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In this manuscript, we propose a stable algorithm for computing the zeros of Althammer 
polynomials. These polynomials are orthogonal with respect to a Sobolev inner product, and are 
even if their degree is even, odd otherwise. Furthermore, their zeros are real, distinct, and located 
inside the interval (−1, 1). The Althammer polynomial 𝑝𝑛(𝑥) of degree 𝑛 satisfies a long recurrence 
relation, whose coefficients can be arranged into a Hessenberg matrix of order 𝑛, with eigenvalues 
equal to the zeros of the considered polynomial.

Unfortunately, the eigenvalues of this Hessenberg matrix are very ill–conditioned, and standard 
balancing procedures do not improve their condition numbers. Here, we introduce a novel 
algorithm for computing the zeros of 𝑝𝑛(𝑥), which first transforms the Hessenberg matrix into a 
similar symmetric tridiagonal one, i.e., a matrix whose eigenvalues are perfectly conditioned, and 
then computes the zeros of 𝑝𝑛(𝑥) as the eigenvalues of the latter tridiagonal matrix. Moreover, 
we propose a second algorithm, faster but less accurate than the former one, which computes 
the zeros of 𝑝𝑛(𝑥) as the eigenvalues of a truncated Hessenberg matrix, obtained by properly 
neglecting some diagonals in the upper part of the original matrix. The computational complexity 
of the proposed algorithms are, respectively, ( 𝑛3

6
), and (𝓁2𝑛), with 𝓁≪𝑛 in general.

1. Introduction

The analytic theory of orthogonal polynomials with respect to a Sobolev inner product associated with a vector of probability 
measures has received a lot of attention from the pioneering works by Althammer [1] and Schäfke [12], taking into account a 
2–dimensional vector of measures whose components are the Lebesgue measure supported on the interval (−1, 1).

From the point of view of approximation theory, in [7,9] they have been studied in a more general framework when the 
2–dimensional vector of measures is a coherent pair. Therein, a simple algebraic connection formula between Sobolev orthogo-

nal polynomials and the standard orthogonal polynomials with respect to the first measure has been stated. An overview on Sobolev 
orthogonal polynomials can be found in the survey [10].

In [14,4,2] the numerical aspects of Sobolev orthogonal polynomials have been studied and, more recently, in [13] the problem 
of generating a finite sequence of Sobolev orthogonal polynomials has been formulated as a Hessenberg inverse eigenvalue problem. 
The spectral information can be analyzed in terms of the Jordan matrix containing the eigenvalues of the Hessenberg matrix and the 
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normalized first entries of its eigenvectors. This represents an extension of the well known Golub–Welsch approach [5] in the context 
of classical orthogonality theory.

In this work, we focus on the computation of the zeros of Althammer polynomials [1], which are orthogonal with respect to a 
Sobolev inner product with the Legendre weight on the interval (−1, 1). They are also called Legendre–Sobolev orthogonal polynomials 
[10].

Given an Althammer polynomial 𝑝𝑛(𝑥) of degree 𝑛, it is even if 𝑛 is even, and it is odd otherwise. Furthermore, Althammer 
polynomials satisfy a higher order recurrence relation, and its zeros, real, distinct, and located inside the interval (−1, 1) [3,12], can 
be computed as the eigenvalues of a Hessenberg matrix of order 𝑛 obtained by properly arranging the coefficients of the recurrence 
relation in matrix form.

Unfortunately, the eigenvalues of the aforementioned Hessenberg matrix are very ill–conditioned [13], and standard balancing 
procedures [11] do not improve their condition numbers.

In [13], the problem of computing the zeros of 𝑝𝑛(𝑥) was formulated as a Hessenberg inverse eigenvalue problem and two methods 
were proposed to solve it, one based on the Arnoldi iteration with full reorthogonalization and the other based on a procedure using 
plane rotations.

Here, we propose a stable algorithm, denoted by 1, for computing the zeros of 𝑝𝑛(𝑥), which first transforms the Hessenberg 
matrix into a similar symmetric tridiagonal one, and then computes the zeros of 𝑝𝑛(𝑥) as the eigenvalues of the latter tridiagonal 
matrix. The overall computational complexity is ( 𝑛36 ).

Moreover, observing that the absolute values of the entries different from zero, in each row of the upper triangular part of the 
Hessenberg matrix, are in a decreasing order and that many of them are very tiny, a faster modification of the proposed algorithm 
is described, denoted by 2. This computes the zeros of 𝑝𝑛(𝑥) as the eigenvalues of a truncated Hessenberg matrix, obtained by 
neglecting diagonals, with entries below a certain tolerance, in the upper part of the original matrix. Its computational complexity is 
(𝓁2𝑛), with 𝓁≪𝑛 in general.

The paper is organized as follows. Notations are introduced in Section 2. The main features of Althammer polynomials are described 
in Section 3. The proposed algorithms are described in Section 4. Some numerical tests are reported in Section 6, followed by the 
conclusions.

2. Notations

Upper–case letters 𝐴, 𝐵, …, denote matrices and 𝐴𝑚,𝑛, or simply 𝐴𝑚 if 𝑚 = 𝑛, denotes matrices of size (𝑚, 𝑛). The entry (𝑖, 𝑗) of a 
matrix 𝐴 is denoted by 𝑎𝑖,𝑗 .

Submatrices are denoted by the colon notation of Matlab, i.e., 𝐴(𝑖 ∶ 𝑗, 𝑘 ∶ 𝑙) is the submatrix of 𝐴 obtained by the intersection 
of rows 𝑖 to 𝑗 and columns 𝑘 to 𝑙, and 𝐴(𝑖 ∶ 𝑗, ∶) and 𝐴(∶, 𝑘 ∶ 𝑙) are the rows of 𝐴 from 𝑖 to 𝑗 and the columns of 𝐴 from 𝑘 to 𝑙, 
respectively.

The diagonal matrix with entries 𝑑1, … , 𝑑𝑛 is denoted by diag(𝑑1, … , 𝑑𝑛).
Bold lower–case letters 𝒙, 𝒚, … , 𝝎, …, denote vectors, and 𝑥𝑖 denotes the 𝑖th element of the vector 𝒙.

Lower–case letters 𝑥, 𝑦, … , 𝜆, 𝜃, …, denote scalars.

The notation ⌊𝑦⌋ stands for the largest integer not exceeding 𝑦 ∈ℝ+.

The identity matrix of order 𝑛 is denoted by 𝐼𝑛.
The vector 𝒆𝑘,𝑛, or simply 𝒆𝑘 if there is no ambiguity, denotes the 𝑘th vector of the canonical basis of ℝ𝑛 , i.e., 𝒆𝑘,𝑛 = 𝐼𝑛(∶, 𝑘).
The notation ‖ ⋅ ‖𝑝 denotes any of the 𝑝–norms.

3. Althammer polynomials

Althammer polynomials 𝑝𝑛(𝑥), 𝑛 = 0, 1, …, are orthogonal with respect to the Sobolev inner product

(𝑣,𝑤)𝑆 =

1

∫
−1

𝑣(𝑥)𝑤(𝑥)𝑑𝑥+ 𝛾

1

∫
−1

𝑣′(𝑥)𝑤′(𝑥)𝑑𝑥, 𝛾 > 0. (1)

The monic Althammer polynomial (MAP) 𝑝𝑛(𝑥) of degree 𝑛 ≥ 0 is odd if 𝑛 is odd, and it is even if 𝑛 is even (odd–even property) [1]. 
It satisfies the recurrence relation

𝑝𝑛(𝑥) = 𝑥𝑝𝑛−1(𝑥) −
⌊ 𝑛−22 ⌋∑
𝑖=0

ℎ2𝑖+𝑖0 ,𝑛𝑝2𝑖+𝑖0−1(𝑥), 𝑖0 =

{
1 if 𝑛 even,

2 if 𝑛 odd,
(2)

where

ℎ𝑖,𝑗 =
(𝑥𝑝𝑗−1, 𝑝𝑖−1)𝑆
(𝑝𝑖−1, 𝑝𝑖−1)𝑆

. (3)

Observe that, due to the odd–even property of MAPs, ℎ𝑖,𝑗 = 0 if 𝑖 + 𝑗 is even. The coefficients ℎ𝑖,𝑗 in (3) can be computed by the 
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modified Chebyshev algorithm or by the Stieltjes algorithm in an accurate way [2,4,3].
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Fig. 1. Left: condition numbers of the eigenvalues 𝜆𝑖 of 𝐻𝑛,𝛾 (“∗”), for 𝑛 = 60, and 𝛾 = 100, and condition numbers of the eigenvalues 𝜆(𝑏)
𝑖

, obtained applying the 
function balance.m of Matlab to 𝐻𝑛,𝛾 (“⋄”), on a logarithmic scale. Right: eigenvalues of 𝐻𝑛,𝛾 , for 𝑛 = 60, and 𝛾 = 100, computed by eig.m of Matlab in double 
precision (“∗”) and variable precision with 100 digits (“+”). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Let 𝐻𝛾 be the semi–infinite matrix

𝐻𝛾 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ1,2 ℎ1,4 ℎ1,6

ℎ2,1 ℎ2,3 ℎ2,5 ⋱

ℎ3,2 ℎ3,4 ℎ3,6

ℎ4,3 ℎ4,5 ⋱

ℎ5,4 ⋱

⋱ ⋱

⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ℎ𝑖+1,𝑖 = 1, 𝑖 = 1,2,… ,

and

𝒑𝑛(𝑥) =
[
𝑝0(𝑥), 𝑝1(𝑥), … 𝑝𝑛−1(𝑥), 𝑝𝑛(𝑥)

]𝑇
, 𝑛 ∈ ℕ.

Then, (2) can be written in a matrix form

𝒑
𝑇
𝑛−1(𝑥)𝐻𝑛,𝛾 = 𝑥𝒑

𝑇
𝑛−1(𝑥) − 𝑝𝑛(𝑥)𝒆

𝑇
𝑛 , (4)

where 𝐻𝑛,𝛾 =𝐻𝛾 (1 ∶ 𝑛, 1 ∶ 𝑛).
The zeros of 𝑝𝑛(𝑥) are real, distinct, and inside the interval (−1, 1) [3,12]. Moreover, by (4), 𝑥̄ is a zero of 𝑝𝑛(𝑥) if and only if 𝑥̄ is 

an eigenvalue of 𝐻𝑛,𝛾 . Therefore, the computation of the zeros of 𝑝𝑛(𝑥) reduces to that of the eigenvalues of 𝐻𝑛,𝛾 .
Unfortunately, the eigenvalues of 𝐻𝑛,𝛾 are very ill–conditioned, independently of the choice of 𝛾 in (1), and the Matlab function

balance.m, commonly used as a balancing technique [11], does not improve their condition numbers (see Fig. 1, left plot). As a 
consequence, the Matlab function eig.m yields unreliable results if used in double precision (see Fig. 1, right plot).

A novel algorithm for computing the zeros of 𝑝𝑛(𝑥), i.e., the eigenvalues of 𝐻𝑛,𝛾 , in an efficient and accurate way in double 
precision is described in the next Section.

4. Computation of the zeros of Althammer polynomials

The algorithm we propose for computing the eigenvalues of 𝐻𝑛,𝛾 can be divided into three steps:

Step 1. Reduction algorithm transforming 𝐻𝑛,𝛾 into a similar tridiagonal one 𝑇𝑛,𝛾 .
Step 2. Transformation of 𝑇𝑛,𝛾 into a similar symmetric tridiagonal one 𝑇̂𝑛,𝛾 .
212

Step 3. Computation of the eigenvalues of 𝑇̂𝑛,𝛾 .
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Fig. 2. Reduction of 𝐻𝑛,𝛾 , 𝑛 = 8, to the similar matrix 𝑇𝑛,𝛾 by a sequence of elementary similarity transformations. The nonzero entries of the matrix are denoted by 
“×”. At each step, the rows and columns involved in the computation are indicated by the arrows “→” and “↓”, respectively, the entry of the matrix to be eliminated 
is denoted by “⊗” and the modified entries are denoted by “×”.

Fig. 3. Maxima of the absolute values of the multipliers involved in the reduction algorithm of the matrices 𝐻𝑛,𝛾 , 𝑛 = 100, 𝛾 = 10𝑘, 𝑘 =−15, −14, … , −1, 0, 1, … , 14, 15.

4.1. Step 1. Reduction algorithm transforming 𝐻𝑛,𝛾 into a similar tridiagonal one 𝑇𝑛,𝛾

This step is accomplished by applying a sequence of elementary Gaussian similarity transformations

𝑀𝑖,𝑗 = 𝐼𝑛 + 𝜂𝑖+1,𝑗𝒆𝑖+1𝒆𝑇𝑗 ,
𝑖 = 1,2,… , 𝑛− 3,
𝑗 = 𝑖+ 3, 𝑖+ 5,… , 𝑖+ 2

⌊
𝑛−𝑖−1

2

⌋
+ 𝑖+ 1,

where 𝜂𝑖+1,𝑗 are the so called multipliers [6, p. 112], such that

𝑇𝑛,𝛾 =𝑅−1
𝑛,𝛾𝐻𝑛,𝛾𝑅𝑛,𝛾

is a tridiagonal matrix, with

𝑅𝑛,𝛾 =
𝑛−3∏
𝑖=1

⌊
𝑛−𝑖−1

2

⌋
+𝑖+1∏

𝑖+3
𝑀𝑖,𝑗 .

This step is depicted in Fig. 2 in a graphical fashion, and its computational complexity is ( 𝑛36 ).
The stability of this reduction depends on the size of the multipliers. In [6, p. 130] it is shown that, if the absolute values of all 

the multipliers are bounded by 1, 𝑇𝑛,𝛾 is computed in a stable way.

Example 1. The matrices 𝐻𝑛,𝛾 are computed by the modified Chebyshev algorithm, and the reduction algorithm is applied to them, 
evaluating the maximum of the multipliers in absolute value, for 𝑛 = 100 and 𝛾 = 10𝑘, 𝑘 = −15, −14, … , −1, 0, 1, … , 14, 15. The results 
are displayed in Fig. 3. It can be noticed that, for all considered matrices, the maximum in absolute value of the multipliers is below 
213

0.4. Therefore, in all considered cases, the tridiagonal matrices 𝑇𝑛,𝛾 are computed in a stable way.
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Table 1

Matlab function reduction.m.

function[H,w,ell] = reduction(H,n)

% reduction of the upper Hessenberg matrix to a similar tridiagonal one

w=0;

for i=1:n-3

for j=i+3:2:n

v=-H(i,j)/H(i,i+1);

w=max(w,abs(v));

for k=i:2:i+2

H(k,j)=v*H(k,i+1)+H(k,j);

end

for k=i+2:2:n

H(i+1,k)=H(i+1,k)-v*H(j,k);

end

end

end

Table 2

Matlab function DscaleT.m.

function[T] = DscaleT(T,n)

% balancing the tridiagonal matrix 𝑇𝑛,𝛾
% input: 𝑇𝑛,𝛾
% 𝑛, size of the matrix

% output: 𝑇̂𝑛,𝛾
for i=1:n-1

T(i,i+1)=sqrt(T(i,i+1)*T(i+1,i));

T(i+1,i)=T(i,i+1);

end

The Matlab function reduction.m, implementing this step, is described in Table 1.

4.2. Step 2. Transformation of 𝑇𝑛,𝛾 into a similar symmetric tridiagonal one 𝑇̂𝑛,𝛾

Although the matrix 𝑇𝑛,𝛾 is tridiagonal with 0 on the main diagonal, the condition numbers of its eigenvalues are still comparable 
to those of the eigenvalues of 𝐻𝑛,𝛾 . Since the eigenvalues of 𝑇𝑛,𝛾 are real, there exists a diagonal matrix 𝐷𝑛 such that

𝑇̂𝑛,𝛾 =𝐷−1
𝑛 𝑇𝑛,𝛾𝐷𝑛

is symmetric tridiagonal and, hence, its eigenvalues are perfectly conditioned.

The Matlab function DscaleT.m, implementing this step, is reported in Table 2.

4.3. Step 3. Computation of the eigenvalues of 𝑇̂𝑛,𝛾

Let

𝑇̂𝑛,𝛾 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1

𝑡1 𝑡2

𝑡2 ⋱

⋱ 𝑡𝑛−2

𝑡𝑛−2 𝑡𝑛−1

𝑡𝑛−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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and let 𝑍𝑛 be the permutation matrix 𝑍𝑛 = 𝐼𝑛(∶, 𝒛𝑛), where 𝒛𝑛 = [1 ∶ 2 ∶ 𝑛, 2 ∶ 2 ∶ 𝑛]𝑇 . Then
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Fig. 4. Left: size of the absolute values of the entries of 𝐻𝑛,𝛾 , for 𝑛 = 60 and 𝛾 = 100, on a logarithmic scale. Right: condition numbers of 𝑅𝑛,𝛾𝐷𝑛, 𝑛 = 10, 20, … , 190, 200, 
on a logarithmic scale.

𝑍𝑇𝑛 𝑇̂𝑛,𝛾𝑍𝑛 =∶

[
𝐵𝑛̂

𝐵𝑇
𝑛̂

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1

𝑡2 𝑡3

⋱ ⋱

𝑡𝑛−2 𝑡𝑛−1

𝑡1 𝑡2

𝑡3 ⋱

⋱ 𝑡𝑛−2

𝑡𝑛−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, if 𝑛 even,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1

𝑡2 𝑡3

⋱ ⋱

𝑡𝑛−3 𝑡𝑛−2

𝑡𝑛−1

𝑡1 𝑡2

𝑡3 ⋱

⋱ 𝑡𝑛−3

𝑡𝑛−2 𝑡𝑛−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, if 𝑛 odd,

with 𝐵𝑛̂ bidiagonal, 𝐵𝑛̂ ∈ℝ𝑚̄×𝑛̄, where 𝑚̄ = 𝑛̄ = ⌊ 𝑛2⌋ if 𝑛 even, 𝑚̄ = ⌊ 𝑛2⌋ + 1, 𝑛̄ = ⌊ 𝑛2⌋ if 𝑛 odd.

Let 𝜎1 > 𝜎2 >⋯ > 𝜎⌊ 𝑛2 ⌋ be the nonzero singular values of 𝐵𝑛̂. Then, there exists an orthogonal matrix 𝑄𝑛 ∈ ℝ𝑛×𝑛 such that [6, 
p. 486]

𝑄𝑇𝑛

[
𝐵𝑛̂

𝐵𝑇
𝑛̂

]
𝑄𝑛 = diag(𝜎1, 𝜎2,… , 𝜎⌊ 𝑛2 ⌋,−𝜎1,−𝜎2,… ,−𝜎⌊ 𝑛2 ⌋, 0

⏟⏟⏟
𝑚̄−𝑛̄

).

Therefore, the positive eigenvalues of 𝐻𝑛,𝛾 can be computed as the singular values of 𝐵𝑛̂ by the function svd.m, available in Matlab, 
with ( 𝑛22 ) computational complexity.

Remark 1. The size of the absolute values of the entries of 𝐻𝑛,𝛾 , for 𝑛 = 60 and 𝛾 = 100, computed by the modified Chebyshev 
algorithm [2,4,3], are displayed in Fig. 4 (left) on a logarithmic scale. It can be observed that

|ℎ𝑖,𝑗 | ≥ |ℎ𝑖,𝑗+2|, 𝑖 = 1,… , 𝑛− 1, 𝑗 = 𝑖+ 1,… , 𝑛− 2, 𝑖+ 𝑗 odd,

i.e., the absolute values of the entries different from zero, in each row of the upper triangular part of 𝐻𝑛,𝛾 , are in a decreasing order. 
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Moreover, many of them are very tiny.
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Table 3

Matlab function reduction1.m.

function[H,w,ell] = reduction1(H,n,tol)

% reduction of the truncated upper Hessenberg matrix to a similar tridiagonal one

ell=0;

j=4;

while ell==0 & j < n

if abs(H(1,j))>tol

j=j+2;

else

ell=j;

end

end

w=0;

for i=1:n-3

for j=i+3:2:min(i+ell-1,n)

v=-H(i,j)/H(i,i+1);

w=max(w,abs(v));

for k=i:2:i+2

H(k,j)=v*H(k,i+1)+H(k,j);

end

for k=i+2:2:min(i+ell-1,n)

H(i+1,k)=H(i+1,k)-v*H(j,k);

end

end

end

Let 𝐸𝑛,𝛾,𝜏 be the matrix whose elements are those of 𝐻𝑛,𝛾 that are, in absolute value, below a certain tolerance 𝜏 . Then, by the 
Bauer–Fike theorem [6, p. 357], if 𝜆 is an eigenvalue of 𝐻𝑛,𝛾 and 𝜇 is an eigenvalue of 𝐻𝑛,𝛾 −𝐸𝑛,𝛾,𝜏 ,

|𝜆− 𝜇| ≤ 𝜅2(𝑋𝑛)‖𝐸𝑛,𝛾,𝜏‖2,
where 𝑋𝑛 =𝑅𝑛,𝛾𝐷𝑛𝑍𝑛𝑄𝑛.

In Fig. 4 (right), the condition numbers 𝜅2(𝑅𝑛,𝛾𝐷𝑛), for 𝑛 = 10, 20, … , 200, and 𝛾 = 100, are displayed on a logarithmic scale. We 
point out that 𝜅2(𝑅𝑛,𝛾𝐷𝑛) = 𝜅2(𝑋𝑛).

It can be noticed that 𝜅2(𝑅𝑛,𝛾𝐷𝑛) grows as 10
3
10 𝑛−1. Extensive tests of the same type were carried out by considering different 

values of 𝛾 and the condition numbers of 𝑅𝑛,𝛾𝐷𝑛 exhibited a similar behavior.

Let 𝐻̃𝑛,𝛾,𝜏 ∶=𝐻𝑛,𝛾 −𝐸𝑛,𝛾,𝜏 . Hence, the eigenvalues of 𝐻̃𝑛,𝛾,𝜏 can differ from those of 𝐻𝑛,𝛾 by a quantity that depends on 𝜅2(𝑅𝑛,𝛾𝐷𝑛), 
although this can be an overestimate.

Therefore, neglecting entries of 𝐻𝑛,𝛾 that are below a certain tolerance 𝜏 in absolute value, would reduce the overall complexity 
of the numerical method, but it could affect the accuracy of the eigenvalues.

Nevertheless, here we propose a simple criterion to determine which entries of 𝐻𝑛,𝛾 can be discarded, given a certain tolerance 
𝜏 , by just looking for the column index 𝓁 in the first row corresponding to the first nonzero entry, below 𝜏 in absolute value, i.e.,

|ℎ1,𝓁−2| ≥ 𝜏 and |ℎ1,𝓁| < 𝜏.
Then, the reduction algorithm is applied to the banded Hessenberg matrix triu(𝐻𝑛,𝓁−2). The corresponding Matlab function re-
duction1.m, requiring (𝓁2𝑛) computational complexity, is described in Table 3.

5. On the stability of the proposed algorithm

If an algorithm for computing the eigenvalues of an 𝑛 × 𝑛 diagonalizable matrix 𝐻 produces the matrix Λ̂ ∶= diag(𝜆̂1, ..., 𝜆̂𝑛) of 
(appropriately ordered) approximate eigenvalues 𝜆̂𝑖, such that

(𝐻 +Δ)𝑋̂ = 𝑋̂Λ̂, where 𝑋̂−1𝑋̂ = 𝐼𝑛 and ‖Δ‖2 ≤(𝜖)‖𝐻‖2, (5)

then the algorithm is said to be backward stable, because the computed eigenvalues 𝜆̂𝑖 are the exact eigenvalues of a slightly perturbed 
matrix 𝐻 +Δ, where Δ is known as the backward error.

Let us consider the following modification of the Eckhart–Young Theorem [6, p. 79].

Lemma 1. Let the smallest singular value of the 𝑛 × 𝑛 matrix 𝐻 − 𝜆̂𝑖𝐼𝑛 be equal to 𝜎𝑛, then the smallest perturbation Δ to make the matrix 
𝐻 + Δ − 𝜆̂𝑖𝐼𝑛 singular has norm ‖Δ‖2 equal to 𝜎𝑛, and is given by Δ = 𝑢𝑛𝜎𝑛𝑣𝑇𝑛 , where 𝑢𝑛 and 𝑣𝑛 are the singular vectors of 𝐻 − 𝜆𝑖𝐼𝑛, 
corresponding to 𝜎𝑛.

We can not prove the backward stability for the proposed algorithm, but the next best property shows that for each computed 
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eigenvalue 𝜆̂𝑖, there exists a backward error Δ𝑖 such that
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(𝐻 +Δ𝑖)𝑥̂𝑖 = 𝑥̂𝑖𝜆̂𝑖, where 𝑥̂𝑇𝑖 𝑥̂𝑖 = 1 and ‖Δ𝑖‖2 ≤(𝜖)‖𝐻‖2. (6)

According to Lemma 1, this property is guaranteed if for each eigenvalue 𝜆̂𝑖, 𝜎𝑛(𝐻 − 𝜆̂𝑖𝐼𝑛) = 𝜖𝑖‖𝐻‖2, with 𝜖𝑖 =(𝜖), since, in this 
case, we can set Δ𝑖 ∶= 𝑥̂𝑖𝜖𝑖𝑦𝑇𝑖 ‖𝐻‖2, where 𝑥̂𝑖 and 𝑦̂𝑖 are the normalized singular vectors associated with the singular value 𝜖𝑖‖𝐻‖2 of 
(𝐻 − 𝜆̂𝑖𝐼𝑛). The property (5) follows from property (6) if and only if there exists a common perturbation matrix Δ for all eigenvalues 
𝜆̂𝑖 in (6). Furthermore, from Lemma 1 it follows that

‖Δ‖2 ≥max
𝑖
𝜎𝑛(𝐻 − 𝜆̂𝑖𝐼𝑛).

Therefore, the corresponding algorithm will be backward stable only if

max
𝑖
𝜎𝑛(𝐻 − 𝜆̂𝑖𝐼𝑛) =(𝜖). (7)

It is worth stressing that test (7) is only necessary for the backward stability of the algorithm, but it is not sufficient. Nevertheless, 
it is a reasonable indication that the algorithm might be backward stable. In Section 6, test (7) is performed successfully for all the 
considered matrices.

If an algorithm for computing the eigenvalues of an 𝑛 × 𝑛 diagonalizable matrix 𝐻 produces the matrix Λ̂ of (appropriately 
ordered) approximate eigenvalues 𝜆̂𝑖, such that

max
𝑖
(|𝜆𝑖 − 𝜆̂𝑖|) ∶= ‖Λ− Λ̂‖2 =(𝜖)‖𝐻‖2,

then the algorithm is forward stable in an absolute sense. If, on the other hand,

max
𝑖

|||||𝜆𝑖 − 𝜆̂𝑖𝜆𝑖

||||| ∶= ‖(Λ − Λ̂)‖2‖Λ‖2 =(𝜖),
then the algorithm is forward stable in a relative sense. In Section 6 we analyze this for the different algorithms described in this 
paper.

6. Numerical examples

The proposed numerical method, and its variant based on computing the eigenvalues of 𝐻̃𝑛,𝛾,𝜏 , denoted respectively by 1 and 
2, are compared with the two algorithms proposed in [13], denoted respectively by 3 and 4, in terms of efficiency and accuracy.

In these first set of tests we analyze the absolute and relative forward stability of the method, since we look at the absolute and 
relative forward error in the computed eigenvalues1

The entries of 𝐻𝑛,𝛾 are computed by the modified Chebyshev algorithm [2,4,3]. Its eigenvalues, computed by the Advanpix 
Multiprecision Computing Toolbox2 for Matlab [8] with precision of 200 digits and rounded in double precision by the

Matlab function double.m, are considered as the exact ones and denoted by 𝜆(0)
𝑖

, 𝑖 = 1, … , 𝑛.
These eigenvalues are compared with those computed by 1 , 2, 3 and 4, denoted respectively by 𝜆(1)

𝑖
, 𝜆(2)
𝑖

, 𝜆(3)
𝑖

, and 
𝜆
(4)
𝑖

, 𝑖 = 1 … , 𝑛, such that

𝜆
(𝑘)
𝑖

< 𝜆
(𝑘)
𝑖+1 , 𝑖 = 1,… , 𝑛− 1, 𝑘 = 0,… ,4.

The considered matrices are 𝐻𝑛,𝛾 , with 𝛾 = 10𝑘, 𝑘 = −15, −14, … , −1, 0, 1, … , 14, 15, and 𝑛 = 100, 200, 300. Their norm ‖𝐻𝑛,𝛾‖2 is 
always of the order of 1.

The accuracy and the efficiency of the considered methods, for 𝑛 = 100, 200, 300, are reported in Fig. 5, Fig. 6, and Fig. 7, re-

spectively. For each considered matrix, the maxima of the absolute errors of the computed eigenvalues applying the considered 
methods

max
𝑖=1,…,𝑛

|(𝜆(0)
𝑖

− 𝜆(𝑘)
𝑖

)|, 𝑖 = 1,… , 𝑛, 𝑖 = 1,… ,4,

and the execution times are displayed in the figures (left, and right, respectively).

Concerning the algorithm 2, the tolerance is fixed to the machine precision 𝜖 ≈ 2.22 × 10−16. The number 𝓁 of considered 
diagonals are reported in Fig. 8.

We can observe that, although 2 is the fastest algorithm, the computed eigenvalues are not accurate if 𝛾 ≤ 0, while the algorithm 
1 is the most accurate and slightly slower than 2 .

In these experiments, the algorithm 1 appears to be forward stable, both in an absolute and relative sense. But this of course is 
not a proof that the algorithm is forward stable.

1 We consider 𝐻𝑛,𝛾 matrices with 𝑛 even, since 0 is an eigenvalue of 𝐻𝑛,𝛾 for 𝑛 odd, and the relative forward error cannot be computed. On the other hand, for the 
proposed algorithms 1 and 2 , the eigenvalue 0 is exactly detected when 𝑛 is odd.

2 We preferred to consider the eigenvalues computed by Advanpix Multiprecision Computing Toolbox as the exact ones since the eigenvalues computed 
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by using variable precision arithmetic of Matlab where not reliable for matrices of size equal to 200.
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Fig. 5. Left and center: maxima of |(𝜆(0)
𝑖

−𝜆(𝑘 )
𝑖

)|∕|(𝜆(0 )
𝑖

| and |(𝜆(0)
𝑖

−𝜆(𝑘 )
𝑖

)|, respectively, 𝑘 = 1, … , 100, 𝑖 = 1, … , 4, of 𝐻100,𝛾 computed by the methods 1, 2, 3 , 
and 4 , for 𝛾 = 10𝑘 , 𝑘 = −15, −14, … , −1, 0, 1, … , 14, 15, on a logarithmic scale. Right: execution time in seconds for computing the whole spectrum of 𝐻100,𝛾 by the 
methods 1, 2, 3 , and 4 , on a logarithmic scale.

Fig. 6. Left and center: maxima of |(𝜆(0)
𝑖

−𝜆(𝑘 )
𝑖

)|∕|(𝜆(0 )
𝑖

| and |(𝜆(0)
𝑖

−𝜆(𝑘 )
𝑖

)|, respectively, 𝑘 = 1, … , 200, 𝑖 = 1, … , 4, of 𝐻200,𝛾 computed by the methods 1, 2, 3 , 
and 4 , for 𝛾 = 10𝑘 , 𝑘 = −15, −14, … , −1, 0, 1, … , 14, 15, on a logarithmic scale. Right: execution time in seconds for computing the whole spectrum of 𝐻200,𝛾 by the 
methods 1, 2, 3 , and 4 , on a logarithmic scale.

Fig. 7. Left and center: maxima of |(𝜆(0)
𝑖

−𝜆(𝑘 )
𝑖

)|∕|(𝜆(0 )
𝑖

| and |(𝜆(0)
𝑖

−𝜆(𝑘 )
𝑖

)|, respectively, 𝑘 = 1, … , 300, 𝑖 = 1, … , 4, of 𝐻300,𝛾 computed by the methods 1, 2, 3 , 
and 4 , for 𝛾 = 10𝑘 , 𝑘 = −15, −14, … , −1, 0, 1, … , 14, 15, on a logarithmic scale. Right: execution time in seconds for computing the whole spectrum of 𝐻300,𝛾 by the 
methods 1, 2, 3 , and 4 , on a logarithmic scale.

To check the backward stability of the proposed method 1 , for each matrix 𝐻𝑛,𝛾 , 𝑛 = 100, 200, and 300, 𝛾 = 10−𝑘, 𝑘 =
−15, −14, … , −1, 0, 1, … , 14, 15, we perform test (7).

For each computed eigenvalue 𝜆(1)
𝑖

, 𝑖 = 1, … , 𝑛, the smallest singular value of 𝐻𝑛,𝛾 −𝜆
(1)
𝑖

𝐼𝑛 is computed and then the maximum 
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𝑟𝛾,𝑛 is taken, i.e.,
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Fig. 8. Number of diagonals selected by 2 in the matrices 𝐻𝑛,𝛾 , 𝑛 = 100,200,300, 𝛾 = 10−𝑘, 𝑘 = −15,−14,… ,−1,0,1,… ,14,15.

Fig. 9. max𝑖=1,…,𝑛 𝜎𝑛(𝐻𝑛,𝛾 − 𝜆
(1)
𝑖
𝐼𝑛), 𝛾 = 10−𝑘, 𝑘 = −15,−14,… ,−1,0,1,… ,14,15., 𝑛 = 100.

Fig. 10. max𝑖=1,…,𝑛 𝜎𝑛(𝐻𝑛,𝛾 − 𝜆
(1)
𝑖
𝐼𝑛), 𝛾 = 10−𝑘, 𝑘 = −15,−14,… ,−1,0,1,… ,14,15., 𝑛 = 200.

𝑟𝛾,𝑛 = max
𝑖=1,…,𝑛

𝜎𝑛(𝐻𝑛,𝛾 − 𝜆
(1)
𝑖

𝐼𝑛), 𝛾 = 10−𝑘, 𝑘 = −15,−14,… ,−1,0,1,… ,14,15.

The results are depicted in Figs. 9, 10, and 11, for 𝑛 = 100, 200, and 300, respectively.

In all considered cases, the value of 𝑟𝛾,𝑛 is of the order of the machine precision.

7. Conclusions

A novel algorithm for computing the zeros of Althammer polynomials has been proposed. It relies on the computation of the 
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eigenvalues of the associated Hessenberg matrix, which are very ill–conditioned.
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Fig. 11. max𝑖=1,…,𝑛 𝜎𝑛(𝐻𝑛,𝛾 − 𝜆
(1)
𝑖
𝐼𝑛), 𝛾 = 10−𝑘, 𝑘 = −15,−14,… ,−1,0,1,… ,14,15., 𝑛 = 300.

This problem is overcome transforming the given Hessenberg matrix into a similar symmetric tridiagonal one. The proposed 
algorithm has ( 𝑛36 ) computational complexity.

The performance of the novel algorithm is compared with that of other algorithms recently proposed in the literature, in terms of 
accuracy and efficiency.

Extensive tests show that the former method outperforms the latter ones.

A more efficient but less accurate variant of the novel algorithm is also proposed, consisting in neglecting some diagonals of the 
Hessenberg matrix, with (𝓁2𝑛), 𝓁≪𝑛, computational complexity, where 𝓁 denotes the number of kept diagonals in the Hessenberg 
matrix.

Finally, it is worth stressing that the proposed algorithm is tailored to compute the eigenvalues of the Hessenberg matrices 𝐻𝑛,𝛾 , 
since all the involved elementary matrices constructed in Step 1 of the algorithm have the absolute values of the multipliers bounded 
by 1. For other cases of Sobolev orthogonal polynomials having only real zeros, the key point is to apply a similarity transformation to 
the involved Hessenberg matrix, in order to transform its main tridiagonal part into a symmetric tridiagonal matrix, i.e., Step 2 of the 
proposed algorithm should be performed first. This step should reduce the condition numbers of the eigenvalues of the Hessenberg 
matrix. Then, the eigenvalues of the transformed matrix can be computed, for instance, by the 𝑄𝑅 method.
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