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a b s t r a c t

This paper focuses on the generation of stochastic models for dependability and per-
formability analysis, through mechanisms for the automatic replication of template
models when identity of replicas cannot be anonymous. The major objective of this
work is to support the modeler in selecting the most appropriate replication mechanism,
given the characteristics of the system under analysis. To this purpose, three most used
solutions to identity-aware replication are considered and a formal framework to allow
representing them in a consistent way is first defined. Then, a comparison of their
behavior is extensively carried out, with focus on efficiency, both from a theoretical
perspective and from a quantitative viewpoint. For the latter, a specific implementation
of the considered replication mechanisms in the Möbius modeling environment and a
case study representative of realistic interconnected infrastructures are developed.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic model-based approaches are widely applied to assess system dependability attributes [1]. A variety of
odeling formalisms and model solution techniques, typically automated in tools, have been developed since decades to
ssist the modeler’s activity. Powerful software packages in this area, widely adopted in academia as well as in industry,
nclude GreatSPN [2], Möbius [3] and SHARPE [4,5]. Unfortunately, the pace at which modern and future systems evolve
n terms of largeness of components population and inherent intricacy among them, makes the model-based analysis very
hallenging, especially from state space explosion and models resolution time points of view.
Modularity and composition are widely recognized (e.g., [6,7]) as foundational principles to manage system complexity

nd largeness when applying model-based analysis. Typically, template (also called generic) models are first defined,
ailored to represent the general behavior of system components at the desired level of abstraction. Then, from template
odels, individual instances are generated to account for the whole population of system components belonging to the

espective categories. The system model is finally obtained by aggregating the specified submodels through properly
efined composition rules. Therefore, most of the modeling environments and tools currently available have operators to
utomate the modularity and composition approach.
Replication can be addressed either in terms of anonymous identity of the system components belonging to the

ategory represented through a template model (referred in the following as ‘‘anonymous replication’’), or providing a
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specific identity to individual instances of a template model (referred in the following as ‘‘named replication’’). When
the former is assumed, faster model resolution approaches can be exploited than in the latter case, mainly due to the
resulting symmetry and exploitation of suitable techniques, such as lumping [8]. However, the choice between anonymous
or named replication is not done on the basis of opportunity for more efficient replication techniques, but on its realism
given the application context under analysis. While anonymity fits well many system scenarios, there are a number of
other contexts where population of similar (but not identical) components actually require an individual identity to
properly analyze the impact of correct/faulty behavior of individual components on the overall system dependability,
e.g. because of the position occupied by the component in the system topology. Critical infrastructures, such as in the
transportation and electrical sectors, are examples of such systems, where a named replication is necessary to maintain
adequate accuracy when modeling the component structure and behavior. Considering that such systems are typically
large ones, with dependency relationships among constituting components, efficiency becomes of utmost importance
when adopting a solution to named replication of template models.

In this paper, the focus is on discussing efficiency of techniques for named replication of stochastic template models for
ependability and performability analysis. Interconnection among template instances is through state sharing, i.e. different
ubmodels can change the value of a shared variable according to local actions [3]. A paired study focusing on action
ynchronization [9,10], the other alternative to manage template instances interconnections, is postponed as future work.
eneral approaches, implementable on top of a variety of existing stochastic evaluation tools, are considered.
Aiming at supporting modelers in adopting template-based non-anonymous replication, major contributions are:

• formalization of the concept of named replication of template models, and of a context to express different
approaches in a coherent format (both existing solutions and new ones, that could be devised in the future);

• formalization of three selected solutions for named replication of template models taken from the literature (referred
as SSRep, CSRep and DARep) and discussion tailored to help a modeler to understand their characteristics in view of
making the best mechanism selection;

• a simulation-based quantitative efficiency comparison of such selected approaches. To this purpose, implementations
of SSRep, CSRep and DARep are developed in the popular Möbius tool, and applied to a representative case study. The
strengths and limitations of the compared techniques in a variety of realistic system scenarios confirm the theoretical
findings.

In order to address generic, realistic contexts, such as when targeted system components have non-Markovian behavior
(e.g., due to deterministic time delays) and thus analytical approaches are not applicable, this paper concentrates on model
replication strategies well suited to obtain simulation-based evaluations.

The paper is organized as follows. Pertinent state of the art solutions are overviewed in Section 2. Section 3 introduces
the characteristics of the targeted systems. Section 4 provides the formal context for expressing replication mechanisms,
in terms of formalism and necessary modeling features. Then, in Section 5 the three selected mechanisms SSRep, CSRep and
ARep for non-anonymous modeling replication are formalized and compared in terms of efficiency on a theoretical basis.
he second part of the paper concentrates on a quantitative comparison of a concrete implementation of SSRep, CSRep, and
ARep in the Möbius modeling environment. To this purpose, a representative case study is introduced in Section 6, while
he details of the implementations in Möbius are in Appendix A for the sake of readability. Then, extensive comparisons
n terms of efficiency indicators of these implementations are in Section 7. Conclusions are drawn in Section 8. Finally, a
able of acronyms is included in Appendix B.

. Related work

Modeling for dependability related analysis is a long investigated topic and the corresponding literature covers decades
f research activities. Even restricting to the challenging issue of addressing large systems, as imposed by modern critical
pplication sectors and in line with the context of the presented work, the population of existing studies is such that an
xtensive literature review is unaffordable in a single paper. A plethora of techniques have been proposed, mainly aiming
t the containment of state explosion, including truncation methods, parametric modeling, implicit representations,
ompositional methods. Refs. [11,12] detail examples of relevant families of such approaches. Given these premises, to
osition the contribution of this paper with respect to the state of the art, examined literature is restricted to solutions
or replication of template-based models, with ability to preserve the identity of modeled components and adopting the
tate sharing approach to models interconnections.
Initial solutions mainly resorted to ad-hoc methods, as a simple way to account for instances of a template model that

how identical local behavior, but different interactions with other components according to a specified topology. In the
ast, the interest was mainly in modeling anonymous components, that are indistinguishable both for their behavior and
heir interaction with other components. Anonymous replication has been automated in tool operators, such as the Rep
perator in Möbius, and the observations that all the components have the same number of states, and all or none of
hem share a state variable, led to efficient analytical solvers, such as [8], or to enhance simulation [13].

However, as already said, there are a number of contexts where modeling adopting anonymous replication would lead
o a too inaccurate analysis. Cyber-physical systems constitute a primary category where topology based modeling, leading

o named replication, is required. A first direction taken in addressing named replication in state sharing interconnected

2



S. Chiaradonna, F. Di Giandomenico and G. Masetti Performance Evaluation 147 (2021) 102192

h
i
g
a
t

m
a
m
t
r

3

i
e
b

s
b
c
t
t
a
l

b

models was to define a submodel implementing the indexing of each replica to give them a specific identity, such as in
[14–16] in the context of electrical power system analysis. Another direction resorted to manage the developed models
through XML descriptors, exploiting the specific characteristics of the system under analysis, such as in [17,18] in the
context of sensor networks. It needs to be remarked that the above delineated mechanisms have been adopted as ad-hoc
expedients to deal with the named replication, but without any specific focus on them or desire to develop a general,
automated schema, available to the modeler as a foundation building block. This aim was pursued later, and is the subject
of the papers [19,20]. More precisely, in [19], the indexing mechanism originally presented in [14], has been formalized
and generalized, originating SSRep, and a more efficient alternative, called CSRep. Pursuing efficiency improvement, DARep
as been then developed in [20]; to a good extent, it appears as a well structured and generalized version of the ideas
n [17]. This paper concentrates on the SSRep, CSRep, and DARep schemas because of their ability to be automated as
eneral and structured solutions to be employed by modeler in a wide variety of contexts. The offered comparison study
mong these schemas is meant to be a valuable support to modelers in making the choice of the most appropriate solution
o adopt, given the characteristics of the system under analysis.

While the above recalled solutions work at level of replication operator, other studies took the direction of developing
ethodologies for the automatic derivation of dependability models adopting model-driven engineering techniques, such
s the recent works [21] (aiming at facilitating the selection, parameterization, and composition of predefined models from
odel libraries) and [22] (aiming at integrating different model generation chains). However, these solutions depart from

he objective of this paper, which is the formalization and efficiency comparison of automated and generally applicable
eplication operators, immediately exploitable in existing and widely used modeling tools.

. Logical representation of the addressed system category

This paper focuses on systems composed of a large number of components, in general grouped in different categories,
n accordance to the nature and function they perform, and organized according to well known structures (topologies,
.g., tree, mesh, etc.). The connection among components induces a dependency among the state, and so in general the
ehavior, of the involved components.
Cyber-physical systems in critical sectors, such as transportation, electricity, water and oil, fit well in the addressed

ystem category. For example, an electrical grid encompasses, among its components, a number of collection points called
uses. All buses have the same aim, that is collecting and distributing electricity, so they belong to the same component
ategory and their models are similar. The main differences among them are the position occupied in the grid topology and
he number and kind of attached electrical equipments for energy production or consumption. Moreover, depending on
he topology of the grid, dependencies are in place among subsets of buses connected through power lines. For example,
lightning that hits a bus can damage its equipment and, interrupting the current flow, can also damage the equipment

inked to other nearby buses.
Therefore, when abstracting the components of the reference system for analysis purpose, for each category (e.g., the

us category) a generic component can be assumed as representative of all the specific system components belonging to
that category (the several buses present in the grid segment under analysis). Then, each specific component, characterized
by individual peculiarities, can be considered a named instance of such generic component, specifically distinguished
through an index. Following this approach, the logical architecture of the given reference system can be seen as composed
of:

• A large number of connected components, in general belonging to different typologies (e.g., buses, or power lines, or
substations in electrical power systems). A generic component Cg is associated to each typology, which represents
a subset of specific components (i.e., non-anonymous replicas or instances) denoted with Ci, where i is the index of
the replica.

• One or more topologies that define the interactions among specific components (either belonging to the same generic
component or spanning different generic components).

Without loss of generality, but for the sake of simplicity, in the following only one Cg describing n specific components
C0,. . . , Cn−1 is considered.

The definition of Cg requires that all its parameters (such as those related to the initial state, the state changing, the
random choices and times) can be defined as a function of the parameter i, with i = 0, . . . , n − 1.

3.1. System state, component interactions and actions

The definition of a generic component is based on the abstract notion of state variables and actions (events) as proposed
in the Möbius Abstract Functional Interface (AFI) [23] for stochastic discrete event systems. This level of abstraction allows
to represent generic components, dependencies among specific components and composition operators in general terms,
independently from the specific formalisms in which the underlying stochastic models are expressed.

The generic component Cg includes l template State Variables (SVs) [20]: V 0, V 1, . . . , V l−1. Each V h represents
n different SVs (replicas or instances of V h), one for each specific component Ci, in the overall system logical structure:
V h, V h, . . . , V h . Thus, the entire system state is determined by assigning values to all the l · n SVs.
0 1 n−1

3
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The interactions between two components are defined as the ability of one component to modify the state of the other
omponent. They are modeled like in [20] through information sharing via one or more SVs. The interactions among Ci
and Cj are defined by the n×n adjacency matrices T h

= [T h
i,j], representing the topology of interactions based on individual

V h. In particular, each ith row and each jth column of T h represent respectively all the replicas of V h that can be accessed
by Ci and all the replicas of Cg that can access V h

j . Formally, if Ci has read/write access to V h
j for j ̸= i then T h

i,j = 1, else
T h
i,j = 0. Thus, the SVs V h can be classified into two categories:

Local state variables If V h
i can be accessed by Ci only.

Dependency-aware state variables If V h
j can be accessed by Cj and, depending on the topology T h, by other component(s)

Ci, with i ̸= j.

Fixed V h in Cg , the dependency degree of Ci with respect to V h, called δhi ∈ {1, 2, . . . , n − 1}, indicates how many
eplicas of V h among V h

0 , . . . , V h
n−1 can be read/written by Ci, while δ̂hj is the number of Ci that can access to V h

j . Similarly,
the array of indexes j of those SVs V h

j that can be accessed by Ci is called ∆h
i and ∆h

i [k] is the kth element of the array,
k = 0, . . . , δhi − 1. Formally:

δhi =

∑
j

T h
i,j, δ̂hj =

∑
i

T h
i,j and ∆h

i =
(
j | T h

i,j = 1
)

∈ Nδi . (1)

The state changes are defined by means of actions. In particular, the generic component Cg includes m template actions:
a0, a1, . . . , am−1, where each template action ak represents n different actions, one for each replica of Cg : ak0, a

k
1, . . . , a

k
n−1.

Thus, the entire system is governed by m · n actions.
An action can be enabled according to conditions defined on SVs values. When an enabled action is completed, it can

change the value of all the SVs that are accessed by Ci. Each action can take a deterministic or random (with arbitrary
distribution) time period between its enabling and completion. Each ak (parameters, enabling conditions and SV value
changes at action completion) is defined as a function of the parameter i, where i is the index of Ci, such that it can
naturally represent an action aki . Moreover, ak can use ∆h

i [p] to read/write access to V h
j such that j = ∆h

i [p]. An action
in Ci can be defined only as a function of SVs that Ci can read/write.

3.2. Overall logical component definition

Summing up, a generic component Cg is defined by a set of template state variables SVs, a set of template actions and
a set of topologies. Formally:

Cg
=

(
V 0, . . . , V l−1

; a0, . . . , am−1
; ∆0, . . . , ∆l−1). (2)

The overall system behavior along time is represented by l·n SVs and m·n actions. Starting from Cg , n specific components
are defined by those SVs that they can access and the set of actions they own, formally:

Ci =

(⋃
h

⋃
j∈∆h

i

V h
j ; a0i , . . . , a

m−1
i

)
. (3)

4. Modeling preliminaries

Following the formal definition of the category of addressed systems, the aim of this section is to present a modeling
formalism for:

1. defining a template model M t to realize the generic component Cg ,
2. automatically producing from M t the specific models M0,. . . , Mn−1 to realize the specific components C0,. . . , Cn−1,

respectively, and
3. composing the specific models Mi to form the overall system model Msys.

The model Msys represents a stochastic discrete event system at level of AFI [23]. The underlying stochastic process
depends on the specific formalism used to define M t . Let M t be a template model based on the general concepts of SVs
and actions, and Mi be an instance of such template model. In order to model Cg with a single template model, M t has
to be defined as a function of the parameter i representing the index of Mi, as described in Section 3. In particular, the
definition of each template action ak must include read/write access to each instance of V h listed in ∆h

i . There exists a
great variety of formalisms to define the model M t based on SVs and actions, each one with its specificities, suitable to
define Markovian, semi-Markov and non Markovian stochastic models. Among the most popular ones, we mention:

• Performance Evaluation Process Algebra [24], which explicitly tackles actions, while SVs are implicitly defined by
composition rules among actions. PEPAk [25] is an interesting dialect that allows a direct definition of SVs and can
easily implement the approaches described in this paper.
4
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• The Stochastic Fault Trees family [26], where node, failure event and gates correspond respectively to SV, action and
composition of failure events.

• The Stochastic Petri Nets family [27], where each place corresponds to a SV, and each transition corresponds to an
action.

Therefore, although in principle any of the above mentioned formalisms (and others not mentioned as well) would be
good candidate to express template-based named replication mechanisms we are interested in this paper, it needs to
e clarified that most of them would probably require extensions in order to be able to define the parametric template
odel M t . This aspect of extensions is not addressed in this paper. We believe that modelers familiar with a specific

ormalism can easily understand its current limitations and directions for appropriate extensions. Being familiar with the
AN formalism, we state that it can be used to define M t with minimum or no extension (depending on the considered
pproach), thanks to the powerfulness provided by the C++ language.
In the following, since the interest is in a general presentation of the concepts and facilities for modeling template-

ased named replication, a notation similar to that adopted for the system in (2) and (3) is used.

.1. Model compositional features

As already discussed when presenting the related work, in this paper we restrict to model replication and joining
perators that are state-sharing based, as made available by popular modeling frameworks. They are the Rep and Join

operators [28], exploited in the definition of the named replication solutions of interest in our study. Their formalization
is given in the following.

The Join operator combines two or more submodels into a single composed model, based on distinguished (or shared)
SVs defined in the individual submodels to allow communication among them. Notation adopted for the Join operator
and the resulting model are shown in the following example, where two models M5 =

(
A, B, C; a05, a

1
5

)
and M7 =(

D, E, F ,G; a07, a
1
7

)
are joined as follows:

J
(
M5, A, B, C, ∅;M7, ∅,D, E, F

)
=

(
A, B, C, F ,G; a05, a

1
5, a

0
7, a

1
7

)
. (4)

A list of distinguished SVs is associated with each composing model (A, B, C with M5 and D, E, F with M7), in a manner
such that particular entries are allowed to be empty (∅) and the cardinality of each list is the same (4). In the joined
model, all the not empty distinguished SVs corresponding to the same position in each list are merged to form a single SV
(B = D and C = E), i.e., the SVs are shared among the submodels. Each distinguished SV is exposed to other compositional
operators, whereas undistinguished SVs are local to the submodel (G is local to M7). In the whole resulting model defined
on the right-side of (4), the occurrences (if any) of D and E in a07 and a17 (as defined in M7) are replaced by the names B
and C, respectively, used for the shared SVs.

The Rep operator applied to a template model produces a new model obtained joining n anonymous replicas (identical
copies) of the template model, where the distinguished SVs are shared among all the replicas. Thus, a SV can be local to
each replica or shared among all replicas (all-or-none sharing strategy). Rep does not assign any index to the anonymous
replicas.

The Rep operator can be used to automatically generate n replicas M0,. . . , Mn−1 of M t , where the index i of each replica
is the value of a SV defined as local to the replica. The notation adopted is shown in the following example, where
M t

=
(
V 0, V 1

; a0
)
is replicated sharing V 0 to obtain the replicas M0 =

(
V 0
0 , V 1

0 ; a00
)
, . . . , Mn−1 =

(
V 0
n−1, V

1
n−1; a0n−1

)
with

V 0
0 = · · · = V 0

n−1, as follows:

Rn
(
M t , V 0)

= J
(
M0, V 0

0 ; . . . ;Mn−1, V 0
n−1

)
=

(
V 0
0 , V 1

0 , V 1
1 , . . . , V 1

n−1; a
0
0, . . . , a

0
n−1

)
. (5)

Observe that:

1. Join takes as input a set of already defined models, thus cannot be used to automatically generate system component
models.

2. Join can directly address the matrix representing T h for h = 0, . . . , l− 1, because the modeler can manually define
all Mi following (3) and share only the SVs, as defined in T h. However, this process is error prone and does not
scale at increasing of the number n of system components.

3. Using Rep it is possible (although not straightforward) to define at level of template model an index to refer specific
replicas.

4. Since a SV can be shared among all the replicas or none of them, Rep cannot directly address T h when V h is a
dependency-aware state variable.

Thus, using only the Join operator as it is, no template model M t can be defined to represent Cg and then produce
individual components models. On the other hand, it is possible to work around the fact that Rep is natively an anonymous

replication operator and adopt it to produce named replicas and to address the interactions among components.

5
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Fig. 1. The SSRep approach as implemented in Möbius: composed Rep model Msys Fig. 1(a) and template SAN model I initializing the index of the
eplicas Fig. 1(b).

. Named replication

In the following, the definition of the three approaches SSRep [14,15], CSRep [19], and DARep [20], already proposed to
odel automatically the interactions among components that require named replication, is presented.
To avoid too heavy notation, but without losing generality, only one template state variable V h and one template action

k are considered in M t .

.1. The State-Sharing Replication approach

The SSRep approach relies on n SVs, one for each replica of the template, for each dependency-aware SV V h of Cg .
SRep has not been conceived to exploit the dependency topology when defining the variables shared among the replicas
f the template. Thus all the instances of the dependency-aware SVs are shared among all the replicas of the template
odel, independently of the topology.
The SSRep approach consists of a simple architecture, as depicted in Fig. 1(a): a single template model, called Mss, is

eplicated n times by the Rep operator to obtain the system model Msys, where an index is assigned to each replica.
Mss is structured in two parts: (i) one defining the generic component Cg as a function of the index of the replicas

represented by the SV Index ∈ N), including explicitly a SV for each instance of V h, the data structure ∆h (representing
he topology associated to V h) and ak, and (ii) one that initializes the indexes for each replica of Mss, including the SVs
ount ∈ N and Start ∈ N, and the instantaneous action tInit, as shown in Fig. 1(b). Formally:

Mss
=

(
V h
0 , . . . , V h

n−1, Index, Count = n, Start = 1; ak, tInit; ∆h). (6)

The Rep operator generates n replicas Mi of Mss:

Mi =
(
V h
0 , . . . , V h

n−1, Indexi, Count, Start i; a
k
i , tInit i; ∆h

i

)
, (7)

hat are composed through sharing the SVs V h
0 , . . . , V h

n−1 and Count, whereas Indexi and Start i are local to Mi, to generate
he overall system model:

Msys
= Rn

(
Mss, V h

0 , . . . , V h
n−1, Count

)
=

(
V h
0 , . . . , V h

n−1, Index0, . . . , Indexn−1, Count, Start0, . . . , Startn−1; ak0, . . . , a
k
n−1, tInit0, . . . , tInitn−1; ∆h )

. (8)

Count is used to initialize the index of each replica Indexi at completion of tIniti, through the following steps, in the
rder specified from left to right:

Count = Count − 1, Indexi = Count, Starti = 0, (9)

here tIniti is enabled if Start i == 1 and Count > 0. All the actions aki are enabled after the initialization of all the
ndexes, i.e., when Count == 0.

Notice that each instance of V h, being shared among all replicas of the template model, can be read/write accessed by
ach Mi, independently of ∆h

i . Thus, SSRep assumes a complete graph of interactions among components, even if the actual
umber of ones in T h is much less than n2. Obviously, the definition of each action ak is based on the actual interactions
mong components, as defined in T h, using ∆h. For example, the enabling condition of the action ak can be given in the
emplate model by V h

j = 1∀j ∈ ∆h
Index. But, when an action affecting V h fires within Mi, all the instances of ak, not only

hose listed in ∆h
i , are checked to determine their current enabling status.

.2. The Channel-Sharing Replication approach

The CSRep approach was the first to exploit the knowledge of the actual topology of dependencies among the replicas
f a template model. It relies on:
6
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Fig. 2. The CSRep approach as implemented in Möbius: composed Rep model.

1. defining as local to each Mi all its dependency-aware SVs following T h,
2. using a small-sized channel composed of a small number of SVs, shared among all the Mi, to exchange (synchronize)

the values of dependency-aware SVs shared among the replicas Mi, each time they are updated.

n particular, δh local SVs W 0, . . . ,W δh−1 are defined in the template model, with δh = maxi δhi , to represent the set of
h
i instances of V h listed in each ∆h

i , such that, in each model Mi, W p
= V h

j with j = ∆h
i [p].

As for SSRep, also CSRep defines a single template model, called Mcs, that is replicated n times by the Rep operator, as
epicted in Fig. 2. The template Mcs is structured in three parts: (1) the model of Cg as a function of the index of the
eplicas, represented by the SV Index ∈ N, including the SVs W p, the data structure ∆h and ak, (2) the initialization of
he indexes, following the description already provided for SSRep, (3) the channel and the read/write channel operations,
ncluding Channel ∈ N × N × DataType, ToChannel ∈ N, ReadyChannel ∈ N and the instantaneous actions read and write,
here DataType is the type of the data to synchronize. Formally, the architecture of CSRep is:

Mcs
=

(
W 0, . . . ,W δh−1, Index, Count = n, Start = 1, ToChannel = 0,

ReadyChannel = 1, Channel; ak, tInit, read,write; ∆h). (10)

The SV ToChannel, initialized to 0, is local to each replica and it is used to trigger (ToChannel== 1) the writing on the
hannel each time a dependency-aware SV modeled by W p is updated. The SV ReadyChannel, initialized to 1, is shared
mong all replicas and is used to lock the channel (ReadyChannel== 0) from writing until the data are read by all the
estination replicas.
The extended SV Channel = (index, ndest, data) is shared among all replicas Mi and is defined by 3 fields (SVs). The

V index ∈ N represents the index j of the updated dependency-aware SV V h
j modeled by W p. The SV ndest ∈ N is the

current number of destination Mi that have not yet read the data (initialized with the number of Mi to synchronize). The
SV data ∈ DataType contains the value of V h

j to send to the Mi. The field Channel.index is used to identify whether Mi is
a destination depending on T h. The field ndest is used to unlock the channel when all the destination Mi have read the
SV data (Channel.ndest == 0).

The action ak extends the corresponding action of Ci with the assignment ToChannel = 1, each time a local state
variable W p is updated.

The Rep operator generates n replicas Mi of Mcs:

Mi =
(
W 0

i , . . . ,W δh−1
i , Indexi, Count, Start i, ToChanneli, ReadyChannel, Channel; aki , tInit i, readi,writei; ∆h

i

)
, (11)

that are composed sharing the SVs Count, ReadyChannel and Channel, to generate the overall system model, where none
of W p is shared among replicas:

Msys
= Rn

(
Mcs, Count, ReadyChannel, Channel

)
(12)

=
(
W 0

0 , . . . ,W δh−1
0 , . . . ,W 0

n−1, . . . ,W
δh−1
n−1 , Index0, . . . , Indexn−1, Count,

Start0, . . . , Startn−1, ReadyChannel, Channel, ToChannel0, . . . , ToChanneln−1;

ak0, . . . , a
k
n−1, tInit0, . . . , tInitn−1, read0, . . . , readn−1,write0, . . . ,writen−1; ∆h).

The actions write and read are enabled respectively by the sender replica Ms to write the data into the channel, and
by all the destination replicas Mi to read the data from the channel. In particular, write is enabled if:

ToChannel == 1 and ReadyChannel == 1, (13)

i.e., when, respectively, there are new data to send and the channel is ready to accept the data. At completion of write,
the channel is updated and locked, performing the following assignments in the order specified from left to right:

Channel.index = j, Channel.ndest = δ̂h , Channel.data = W p, ToChannel = 0, ReadyChannel = 0, (14)
Index

7
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where W p
= V h

j is the value that has to be transmitted through the channel.
The action read is only enabled when the channel has been updated with new data to send and the current replica is

the destination of the data of the channel (and it is not the sender of the data), i.e.:

ReadyChannel == 0 and ∃q|Channel.index == ∆h
i [q]. (15)

At completion of read, the following assignments are performed in order:

W q
= Channel.data, Channel.ndest = Channel.ndest − 1,

if Channel.ndest == 0 then ReadyChannel = 1, (16)

.e., the local W q and the state of the channel are updated. Then, if the replica is the last destination of the data, the
hannel is unlocked.
Thus, whenever an action aks of Ms changes the value of W q

s , equal to V h
j with j = ∆h

s [q], then the action writes
mmediately performs the assignments in (14). Then all the readi for which j ∈ ∆h

i perform the assignments in (16),
mong them W q

i = Channel.data.
When more than one replica of one, or more than one, dependency-aware SV are updated at the same time, a sequence

f consecutive transmissions using the same channel can be easily modeled. Alternatively, the channel can be easily
xtended by adding new fields.

.3. The Dependency-Aware Replication approach

The DARep approach takes advantage of the topology of dependencies among system components, by sharing subsets
f the instances of each dependency-aware SV among only those replicas Mi that need to access them.
Differently from the SSRep and CSRep approaches, DARep proposes a new compositional operator in order to:

1) generate automatically the instances of the dependency-aware SV associated to each Mi, (2) share different subsets of
he instances of the dependency-aware SV among different subsets of Mi, following T h. Thus, it merges the advantages
of the Join and Rep operators.

In more details, the DARep approach is based on:

1. two functions Index() and Deps() that extend the template model to represent, respectively, the index of the replicas
of the template model and the instances of the dependency-aware SVs occurring in each replica of the template
model, following the actual system topology,

2. a new state-sharing template-based compositional operator that, automatically: (i) generates the indexed replicas
of the template model supporting Index() and Deps(), and (ii) generates the overall system model, by composing
through the Join operator the indexed replicas of the template.

The DARep approach defines a single template model, called Mdarep, that is replicated n times by the newly defined
operator. Mdarep is defined as follows:

Mdarep
=

(
V h

; ak; Index(),Deps()
)
. (17)

ndex() and Deps() are two functions used in the definition of the actions of the template and supported by the D operator.
otice that ∆h is moved from the template model (where it is replaced by the function Deps()) to the D definition.
The D operator first generates n indexed replicas Mi of Mdarep and in particular for each Mi generates the list of

h
i instances of each V h shared among different Mi, following the topology T h associated to each V h:

Mi =
(
{V h

j |j ∈ ∆h
i }, a

k
i ; Indexi(),Depsi()

)
, (18)

here

Indexi() = i, ∀i = 0, . . . , n − 1,

Depsi(h, s) = V h
j |j = ∆h

i (s), for all h, s and i, (19)

.e., Deps(h, s) is used in Mdarep to access to the sth instance of V h automatically generated by D in the Index()th replica
f Mdarep.
Then D composes the generated submodels Mi, as depicted in Fig. 3, sharing all the instances of V h having the same

ame in different Mi, to generate the overall system model:

Msys
= D

(
Mdarep, V h, ∆h)

= J
(
M0,W 0

0 , . . . ,W n−1
0 ; . . . ,Mn−1,W 0

n−1, . . . ,W
n−1
n−1

)
=

(
V h
0 , . . . , V h

n−1; a
k
0, . . . , a

k
n−1

)
, (20)

where

W j
i =

{
V h
j if j ∈ ∆h

i ,
∅ otherwise.

(21)
8
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Fig. 3. The DARep approach as implemented in Möbius: the left part of the composed Join model automatically generated from the template Mdarep

or the case study described in Section 6 with n = 100 and δ = 74.

.4. Considerations on the presented named replication approaches

From the descriptions above, the following features are required in order to allow named replication of a given template
odel:

1. data structures to manage the parameters of the template model M t , as a function of a generic replica index of the
template, in particular the topology associated to each dependency-aware SV, that is the array ∆h;

2. an indexing mechanism for Mi, used to access the parameters of each replica of the template and to define the
actions as a function of the index;

3. for each replica Mi of the template, constant-time read/write access to the replicas of each dependency-aware SV
V h shared among the other replicas of the template as defined in ∆h

i ;
4. automatic generation of Mi from the template M t , where interactions among Mi occur through dependency-aware

SVs, differently modeled in each of the three approaches;
5. automatic generation of the final composed model joining the specific models Mi and addressing the interactions

among Mi through dependency-aware SVs.

As already discussed in Section 4, feature 1 depends on the formalism adopted to define the template model. In this
paper, the SAN formalism is adopted to define the template models for all the approaches.

With regard to the feature 2, SSRep and CSRep use the same indexing mechanism, that relies on a SV ‘‘Index’’ local
to each replica Mi, i.e., the index of each replica is part of the state of the replica. Moreover, SSRep and CSRep are based
directly on the Rep operator, that supports above features 4 and 5.

DARep is based on a new operator that explicitly supports 2 and 4 and on the Join operator that supports 5.
For all the approaches, feature 3 is obtained defining the replicas of the dependency-aware SVs with arrays (for SSRep

and CSRep at definition of the template, while for DARep automatically when the replicas Mi are generated).
The major implications derived from how these features are used by the different approaches are discussed in the

following. They are the basis for a theoretical comparison of the replication mechanisms, and mainly relate to:

• The ability to account for the actual dependency topology, so to avoid unnecessary interactions among instances. Both
CSRep and DARep take into account the interactions topology, while SSRep always relies on a complete interactions
graph. In fact, SSRep is able to account for the actual dependency topology at run time only after the start of the
simulation, when the indexes of the replicas are defined. In addition to the potential overhead incurred by SSRep
because of this extended interactions graph, there is also the fact that erroneous accesses to SVs (i.e., accesses that
do not follow the actual system topology) cannot be automatically avoided. Therefore, from this perspective, SSRep
has in principle disadvantages with respect to the other two approaches;

• The ability to take into account the actual dependency topology in building the actions connectivity lists, used by the
simulator to trace the enabling status of other actions after an action fires. Being based on the Join operator, DARep
is able to share specific SVs among specific submodels. Thus DARep supports the creation of action connectivity
lists [29] following the interactions topology T h. Action connectivity lists can allow for a significant reduction in the
simulation time in most models [29]. Join provides statically (at compilation time) the simulator with the information
necessary to determine which actions within a submodel may affect other actions within other submodels based
on T h. On the contrary, Rep limits the connectivity lists optimization, such that each action that affects a shared
SV is connected to all the replicas of actions linked to (affected by) the SV. In fact, being the distinguished SVs
shared among all the replicas, Rep cannot statically identify which specific actions of a replica are affected by actions
within other replicas as defined by the interactions topology. Thus, SSRep works considering a complete interactions
graph also at connectivity lists generation. Also CSRep, although it exploits the actual topology at level of operational
structures, suffers from the same limitations as SSRep for what concerns the connectivity lists, being not able to
follow the interactions topology for all the activities connected to dependency-aware SVs and for readi, respectively.
This can lead to a significant simulation overhead in SSRep and CSRep that increases with the number of replicas
and dependency-aware SVs. Therefore, from this perspective, the SSRep and CSRep approaches have in principle
disadvantages with respect to DARep;

• Incurred overhead due to complex structures and coordination activities. From the point of view of model construc-
tion, SSRep is the heaviest, since it needs more complex structures to build all the local SVs and make them shared
among all the replicas. Instead, from the coordination activities point of view, CSRep pays the highest price, since
9
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each change of W q
s , equal to V h

j , produces 1 new event for writej and 1 new event for each readi, for which j ∈ ∆h
i .

This implies a time overhead due to the synchronization of the dependency-aware SVs each time they are updated.
• Modeling simplicity. From this perspective, the template model Mdarep is simpler than those defined for SSRep and

CSRep. In fact, once the Index() and Deps() functions are made available in a certain modeling environment, they
can be used by modelers working in that environment without requiring knowledge of the details about assignment
of replica indexes and dependency-aware SVs. This simplification is expected to be reflected in an easier and less
error-prone modeling activity.

• Compilation versus runtime overhead. A time consuming aspect is related to the automatic management of the
replicas of the template model and the dependency topology, to correctly model the access to SVs by the different
replicas. In both SSRep and CSRep, this is accomplished at runtime, while DARep has a compilation time management.
In principle, the different behavior shown by the approaches does not imply a systematic advantage of one over the
others in terms of efficiency, since the dimension and dependency degree of the system under analysis have a high
impact and, depending on the specific values, could favor one behavior or another.

.5. From the theoretical definition to a concrete implementation

Although the theoretical observations discussed in Section 5.4 are useful to derive trends and to point out expectations
rom the approaches definition, the final selection of the best solution requires knowledge of the modeling context where
he approach is going to be implemented. In fact, a theoretical advantage shown by an approach over another could result
ignificantly lessened due to inefficiency of the implementation environment, and vice versa.
To provide evidences to this claim, implementation of SSRep, CSRep and DARep in the Möbius environment [3] and

heir application to a case study are addressed. The aim is to conduct a quantitative comparison analysis in a concrete
ontext. The case study is introduced in Section 6, and the feasibility of the proposed approaches in the Möbius framework,
hrough their application to the case study in a variety of scenarios, is provided in Appendix A.

. Case study

Although defined for illustration purposes only, the selected case study is effective in demonstrating features, benefits
nd limitations of the approaches described in Section 5, since it fully represents the logical architecture of targeted
ystems described in Section 3. Moreover, it can be considered as a basis to be easily extended and adapted to represent
great variety of real contexts.
In a cloud computing context, two different services A and B can be requested from clients. The infrastructure is

omposed of n virtual machines, called here nodes, and each can host: (1) one server for A, or (2) one server for B,
r (3) two servers, one for A and one for B. On each node i, the demand (service requests) of service S ∈ {A, B}, at any
ime instant t , is DS,i(t) ≥ 0. At any time instant t , node i has maximum capacity CS,i to satisfy service S requests, where
S,i(t) ≤ CS,i. The matrix T S represents the topology of interactions among servers providing service S on different nodes.
S
i is the list of nodes from which the server of service S on node i depends on.
Demand DS,i(t) can increase or decrease due to:

• Random interaction with clients: the demand of service S follows a Markovian stochastic process so that, after an
exponentially distributed period of time, the demand increases or decreases, depending on the demand trend.

• Interaction with neighbors: whenever DS,i(t) > CS,i or the server reboots or recovers, the server of service S on node
i tries to dispatch the exceeding demand respectively DS,i(t)−CS,i or DS,i(t) (for reboot or recovery) to other working
servers of the same service on nodes in ∆S

i .

The exceeding demand of service S on node i is divided into δSi equal parts ES,i(t) = (DS,i(t) − CS,i)/δSi . For each working
neighbor j ∈ ∆S

i , ES,i(t) is sent to node j, if ES,i(t) ≤ CS,j − DS,j(t), decreasing DS,i(t) and incrementing DS,j(t) by ES,i(t).
Otherwise, if the server on node j cannot satisfy all the demand ES,i(t), i.e., ES,i(t) > CS,j −DS,j(t), then only a part of ES,i(t)
equal to CS,j −DS,j(t) is sent to j, decreasing DS,i(t) by CS,j −DS,j(t) and increasing DS,j(t) to the maximum capacity CS,j. Of
course, if the node j is down or it does not host a server for service S, then ES,i(t) is not sent to j. Thus, it is not guaranteed
hat all DS,i(t) − CS,i > 0 can be redispatched.

To resemble more realistic application scenarios, if the total time T overc
S,i (t) in which DS,i(t) ≥ CS,i overcomes a pre-set

hreshold T threshold
S,i , for at least one service S, then the state of node i is switched from working to down and a reboot is

erformed. The reboot takes a deterministic amount of time and has success with probability c . In case it fails, or after
given number of reboots nrcv , a recovery process is launched on node i. The recovery operation can take considerably

onger time with respect to reboot, but guarantees a complete reset of node i. During reboot and recovery, all demand
S,i(t), for each service S, is not satisfied. In addition to overload conditions, after an exponentially distributed period of
ime, with rate depending on the value of the current demand, each node also experiences a failure, which requires a
ecovery action.

This case study is more complex than the one exercised in [19,20], since: (i) the number of shared variables, kept to

in the previous publications, becomes 3, and (ii) 2 read/write access topologies instead of 1 are introduced. This leads

10
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to more realistic and challenging system scenarios from the replication point of view. The SAN models for this case study
are described in Appendix A.5.

To compare the replication approaches, the above described system has been evaluated in terms of expected:
nsatisfied demand on node i for the server providing service S, unsatisfied demand on node i and global unsatisfied

demand. Since the goal is to compare the performance of the three replication approaches, the obtained results for these
dependability measures are not shown in Section 7.

7. Numerical comparison of the approaches

A comparison of the performance results of the Möbius implementations of SSRep, CSRep and DARep when applied to
the case study described in Section 6 has been conducted. The characteristics of the system under analysis (in terms of
the size and dependency degree), as well as the accuracy requested to the analysis output, have been varied to explore a
variety of scenarios. The terminating Möbius simulator [3] has been used to evaluate the dependability related measures
described in Section 6. As a form of validation of the developed models, for some sample models, it has been verified that
the number of stable states obtained with all the approaches is the same and it is equal to the theoretical prediction. In
addition, the computed measures resulted in the same values for all the approaches. Different reward structures [30,31]
over different set of markings have a different impact on simulation times. Thus, to improve accuracy and fairness of the
comparison, a high number of reward variables (around 40) has been considered in the study. However, since here the
analysis focuses on the comparison of the performance of the approaches, details on these measures and the obtained
results are out of the scope of this paper.

Each execution of the terminating Möbius simulator is defined for a specific setting of all the parameters of the
considered models. Each execution of the terminating simulator starts initializing the data structures, then runs k batches
(independent model simulations in Möbius terminology) with k ≥ 1.

7.1. Efficiency metrics

For the comparison, the following performance measures have been considered, relative to one execution of the Möbius
simulator that runs k batches (k ≥ 1):

• τ (k): Total amount of CPU time, in seconds, used by the Möbius simulator. It includes the initialization time and the
time necessary to run k batches.

• τinit or τ (0): The amount of CPU time, in seconds, used by the Möbius simulator to initialize its data structures. This
is the CPU time used by the simulator to output the string ‘‘SIMULATOR::Preparing to run()’’. The definition of τinit
as a function of τ (k) is: τinit = τ (1) − (τ (2) − τ (1)) = 2τ (1) − τ (2), where τ (2) − τ (1) is the total amount of CPU, in
seconds, used by the Möbius simulator to run a batch.

• ∆τ (k): Difference between the total CPU time to run k batches and the initialization time:

∆τ (k) = τ (k) − τinit .

•
D
S Cτ (k): Compared simulation performance (dimensionless ratio) between DARep and SSRep, defined as follows:

D
S Cτ (k) =

τDARep(k)
τ SSRep(k)

. (22)

•
C
S Cτ (k): Compared simulation performance (dimensionless ratio) between CSRep and SSRep, defined as follows:

C
S Cτ (k) =

τ CSRep(k)
τ SSRep(k)

. (23)

•
D
CCτ (k): Compared simulation performance (dimensionless ratio) between DARep and CSRep, defined as follows:

D
CCτ (k) =

τDARep(k)
τ CSRep(k)

. (24)

he considered CPU time includes both user and system CPU times.

.2. Simulation settings

The following topologies T A and T B, having the same structure but involving different indexes, are chosen for the
ase study. The first three quarts of the virtual machines host a server for service A, i.e., i = 0, . . . , nA − 1 with
A = ⌈0.75 · n⌉, the last three quarts host a server for service B, i.e., i = nB − 1, . . . , n − 1 with nB = ⌈0.25 · n⌉
notice that virtual machines in the intersection host servers for both service A and service B). The degree of interaction
is the same for all i, i.e., δ = δAi = δBi , where δhi is defined in (1). The demand re-dispatching follows a cyclic graph,

.e., ∆S
i = {i, (i + 1) mod nS, . . . , (i + δ) mod nS}.

To exercise the approaches in a variety of relevant contexts, scenarios generated as combinations of the following
alues for n, δ and k, have been considered:
11
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Table 1
Initialization time τinit (seconds) for the SSRep approach.

δ

1 7 74 148

n
101 0.019 0.013
102 3.556 3.806 3.623
103 29637.500 29723.400 29623.600 29673.200

Table 2
Initialization time τinit (seconds) for the CSRep approach.

δ

1 7 74 148

n
101 0.015 0.018
102 0.118 0.142 0.438
103 4.789 5.592 12.251 22.452

Table 3
Initialization time τinit (seconds) for the DARep approach.

δ

1 7 74 148

n
101 0.015 0.012
102 0.021 0.033 1.746
103 0.309 0.746 23.414 137.610

Table 4
Batch time ∆τ (1000) (seconds) for the SSRep approach.

δ

1 7 74 148

n
101 0.412 0.437
102 48.873 48.476 50.306
103 5382.400 5216.000 5373.300 5455.600

• number of batches k varying from 1 to 1000. The value of k has impact on the precision of the obtained results, and
1000 has been selected to assure convergence with confidence interval width lower than 10−5,

• number n of replicas ranging from 10 to 1000,
• dependency degree δ varying from 1 (minimum connectivity) to 148.

Simulations were sequentially performed on Intel(R) Core(TM) i7-5960X with fixed 3.50 GHz CPU, 20M cache and
32GB RAM, and an up to date GNU/Linux Operating System. Each τ (k) has been evaluated 10 times and the arithmetic
ean is taken as final result. It is important to notice that, for the SSRep and CSRep approaches, models compilation times
re negligible, being constituted by a few single atomic SANs and one composed model, while for the DARep approach
omponent models compilation time can be relevant. In particular, if n ≤ 100 then atomic SANs compilation times and
omposed model compilation time can take few minutes, while, for n = 1000 and δ = 148, composed model compilation
ime can grow up to about 10 hours. However, it is important to notice that recompilation is required only if the structure
f the template model or the topology of interdependencies is changed. Thus, changing all the other model parameters,
uch as failure rates or service request rates, as well as changing the measures under evaluation, does not have an impact
n compilation time. In addition, investigations are currently in progress to understand how to promote parallel models
ompilation to improve on compilation time.

.3. Comparison results

First, the results relative to the τinit indicator for the three approaches are presented in Table 1, Tables 2 and 3,
espectively.

From the inspection of Table 1 two important conclusions can be drawn: for SSRep, the initialization phase time is
lmost independent from the dependency degree δ, but strongly correlated with the system size n. This confirms the
lready predicted behavior, as discussed when presenting this approach in Section 5.1. Instead, Tables 2 and 3 show that
oth CSRep and DARep initialization times are almost linear in n and differently correlated with δ, with τinit of DARep

growing faster than CSRep at increasing δ. Again, these results are in line with what already predicted in Sections 5.2
and 5.3, by observations regarding the behavior of these approaches. It is important to notice that the presence of two
read/write access topologies, T A and T B, drastically impacts the SSRep initialization phase performance, well beyond the
predicted O(n2) (see Section 5.1 and Appendix A.2). Also, there are insights that the numbers presented in Table 1 suffer
from implementation issues concerning the model construction operated by Rep in Möbius [32].

The results obtained for the next performance indicator under analysis, the batch time ∆τ (k), are presented for each
approach in Table 4, Table 5 and Table 6, respectively. In detail, Table 4 shows the batch time ∆τ (1000) for SSRep.
12
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Table 5
Batch time ∆τ (1000) (seconds) for the CSRep approach.

δ

1 7 74 148

n
101 0.838 2.580
102 74.272 272.091 2455.352
103 9273.481 24185.708 216642.749 NaN

Table 6
Batch time ∆τ (1000) (seconds) for the DARep approach.

δ

1 7 74 148

n
101 0.164 0.204
102 6.786 8.067 17.513
103 1185.831 1292.934 1536.186 2482.280

Table 7
Compared performance D

S Cτ (k) (dimensionless ratio) between the
DARep and SSRep.

δ = 10 k
1 10 100 1000 10000

n 102 0.0168 0.0378 0.104 0.156 0.195
103 0.0001 0.0005 0.004 0.042 0.223

Table 8
Compared performance C

S Cτ (k) (dimensionless ratio) between the
CSRep and SSRep.

δ = 10 k
1 10 100 1000 10000

n 102 0.139 0.975 4.141 7.195 7.905
103 0.002 0.016 0.118 1.052 6.696

Table 9
Compared performance D

CCτ (k) (dimensionless ratio) between the
DARep and CSRep.

δ = 10 k
1 10 100 1000 10000

n 102 0.121 0.039 0.025 0.022 0.025
103 0.043 0.030 0.038 0.040 0.033

The evaluation of batches during the simulation, as can be inferred from the considerations in Section 5.1, has a time
complexity of O(n2) and it is almost independent from δ.

For the two approaches CSRep and DARep, the results are shown in Tables 5 and 6, respectively. Not surprisingly,
ince they have been defined with the purpose to exploit the real dependency topology among system components, their
atches execution times depend on both n and δ. In particular, it can be observed how CSRep batches time explodes at
ncreasing of δ. In fact, ∆τ (1000) for n = 1000 and δ = 148 has not been reported because the total execution time
xceeds a fixed upper limit.
Comparing SSRep and CSRep values, an interesting phenomenon can be highlighted. Summing up τinit and ∆τ (1000)

or the case n = 1000, if δ ≤ 7 then τinit + ∆τ (1000) for SSRep is greater than τinit + ∆τ (1000) for CSRep, whereas for
igher values of δ it is clear that τinit +∆τ (1000) for CSRep is greater than τinit +∆τ (1000) for SSRep. Thus, from the point
f view of the modeler, if the target is to optimize the total simulation time, it is the value of δ that determines which
pproach is more convenient to adopt between SSRep and CSRep. If system components are loosely interconnected, i.e.,
is small, then CSRep performs better, otherwise SSRep outperforms CSRep.
Of course, also DARep fully exploits the topologies of read/write accesses, thus outperforming SSRep, and, having no

ime overhead due to the special SVs management (the channel), is always better than CSRep. Thus, without considering
ompilation times, DARep is the best choice for complex systems whatever the value of δ is.
The final part of the comparison is carried out in terms of the Cτ (k) indicator, for different values of k. Varying the

umber of batches k has an impact on the accuracy of the simulation results, so it is a parameter to be cautiously selected,
n accordance with the criticality of the system under analysis and of the purpose of the analysis itself. Tables 7, and show
he results of D

S Cτ (k), CS Cτ (k) and D
CCτ (k), respectively, keeping δ fixed at 10. From Table 7, it can be immediately concluded

hat the DARep approach is always better than SSRep. From Table 8, a similar trend already observed between CSRep and
SRep at varying δ is shown also at varying k. In fact, at increasing k, CSRep initially outperforms SSRep (also depending
n the value of n), but then it is the reverse. Actually, the assumed value for the dependency degree (δ = 10) in this
valuation is already rather high for having CSRep really competitive with respect to SSRep. Last, Table 9 shows values of
ARep always much better than those of CSRep (between 30 and 40 times better for the highest values of k and n).
13
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7.4. Final discussion

Some final remarks on the conducted comparison study are drawn in the following. The performance of all the three
pproaches is affected by the size of the system and by the number of simulation batches: not surprisingly, the obtained
alues degrade at increasing of both n and k. With respect to the other considered parameter, namely the topology of

interaction that is a key aspect of complex systems, the behavior among the three replication solutions is diversified. The
SSRep approach is insensitive to δ, which results in high values of the initialization time τinit and in quite high values of the
atch simulation time: that grow higher than 8 h and about an hour and a half, respectively, when n is 1000 and k is 1000.
SRep exploits not only the topology of interactions but also the fine grained topology of read/write accesses with the
hannel mechanism. The benefits on the initialization time τinit are great (just 22 s for the highest considered values for
and n), but correspondingly the overhead required to manage the channel grows significantly (up to around 60 h when
is 74 and n is 1000). Therefore, CSRep outperforms SSRep when the dependency degree is low (which is however not
ncommon in relevant application sectors, such as in power grid systems, as already discussed in [19]). Applying a totally
ifferent idea as done by the DARep approach, which relies on an external Perl program in its implementation in Möbius,
he performance is greatly improved: DARep is always the best in all the tables showing the evaluation results, whichever
be the values of δ, n and k. However, it might suffer from long compilation times, although it has to be reminded that a
ecompilation is needed only when there are changes in the structure of the template model and/or in the interdependency
opology.

From this study, we believe useful insights are provided to modelers facing model-based reliability/dependability
valuation of large, interconnected systems. On the basis of the characteristics of the system under analysis, the choice
f the most appropriate modeling replication approach can be performed, so to make the assessment more efficient and
ffordable at the requested degree of accuracy.
The gained knowledge is also useful to reflect on the opportunity of performing modifications to the Möbius

mplementation that could bring benefits to (all or some of) the considered replication approaches. For example, as
lready observed in Section 7.3, the current implementation of the Rep operator in Möbius shows inefficiencies [32],
ith negative impact especially on those approaches that make heavy use of Rep. This is an aspect on which the Möbius

developers are planning to improve in a next release of the tool, but from this study they could find inspiration also for
other enhancements.

Finally, this study is a helpful guideline to reproduce a similar investigation in a modeling environment different from
Möbius, but still amenable to realize implementations of SSRep, CSRep, and DARep. The expectation is that the major
theoretical observations presented in Section 5.4 will be equally confirmed. Of course, it is likely that the results of
performance indicators will differ; e.g., the values combination of system size and dependency degree which lead SSRep
to outperform CSRep could be different, as well as the extent of the variation in efficiency among the three approaches.

8. Conclusion

This paper addressed template-based non-anonymous replication in systems composed of large populations of
interconnected components, when simulation-based solvers are used. Since the demand for non-anonymous replication
comes from a variety of key sectors for our society and economy, it is very important to understand the efficiency of the
available solutions when copying with real-size systems, so to make the most appropriate choice.

Specifically, the study focused on the major solutions currently available, which are the State-Sharing Replication
(SSRep), Channel-Sharing Replication (CSRep) and Dependency-Aware Replication (DARep) approaches. These are general
mechanisms, applicable to any modeling and evaluation environment that supports automatic replication and composition
of submodels based on sharing state variables. First, a rigorous formalization framework has been proposed, which
embeds the concepts at the basis of modeling non-anonymous replication, suitable to express in a coherent format the
adopted replication approaches. Then, a comparison among the approaches has been performed to better understand
their peculiarities and expected performance. Both theoretical reasoning, based on the definition of the approaches, and
a quantitative evaluation based on an implementation of the three solutions in the Möbius modeling environment have
been carried out. Indicators representative of the execution and initialization time of the Möbius terminating simulator
have been computed on a generic client–server application.

Several scenarios, characterized by different values of the number of replicas, the dependency degree and the number
of simulation batches, have been analyzed.

From the simulation results, strengths and weaknesses of the compared approaches are highlighted. The SSRep and
CSRep approaches have peculiar trends: when the system size is large but the dependency degree is small, CSRep performs
much better, but the situation reverses at increasing the dependency degree. DARep shows the best performance, although
its compilation time needs to be accounted for, as discussed in Section 7.

This study can inspire work in several directions.
Implementing SSRep, CSRep and DARep in a modeling environment different from Möbius would bring further feedback

on the implications of the underlying technological choices provided by the adopted tool. Although Möbius is a widely
used framework for dependability and performance analysis, it is not the only one; thus, extending the proposed
replication mechanisms to other stochastic model-based frameworks would enlarge the population of modelers who
would take advantage of them. One example can be GreatSPN [2,33].
14
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A more long term objective would be to define and making native in the adopted evaluation tool the auxiliary functions
ndex() and Deps() and the operator D. This is expected to improve the efficiency with respect to solutions built on top
of the tool operators/features, as done so far. Compared to DARep, such a smart replicator operator would avoid resorting
to the many files now needed, which require increasing (and possibly prohibitive) compilation time at increasing the
number of replicas and their dependency degree.

Finally, the knowledge gained from the detailed inspection of the considered replication approaches and the related
comparison study could trigger the definition of new solutions, in the attempt to further mitigate weak behaviors. The
formal context has the ingredients to express other formulations of replication techniques based on composition and
state-sharing features
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Appendix A. Named replication in Möbius

In this Appendix, the feasibility of the proposed approaches is illustrated, resorting to the SAN formalism and the
Möbius framework. Using the case study in Section 6 for n = 100 and δ = δSi = 74, the general steps each approach
consists of are first detailed. Then, the models for the case study are described.

A.1. Overview of the Möbius modeling framework

The Möbius modeling framework and its supporting tool Möbius [3] are briefly recalled in the following. Our models
are defined using the SAN formalism [28], a stochastic extension of Petri nets based on the following primitives: plain
and extended places (blue and orange circles) represent SVs, timed and instantaneous activities (hollow and solid vertical
bars) with linked input and output gates (triangles pointing left or right) represent actions. Extended places represent
complex data types (like int, float, double, structures and arrays). Input gates control when an activity is enabled. The
delay between enabling and completing of timed activities is a generally distributed random variable, whereas enabling
and completing of instantaneous activities take place at the same time. SVs changes occur when an activity is completed,
as defined by the input and output gates. The SAN primitives are defined by C++ statements, supporting external C++ data
structures and the linking to external C++ libraries.

In Möbius, the Join and Rep state-sharing compositional operators [28] are supported at level of AFI [3,23] as already
described in Section 4. The auxiliary functions Index() and Deps(), and the operator D are implemented through a Perl
program [20,34] which manipulates the XML files describing the models defined in Möbius.

A.2. State-Sharing Replication implementation

The SSRep approach can be implemented in the Möbius framework by defining the composed model Msys as depicted
n Fig. 1(a), where:

• The Rep operator automatically constructs the overall system model Msys, composed of the indexed replicas Mi of
the template Mss, as in (8).

• The template Mss is defined by the Join operator as in (6) composing the atomic SAN M, which represents Cg , and
the atomic SAN I, which initializes the place Index shared among the M and I but local to Mss.

The action tInit of (6) and the steps in (9) are implemented by the activity t and the output gate Init, as shown in
Fig. 1(b). When t completed, one token is removed from the places Start (local to Mss) and Count (shared among replicas),
and the C++ code of Init is executed: Index–>Mark() = Count–>Mark().

The SVs V h
0 , . . . , V h

n−1 listed in (8), are automatically implemented by an n-sized array-type extended place W defined
in the model M and shared among all Mi, such that the ith entry of W , obtained with W–>Index(i)–>Mark(), corresponds
to V h

i . In M shown in Fig. A.4, there are two n-sized array-type extended places Demand_A and Up, representing the
dependency-aware SVs.

Each action bk in (6) is implemented by an activity and the linked gates. The place Index can be used to define
parameters of activities and gates. For example, one of the 5 actions in Fig. A.4 is implemented by the activity TUpdD_A,
with rate defined as a function LambdaDA(Index–>Mark()) of the place Index, and the gates is_A, Go, IncrD_A and DecrD_A.

The topology T is modeled by C++ constant data structures defined at compilation time, e.g., ∆h is a C++ array
of n different-sized arrays of short. Thus, for example, in M shown in Fig. A.4, the entries of the place Up that are
accessed by a replica of M are obtained by scanning the array ∆h

[Index–>Mark()], i.e., by Up–>Index(∆h
[i][k])–>Mark()

h
or k = 0, . . . , δi − 1, with i = Index–>Mark().
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Fig. A.4. The SSRep approach: template SAN model M defining the generic component for the case study described in Section 6.

Fig. A.5. The CSRep approach: template SAN model M defining the generic component for the case study described in Section 6.

A.3. Channel-Sharing Replication implementation

The CSRep approach can be implemented in the Möbius framework by defining the composed model Msys as depicted
in Fig. 2, where:

• Like for the SSRep approach, the Rep operator automatically generates the overall model Msys, composed of the
replicas Mi of Mcs, as in (12).

• The template Mcs is defined by the Join operator as in (10) composing three models: M, which represents Cg , I,
which initializes the place Index (local to Mcs), and the composed model CHANNEL, which models the channel and
the related read and write operations.

• The model CHANNEL is defined by the Join operator composing the atomic SAN models WRITECHANNEL and
READCHANNEL that are used, respectively, by the sender replica to write the data into the channel and by all the
destination replicas to read the data from the channel.

The δh local SVs necessary to represent ∆h
i , as listed in (12), are automatically implemented by an δh-sized array-

type extended place W defined in M and local to each Mi. Therefore, the rth entry of W on Mi, obtained with
–>Index(r)–>Mark(), corresponds to V h

j with j = ∆h
i [r], as defined in (10).

For example, in Fig. A.5, Demand_Aj and Up_Aj are two local δh-sized array-type extended places representing the
ependency-aware SVs. Moreover M also includes, as defined in (10), the place ToChannel, which is local to Mcs and
hared with the model CHANNEL. At completion of the activity TUpdD_A when the output gate DecrD_A updates one of
he entries of Demand_Aj, then it also sets the place ToChannel–>Mark() = 1, triggering the activation of the model
RITECHANNEL.
The composed model CHANNEL is used to send the values of the dependency-aware SVs of a replica of M to other

eplicas. Each time a dependency-aware SV is updated, the following steps are performed:

1. the model WRITECHANNEL writes the new values (the data) in the channel and locks the channel (the channel is
busy),

2. the model READCHANNEL of each destination replica updates the SVs of the replica with the data received from the
channel,

3. the model READCHANNEL of the last destination replica that received the data unlocks the channel, which can be
used to transmit new data.

Fig. A.6(a) and A.6(b) depict respectively WRITECHANNEL and READCHANNEL, when two dependency-aware SVs
emand_Aj and Up_Aj are considered for the case study described in Section 6. The place Channel implements an extended
ersion of the channel given in (11). Thus, the values of both Demand_Aj and Up_Aj can be synchronized at the same time.
The activity tw and the output gate wChannel implement the action write in (10), in particular the enabling condition

efined in (13) and the SV changes in (14), which update and lock the channel. The activity tupd with the ouptut gates
ead and Upd implement the action read in (10), in particular in Read the enabling condition defined in (15) and in Upd
he SV changes defined in (16).
16
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Fig. A.6. The CSRep approach: SAN models WRITECHANNEL Fig. A.6(a) and READCHANNEL Fig. A.6(b) used respectively to write and to read the shared
ata into the channel.

.4. Dependency-Aware Replication implementation

The DARep approach can be implemented in the Möbius framework through the following steps, listed in order of
xecution:

1. Manual or automatic definition of the dependency topology associated to each dependency-aware SV, as in (1), and
of the parameters of the system.

2. Automatic generation, based on the dependency topology and on the parameters of the system, of the C++ user
defined library of Möbius.

3. Manual definition of the template atomic SAN model Mdarep that represents the generic component, as in (17).
4. Automatic generation of the atomic models Mi, as in (18) and (20).
5. Automatic generation of the list J shared of the replicas of the dependency-aware SVs shared among Mi, as in (20)

and (21).
6. Automatic definition, using the outputs of the steps 4 and 5, of the composed model obtained through the operator

Join, as in (20).

In [20], where DARep was initially proposed, the above automatic steps 2, 4, 5 and 6 were implemented through a
Query script and run on the XQilla tool. However, since efficiency is of utmost relevance given the high numbers of files
nvolved, in this paper a new Perl script, denoted by Dperl, is proposed to implement such steps. We verified that the new
cript is faster than the XQilla one by around one order of magnitude.
Using the results of step 1, step 2 implements ∆h

i , for each i, h with a different C++ constant array of short and the
ther system parameters with C++ data structures, like arrays, records and plain types. These C++ data structures, statically
efined at compilation time, are automatically generated and included in the user defined library supported by Möbius,
nd then they can be used in each model defined in the tool. Steps 4, 5 and 6 implement the function D, as in (20). Each
odel generated at steps 4 and 6 is defined in an XML file, automatically generated with XML::LibXML, a Perl Binding for

ibxml2, using the dependency topology described with an XML input file defined at step 1.
Each time the template SAN model undergoes updates at step 1 or 3, implying changes either in the dependency

topology or in the number of replicas n, steps 4, 5 and 6 must be repeated, to update the resulting XML files and C++ files.
Consequently the overall model must be compiled again.

Fig. 3 depicts the left part (the overall picture is omitted for the sake of space) of the composed model Msys

utomatically generated at step 6, as in (20), for the case study described in Section 6, for n = 100 and δ = 74. The
AN models SANSANDARep0, . . . , SANSANDARep99 (their names are obtained merging the name SAN of the template, the
tring SANDARep and the index of the replica) are the models automatically generated at step 4, corresponding to the
eplicas Mi, i = 1, . . . , n − 1, as in (18) and (20).

At step 4, a place is automatically generated in each Mi for each entry of the array ∆h
i associated to V h. The name of

ach place V hDRSVDARepj is obtained merging the name V h, the string DRSVDARep and the index j of the replica V h
j that

he place represents. Thus, these places model only the replicas of each dependency-aware SV that are accessed by Mi,
s defined in ∆h. These places are also shared among the replicas Mi by the Join operator, as defined in the list J shared

utomatically generated at step 5.
Fig. A.7 shows the SAN model SANSANDARep0 generated for the 0th replica M0. The bottom of the figure is omitted

or the sake of space. Thus, only Demand_ADRSVDARep0 and Up_ADRSVDARep0 are shown of the 75 replicas of the SVs
emand_A and Up_A that are accessed by the model SANSANDARep0.
The template model Mdarep defined at step 3 is an atomic SAN model, where either plain or extended places are used

o represent dependency-aware SVs.
The functions Index() and Deps() are implemented by two C++ functions, that can be only used in the SAN template

odel, as follows:

SANSANDARep ::Mdarep
:: Index(),
17
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Fig. A.7. The DARep approach: upper part of the SAN model SANSANDAREP0 corresponding to the 0th replica M0 generated from the template Mdarep

efining the generic component for the case study described in Section 6 with n = 100 and δ = 74.

SANSANDARep::Mdarep
::V h–>Deps(s), (A.1)

here the strings SANDARep and Mdarep are C++ namespaces introduced to avoid names conflicting with Möbius C++ code.
The C++ statement SANSANDARep::Mdarep::Index() is replaced in each atomic SAN generated at step 4 by the actual

ndex of the modeled replica.
The C++ statement SANSANDARep::Mdarep

::V h–>Deps(s) refers to the place ∆h(s), as defined in (19). Without the index s,
his statement can be used to pass to each user defined C++ function the list of references to all the places of ∆h for the
urrent replica of Mdarep, to access the values of these places.
In each atomic SAN model Mi generated at step 4, the statement SANSANDARep::Mdarep

::V h–>Deps(s) is replaced by

SANDARep::Mdarep
::rep(s).V h(), (A.2)

here the C++ object rep calls the actual method that returns the reference to the place V hDRSVDARepj|j = ∆h
i (s),

utomatically defined in the generated SAN Mi. Moreover, in each SAN primitive where this statement is used (e.g., in the
nabling condition of an input gate), all the actual names of the automatically generated places modeling ∆h

i are included
n the primitive through a call to a dummy empty function having all these names as arguments. This is needed because
he links among SAN primitives (e.g., the activities) and places in the Möbius tool are statically defined when the C++ code
escribing the model is generated, based on the names of the places. Thus, for example, an enabling condition defined by
statement that accesses a place by reference, like the statement in (A.2) generated by DARep, is checked at each update
f the place only if the enabling condition includes also the name of the place.
The C++ code (definition of classes and initialization of objects and constants) used to implement the method called

y rep() in (A.2) and that relies on the dependency topology, is automatically generated and included in each submodel
t step 4. In particular, the code to initialize the object resulting from rep() with the array of the pointers to the places
odeling the array ∆h

i , is included in the field ‘‘Custom Initialization’’ of each SAN; thus, the C++ data structures are set
efore the model simulation starts.
Finally, notice that the Perl-based implementation of DARep introduces a time overhead at generation time of the

tomic and composed models (steps 4, 5 and 6) and at compilation time, due to the number n of the atomic models and
o the size of the composed model. In particular, for very large values of n and δi, the time required for the generation
nd compilation of the composed model could have a relevant impact on the efficiency of the model evaluation.

.5. SAN models representing the case study

For each approach SSRep, CSRep and DARep, the SAN model representing the generic component is composed of two
arts, one for the service A and one for B. For the sake of brevity, only the part modeling the service A is described. The
art modeling the service B is obtained duplicating all the primitives ending with ‘‘_A’’ (and the related arcs) and replacing
he occurrence of ‘‘_A’’ with ‘‘_B’’ at the end of each string.

As shown in Figs. A.4, A.5 and A.7, the template SAN models defined for all the considered replication approaches have
similar structure (excluding the SAN models used for the channel in the CSRep approach). They mainly differ in the
efinition of the index and of the dependency-aware SVs, and in the channel used for the CSRep approach. In particular,
he demand DS,i(t) and the state (working or down) associated to the generic node i are modeled in the template SAN by
he following dependency-aware SVs:

• the extended places Demand_A (n-sized array of double) and Up (n-sized array of short), that are shared among all
the replicas, for SSRep,

• the extended places Demand_Aj (δh-sized array of double) and Up_Aj (δh-sized array of short), that are local to all
the replicas, for CSRep,

• the double-type extended place Demand_A and the place Up_A, that replace V h in (A.1), for DARep.

The double-type local extended place TTR models the value T threshold
S,i − T overc

S,i (t), used to set the deterministic time
o reboot, represented by the activity TTRBT, when the demand overcomes a pre-set threshold. The double-type local
18
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extended place Te models the instant of time when the demand overcomes a pre-set threshold, used to evaluate the new
alue for TTR when the demand returns below the threshold.
The activity TUpdD_A and the associated cases model respectively the random time to update the demand DS,i(t) and

he probability Pincr (upper case 0), depending on the value of the local place Trend_A (if it is 1 the demand trend is
ncreasing). The output gate DecrD_A updates the demand each time it decreases and also updates the value of TTR to
TTR–>Mark() − BaseModelClass::LastActionTime + Te–>Mark() (the current value of TTR minus the current time plus the
ime when TTRBT has been enabled), if the demand returned below the threshold for both services. The activity TTRCV,
nabled when the service A on the node is working, models the random time to failure of the node. The rate of this activity
s marking dependent, being a function of the demand DS,i(t). At completion of TTRCV, when a failure occurs, 1 token is
dded to the place Rcv to enable the activity TRCV that models the duration of the recovery. The activity TRBT models
he duration of the reboot. At completion of TRBT the reboot ends successfully with probability c associated to the lower
ase 2, when one token is added to the short-type place NRBT counting the number of successfully reboots, otherwise
he reboot is considered failed, and 1 token is added to the place Rcv to enable the recovery action. The recovery is also
nabled, selecting case 1, when at completion of TRBT the value of NRBT is greater than nrcv . The place React is used to
eactivate the activity TTRCV each time the demand DS,i(t) is updated. Finally, with the CSRep approach, the places isUp,
sDem_A, isTransDem_A and TransDem_A, shared among the SAN models shown in Figs. A.5 and A.6(a), are used to set
he information that has to be transferred with the channel (for example, isUp is equal to 1, if the place Up_Aj has been
pdated).

ppendix B. Acronyms and symbols

FI Abstract Functional Interface

AN Stochastic Activity Network

V State Variable

k
i Specific component action, defined in Section 3.1

k Generic component action, defined in Section 3.1

Cτ (k) Compared simulation performance between CSRep and SSRep with k batches, defined in (23)

Cτ (k) Compared simulation performance between DARep and CSRep with k batches, defined in (24)

Cτ (k) Compared simulation performance between DARep and SSRep with k batches, defined in (22)

g Generic component of the system, defined in (2)

i ith specific component of the system, defined in (3)

SRep Channel-Sharing Replication

ARep Dependency-Aware Replication

DARep operator

h Maximum dependency degree for V h, defined in Section 5.2

ˆh
i Number of Ci that can access to V h

j , defined in (1)

h
i Dependency degree of component i for V h

i , defined in (1)

h
i List of components j from which the component i can read/write V h

j , defined in (1)

τ (k) Amount of CPU time to run k batches of the Möbius simulator

eps() Auxiliary function used in DARep

ndex() Auxiliary function used in DARep

oin Join operator, example in (4)

shared List of shared SVs used in DARep
19
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Mcs Template model for the CSRep approach, defined in (10)

Mdarep Template model for the DARep approach, defined in (17)

Mi ith specific model representing Ci

ss Template model for the SSRep approach, defined in (6)

sys Overall system model

t Template model to represent a generic component

Number of system components

S Number of virtual machines hosting a server for service S

ep Replication operator, example in (5)

SRep State-Sharing Replication

init Amount of CPU time to initialize the Möbius simulator

(k) τinit + ∆τ (k)

T h Adjacency matrix representing the topology of interactions based on V h, defined in Section 3.1

h Generic template SV, defined in Section 3.1

h
i ith instance of the template SV V h, defined in Section 3.1
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