Fast and Compact Set Intersection through
Recursive Universe Partitioning

Giulio Ermanno Pibiri
ISTI-CNR, Pisa, Italy

giulio.ermanno.pibiri@isti.cnr.it
Abstract

We present a data structure that encodes a sorted integer sequence in small space
allowing, at the same time, fast intersection operations. The data layout is carefully designed
to exploit word-level parallelism and SIMD instructions, hence providing good practical
performance. The core algorithmic idea is that of recursive partitioning the universe of
representation: a markedly different paradigm than the widespread strategy of partitioning
the sequence based on its length. Extensive experimentation and comparison against several
competitive techniques shows that the proposed solution embodies an improved space/time
trade-off for the set intersection problem.

1 Introduction

The problem we take into account is that of introducing a compressed representation
for a sorted integer sequence S[0..n) whose values are drawn from a universe u >
S[n — 1], so that intersecting two such sequences is done efficiently. We assume S to
be strictly increasing, i.e., S[i — 1] < S[i] for 0 < i < n. In this work we focus on
the static version of the problem, thus we are not allowed to insert or delete integers
from §. The most notable application of this problem is the efficient storage of
inverted lists [14, 21]. Many different techniques were developed to represent integer
sequences, each of them exposing a different space/time trade-off. We point the
reader to the survey by Zobel and Moffat [21] for general background on inverted
indexes, and to that by Pibiri and Venturini [14] for a description and discussion of
compression techniques. The key point is that, for all such different representations,
the efficient execution of intersection relies on partitioning the sequence because of
the following simple observation: when we ask whether the integer x is present or not
in the sequence S, we can safely skip all partitions of § whose maximum integer is
smaller than x. In fact, since S is sorted, none of the integers smaller than x should
be considered. Based on this observation, integer sequences have been traditionally
partitioned by cardinality (CP), i.e., consecutive elements are grouped together into
fixed-size or variable-size partitions as exemplified in Figure 1a. In this setting, prior
work [2, 8, 11] has extensively demonstrated that fast intersection is achieved by
resorting to the nextGEQ(z) primitive that returns the smallest integer z € S that is
greater-than or equal-to x. The algorithm is as follows. Suppose that &; is shorter
than Sy. We search S, for the first value x of S with Sy.nextGEQ(z): if the value z
returned by the operation is equal to x then it is a member of the intersection and
we can just repeat this search step for the next value of &;; otherwise z gives us a
candidate value to be searched next, indeed allowing to skip the searches for all values

foo—o00c0————o000jooo—0—0—0—00}-0000000oloo

0 19 35 44 47
(a) cardinality partitioning — CP
foo—oo0co}———}000000fo—0——0}—00—0oojoooooooo]
0 6 22 31 39 47

(b) universe partitioning — UP

Figure 1: Example of a sequence of 27 values represented as dots drawn from a
universe of size 47 as partitioned by cardinality (CP) and by universe (UP), using
partitions of 8 integers. We also indicate the maximum integer in each partition.

l01111010

foo—o00 u\TI'—°—0i—"—°“f“m“'i

0 1 2 3 4 5

fo——o——ot}oo —jo ¢u{—|—o—|—0—"o|

11011111

Figure 2: A graphical visualization of the algorithm intersecting two sequences parti-
tioned by universe: partitions 1 and 3 can be safely skipped because they are empty
in (at least) one of the two sequences. The arrows represent the searches issued by
the intersection algorithm we described for CP using nextGEQ as if it were used to
intersect partitions of identifier 2.

between z and z. In fact, since we have that z > x, S3.nextGEQ(y) will be equal to
z also for all values y such that + < y < z, hence none of such integers can be a
member of the intersection.

Our Contributions. In this work, instead, we explore the applicability of another
partitioning paradigm for efficient set intersection in compressed space: partitioning
by universe (UP). In a simple implementation of the paradigm, a universe span s
is chosen and all integers x of S such that sk < = < s(k + 1), are compressed
into the same k-th partition. For example, Figure 1b shows the same sequence as
in Figure 1la now partitioned by universe with a span of size 8. Also this strategy
permits to skip over the sequence’s values because only partitions relative to the same
universe have to be intersected. In this case, intersection proceeds by identifying all
common partitions and, for each of them, by resolving a smaller intersection of at
most s integers. Depending on the cardinality of a partition, different compression
strategies and intersection algorithms can be adopted, thus not necessarily relying on
the nextGEQ primitive.

To better understand what we mean, let us discuss the graphical visualization in
Figure 2, showing two sequences being intersected. Only partitions 0, 2, 4, and 5 are
identified by the algorithm because these are in common between the two sequences;
partitions 1 and 3 are discarded. More importantly, if partition 2, is represented in
both cases as a binary vector of 8 bits, i.e., the set {17,18,19,20,22} as 01111010
and the set {16,17,19,20,21,22,23} as 11011111, then the intersection can be pre-
formed by just computing the bitwise AND between the two bytes: AND(01111010,
11011111) = 01011010. This is considerably faster than issuing the sequences of 5

nextGEQ searches (represented with the arrows in the picture) that the intersection
algorithm for CP would perform to compute the same result.

After discussing related results in Section 2, we then describe a tree-shaped data
structure in Section 3 that recursively partitions the universe to better adapt to the
distribution of the integers being encoded, thus attaining good space effectiveness.
Furthermore, this approach guarantees that — at any level of the tree — the k-th slices
of two different sequences, say S; and S,, are aligned to the same universe boundary,
which makes the use of binary vectors, word-level parallelism, and SIMD instructions
natural key ingredients for fast intersection.

We experimentally compare our proposal against a rich set of competitive ap-
proaches in Section 4 using large real-world datasets, showing that its enhanced in-
tersection efficiency paired with good space effectiveness provides a new space/time
trade-off for the problem.

Although in this work we focus on the intersection operation for space constraints,
we remark that the data structure also supports other operations very efficiently,
such as: sequential decoding; union queries, i.e., S; USs; nextGEQ and random access
(given an index 0 < i < n, returns S[i]). We point the interested reader to our
related and extended version of the paper [12] and to Section 6 of [14] for further
experiments. Lastly, the whole C4++ implementation is freely available on GitHub at
https://github.com/jermp/s_indexes.

2 Previous Work

Apart from the encoding of sparse bitvectors [6, 17], the universe partitioning paradigm
has been used sporadically in the coding and data structure design areas. We mention
an old, but yet very meaningful, example: the Elias-Fano encoding algorithm [4, 5].
Elias-Fano represents S in at most n¢ + n + [u/2?] bits, and it can be shown that
choosing ¢ = |log,(u/n)| minimizes the number of bits of the encoding [4]. In other
words, the values of S are partitioned by universe into chunks containing at most 2%
integers each. We refer to this split as parametric, because it is dependent on the
value of u and n.

But a non-parametric split is possible as well. This other approach is used by
Roaring [9], a practical data structure that has been shown to outperform all pre-
viously proposed bitmap indexes and now widely used in commercial applications.
Specifically, Roaring partitions u into chunks of 2'¢ integers and represents all the
integers falling into a chunk in two different ways according to the cardinality of the
chunk: if a chunk contains less than 4096 elements, then it is represented as a sorted
array of 16-bit integers; otherwise it is represented as a bitmap of 2'¢ bits. Finally,
extremely dense chunks can also be represented with runs. For example, the two runs
(13,42)(60,115) mean that all the integers 13 < x < 13 4+ 42 and 60 < z < 60 + 115
belong to the chunk.

While set intersection over uncompressed sequences has received much attention
(for example, see [1, 3] and references therein), to the best of our knowledge, only a
few previous works have studied the problem over compressed representations. Given
a set of many sequences (i.e., an inverted index), Culpepper and Moffat [2] proposed

a framework called HYB+M2 that, given a parameter B, represents all sequences
having an average gap smaller than or equal to B with binary vectors and all other
sequences using compressed byte-codes (e.g., Variable-Byte). Intersections between
a compressed sequence and a bitvector are resolved by checking whether each integer
in the sequence belongs to the bitvector using a series of constant-time operations.
Lemire et al. [8] optimized this approach by relying on the parallelism of SIMD
instructions to speed up sequential decompression and intersections, achieving the
fastest query timings for the problem reported in the literature.

We compare against all such results in our experimental analysis in Section 4,
using many billions of compressed integers.

Also Kane and Tompa [7] resort to bitvectors for low-gap regions of the sequences.
In particular, they exhibit good results using a custom reordering of document iden-
tifiers that produces highly skewed distributions near the front of the sequences. We
make use, instead, of the traditional and mostly-used URL assignment in our experi-
ments. Unfortunately they did not make the code available to replicate their results.
However, Lemire et al. [8] evaluated their approach and found it to be slower than
HYB+M2 optimized with SIMD, against which we compare our approach in Section 4
(and improve upon).

3 Recursive Universe Partitioning

Data Structure. From a high-level point of view, we logically represent & using a
tree of height at most 3, where the root has fanout s; and its children have fanout s,.
The root of the tree logically corresponds to the interval [0,) that is partitioned into
slices spanning s integers each (except, possibly, the last slice which may contain less
integers). In what follows, we refer to such s;-long slices as chunks. A header array
H; is used to classify chunks into 4 different types according to their cardinality: full,
dense, sparse, and empty. Full chunks, i.e., containing exactly s; integers, and empty
chunks (containing no integers at all) are represented implicitly by their types. A
dense chunk spanning the k-th universe slice [s1k,s1(k + 1)) is represented with a
bitmap of s; bits by setting the i-th bit if the integer i — s1k belongs to the slice. In
particular, we regard a chunk to be dense if its cardinality is at least s;/2. Doing so
guarantees that the average number of bits spent for each integer belonging to a dense
chunk is at most 2. Therefore, full, empty and dense chunks have no children. Instead,
sparse chunks are encoded by re-applying the same strategy: since every sparse chunk
now logically corresponds to a (smaller) universe slice of size sq, the interval [0, s1) is
partitioned into slices spanning sq integers each (again, except possibly the last one).
We refer to such sg-long slices as blocks. As before, a header array H, is used to
distinguish between different block types. However, given the smaller universe slice,
we only distinguish between two block types, namely dense and sparse, in order to
better amortize the cost of Hy. In particular, a dense block is encoded with a bitmap
of s9 bits; a sparse block is represented with a sorted array of [log, s9]-bit integers:
if ¢ is its cardinality, we require that c[log, s2] < s bits, otherwise we go back to the
previous (dense) case.

In what follows, we fix s; = 2'6 and s, = 2%, Since we consider the case where
u < 232 and for our choice of s; = 2!, the number of chunks is always at most 26,
thus we encode this quantity into 16 bits. Similarly, it follows that each sparse chunk
is sliced into at most 2% blocks. With this choice of s; and s,, a dense chunk is a
bitmap of 1024 bytes; a dense block is a bitmap of 32 bytes; a sparse block whose
cardinality is c is a sorted array of 8-bit integers, hence taking c bytes overall.

For each non-empty block [k28, (k + 1)2®), the array H, stores its identifier & and
its cardinality. Both quantities are always at most 2%, thus they take one byte each.
Knowing the cardinality 0 < ¢ < 2% of a block we derive the number of bytes needed
by its representation. If ¢ < 28/8 — 1 = 31, the block is considered to be sparse, thus
it takes ¢ bytes; otherwise it is dense and takes 32 bytes. Therefore, a sparse block
consumes at most (2% /8 —2) x 848 = 248 bits. Note that we do not set the sparseness
threshold to 2% /8 = 32 because otherwise a sparse block would consume at most 256
bits that is equal to the cost of a dense block and a bitmap would suffice.

For each non-empty chunk [k2'6, (k + 1)21¢), the array H,; stores, instead, the
following quantities: its identifier k, its cardinality, and the number of bytes needed
by its encoding. Similarly to the case of a sparse block, we require the encoding of a
sparse chunk to take less than 2'° bits, otherwise a bitmap of 26 bits would suffice.
Therefore, each of these 3 quantities easily fits into a 16-bit integer. Although we
could derive the type of a chunk from its cardinality as done for a block, we also
store the type explicitly using 16 bits. When a chunk is sparse, we need to know the
number of its blocks, i.e., the number of non-empty 28-size slices. This number is
the size of the corresponding header H,. Therefore, we write this quantity in 8 bits
and interleaved with the 16 bits dedicated to the type information. In conclusion, we
spend a 64-bit overhead per chunk.

The description above also opens the possibility for better compression. For exam-
ple, we could use a different representation for sparse blocks, e.g., bit-aligned universal
codes such as Elias’ 9. Whatever representation we use, that will give birth to inter-
esting time/space trade-offs that we left for future investigation. The choice adopted
here of s; = 26, s, = 2% and the use of 8-bit integer arrays clearly favours time
efficiency given that both bitmaps and packed arrays are aligned to byte boundaries.
In fact, as we are going to show next, the use of bitmaps joint with universe-aligned
partitions is particularly effective for fast query execution because operations can be
implemented via inexpensive bitwise instructions, hence exploiting word-level paral-
lelism, and are suitable for even more advanced instructions, such as SIMD.

Sequential Decompression. This operation is implemented with the function
S.decode(output) that uncompress S sequentially by writing each decoded value into
an output buffer of 32-bit integers. We loop through each chunk and, depending on
its type, we decode it accordingly appending the result into the output buffer. This
permits to code different specialized functions to handle a universe partition differ-
ently based on its type. By design, we only need to optimize two routines: decoding
of bitmaps and decoding of arrays of 8-bit integers.

Bitmaps can be efficiently decoded using the built-in function ctz1l which counts
the number of trailing zero in a word of 64 bits [9] (we also tested a SIMD algorithm

to decode larger bitmaps but got almost no speed improvement).

Our sorted arrays contain at most 2% /8 —2 integers, each value taking 8 bits. A key
ingredient to decode such arrays is the instruction mm256_cvtepu8_epi32, that zero
extend packed (unsigned) 8-bit integers to 32-bit integers. Doing so, we can efficiently
decode 8 values at a time, requiring only the above cvtepu8 instruction and a store.
We also experimentally observed that this approach is even more efficient when paired
with loop unrolling. Therefore, if the cardinality c is less than or equal to 8, we only
execute one cvtepu8 instruction; otherwise we always execute four instructions. We
determined that the distribution of the cardinality of sparse blocks goes as a power
law (i.e., very skewed), thus we expect the case ¢ < 8 to happen most of the time.

Intersection and Union. To support efficient intersection we loop through the
header arrays of the sequences, intersecting only chunks/blocks that are shared by
the two, i.e., they have the same partition identifier. Therefore, we reduce the original
problem to a smaller instance of the same problem performing intersections between
(1) two bitmaps, or (2) two arrays, or a (3) bitmap and an array.

Case (1) — the intersection between two bitmaps — translates into a sequence of
inexpensive bitwise AND instructions between 64-bit words with (usually) automatic
compiler vectorization. Case (2) has to intersect tiny 8-bit sorted arrays. While a
scalar textbook intersection algorithm between uncompressed arrays would suffice,
we can accelerate the process using a variation of the vectorized approach by Schlegel
et al. [18]. The core idea of the algorithm is to use the SIMD instruction cmpestrm to
compare strings of bytes. In our case we can execute an all-versus-all comparison in
parallel between sets of 16 x 8-bit integers (there is currently no instruction working
with 256-bit registers). Matching integers, i.e., integers in common between the two
sets, are marked with a 32-bit bitmap returned as the result of the comparison. We
can use this 32-bit value as an index in a pre-computed universal table T'[2'%][16] of
8-bit integers to obtain a permutation of bytes indexes, indicating how the matching
integers should be permuted to pack them at the beginning of a 128-bit register. Case
(3) — the intersection between a bitmap and an array — is implemented by checking
if the values of the array correspond to bits set in the bitmap.

For the union operation we basically follow the same skeleton described for the
intersection, albeit we do not rely on specific SIMD optimizations: bitmaps are merged
using bitwise OR within 64-bit words; sorted arrays using scalar code; the case with
a bitmap and an array is handled by first converting the sorted array into a bitmap,
then using the parallelism of bitwise OR.

4 Experiments

Competitors. We compare our proposal — indicated as RUP in the following —
against a rich set of competitive approaches. Among inverted list representations, we
test: Elias’ §; Variable-Byte (VByte) paired with the SIMD decoding algorithm de-
vised by Plaisance et al. [16]; Simplel6 [20]; optimized PForDelta (Opt-PFor) [19]; the
e-optimal partitioned Elias-Fano (PEF) [11]; Interpolative [10]; the partitioned version
of Variable-Byte (Opt-VByte) [13]; and the dictionary-based compressor DINT [15]

Table 1: Basic statistics for the test collections.

Quantity Gov2 ClueWeb09 CCNews
Lists 39,177 96,722 76,474
Universe 24,622,347 50,131,015 43,530,315

Integers 5,322,883,266 14,858,833,259 19,691,599,096

(the version tested here uses a single packed dictionary with optimal parsing; refer
for all details to the original paper). As the most efficient compressed bitmap index,
we test Roaring [9]. Lastly, we evaluate the efficiency of the HYB+M2 intersection
framework proposed by Culpepper and Moffat [2] and optimized by Lemire et al. [§]
with the fast SIMD-ized format called SIMD-BP128. As we reviewed in Section 2, the
framework depends on a parameter B that we vary in {8, 16,32} as done in previous
work [8], to trade-off between space and time. Whenever a block size is required for
partitioning the sequences by cardinality, we use the value of 128 as done in previous
works [8, 11, 13].

To ensure a fair comparison, for all such competitors we used the C++ code made
available by the respective authors. The interested reader can find the link to the
corresponding source code in the References.

Datasets. We perform the experiments on the following standard, real-world, test
collections. Gov2 is the TREC 2004 Terabyte Track test collection, consisting in
roughly 25 million .gov sites crawled in early 2004. ClueWeb09 is the ClueWeb 2009
TREC Category B test collection, consisting in roughly 50 million English web pages
crawled between January and February 2009. CCNews is a dataset of news freely avail-
able from CommonCrawl; precisely, it consists of the news appeared from 09/01/16
to 30/03/18. Identifiers were assigned to documents according to the lexicographic
order of their URLs. From the original collections we retain all lists whose size is
larger than 4096. Table 1 reports the basic statistics for the collections.

Hardware and Software. All the experiments are performed on a server ma-
chine with 4 Intel i7-7700 cores (@3.6 GHz), 64 GB of RAM DDR3 (@2.133 GHz)
and running Linux 4.4.0 (64 bits). Caches have the following sizes: 32 K for both
instruction and data L1 cache; 256 K for L2 cache; 8192 K for L3 cache. We com-
piled the code with gcc 7.3.0 using the highest optimization setting, i.e., with com-
pilation flags -03 and -march=native. Our C++ implementation is available at
https://github.com/jermp/s_indexes.

Space Effectiveness. Consider Table 2. As expected, all methods that are parti-
tioned by cardinality (first group from the top of the table) achieve the best space
effectiveness, with Interpolative and PEF being leaders in this regard, and with VByte
being an exception for its considerably larger space. Roaring, VByte, and HYB+M?2
with B = 32 are consistently the largest, roughly requiring 3 — 4 bits/int more than
the most effective methods in the first group. The RUP solution stands in a middle
position between these two edge points, taking 2 — 2.7 bits/int less than Roaring but
also 1.3 — 2 bits/int more than the most space efficient methods. Also note that the

Table 2: Space in bits per integer and average milliseconds per AND query.

Gov2 ClueWeb09 CCNews
Method
bits/int ms/AND bits/int ms/AND bits/int ms/AND
VByte 8.81 2.08 9.20 10.50 9.29 15.91
Opt-VByte 3.89 2.48 5.72 12.22 6.42 17.83
Interpolative 2.94 7.90 4.43 40.14 5.24 60.57
1) 3.74 5.04 5.17 25.62 6.36 36.51
PEF 3.12 2.48 4.99 12.54 5.45 19.72
DINT 3.53 2.51 5.35 12.17 6.44 18.89
Opt-PFor 3.63 2.81 5.46 14.78 6.07 20.37
Simplel6 4.19 2.86 5.85 14.63 6.41 21.56
Roaring 6.63 0.32 9.78 1.64 9.49 1.29
RUP 4.31 0.32 7.06 1.67 7.78 1.78
B scalar SIMD scalar SIMD scalar SIMD

8§ 563 1.05079 734 390290 6.60 4.353.02
HYB+M2 16 6.93 0.79 0.64 8.05 2.69 219 721 3.122.37
32 9.67 060053 990 208187 880 2.382.07

RUP approach achieves better compression than HYB+M2 with B = 8,16 on both
Gov2 and ClueWebQ9, but it is larger on CCNews.

Intersection. To perform intersection queries, the indexes are first memory mapped
and then a warming-up run is executed to fetch the necessary pages from disk. From
the TREC 2005 and TREC 2006 Efficiency Track topics, we selected all queries whose
terms are in the lexicons of the tested collection. We used a random sampling of 1000
such queries to test the speed of the indexes. Each run of queries is repeated 10
times to smooth fluctuations during measurements. The time reported is the average
among these runs.

Table 2 shows the net result of the experiment: methods partitioned by universe,
i.e., Roaring and RUP outperform all other methods, both the ones using cardinality
partitioning and the HYB+M2 framework. Excluding Interpolative and ¢ codes that
are always the slowest, the first group of techniques is strongly clustered around 2.5,
12.8, and 19 ms on average for Gov2, ClueWeb09 and CCNews respectively. In contrast,
RUP completes in 0.32, 1.67, and 1.78 ms, thus being 7.8, 7.6x and 10.6x faster on
average and being competitive in space effectiveness. Observe that RUP is slightly
slower than Roaring because the recursive partitioning induces more branches, hence
partially eroding the instruction throughput.

Lastly, we report the results for the HYB4+M2 framework evaluated using both
scalar and SIMD-ized intersection routines. As expected, the joint use of SIMD
instruction and bitvectors consistently improves efficiency, with the parameter B
trading-off between space and time. The RUP approach is, however, always faster
and, when similar in speed to the fastest framework configuration HYB+M2 with
B = 32, it requires 1 — 5.3 bits/int less.

Table 3: Average ns per decoded int and average milliseconds per OR query.

Gov2 ClueWeb09 CCNews

Method

ns/int ms/OR ns/int ms/OR ns/int ms/OR
VByte 0.51 5.48 0.67 17.68 0.62 22.26
Opt-VByte 0.76 6.82 091 2277 0.77 27.16
Interpolative 6.37 16.10 7.96 56.12 8.92 74.83
0 4.01 12.84 4.15 38.78 4.26 47.36
PEF 0.91 6.36 1.32 23.20 1.57 29.65
DINT 0.82 6.18 1.24 21.48 1.43 27.25
Opt-PFor 1.06 6.54 1.53 2295 1.19 27.50
Simplel6 1.15 6.70 1.54 22.75 1.55 28.74
Roaring 0.57 1.35 0.82 5.40 0.71 4.60
RUP 0.69 1.61 0.86 6.28 0.83 7.25

Sequential Decompression and Union. Table 3 reports the average nanoseconds
spent per integer, measured by decoding every list in the index. (The HYB+M2
framework is excluded from the following experiments because it only computes in-
tersections.) The methods VByte, Roaring, and RUP are the fastest. However, for
the methods encoding a stream of gaps, i.e., differences between consecutive integers,
we skipped the final prefix-summing scan in this experiment since this represents a
fixed overhead for all such methods. These are the methods in the first group, except
Interpolative and PEF. The Interpolative mechanism does not feature specific optimiza-
tions, except when decoding runs of consecutive integers and is, on average, one order
of magnitude slower than the fastest methods.

In Table 3 we also report the result for unions, evaluated using the same set of
TREC queries as for intersections. Again, we can see that the solutions partitioned
by universe are superior. However, due to the scan-based nature of unions, the
performance gap with respect to the solutions partitioned by cardinality is not as
high as that for intersections. Excluding Interpolative and ¢ from the comparison
since they are much slower than the others, the mentioned gap is anyway consistent
and equal to 3.4 —4.2x, 2.8 — 3.7x, and 3 — 4x for Gov2, ClueWeb09, and CCNews
respectively. Finally, notice that, for reasons already discussed and its (intentionally)
simpler design, Roaring is more efficient than RUP.

References

[1] J. Barbay, A. L6épez-Ortiz, T. Lu, and A. Salinger. An experimental investigation of
set intersection algorithms for text searching. Journal of Fxzperimental Algorithmics
(JEA), 14:7, 2009.

[2] J. S. Culpepper and A. Moffat. Efficient set intersection for inverted indexing. ACM
Transactions on Information Systems (TOIS), 29(1):1, 2010.

[3] B. Ding and A. C. Konig. Fast set intersection in memory. Proceedings of the VLDB
Endowment, 4(4):255-266, 2011.

[4]

[17]

[18]

[19]

P. Elias. Efficient storage and retrieval by content and address of static files. Journal
of the ACM, 21(2):246-260, 1974.

R. M. Fano. On the number of bits required to implement an associative memory.
Memorandum 61, Computer Structures Group, MIT, 1971.

A. Golynski, A. Orlandi, R. Raman, and S. S. Rao. Optimal indexes for sparse bit
vectors. Algorithmica, 69(4):906-924, 2014.

A. Kane and F. W. Tompa. Skewed partial bitvectors for list intersection. In Proceed-
ings of the 37th international ACM SIGIR conference on Research & development in
information retrieval, pages 263-272. ACM, 2014.

D. Lemire, L. Boytsov, and N. Kurz. SIMD compression and the intersection of sorted
integers. Software: Practice and FEzperience, 46(6):723-749, 2016. URL https://
github.com/lemire/SIMDCompressionAndIntersection.

D. Lemire, O. Kaser, N. Kurz, L. Deri, C. O’Hara, F. Saint-Jacques, and G. Ssi-
Yan-Kai. Roaring bitmaps: Implementation of an optimized software library. Soft-
ware: Practice and Experience, 48(4):867-895, 2018. URL https://github.com/
RoaringBitmap/CRoaring.

A. Moffat and L. Stuiver. Binary interpolative coding for effective index compression.
Information Retrieval Journal, 3(1):25-47, 2000.

G. Ottaviano and R. Venturini. Partitioned Elias-Fano indexes. In Proceedings of the
37th International Conference on Research and Development in Information Retrieval,
pages 273-282, 2014. URL https://github.com/ot/ds2i.

G. E. Pibiri. On slicing sorted integer sequences. CoRR, abs/1907.01032, 2019. URL
http://arxiv.org/abs/1907.01032.

G. E. Pibiri and R. Venturini. On optimally partitioning variable-byte codes. IEFE
Transactions on Knowledge and Data Engineering, 32(9):1812-1823, 2020. URL
https://github.com/jermp/opt_vbyte.

G. E. Pibiri and R. Venturini. Techniques for inverted index compression. ACM
Computing Surveys, 53(6):1-36, 2020.

G. E. Pibiri, M. Petri, and A. Moffat. Fast Dictionary-Based Compression for Inverted
Indexes. In International ACM Conference on Web Search and Data Mining, page 9,
2019. URL https://github.com/jermp/dint.

J. Plaisance, N. Kurz, and D. Lemire. Vectorized VByte decoding. In Interna-
tional Symposium on Web Algorithms, 2015. URL https://github.com/lemire/
MaskedVByte.

R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with applications
to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms
(TALG), 3(4):43, 2007.

B. Schlegel, T. Willhalm, and W. Lehner. Fast sorted-set intersection using simd
instructions. In ADMS@ VLDB, pages 1-8, 2011.

H. Yan, S. Ding, and T. Suel. Inverted index compression and query processing with
optimized document ordering. In Proceedings of the 18th International Conference on
World Wide Web, pages 401-410, 2009.

J. Zhang, X. Long, and T. Suel. Performance of compressed inverted list caching in
search engines. In International World Wide Web Conference (WW W), pages 387-396,
2008.

J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys,
38(2):1-56, 2006.

