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In this work we derive sum rules for orbital angular momentum(OAM) resolved electron magnetic chiral dichroism 

(EMCD)  which enable the evaluation of the strength of spin and orbital components of the atomic magnetic moments 

in a crystalline sample. We also demonstrate through numerical simulations that these rules appear to be only slightly 

dependent from the dynamical diffraction of the electron beam in the sample, making possible their application without 

the need of additional dynamical diffraction calculations. 
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I. INTRODUCTION 

Since the work of Schattschneider 1 and collaborators, electron 

magnetic circular dichroism (EMCD) has stimulated the attention 

of many researchers in the field of electron microscopy because of 

its potential of providing information about magnetic properties of 

materials with sub-nanometric resolution. As in the case of X ray 

circular dichroism (XMCD)2,3 sum rules for EMCD, 

independently derived by Calmels4 and Rusz5 permit in principle 

to quantify the orbital and the spin components of the magnetic 

moment per atom in the sample, even if a practical application of 

these rules is made complicated by dynamical diffraction effects, 

which introduce thickness dependent factors to be evaluated by 

separate dynamical calculations.  

In this work we derive sum rules for the orbital and spin 

components of the magnetic moments of the atoms in a crystalline 

sample for the specific case of zone axis orbital angular 

momentum (OAM) resolved STEM-EMCD, a technique recently 

proposed in Ref. 6: in such a proposed experiment, both the 

energy and the OAM spectra7 of the electrons, having experienced 

a core-loss process, are measured and differences among the ℓ=±1 spectra are expected in the case of magnetic materials. The 

main result of this analysis is that, if the probe evolution along the 

column is dominated by channeling ( as in most zone-axis STEM 

experiments), the OAM resolved EMCD sum rules are strongly 

simplified: practically, they exhibit a weak dependency from 

diffraction effects, making their application more straightforward 

in real life experiments. 

II. THEORY 

The experimental quantity which can be directly evaluated 

through the combined action of an OAM sorter
7
 and an energy 

spectrometer in TEM is the OAM-resolved loss function ��(ℓ, ∆�) 
which can be formally defined as

6,8 

��(ℓ, ∆�) = � �(ℓ, �,���
� ∆�)�� = � ��������ℓ�(�)����

� ��			(1)			 

in which ��� is the density matrix of the electrons inelastically 

scattered by the sample and ��ℓ�(�) is a unitary projector over the 

states |ℓ, �, ∆� > having OAM equal to ℏℓ	along axis z	(the TEM 

optical axis) and energy � =	�� −	∆�, being �� the energy of the 

incoming electron beam; k corresponds to the electronic  

scattering wave vector in the xy plane, $ is the electronic de 

Broglie wavelength and % is the semi-collection angle of the 

OAM spectrometer, over which the electrons are collected after 

the sample. With these definitions, �$ 2'(  represents scattering 

angle (given below in mrad units). 

Assuming valid dipolar approximation
6
, taking the material 

magnetization saturated along z axis and working in paraxial 

conditions for the incoming electrons, it is possible to write �(ℓ, �, ∆�) appearing in Eq.(1) as
6,9 

�(ℓ, �, ∆�) = ) *+,(∆�)-,.,/
+,, )�0+,(ℓ, �)0+ 	2(∆�))30/(ℓ, �)0 			(2) 

where *+,(∆�) and 2(∆�)	only depend on the electronic 

properties of the material and respectively describe the non 

magnetic and the magnetic contributions to the loss spectrum. The 

functions �0+,(ℓ, �) and 30/(ℓ, �) define the effects of the 

dynamical diffraction of the electron beam in the sample: the 

summations over the atomic positions a are restricted over the 

magnetic atoms which can give rise to the energy losses ∆� in 

which we are interested; we point out here that Eq.(2) is 

rigorously valid only if the magnetic atom of interest  in the whole 

sample are equivalent one with the others, otherwise a dependency 

on a should also appear for *+,(∆�) and 2(∆�). 
Integrating Eq.(2) over the scattering angle �$ 2'( , we can write 

the OAM resolved loss function as 

��(ℓ, ∆�) = 	 ) *+,(∆�)-,.,/
+,, )40+,(ℓ, %)0 	

+ 	2(∆�))30/(ℓ, %)	(3)0  



  

being  

40+,(ℓ, %) = 	� �0+,(ℓ, �)�����
�  

and 

 

30/(ℓ, %) = 	� 3/(ℓ, �)�����
�  

 

In conventional STEM experiments, once the beam is centered on 

an atomic column, the electrons tend to be laterally confined along 

it, in a phenomenon called channeling10,11,12: practically, the 

probing electrons form a laterally bound state in the projected 

potential exerted by the atoms so only a small fraction of the beam 

can go away from it (i.e. can de-channel), while propagating in the 

sample. 

As core loss scattering is a strongly localized process, the main 

contributions to the overall inelastic signal come from the atoms 

of the column on which the STEM probe is focused, while those 

of the neighboring columns only partially contribute to such a 

quantity, as only a small portion of the incoming electrons de-

channel towards these atoms: therefore one should expect that all 

the dynamical coefficients �0+, and 30/ have an intense strength for 

a on the column on which the probe is centered ( from now on this 

column will be taken at (0,0) in the xy plane) and a rapidly 

decreasing value for the atoms on the neighboring and more 

distant ones. 

We now take into account the role of the dispersion in OAM 

performed through appropriate devices introduced in the TEM 

column
7
: practically, we focus on the features of the OAM 

dispersed coefficients �0+,(ℓ, �) and their integrated counterparts 	40+,(ℓ,%) evaluated for ℓ = ±1, respectively as functions of k and %. As we formally demonstrate in Appendix A, some of these 

quantities are zero by symmetry once evaluated for the atoms 

along the central column with coordinates (0,0,az) and they are 

expected to be non-zero only for the neighboring columns where, 

in optimal channeling conditions, the probe intensity is low, 

making negligible their contribution to the function ��(ℓ, ∆�). 
The main results derived in Appendix A can be summarized by 

the following formulas 			�(�,�,67)+/ (ℓ = ±1, �) = 0, ∀�, with : = ;, <, =    (4.1)   												�(�,�,67)-. (ℓ = ±1, �) = 0, ∀�                               (4.2)  �(�,�,67)-- (ℓ = ±1, �) = 	�(�,�,67).. (ℓ = ±1, �)		∀�		(4.3) 
Such relations, together with the fact that the contributions coming 

from the neighboring columns are negligible, suggest that the 

functions �0--(ℓ, �) and �0..(ℓ, �)  (and so 	40--(ℓ, %) and 	40..(ℓ, %)) dominate the non magnetic part of the OAM resolved 

loss function, computed for ℓ = ±1. These rather general 

predictions are here confirmed and detailed in a few  specific 

material systems of interest. Practically, we will describe the 

behavior of the summed quantities 4+,(ℓ = 	+1, %) =∑ 40+,(ℓ, %)0  as functions of the semi-collection angle % for the 

specific case of a Cobalt sample of 30 nm, oriented along the 

[001] zone axis, keeping into account the contributions of all the 

magnetic atoms in the sample. 

Further, in the Supplementary Material (SM), we also show the 

results of similar calculations performed for bcc Iron and FePt 

samples, in order to demonstrate the quite general validity of the 

considerations exposed above.  

The calculation of the functions	�+,(ℓ = 	+1, �) (and so of the 

integrated counterparts 40+,(ℓ, %)) has been performed by a 

multislice approach through a modified version of the software 

MATSv213, according to the procedure outlined in 

Refs.[6][9][13]: details about the convergence parameters and the 

unit cells adopted to perform the simulations of the electron beam 

propagation in the crystal are given in the SM. 

In all calculations presented in this work, the incident electron 

beam is assumed with energy of 300 keV and different semi-

convergence angles, in a range from 7 to 22 mrad, to explore 

different channeling conditions for the STEM probe. 

Calculations for ℓ = 	−1 are presented in the SM:  from those 

results it is simple to realize that the considerations exposed here 

for ℓ = 	+1 can be easily generalized to the opposite OAM. 

The results of these calculations are summarized in Figures 1 and 

2. Looking at Fig. 1, it is simple to observe that the behavior of 

the functions 4--(ℓ = +1,%) with % turns out to be practically 

unmodified by modifying the STEM probe convergence within 

reasonable limits: the increase in its absolute value obtained 

increasing the probe convergence from 7 mrad to 16 mrad can be 

justified by the fact that the latter beam channels in a stronger way 

along the Co atomic columns than the former, and so an overall 

increase in the inelastic signal with  ℓ = +1 is expected. Further, 

looking at the inset a) of Fig.1 we point out that the ratio ABB(ℓCDE,F)AGG(ℓCDE,F)  turns out to be almost constant with the scattering 

angle k, with very small fluctuations around one, as predicted by 

Eq. 4.3, considering only the atoms on the (0,0) column. 

 
Figure 1 Function HII(J = K, L) computed for STEM probes with 

different semi-convergence angle (from 7 mrad to 16 mrad) in the case of 

a hpc Cobalt sample of 30 nm oriented along the [001] direction: the 

behavior of this function  with L turns out to be practically unmodified by 

changing the STEM probe convergence; the increase in its absolute value 

obtained passing from the 7 mrad probe to the one with convergence of 16 

mrad is justified by the fact that the latter beam channels in a stronger way 

along the Co atomic columns than the former. In the inset a) the ratio MII(JCDK,N)MOO(JCDK,N) is presented (evaluated for a probe semi-convergence of 10 

mrad): it is simple to notice that this quantity only weakly oscillates 

around one as a function of the scattering angle; finally, in inset b) the 

function MII(J = +K, N) is shown for different STEM convergence angles 

(see main legend). 

The small differences we notice in the inset a) of Fig. 1 are only 

due to the atoms of the neighboring columns, whose contributions 

to the overall inelastic signal are much smaller than the ones from 

the column in (0,0). 

 



  

 

 
Figure2 a) Ratio 

HPP(JCDK,L)HII(JCDK,L) for  different STEM semi convergence angles 

(from 7 mrad to 16 mrad): notice that the function HPP(J = +K,L) is 

almost two orders of magnitude smaller than HII(J = +K,L), and such a 

ratio decreases by increasing the probe convergence, in this range. b)  

Functions 
HIO(JCDK,L)HII(JCDK,L), H

IP(JCDK,L)HII(JCDK,L) and 
HOP(JCDK,L)HII(JCDK,L) computed assuming a 

STEM probe of 10 mrad: it is simple to realize that the cross terms 

appearing in Eq. 3 are effectively at least two orders of magnitude smaller 

than HII(J = +K,L), independently from the semi-collection angle L. 
In Figure 2a we show	4==(ℓ=+1,%)4;;(ℓ=+1,%) (in log scale) as a function of the 

semi-collection angle %, computed for different STEM probe 

convergences. This ratio points out that 4--(ℓ = +1, %) is at least 

an order of magnitude larger than 4//(ℓ = +1, %), and such a ratio 

decreases by increasing the probe convergences, i.e. the 

channeling capability of the incoming electron beam: this can be 

justified remembering that the contribution of the atoms (0,0,az) to 

the function �//(ℓ = +1, �) (and so to 4//(ℓ = +1,%)) is zero by 

symmetry as clarified by Eq. 4.1.  

Finally, in Figure 2b the cross terms 4+,(ℓ = +1, %)	are shown, for 

a probe convergence of 10 mrad: it is evident that these functions 

are all at least two orders of magnitude smaller than 4--(ℓ = +1, �) 
and 4..(ℓ = +1, �); again this behavior is related to the fact that 

the atoms on the column on which the beam is focused do not give 

contribution to these functions, so that their value turns out to be 

effectively negligible with respect to the one of 4++, with i=x,y. 

These calculations permit to simplify Eq.3, through the following 

reasonable assumptions: 

• we neglect the contributions to ��(ℓ = ±1, ∆�) due both to 

the cross terms 4+,(ℓ = ±1, %) (with : ≠ R) and to 4//(ℓ =

±1,%), as they are at least two orders of magnitude smaller 

than 4++(ℓ = ±1, %), with i=x,y; 

• as the ratio 
ABB(ℓCDE,F)AGG(ℓCDE,F) only slightly fluctuates around one, 

we take �..(ℓ = +1, �) ≈ �--(ℓ = +1, �), and so 4--(ℓ =±1,%) ≈ 4..(ℓ = ±1,%) = 		4�(ℓ = ±1). 
We underline that these conclusions have general validity, 

independently from the chosen material and its symmetry: the 

only requirements are orienting the crystal along an high 

symmetry direction and using an electron probe characterized by 

strong channeling properties along the chosen atomic column. 

Under these approximations, we can write the inelastic signal 

experimentally observed at energy ∆� and at OAM ℓℏ = ±ℏ as 

 ��(ℓ = ±1, ∆�) ≈ �*--(∆�) + *..(∆�)�	4�(ℓ = ±1)+ 2(∆�)3/(ℓ = ±1, %)		(5) 
 

which will be used in the following section to derive the sum rules 

for OAM resolved EMCD. 

 

III. DERIVATION OF SUM RULES FOR OAM-

RESOLVED EMCD 

The aim of this section is to derive sum rules for OAM resolved 

EELS experiment, starting from the expression of ��(ℓ = ±1, ∆�) 
obtained in Section II: practically we will derive expressions of 

the orbital and spin components of the atomic magnetic moment 

as functions of the measured OAM resolved EEL spectra, directly 

available experimentally. 

To do this we will relate the functions *++(∆�) and 2(∆�)to the 

mixed dynamic form factor (MDFF)14 exploiting the rules 

provided in Ref. 5 and reported for clarity in Section 1 of the SM. 

If the sample, in the selected projection, is mirror symmetric with 

respect to a plane perpendicular to xy plane, we have demonstrated 

in Ref.6 that �--(ℓ, �) 			= 	�--(−ℓ, �) 3/(−ℓ, �) = 	−3/(ℓ, �) 
where we have assumed to define the x axis as the intersection of 

this symmetry plane with the one perpendicular to z. 

Using these properties it is simple to write  ��(+1, ∆�) + ��(−1, ∆�) 	= 	2�*--(∆�) + *..(∆�)�		4�(+1)	(6.1) 	 ��(+1, ∆�) − ��(−1, ∆�) 	= 	22(∆�)|3/(+1, %)|		(6.2) 
 

Assuming to work with 3d transition metals, we provide the 

following definitions VW =	 ��∆����(+1, ∆�) − ��(−1, ∆�)�X
		(7.1) 

VZ =	 ��∆����(+1, ∆�) − ��(−1, ∆�)�X[
		(7.2) 

VWZ =	 � �∆����(+1, ∆�) + ��(−1, ∆�)�XDX[
		(7.3) 

VWZ corresponds to the integral of the sum of the ℓ = ±1 spectra 

over the atomic edges \W and \Z, while VW	(VZ) is the integral 

over the single edge \W (\Z)  of their difference. We now use these 

quantities to obtain sum rules for the orbital and the spin 

components of the atomic magnetic moment. 



  

 

Orbital sum rule 

 

Using Eq. 6 and 7 we can write VW +	VZVWZ = 	 ] 2(∆�)�∆�XDX[] �*--(∆�) + *..(∆�)��∆�XDX[
|3/(1, %)|		4�(+1) 		(8) 

As demonstrated in Appendix B, we have � �*--(∆�) + *..(∆�)��∆�XDX[ =	 9\W`XW(2\ − 1)(2\ + 1) �a-- +	a..� 
and  

� 2(∆�)�∆�
XDX[

=	 9`XW2bc(2\ + 1)defg 

where \ = 2, defg is the orbital component of the atomic 

magnetic moment and the functions `XW,a-- and a.. depend only 

on the material electronic properties and can be determined 

through ab initio calculations. 

By simple substitution of these expressions in Eq. (8) we can 

immediately find a sum rule for the orbital component defg given 

by 

defg = 2bc\W�a-- +	a..�2\ − 1 		4�(+1)|3/(1, %)| VW +	VZVWZ 		(9) 
 

Spin sum rule 

 

Using Eqs. 6.1 and 6.2, we have 1\ − 1VW = 22W\ − 1 |3/(+1, %)| 1\ VZ = 22Z\ |3/(+1, %)| 
where 2+ stands for the integration of 2(∆�) over the atomic 

edge \+: these quantities are evaluated in Appendix B.  

Exploiting the analytical expressions of 2W and 2Z we can 

immediately find 1\ VZ − 1\ − 1VW = 18|3/(+1, %)|`XW(2\ − 1)(2\ + 1) 2\ − 13bc dhi+j 

where dhi+j is the spin component of the atomic magnetic 

moment. Dividing this difference for the integral over the two 

edges of the sum of ��(+1, ∆�) and ��(−1, ∆�) we find 

dhi+j = 3bc\W�a-- +	a..�2\ − 1 4�(+1)|3/(+1, %)|
EX VZ − EXkEVWVWZ 			(10) 

which corresponds to the desired sum rule for the spin component 

of the atomic magnetic moment. 

By computing the ratio 
lmnolpqrs using Eqs. 9 and 10 we find 

defgdhi+j = 23 t VW +	VZEXVZ − EXkEVWu 
i.e. the ratio of the orbital and spin components of the atomic 

magnetic moment does not depend on dynamical effects and ab 

initio  pre-factors, and so can be evaluated directly from the 

experimental spectra: such relation was first reported in Ref.[4].  

IV. DEPENDENCY OF SUM RULES FROM 

DYNAMICAL DIFFRACTION EFFECTS 

Looking at Eq. 9 and Eq. 10 we notice both the presence of 

terms which need to be evaluated ab initio and also of a quantity 

which only depends on the dynamical diffraction of the electron 

beam in the sample; in the following we define this factor as v�, 

given by 

v� = 	 4�(+1)|3/(+1, %)| 
Our simulations point out that this ratio is in reality almost 

independent from the crystal under study, the sample thickness 

and, for sufficiently large %, from the OAM spectrometer semi-

collection angle. This can be understood from Figure 3, where 

such a quantity is evaluated as a function of % for different 

convergences of the STEM probe for a Cobalt sample of 30 nm. 

We notice that choosing % ≥ 8	mrad,	v� converges  (from above) 

to a value  

 

 
Figure3 Function x computed for different semi-collection angles L and 

for different STEM convergences. Notice that for a small convergence (i.e. 

7 mrad) this function converges to a value quite larger than 0.5, because of 

the strong de-channelling suffered by this electron beam (see SM for more 

details). The dashed line corresponds to the result we would obtain for a 

perfectly channeling beam (like a gaussian beam ), which should be able to 

propagate in the crystal without exciting atoms not on the column on 

which it is centered.  

close to 0.5: as shown in the SM, this behavior is also observed 

for a bcc Iron and a FePt sample with thicknesses of 20 nm.  

Such a general behavior can be understood from the calculations 

we present in Appendix A: practically, we find that once a = 

(0,0,az), the following relation holds 

 |30/(ℓ = ±1, �)| =	2�0--(ℓ = ±1, �) 
 

Therefore using the definitions of 4� and 3/(+1, %) and 

neglecting the contributions of the atoms not on the (0,0) column 

we have v�(�,�,67) → 1 2( . This asymptotic behavior could be 

confirmed taking as a probe a Gaussian beam with transverse size 

matching the one of the Bloch 1s state of the Cobalt crystal: such 

a probe15 exhibits almost perfect channeling along the atomic 

column on which the beam is centered i.e. it is able to propagate 

in the crystal almost without any diffraction effect, similar to 

Bessel beams in vacuum16. Because of this property, such a beam 

is expected not to excite the atoms of the other columns so that we 

should provide v� → 1 2( . 



  

The fact that v� never converges to this limiting value for 

conventional probes is only due to the presence of the neighboring 

atomic columns; to further confirm this point, we have evaluated v� with different probe convergences and we have collected the 

values assumed by these ratio for % = 10	mrad, i.e. when v� 

starts assuming a flat trend, as a function of the semi-collection 

angle: the results are shown in Figure 4. We notice that by passing 

from a semi-convergence angle of 7 mrad to one of 13mrad, v� 

gets closer to the limiting value of 0.5, while for larger angles it 

stays almost constant: this is due to the fact that for the latter 

probes the degree of de-channelling is strongly reduced, with 

respect to the former one; this last point is further clarified 

through separate multislice calculations presented in the SM.  

Therefore, from our results, it emerges that, by appropriately 

choosing the STEM convergence and the collection angle % so to 

have v� as much as possible close to 0.5, sum rules for OAM 

resolved EMCD turn out to be only weakly dependent from 

dynamical diffraction effects. 

 
Figure4 Function xL evaluated for L = Kz	mrad for different semi-

convergence angles of the STEM probe: the calculations have been 

performed for a Cobalt sample of 20 nm (red circles) and one of 30 nm 

(blue triangles): notice that in both cases for a STEM convergence of 

about 13 mrad xL ≈ z. {|, which corresponds to an overestimation of the 

components of the magnetic moment of about 4 %. 

To quantify the error in the evaluation of defg (but also of dhi+j) 

once R is approximated by 0.5, we call v = 0.5 + }v, where }v 

is the deviation from the limiting value only due to the atoms on 

the column(0,0). Thus the measured orbital contribution defg~-iwill 

be defg~-i = defg~-6�� +	2defg~-6��}v 

where defg~-6�� is the real orbital component. Therefore, the 

experimental orbital component overestimates the real one by a 

fraction ∆ given by 

∆	= 	defg~-i −	defg~-6��defg~-6�� = 2}v 

that depends from sample thickness and geometry, but it is 

expected to be typically within the experimental error: in the 

simulations performed here, }v is always smaller than 0.04 (for 

convergence angles larger than 7 mrad), which corresponds to an 

error (at maximum) of the order of 7-8%, which can be reduced to 

about 4% using a 13 mrad electron beam. 

V. CONCLUSIONS 

In this work we have derived sum rules for OAM resolved 

EMCD and we have demonstrated how these relations are 

characterized by a weak dependence from the dynamical 

diffraction effects, which can also be minimized by an appropriate 

choice of the STEM probe to be used in experiments. These 

results should make the application of sum rules easier from the 

experimental point of view and, combined with the atomic 

resolution provided by OAM resolved EMCD, they could give 

access to atomically resolved maps for the orbital and spin 

components of the atomic magnetic moments in crystalline 

samples. 
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Appendix A 
 

In analogy with Refs. [6][13], we introduce the following 

definitions for the OAM resolved dynamical coefficients 

appearing in Eq. (2) 

• �++(ℓ, �) = ∑ ��0+ (ℓ, �)�W0 = ∑ �0++(ℓ, �)0  

• �+,(ℓ, �) = 2∑ v���0+ (ℓ, �)�0,(ℓ, �)∗� = ∑ �0+,(ℓ, �)00  

• 3/(ℓ, �) = 	−2∑ �d[�0-(ℓ, �)�0.(ℓ, �)∗]0 = ∑ 30/(ℓ, �)0  

for : and R = ;, <, =, where �0+ (ℓ, �) are auxiliary functions 

defined in Refs. [6][9][13]. 

In this section we provide a description of the properties of �0+ (ℓ, �) for 0 = (0,0, �/), i.e. for the magnetic atoms positioned 

on the column on which the STEM probe is focused.  

We start defining  �(�,�,67)+ (ℓ, �) = �6+ (ℓ, �) as �6+ (ℓ, �)= 	� ��NE��NWa∗(NE; ℓ, �) �(NW) ��+��W �+(F�7kF7)6			(V1) 
where �� = NE� − NW�	 + �∆�P, with �∆�defined as in Eq.5 of Ref.9, 

while �  is a constant dependent on the energy of the probing 

electrons. Following [6][9] we have that �(N) = ��I�k+NI���(=, 0; I�)�+j�(I�; = = 0)�		(V2) 
a∗(N; ℓ, �) = ��I�+NI���D(=, 0; I�)�ℓ(��)�+ℓ��∗ 		(V3) 

From Eq.(A2) and Eq.(A3) it is possible to understand that �(N) 
and a∗(N; ℓ, �) are respectively the 3D Fourier transform of the 

incoming beam propagating inside the crystal and of a Bessel 

beam (with topological charge ℓ and transverse wavevector �) 

back-propagating in the sample: in fact ��(=, 0; I�)is an operator 

(defined in Eq.(3) of Ref. 9) which provides the wavefunction in 

the crystal at z, in position I� in a plane perpendicular to the TEM 

optical axis, given the wavefunction at the same point I� at plane 

z= 0, i.e. the entrance plane of the sample. 

We now assume the crystal to be invariant under rotation of an 

angle �	in the interval (0, '] around an axis parallel to z and 

centered in (0;0): this hypothesis is satisfied every time the crystal 



  

is oriented along an high symmetry direction. Let’s start from the 

expression of �6-(ℓ, �) and consider the following substitutions �E-� = �E- cos � −	 �E. sin � �E.� = �E- sin � + �E. cos � �W-� = �W- cos � −	 �W. sin � �W.� = �W- sin � + �W. cos � 

Therefore, NE is a function of N�E and NW depends on N�W, i.e. NE = NE(N�E) and NW = NW(N�W). Remembering that the Jacobian 

of this transformation is one, we can write �6-(ℓ, �)= 	� ��N′E��N′Wa∗(NE(N�E); ℓ, �) �(NW(N�W))
× ��E-� −	�W-� cos � + ��E.� −	�W.�  sin�|NE�� − NW��|W + �∆�W �+(F�7kF7)6		(V4) 

where a∗(NE(N�E); ℓ, �)= ��=��I��+¡F�B¢ £¤¥¦DF�G¢ ¥§¨¦©- �+¡kF�B¢ ¥§¨¦DF�G¢ £¤¥¦©.
× ���D(=, 0; I�)�ℓ(��)�+ℓ��∗ 

Calling ;� = 	; cos � − < sin� <� = ; sin � + < cos� 

and reminding ��D(=, 0; ;(;�, <�), <(;�, <�)) = 	��D(=, 0; ;�, <′) as 

this evolution operator depends on the crystal potential which is, 

by hypothesis, invariant under the transformation (;, <) →(;�, <′), we have a∗(NE(N�E); ℓ, �) = ��=��I′��+F�B¢-¢ �+F�G¢.¢× ���D(=, 0; I′�)�ℓ(��)�+ℓ�(-¢,.¢)�∗ 
where 

tan¬(;�, <�) = <(;�, <′);(;�, <′) = <� − ;′ tan�;� + <′ tan� =
.�-� − tan�1 + .�-� tan�= tan(¬� − �) 

from which ¬(;�, <�) = ¬� − �. So it is simple to realize 

 a∗(NE(N�E); ℓ, �) = �+ℓ¦a∗(N�E; ℓ, �)		(V5) 
 

Proceeding in the same way, it is possible to demonstrate that  ��NW(N�W)  = �(N�W)			(V6) 
By substitution of Eq.(A5) and Eq.(A6) in Eq.(A4) we obtain �6-(ℓ, �)= 	��+ℓ¦��N′E��N′Wa∗(N�E; ℓ, �) �(N�W)

× ��E-� −	�W-�  cos � + ��E.� −	�W.�  sin �|NE�� − NW��|W + �∆�W �+(F�7kF7)6 

which can be written as �6-(ℓ, �) = �+ℓ¦��6-(ℓ, �) cos � +	�6.(ℓ, �) sin �� 
from which a relation among �6-(ℓ, �) and �6.(ℓ, �) can be 

obtained, i.e. 

�6-(ℓ, �) = �+ℓ¦ sin �1 − �+ℓ¦ cos � �6.(ℓ, �)		(V7) 
where the pre-factor is equal  to : ℓ(   once � tends to  '. 
If we now consider the definition of �6P(ℓ, �), i.e. 

 �6/(ℓ, �) = 	���NE��NWa∗(NE; ℓ, �) �(NW) �∆���W �+(F�7kF7)6 

and we perform the same precedent substitutions we can find 

�6/(ℓ, �)
= 	��+ℓ¦��N′E��N′Wa∗(N′E; ℓ, �) �(N′W) �∆��+(F�7kF7)6|NE�� − NW��|W + �∆�W 

i.e. 

 �6/(ℓ, �) = �+ℓ¦�6/(ℓ, �)			(V8) 
 

Exploiting Eq. (A7) and (A8), we now demonstrate that only the 

functions �0--(ℓ = ±1, �), �0..(ℓ = ±1, �) and 30/(ℓ = ±1, �) 
are not zero if evaluated for 0 = (0,0, �/); at the same time we 

also find relations among these non zero terms. 

Starting from Eq. (A8), it is simple to realize that �6/(ℓ, �) is not 

zero only if �1 −	�+ℓ¦  = 0. If ℓ = ±1, this means that �6/(ℓ, �) 
is non zero only if the rotation angle for which the crystal is 

invariant is an integer multiple of 2', which are, by hypothesis, 

neglected in the present treatment: so �6/(ℓ = ±1, �) = 0 and �6+/(ℓ = ±1, �) = 0, for : = ;, <, =. 

If we now take into account Eq.(A7),  we can write 

�6--(ℓ, �) = (sin�)W(1 − �+ℓ¦ cos �)(1 − �k+ℓ¦ cos �)�6..(ℓ, �) 
which becomes, for ℓ = ±1, �6--(ℓ = ±1, �) = �6..(ℓ = ±1, �)			(V9) 
so the contribution to �-- due to the atoms on the column on 

which the STEM probe is centered equals the contribution to �.. 

for ℓ = ±1. 

Finally, using the definitions of �6+ (ℓ, �) given in Eq.A1, we can 

compute the quantity 2�6-(ℓ, �)�6.(ℓ, �)∗ =	�6-.(ℓ, �) − 	:3/6(ℓ, �) 
Exploiting Eq. A7, we obtain 

2�6-(ℓ, �)�6.(ℓ, �)∗ = 2�+ℓ¦ sin �1 − �+ℓ¦ cos � ��6.(ℓ, �)�W 

from which we directly find 

�6-.(ℓ, �) = 2 sin �(cos ℓ� −	cos �)1 − 2 cosℓ� cos� +	(cos �)W ��6.(ℓ, �)�W		(V10)			 
which clearly becomes zero once ℓ = ±1.; at the same time we 

have 

36/(ℓ, �) = − 2 sin � sin ℓ�1 − 2 cos ℓ� cos� +	(cos�)W ��6.(ℓ, �)�W	(V11) 
from which it is simple to obtain |36/(ℓ = ±1, �)| = 2�6..(ℓ =±1, �) = 2�6--(ℓ = ±1, �). This means that if we calculate the 

ratio v� considering only the contributions of the atoms on the 

column centered in (0; 0) we obtain value of 0.5, independently 

from the sample thickness. The deviations of	v� from this limiting 

value are due to the contributions of the atoms on the neighboring 

columns, which are generally smaller in strength because of the 

weak de-localization of the inelastic processes. 

 

Appendix B 

 

The target of this section is to find a relation between 2(∆�), *++(∆�) (integrated over the atomic edges L2 and L3) and the 

orbital and spin components of the atomic magnetic moment, 

starting from the equations provided in Ref.5 and summarized in 

the Supplementary Material (SM) (Section 1).  

We define the quantities 2WZ = � 2(∆�)�∆�
XDX[

 



  

2W = �2(∆�)�∆�
X

 

2Z = �2(∆�)�∆�
X[

 

 

i.e. the integral over the edges L2 and/or L3 of the energy 

dependent imaginary part of the MDFF. If we start from Eq.1 in 

the SM, we have 

2WZ =)�d�3(�, �′)�
1[� × �′]/ =	12 9`XW2\ + 1 < ¯ >/ 

where the orbital component of the atomic magnetic moment is 

given by defg = bc < ¯ >/, being < ¯ >/ the expectation value 

of the atomic OAM along z axis; the definition of `XW is given by 

Eq. 6 of the SM, while the index � runs over both L edges. 

At the same time we can exploit Eq.3 of the SM to evaluate the 

integral of 2(∆�) over the two distinct atomic edges, i.e. 

 2W =	 1[� × �′]/ ��d[3(�, ��, ∆�)]�∆�X = 9`XW(2\ − 1)(2\ + 1) °\ − 12 < ¯ >/
−	< ± >/ (\ − 1)\3 ²1 + 2\ + 3\ < ³ >/< ± >/´µ 2Z =	 1[� × �′]/ ��d[3(�, ��, ∆�)]�∆�X[ = 9`XW(2\ − 1)(2\ + 1) °\2 < ¯ >/
+	< ± >/ (\ − 1)\3 ²1 + 2\ + 3\ < ³ >/< ± >/´µ 

As pointed out by Chen et al
17

., the ratio 
¶³·7¶±·7 is generally 

negligible in case of bulk systems, so we have neglected its 

contributions in the derivations presented in this work. 

As the last point we need to find an expression for the functions *++(∆�) integrated over both the edges:to do this we use Eq.2 of 

the SM, from which we can write )v��3(�, �′)� = 	 � �∆�[� ∙ 	ℕ(∆º) ∙ �′]
XDX[
= 9\W`XW(2\ − 1)(2\ + 1)� ∙ 	» ∙ �′+)�+�′,¼+,+½, 				(¾1) 

where » is a diagonal tensor such that 

a++ = 2(2\ + 1)(2\ − 1)3\ −*~ + 12\W < ¯W >+ 
with : = ;, <, =, while ¼+, is a 3x3 tensor with null elements on the 

diagonal, which can be derived from the second addendum of the 

sum in Eq.(2) of the SM. By equating the coefficients of �-�′-and �.�′. of the second and third members of Eq.B1 we can obtain 

� *++(∆�)XDX[
∆� = 9\W`XW(2\ − 1)(2\ + 1)a++ 

 

from which it is simple to derive the integral of the sum of *--(∆�) and *..(∆�) needed in the derivation of the sum rules.  

We also point out that calling as ¿ the final states in which the 

sample electron can be excited, and exploiting the relation < ¯- > +	< ¯. >	=	< ¯| > −	< ¯/ > we have 

a-- +	a.. = 4(2\ + 1)(2\ − 1)3\ −2*~
+) ) (ℏW\(\ + 1)lℓ,lp�− ℏWdℓW)|< dℓdh|¿ >|W 

 

with \ = 2 and the indexes  dℓ and	dh running over the intervals À−2,−1,0,1,2Á and ÂkEW , EWÃ: this quantity can be evaluated by ab 

initio calculations. 
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