which contains a reference to the activity it was

generated from. Thus, this information can be extracted from the provenance document and can be reused to make the output recognisable as

belonging to a certain computation.

3.4 Web Interface

DataMiner offers a web GUI to the users of a VRE (Figure 4). On the left panel, the GUI presents the list of capabilities available in the VRE, which are

semantically categorised (the category is indicated by the process provider). For each capability, the interface calls the DescribeProcess operation

to get the descriptions of the inputs and outputs. When a user selects a process, in the right panel the GUI on-the-fly generates different fields

corresponding to the inputs (Figure 4A). Input data can be selected from the workspace (the button associated to the input opens the workspace

selection interface). The “Start Computation” button sends the request to the DM Master cluster, which is managed as explained in Section 3.3. The

usage and the complexity of the cloud computations are completely hidden to the user, but the type of the computation is reported as a metadata

in the provenance file.
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FIGURE 4 Web interface of the gCube DataMiner system in a D4Science VRE (BiodiversityLab). A, A training algorithm for an artificial neural
network is displayed; after the computation, the result (a trained network binary file) is reported under the completion bar, for downloading; B, In
the “Check the Computations” panel, the list of executed computations is displayed with the associated metadata; C, By pressing the “Show”
button, the metadata associated with a computation are reported in a user-friendly structured way, where inputs and outputs can be downloaded;
D, the “Access to the Data Space” panel allows retrieving the overall list of input and output data used in the computations, with medatata pointing
to the associated computation

In the end, a view of the workspace folders produced by the computations is given in the “Check the Computations” area (Figure 4B), where a

summary sheet of the provenance of the experiment can be obtained (“Show” button, Figure 4C). From the same panel, the computation can be

also re-submitted. In this case, the web interface reads the Prov-O XML information and rebuilds a computation request with the same parameters.

The computation folders may also include computations executed and shared by other users. Finally, the “Access to the Data Space” button allows

obtaining a list of the overall input and output datasets involved in the executed computations (Figure 4D), with provenance information attached

that refers to the computation that either used or executed the dataset.

4 RESULTS

In this section, we report the performance of DataMiner with respect to another mature system used by the D4Science e-I for biodiversity compu-

tation experiments (Statistical Manager or StatMan, abbreviated) and presented by Candela et al.18 A comparison between the two architectures

is displayed in Figure 5. In StatMan, a users' request is queued until one of the master machines is ready to process it. Further, the cloud computing

machines (generic workers) are separate services that execute processes as standalone, compiled software. Thus, this system requires a process to

be prepared also in a standalone version. On top of the cloud machines, a queue service hosts messages corresponding to the chunks of a compu-

tation, which are consumed by the generic workers one at time. This approach is common to several distributed computing systems10,44,48; thus,
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FIGURE 5 Comparison of the architectures of the (A) D4Science Statistical Manager (StatMan) and (B) DataMiner

StatMan may represent also other systems to a certain extent. For the comparison presented in this section, we used the same hardware config-

uration for both the architectures (StatMan and DataMiner); this approach ensures a fair comparison between the two. In particular, the master

machines in both the systems were Ubuntu 14.04.5 LTS x86 64 with 16 virtual CPUs, 16 GB of random access memory and 100 GB of hard disk,

and the Cloud computing machines were Ubuntu 14.04.5 LTS x86 64 with 2 virtual CPUs, 2 GB of random access memory, and 10 GB of hard disk.

Software versions updated to November 2016 were used for StatMan (v. 2.2.0) and DataMiner (v. 1.4.0), both running within Java Virtual Machines

v. 1.7.0_80. The machines communicated with direct 1 Gbps connections in both the compared systems and the machine provisioning mechanism

was the one reported in Section 3.2).

We compared the performance of the two systems on the BiOnym taxonomic search process.99 This algorithm searches for the best transcription

of a species scientific name in a copy of the authoritative FishBase names repository100 hosted by the D4Science DSS. This repository contains

taxonomic and biological information for 33 500 species with a size of approximately 30 GB (to Novemeber 2016) and an increasing complexity

and volume trend proper to big data. Each input species name may contain misspelling errors, and the process uses a combination of an expert

system (embedding taxonomic experts' knowledge) with string matching algorithms (eg, the Damerau-Levenshtein distance101) to find the “best”

transcription. In particular, given a species scientific name, BiOnym produces suggestions of (1) the most likely corresponding transcriptions to the

input name, (2) the related official taxonomic name authorships, and (3) metadata of the found records in the names repository (eg, the creation

date, the last modification date, and the belonging specimen collection). We selected this process because it is very used by marine biologists with

approximately 30 000 requests per month.13 BiOnym has a “local” version, which searches for one scientific name directly using a Master DM, and

a “Cloud” version that uses Cloud nodes. The Cloud version accepts a list of species as input, which is divided into several subsets that are possibly

processed by different machines. From a DM process perspective, this means that the left set has size one and the right set has size equal to the

number of species names to process. The same rationale was used by StatMan to partition the input.

In the comparison here reported, BiOnym was used to process 1024 species scientific names using the process' cloud version on both StatMan

and DataMiner. The input data file size was 100 kB and contained misspelled taxonomic names, whereas the output was a approximately 150 MB

file containing full taxonomic names suggestions. Default similarity threshold parameters99 were used for all the experiments. The differences in

the computational times are reported in Figure 6A using from 1 to 20 nodes. Overall, DM gets faster and faster with respect to StatMan as more

nodes are used: with 20 nodes, the time reduction is approximately 88%, whereas with one node it is approximately 3%. The reason is explained in

Figure 6B, which reports the time required by each step of the computational process in both the systems. The average single-node computation

is faster on DM, because the process is not executed in a standalone fashion. Indeed, StatMan executes a Java process by instantiating a new Java

Virtual Machine in which the process is executed, whereas DM re-uses the same Java Virtual Machine of the service. The DM post-processing

phase is faster, too, because the output is written on the D4Science DSS directly, whereas the workspace is used only after the computation and

independently. Further, the setup phase of the processes on StatMan first uploads the software with its dependencies on the DSS and then engages
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FIGURE 6 Difference in the performance of the same process (BiOnym99, applied to 1024 species scientific names) running on DataMiner with
respect to the Statistical Manager reported (A) at the variation of the number of a computational nodes and (B) per step of the computational
process

the nodes using a Java SOAP-based client. Instead, by using WPS and pre-installed software, DM skips this preparation phase and makes the nodes

engaging phase faster through lightweight REST interactions.

One DM can concurrently manage up to a pre-configured number of processes (four by default). The other requests are queued using the

thread pool of the Tomcat server that hosts the DM application. One “local” BiOnym computation (ie, not using the cloud nodes) requires approx-

imately 10 seconds to finish. Thus, running 20 simultaneous BiOnym “local” requests on DM requires: approximately 12 seconds to manage the

first 4 computations; approximately 24 seconds for the second 4 requests (that have waited 12 seconds for the first group to finish); approximately

36 seconds for the third group (12 overall computations); approximately 48 seconds for the fourth group (16 overall computations); and approxi-

mately 60 seconds for the fifth group (20 overall computations). It is notable that the concurrency introduces some delay due to the use of shared

machine resources.

The advantages brought by DM with respect to StatMan are mainly due to its architecture and to the full exploitation of the WPS standard. One

major advantage is that all the DM services publish their capabilities using a standard, which enhances the interoperability with other external ser-

vices and software with respect to using custom clients. Further, the master and the worker clusters are managed by fast load balancers that are

able to dynamically add machines and to ignore them when offline. The cloud nodes are exact replicas of the master nodes with less computational

resources. This allows using the worker cluster directly from clients and fosters alternative usages of the cloud computing system.102 For example,

external users of the e-I (authorised with proper tokens) may also implement their own cloud computations by invoking the worker cluster in custom

workflows. Further, the worker cluster can be used instead of the master cluster to support a community of practice (ie, a VRE), when low compu-

tational power is required but the number of requests is high. Thus, the DM architecture maximises the reuse of the machines, which is particularly

useful for small e-Infrastructures.

5 CONCLUSIONS

In this paper, we have presented a peculiar computational system that goes towards the requirements of modern science paradigms, especially

because it blends together cloud computing and e-Infrastructures. Our system adopts a collaborative approach, standards to describe both the

hosted methods and the executed processes, and a flexible provisioning of resources. With respect to other distributed computing systems, it satis-

fies additional requirements brought by e-Infrastructures, and the benefits are many. First, the usage of a process is improved, thanks to the possible

interoperability with data preparation and harmonisation services (eg, previous studeis103–105), which speed up the typical time-consuming phase of

data preparation for an experiment. Further, providing a shared DSS and an experimentation workspace area allows reusing the results of processes

and also fosters multi-disciplinary experiments. Users could also be services or external machines (eg, sensors) that produce experimental data at
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different frequencies and time scales, while other processes analyse these data and take decisions. In other words, it would be straightforward to

build a blackboard-like system106 using DataMiner. The same facilities are automatically offered to desktop software supporting WPS. Further, gen-

erating and storing provenance information improves the possibility to repeat and reproduce an experiment executed by other scientists. Finally,

since processes and service installation is fully automatic, it is easy to deploy DataMiner on a number of machines providers.

Currently, DM is hosted by virtual machines of the European Grid Infrastructure (EGI), the Slovak Academy of Sciences (IISAS), the Göttin-

gen University and the Max Planck Society (GWDG), the Supercomputing Center of Galicia (CESCGA), the Universitat Politècnica de València

(UPV-GRyCAP), the University of Bari (ReCaS), the National Italian Institute of Nuclear Physics (INFN), the National Research Council of Italy (CNR),

and the University of Athens. DataMiner is used in several European projects (eg, BlueBRIDGE,107 ENVRIPlus,108 Parthenos, and 109 SoBigData.eu
110) and by international organisations (eg, the Food and Agriculture Organisation of the United Nations and the National Oceanic and Atmospheric

Administration) in appropriate VREs, also for educational purposes. The DM hosts approximately 200 processes and serves overall 55 VREs in

D4Science,* exploited by more than 2500 scientists in 44 countries. The hosted processes are written with the Java, R, Fortran, C, Octave, and

Python programming languages and have been provided by developers with heterogeneous expertise (eg, biologists, mathematicians, agronomists,

physicists, and data analysts).

E-Infrastructures are valid computer science systems that may solve issues brought by big data and new science paradigms if properly imple-

mented. The DataMiner system goes in this direction, although further development is required to improve crucial points that do not depend on

DataMiner only, eg, native interoperability with services developed by other providers, management of many standards to access and retrieve data,

staging Big Data on the computing machines and managing near real-time processing.

The focus on interoperability and standards makes DataMiner interesting also for industrial processes, eg, for the fully automatic and inter-

connected processes of the smart cities and factories of the Industry 4.0 trend.111 These systems could benefit from the domain-specific,

expert-provided and state-of-the-art processes (eg, artificial neural networks, support vector machines, deep learning processes, and Monte Carlo

methods112) hosted by DataMiner and executed in short time. Indeed, as also suggested by the modern science paradigms, it is more and more evi-

dent that the isolation of computer science systems and domain experts is no more sustainable with respect to the complexity of modern scientific

problems.

ACKNOWLEDGMENT

This work has received funding from the European Union's Horizon 2020 research and innovation programme under the BlueBRIDGE project

(Grant agreement No 675680).

REFERENCES

1. Hey T, Tansley S, Tolle KM, et al. The Fourth Paradigm: Data-Intensive Scientific Discovery, Vol. 1. WA: Microsoft Research Redmond; 2009.

2. Manyika J, Chui M, Brown B, et al. Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Inst. 2011.

3. EU Commission. Open science (open access). https://ec.europa.eu/programmes/horizon2020/en/h2020-section/open-science-open-access; 2016.

4. Andronico G, Ardizzone V, Barbera R, et al. e-Infrastructures for e-Science: A global view. J Grid Comput. 2011;9(2):155-184.

5. Waldrop MM. Science 2.0. Sci Am. 2008;298(5):68-73.

6. Attiya H, Welch J. Distributed Computing: Fundamentals, Simulations, and Advanced Topics, Vol. 19. New Jersey: John Wiley & Sons, Inc.; 2004.

7. Yang LT, Guo M. High-Performance Computing: Paradigm and Infrastructure, Vol. 44. New Jersey: John Wiley & Sons, Inc.; 2005.

8. Pike RC, Thompson KL. Distributed computing system. US Patent 5,623,666. Accessed April 22, 1997.

9. Hunter AA, Macgregor AB, Szabo TO, Wellington CA, Bellgard MI. Yabi: An online research environment for grid, high performance and cloud
computing. Source Code Biol Med. 2012;7(1):1.

10. Wang L, Tao J, Ranjan R, et al. G-Hadoop: MapReduce across distributed data centers for data-intensive computing. Futur Gener Comput Syst.
2013;29(3):739-750.

11. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster computing with working sets. HotCloud. 2010;10:10-10.

12. National Research Council of Italy. The open-source gCube system to build distributed e-Infrastructures. www.gcube-system.org; 2016.

13. National Research Council of Italy. The gCube DataMiner usage statistics. https://gcube.wiki.gcube-system.org/gcube/Data_Mining_Facilities#
Current_usage_statistics; 2017.

14. National Research Council of Italy. The D4Science distributed e-Infrastructure. http://www.d4science.org; 2016.

15. Schut P, Whiteside A. OpenGIS web processing service. OGC project document. http://www.opengeospatial.org/standards/wps; 2007.

16. Lebo T, Sahoo S, McGuinness D, et al. Prov-o: the prov ontology. W3C Recommendation. 2013;30.

17. European Grid Infrastructure. The European grid infrastructure federated cloud. www.egi.eu/federation/; 2016.

18. Candela L, Castelli D, Coro G, Pagano P, Sinibaldi F. Species distribution modeling in the cloud. Concurrency Computat Pract Exper. 2016;28(4):
1056-1079.

19. Coro G, Candela L, Pagano P, Italiano A, Liccardo L. Parallelizing the execution of native data mining algorithms for computational biology. Concurrency
Computat Pract Exper. 2015;27(17):4630-4644.

*Accessible after free registration at https://services.d4science.org

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/open-science-open-access
www.gcube-system.org
https://gcube.wiki.gcube-system.org/gcube/Data_Mining_Facilities#Current_usage_statistics
https://gcube.wiki.gcube-system.org/gcube/Data_Mining_Facilities#Current_usage_statistics
http://www.d4science.org
http://www.opengeospatial.org/standards/wps
www.egi.eu/federation/
https://services.d4science.org


14 of 16 CORO ET AL.

20. Kaisler S, Armour F, Espinosa JA, Money W. Big data: Issues and challenges moving forward. Paper presented at: 2013 46th Hawaii International
Conference on System Sciences (HICSS). Waikoloa, HI: IEEE; 2013.

21. Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU. The rise of big data on cloud computing: review and open research issues. Inf Syst.
2015;47:98-115. https://doi.org/10.1016/j.is.2014.07.006. http://www.sciencedirect.com/science/article/pii/S0306437914001288

22. Chen M, Mao S, Liu Y. Big data: a survey. Mob Netw Appl. 2014;19(2):171-209.

23. Fernández A, del Río S, López V, et al. Big data with cloud computing: An insight on the computing environment, MapReduce, and programming
frameworks. Wiley Interdiscip Rev: Data Min Knowl Disc. 2014;4(5):380-409.

24. Chen H, Chiang RH, Storey VC. Business intelligence and analytics: From big data to big impact. MIS Q. 2012;36(4):1165-1188.

25. Wu X, Zhu X, Wu GQ, Ding W. Data mining with big data. IEEE Trans Knowl Data Eng. 2014;26(1):97-107.

26. Russom P et al. Big data analytics. TDWI best practices report, fourth quarter. 2011:1-35.

27. McAfee A, Brynjolfsson E, Davenport TH, Patil DJ, Barton D. Big data. The management revolution. Harvard Bus Rev. 2012;90(10):61-67.

28. Ranjan R. Streaming big data processing in datacenter clouds. IEEE Cloud Comput. 2014;1(1):78-83.

29. Tsuchiya S, Sakamoto Y, Tsuchimoto Y, Lee V. Big data processing in cloud environments. Fujitsu Sci Tech J. 2012;48(2):159-168.

30. Demchenko Y, Grosso P, De Laat C, Membrey P. Addressing big data issues in scientific data infrastructure. Paper presented at: 2013 International
Conference on Collaboration Technologies and Systems (CTS). San Diego, CA, USA: IEEE; 2013.

31. Chaudhuri S. What next?: A half-dozen data management research goals for big data and the cloud. Paper presented at: Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI symposium on Principles of Database Systems. Scottsdale, AZ, USA: ACM; May 20-24, 2012.

32. Agrawal D, Das S, El Abbadi A. Big data and cloud computing: Current state and future opportunities. Paper presented at: Proceedings of the 14th Inter-
national Conference on Extending Database Technology, EDBT/ICDT '11. ACM; 2011; New York, NY, USA. https://doi.org/10.1145/1951365.1951432.
https://doi.acm.org/10.1145/1951365.1951432

33. Chen Y, Alspaugh S, Katz R. Interactive analytical processing in big data systems: A cross-industry study of MapReduce workloads. Proc VLDB Endow.
2012;5(12):1802-1813. https://doi.org/10.14778/2367502.2367519

34. Santana F, Fonseca R, Saraiva A, Corrêa P, Bravo C, Giovanni R. OpenModeller-an open framework for ecological niche modeling: analysis and future
improvements. Paper presented at: World Conference on Computers in Agriculture and Natural Resources. Orlando, Florida, USA; 2006.

35. Stockwell DR, Beach JH, Stewart A, Vorontsov G, Vieglais D, Pereira RS. The use of the GARP genetic algorithm and Internet grid computing in the
Lifemapper world atlas of species biodiversity. Ecol Model. 2006;195(1):139-145.

36. Jetz W, McPherson JM, Guralnick RP. Integrating biodiversity distribution knowledge: Toward a global map of life. Trends Ecol Evol. 2012;27(3):151-159.

37. Yang C, Goodchild M, Huang Q, et al. Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? Int J Digit Earth.
2011;4(4):305-329.

38. Nativi S, Mazzetti P, Saarenmaa H, Kerr J, Tuama ÉÓ. Biodiversity and climate change use scenarios framework for the GEOSS interoperability pilot
process. Ecological Informatics. 2009;4(1):23-33.

39. Coro G, Pagano P, Ellenbroek A. Comparing heterogeneous distribution maps for marine species. GIScience Remote Sens. 2014;51(5):593-611.

40. Coro G, Magliozzi C, Ellenbroek A, Kaschner K, Pagano P. Automatic classification of climate change effects on marine species distributions in 2050
using the AquaMaps model. Environ Ecol Stat. 2016;23(1):155-180.

41. Coro G, Large S, Magliozzi C, Pagano P. Analysing and forecasting fisheries time series: Purse seine in Indian Ocean as a case study. ICES Journal of
Marine Science: Journal du Conseil. 2016:fsw131.

42. Yang C, Huang Q, Li Z, Liu K, Hu F. Big data and cloud computing: innovation opportunities and challenges. Int J Digit Earth. 2017;10(1):13-53.

43. Yang C, Yu M, Hu F, Jiang Y, Li Y. Utilizing cloud computing to address big geospatial data challenges. Comput Environ Urban Syst. 2017;61:120-128.

44. Thain D, Tannenbaum T, Livny M. Distributed computing in practice: The Condor experience. Concurrency Computat Pract Exper. 2005;17(2-4):323-356.

45. Laure E, Edlund A, Pacini F, et al. Programming the grid with gLite: CERN; 2006.

46. Foster I, Kesselman C. Globus: a metacomputing infrastructure toolkit. Int J High Perform Comput Appl. 1997;11(2):115-128.

47. Mell P, Grance T. The NIST definition of cloud computing. National Inst Stand Technol. 2009;53(6):50.

48. Apache Software Fundation. Apache Hadoop. http://hadoop.apache.org; 2011.

49. Worldprogramming. WPS configuration for Hadoop. https://www.worldprogramming.com/docs/wps/documentation/3.2/07%20interop_for_hadoop/
WPS-Configuration-for-Hadoop.pdf/WPS-Configuration-for-Hadoop-en.pdf; 2016.

50. Amazon Inc. Amazon elastic compute cloud (Amazon EC2). Amazon Elastic Compute Cloud (Amazon EC2); 2010.

51. Google Inc. Google Cloud Platform. cloud.google.com; 2016.

52. Microsoft Inc. Microsoft Azure Platform. azure.microsoft.com; 2016.

53. Hull D, Wolstencroft K, Stevent R, et al. Taverna: A tool for building and running workflows of services. Nucleic Acids Res. 2006;1(34):729-732.

54. Giardine B, Riemer C, Hardison RC, et al. Galaxy: A platform for interactive large-scale genome analysis. Genome Res. 2005;10(15):1451-1455.

55. Berthold MR, Cebron N, Dill F, et al. KNIME-the Konstanz information miner: version 2.0 and beyond. AcM SIGKDD explorations Newsletter.
2009;11(1):26-31.

56. 52North. The 52North WPS Service. http://52north.org/communities/geoprocessing/wps/; 2016.

57. Zoo-Project. Zoo open WPS platform. www.zoo-project.org; 2016.

58. Steiniger S, Hunter AJ. Free and open source GIS software for building a spatial data infrastructure. Geospatial Free and Open Source Software in the
21st Century. Proceedings of the first Open Source Geospatial Research Symposium, OGRS 2009. Part 5. 2012:247-261. https://doi.org/10.1007/
978-3-642-10595-1_15

59. Degree. Open source software for spatial data infrastructures. www.deegree.org; 2016.

60. QGIS. A free and open source geographic information system. http://qgis.org/en/site/; 2016.

https://doi.org/10.1016/j.is.2014.07.006
http://www.sciencedirect.com/science/article/pii/S0306437914001288
https://doi.org/10.1145/1951365.1951432
https://doi.acm.org/10.1145/1951365.1951432
https://doi.org/10.14778/2367502.2367519
http://hadoop.apache.org
https://www.worldprogramming.com/docs/wps/documentation/3.2/07%20interop_for_hadoop/WPS-Configuration-for-Hadoop.pdf/WPS-Configuration-for-Hadoop-en.pdf
https://www.worldprogramming.com/docs/wps/documentation/3.2/07%20interop_for_hadoop/WPS-Configuration-for-Hadoop.pdf/WPS-Configuration-for-Hadoop-en.pdf
cloud.google.com
azure.microsoft.com
http://52north.org/communities/geoprocessing/wps/
www.zoo-project.org
https://doi.org/10.1007/978-3-642-10595-1_15
https://doi.org/10.1007/978-3-642-10595-1_15
www.deegree.org
http://qgis.org/en/site/


CORO ET AL. 15 of 16

61. Pollock N, Williams R. E-infrastructures: How do we know and understand them? Strategic ethnography and the biography of artefacts. Comput
Supported Coop Work (CSCW). 2010;19(6):521-556.

62. Chapman A, Russell R. JISC shared infrastructure services synthesis study: A review of the shared infrastructure for the JISC Information Environment.
http://opus.bath.ac.uk/17890/; 2006.

63. Hey T, Trefethen AE. Cyberinfrastructure for e-Science. Science. 2005;308(5723):817-821.

64. Redkar T, Guidici T, Meister T. Windows Azure Platform, Vol. 1. Cham, Switzerland: Springer; 2011.

65. Apache Software Fundation. Apache Tomcat. http://tomcat.apache.org/; 2016.

66. National Research Council of Italy. SmartGears - gCube system. Java libraries to turn Servlet-based containers and applications into gCube resources
transparently. https://wiki.gcube-system.org/gcube/SmartGears; 2016.

67. National Research Council of Italy. The D4Science information system. https://wiki.gcube-system.org/gcube/Information_System; 2016.

68. Dimakis AG, Godfrey PB, Wu Y, Wainwright MJ, Ramchandran K. Network coding for distributed storage systems. IEEE Trans Inf Theory.
2010;56(9):4539-4551.

69. Lakshman A, Malik P. Cassandra: a decentralized structured storage system. ACM SIGOPS Oper Syst Rev. 2010;44(2):35-40.

70. Banker K. MongoDB in action. Shelter Island, New York: Manning Publications Co.; 2011.

71. Gilbert S, Lynch N. Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News. 2002;33(2):51-59.

72. National Research Council of Italy. The D4Science distributed storage management system. https://wiki.gcube-system.org/gcube/Storage_
Management; 2016.

73. Assante M, Candela L, Castelli D, Coro G, Lelii L, Pagano P. Virtual research environments as-a-service by gCube. PeerJ Preprints. 2016;4:e2511v1.

74. Groot R, McLaughlin JD. Geospatial data infrastructure: concepts, cases, and good practice. Oxford, UK: Oxford University Press; 2000.

75. Trumpy E, Coro G, Manzella A, et al. Building a European geothermal information network using a distributed e-Infrastructure. International Journal of
Digital Earth. 2016;9(5):499-519.

76. Shekhar S, Xiong H. Web Coverage Service. Encyclopedia of GIS. Cham, Switzerland: Springer; 2008:1255-1255.

77. Cornillon P, Gallagher J, Sgouros T. OPeNDAP: Accessing data in a distributed, heterogeneous environment. Data Sci J. 2003;2:164-174.
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