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A B S T R A C T

Ecological systems are subject to environmental variability and fluctuations: understanding the
role of such stochastic perturbations in inducing on–off intermittency is the central motivation
for this study. This research extends the exploration of parameters leading to the emergence
of on–off intermittency within a discrete Beddington-Free-Lawton host-parasitoid model. We
introduce random perturbation factors that impact both the grazing intensity and the growth
rate of the host population. An intriguing aspect of this study is the numerical evidence of the
reactivity of the free-parasitoid fixed point as a route to on–off intermittency. This finding
is significant because it sheds light on how stable ecological equilibria can transition into
intermittency before progressing toward chaotic behaviour. Moreover, our study explores the
host-parasitoid coupling within the Beddington-Free-Lawton model when it is applied to a
complex network, a significant framework for modelling ecological interactions. The paper
reveals that such network-based interactions induce parasitoid bursts that are not observed
in a single population scenario.

. Introduction

In dynamical systems, chaotic intermittency is the term used to describe the switching behaviour between periodic, quasi-
eriodic, and chaotic regimes [1]. Classically, chaotic intermittency has been classified into three different types called I, II, and
II, according to the system’s Floquet multipliers or the eigenvalues in the local Poincaré map [2]. An intermittent behaviour of
he classical type is a route to chaos characterized by so-called laminar phases when the behaviour is regular (e.g., stationary
o quasi-periodic) for a finite time, interrupted by chaotic bursts. There are other types of intermittency, such as crisis-induced
ntermittency [3], or Type-V and Type-X intermittency [2].

In this paper, we are interested in a special case of intermittency, called on–off intermittency [4–6]. On–off intermittency has
ound applications in modelling various phenomena, including the solar cycle [7,8], neurophysiological dynamics [9,10], earthquake
ccurrences [11], and electronic circuits [12]. The properties of this form of intermittency have been studied from the perspective
f time series analysis and coupled system dynamics [13–15]. A comparison with other forms of intermittency was conducted
n [14]. More recently, on–off intermittency models have been employed to describe sudden population outbreaks in host-parasitoid
opulations, addressing critical ecological questions that warrant further investigation [16–21].

To induce this specific intermittent behaviour, two key components are required: an invariant object and a mechanism that
ermits orbits to approach and depart from a small region around the invariant object without transitioning into the basin of
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attraction of another, potentially existing, invariant object. The simplest discrete dynamical system having these elements can be
written as [5]:

𝐗𝑡+1 = 𝐗𝑡 + 𝐟 (𝐗𝑡, 𝜈(𝐘𝑡)) (1)

where 𝜈 is a control parameter and 𝐘𝑡 is taken from a random or deterministic chaotic process. In Eq. (1) the evolution of 𝐘𝑡 does
not depend on 𝐗𝑡 but the 𝐗𝑡 evolution depends on 𝐘𝑡. Suppose that the simplest invariant object, i.e. a fixed point 𝐗∗, satisfies

𝐟 (𝐗∗, 𝜈(𝐘𝑡)) = 𝟎, ∀ 𝜈(𝐘𝑡).

In other words, it remains unaffected by the values assumed by the control parameter 𝜈 = 𝜈(𝐘𝑡). However, it becomes unstable when
the control parameter exceeds a critical threshold, denoted as 𝜈𝑐 . If 𝐘𝑡 moves between two regions where 𝜈 fluctuates above and
below the critical control parameter 𝜈𝑐 and, if the time spent in both regions is appropriately balanced, then on–off intermittency
can arise around the fixed point 𝐗∗. Hence, the fundamental process behind on–off intermittency is the reiterated modification of
one dynamical variable across a bifurcation point of another dynamical variable.

As we are interested in representing the climate and environmental variability effects into qualitative ecological models
(e.g. [22]), we suppose that 𝐘𝑡 is taken from a random process which represents stochastic perturbation in some of the main
model parameters. In [21], such parametric perturbation has lead to the occurrence of on–off intermittency in the discrete
Beddington-Free-Lawton model [23], a feature that qualitatively describes abrupt changes in the host-parasitoid population
sizes [24].

In this work, we perform the investigation of parameters inducing on–off intermittency in an extended version of the discrete
Beddington-Free-Lawton model previously examined in [21]. Our model introduces random forcing factors that impact not only the
grazing intensity but also the growth rate of the host population. These stochastic elements play a crucial role in influencing the
onset of on–off intermittency.

Starting from the existing literature, we introduce the concept of reactivity of a fixed point within the statistical framework,
underscoring its significance as an essential prerequisite for the emergence of on–off intermittency. The analysis yields numerical
evidence that equilibrium reactivity is a necessary condition for the emergence of on–off intermittency. This perspective sheds light
on a crucial dimension of the dynamics that has remained unexplored in previous studies.

Furthermore, we investigate the consequences of employing a complex network comprised of Beddington-Free-Lawton discrete
maps to model host-parasitoid interactions. This investigation leads to the induction of bursting behaviour in the parasitoid
population, achieved through a suitable, non-diffusive coupling between the host and parasitoid populations. The use of complex
networks together with Beddington-Free-Lawton discrete maps for modelling host-parasitoid interactions, which is inherently more
complex than single population dynamics, underlines our innovative approach to understand on–off intermittency in ecological
systems.

The paper is organized as follows. In Section 2, we study the onset of on–off intermittency when parameters randomly vary,
e.g. the grazing intensity (Section 2.1) or the host growth rate (Section 2.2). In particular, in Section 2.3, we investigate the reactivity
as a necessary condition for the emergence of on–off intermittency. Then, in Section 3, we analyse the host-parasitoid coupling of
discrete maps on a complex network with ring structure. We show that a not-diffusive coupling induces parasitoid bursts that are
not observed in a single population. In Section 4, we summarize our findings and propose potential directions for future research.
Finally, in Appendix, we provide the qualitative analysis of the Beddington-Free-Lawton model in the full-deterministic case: we
study its fixed points (Appendix A.1) together with their stability (Appendix A.2) and bifurcation (Appendix A.3) properties. We
also recall the classical notions of reactivity and resilience in Appendix A.4.

2. The onset of on–off intermittency in the Beddington-Free-Lawton model

The Beddington-Free-Lawton model is represented by the following equations:

𝑁𝑡+1 = 𝛿 𝑁𝑡 exp
[

𝑟
(

1 −
𝑁𝑡
𝐾

)

− 𝛽 𝑃𝑡

]

𝑃𝑡+1 = 𝑏𝑁𝑡
[

1 − exp
(

− 𝑎 𝑃𝑡
)]

.
(2)

It is important to highlight that, in contrast to the model presented in [21], the model (2) is more general, as it allows for distinct
values for the constant rates 𝑎 and 𝛽.

On–off intermittency in host dynamics can emerge in Beddington’s model by incorporating stochastic variations in some
parameters [21]. The literature has demonstrated that intermittent behaviour typically emerges as an initial destabilization of
equilibria, acting as a route to chaotic dynamics [6,18,21]. Therefore, in a general sense, a linear stability analysis at the fixed points
is essential for identifying the parameters responsible for the onset of on–off intermittency. As first step we reduce the number of
parameters by performing a change of variables. We set 𝑌 = 𝑎 𝑃 and 𝑋 = 𝑎 𝑏𝑁 , 𝑐 = 𝛽∕𝑎 and 𝑘 = 𝑎 𝑏𝐾, resulting in the following
equations:

𝑋𝑡+1 = 𝛿 𝑋𝑡 exp
[

𝑟
(

1 −
𝑋𝑡
𝑘

)

− 𝑐 𝑌𝑡

]

𝑌𝑡+1 = 𝑋𝑡
[

1 − exp
(

− 𝑌𝑡
)]

.
(3)

n the next section, we conduct the analysis regarding the emergence of on–off intermittency induced by stochastic variations in
he intensity of grazing by the host. This is modelled by allowing the parameter 𝛿 in (3) to vary over time.

For the sake of completeness and to facilitate a comparative analysis between the deterministic and stochastic cases, in Appendix
e have conducted a local stability analysis of model (2) and we have examined bifurcations in the full deterministic case.
2
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2.1. 𝛿𝑡 randomly varying

For all 𝑡 ≥ 0 we define 𝛿𝑡 = 𝛿 + (𝐷 − 𝛿) 𝜖𝑡, where 0 < 𝛿 ≤ 𝐷 and 𝜖𝑡 is a random variable in the interval [0, 1] with uniform
istribution. We analyse the model

𝑋𝑡+1 = 𝛿𝑡𝑋𝑡 exp
[

𝑟
(

1 −
𝑋𝑡
𝑘

)

− 𝑐 𝑌𝑡

]

𝑌𝑡+1 = 𝑋𝑡
[

1 − exp
(

− 𝑌𝑡
)]

.
(4)

Setting 𝜌𝑡 ∶= 𝑟 + 𝑙𝑜𝑔(𝛿𝑡) and 𝑘𝑟 ∶= 𝑘∕𝑟, the model (4) can be written as

𝑋𝑡+1 = 𝑋𝑡 exp
(

𝜌𝑡 −
𝑋𝑡
𝑘𝑟

− 𝑐 𝑌𝑡

)

𝑌𝑡+1 = 𝑋𝑡
[

1 − exp
(

− 𝑌𝑡
)]

.
(5)

The model (5) has only one extinction fixed point 𝑃0 = (0, 0). The linearized system at 𝑃0 is given by 𝜂𝑡+1 = 𝐽 (𝑡)
0 𝜂𝑡 with

𝐽 (𝑡)
0 =

[

exp(𝜌𝑡) 0
0 0

]

(6)

so that

𝜂𝑡 =

↶
𝑡−1
∏

𝑖=0
𝐽 (𝑖)
0 𝜂0 =

⎡

⎢

⎢

⎢

⎣

𝑡−1
∏

𝑖=0
exp(𝜌𝑖) 0

0 0

⎤

⎥

⎥

⎥

⎦

𝜂0

where
↶

∏𝑡−1
𝑖=0𝐽

(𝑖)
0 = 𝐽 (𝑡−1)

0 ⋅ 𝐽 (𝑡−2)
0 ⋅… ⋅ 𝐽 (0)

0 . The stability of the linearized system is determined by

𝛬𝑇 = lim
𝑡→∞

1
𝑡
ln
(

max
‖𝜇0‖≠0

‖𝜇𝑡‖
‖𝜇0‖

)

that, if we consider the Euclidean norm on vectors, is computed by using the spectral norm ‖| ⋅ |‖ of
↶

∏𝑡−1
𝑖=0𝐽

(𝑖)
0 . In other words,

𝛬𝑇 = lim
𝑡→∞

1
𝑡
ln 𝜎𝑚𝑎𝑥

⎛

⎜

⎜

⎜

⎝

↶
𝑡−1
∏

𝑖=0
𝐽 (𝑖)
0

⎞

⎟

⎟

⎟

⎠

here 𝜎𝑚𝑎𝑥 denotes the largest singular value of the matrix. Since
↶

∏𝑡−1
𝑖=0𝐽

(𝑖)
0 is a diagonal matrix with eigenvalues 𝜆1 =

∏𝑡−1
𝑖=0 exp(𝜌𝑖)

nd 𝜆2 = 0, then

𝛬𝑇 = lim
𝑡→∞

1
𝑡
ln
|

|

|

|

|

|

𝑡−1
∏

𝑖=0
exp(𝜌𝑖)

|

|

|

|

|

|

= lim
𝑡→∞

1
𝑡

𝑡−1
∑

𝑖=0
𝜌𝑖 = lim

𝑡→∞
⟨𝜌⟩

where ⟨𝜌⟩ = 1
𝑡
∑𝑡−1
𝑖=0 𝜌𝑖. According to the law of large numbers, we can compute lim𝑡→∞⟨𝜌⟩ through the phase-space average as in [6].

Since 𝜌𝑡 = 𝜌𝑡(𝜖) and 𝜖 is a random variable in [0, 1] with uniform distribution, then

𝛬𝑇 = ∫

1

0
𝜌𝑡(𝜖) 𝑑𝜖.

he fixed point 𝑃0 is stable if 𝛬𝑇 < 0 and unstable if 𝛬𝑇 > 0. Note that when 𝐷 = 𝛿, we revert to the deterministic case where
𝑡 = 𝛿 + (𝐷 − 𝛿)𝜖𝑡 = 𝛿 and 𝜌𝑡 = 𝑟 + log(𝛿) = 𝜌. Consequently,

𝛬𝑇 = ∫

1

0
𝜌 𝑑𝜖 = 𝜌.

his clearly aligns with the stability condition of 𝑃0 as presented in Theorem 2 in Appendix. More generally, when 𝐷 > 𝛿, the
xtinction equilibrium 𝑃0 is stable if

𝛬𝑇 = ∫

1

0
(𝑟 + ln(𝛿 + (𝐷 − 𝛿) 𝜖)) 𝑑𝜖 = 𝑟 − 1 + 𝑙𝑜𝑔 𝐷

𝐷
𝐷−𝛿

𝛿
𝛿

𝐷−𝛿

< 0.

he stability curve, corresponding to 𝛬𝑇 = 0, is determined by the function 𝐷𝑐 = 𝑓 (𝛿), which is implicitly defined by the relationship:

𝐷
𝐷𝑐
𝐷𝑐−𝛿
𝑐 = exp(1 − 𝑟) 𝛿

𝛿
𝐷𝑐−𝛿 . (7)

This curve is depicted on the left side of Fig. 1 for the case 𝑟 = 3. Again notice that, for 𝛿 tending to 𝑒𝑥𝑝(−𝑟) ≈ 0.0498, the
function 𝑓 (𝛿) tends to intercept the straight line 𝐷 = 𝛿 and we recover the critical deterministic case, corresponding to 𝜌 = 0
i.e. 𝑟 + 𝑙𝑜𝑔(𝛿) = 0 ⟺ 𝛿 = 𝑒𝑥𝑝(−𝑟) (see Theorem 2 in Appendix A.2).
3
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Fig. 1. Left panel: the stability curve of 𝑃0 (cyan solid line) given by 𝐷𝑐 = 𝑓 (𝛿) in (7) is plotted for 𝑟 = 3 in the (𝛿, 𝐷) plane. In the same figure, the bisector
line 𝐷 = 𝛿 (cyan dashed line), which corresponds to the fully deterministic case, intersects the curve 𝐷𝑐 at 𝛿 = exp(−𝑟). Right panel: kurtosis values for the host
population in the (𝛿, 𝐷) plane above the bisector line 𝐷 = 𝛿. In the same figure, the stability curve of 𝑃0 is represented by a red solid line. The kurtosis is
greater than 3 above and very close to the stability curve of 𝑃0. The stability and reactivity curves overlap (see Section 2.3).

From Fig. 1, it can be observed that for 𝑟 = 3 and 𝛿 = 0.0025701, the critical value is 𝐷𝑐 ≈ 0.12472. Next, setting the other
parameter values to 𝑐 = 1 and 𝑘 = 4.9, we run a simulation for 105 time steps using the model (5), starting with random initial
conditions. The appearance of an intermittent behaviour for host-population 𝑋 has been observed for certain values of 𝐷 ≥ 𝐷𝑐 , very
close to 𝐷𝑐 , as depicted in Fig. 2, where we plot the last 1000 time steps of the simulation. To verify whether the observed dynamics
correspond to on–off intermittency, we use three statistical tools: the kurtosis, the probability distribution of the off phases and the
power spectrum.

The kurtosis of a time series is a statistical quantity that is able to detect infrequent extreme deviations. Given a time series 𝑋𝑡,
the kurtosis is defined as

⟨

(

𝑋𝑡 − ⟨𝑋𝑡⟩
)4
⟩

⟨

(

𝑋𝑡 − ⟨𝑋𝑡⟩
)2
⟩

2

and it quantifies extreme values of the distribution compared to a normal (Gaussian) distribution. Values of kurtosis much greater
than 3 indicate heavier tails (more extreme values) than a normal distribution (see e.g.[15]). In our simulations we compute the
kurtosis by using the Matlab default function kurtosis.

As a second method, for confirming the existence of on–off intermittency, we examine the probability distribution of the off-
phases. In a study conducted in [6], it was observed that when on–off intermittency begins, the probability density function
describing the duration of off-stages follows a power law with an exponent of − 3

2 . In our simulation, to measure the duration
of the off-phases, we first specify a threshold below which the system is considered to be off. Then, we compute the time intervals
corresponding to off stages, by considering consecutive time steps at which the system is off. In other words, the duration of an
off-stage can also be viewed as the time step between two consecutive on-stages. We then compute the length of each time interval.
The probability of having an off phase of duration 𝑡 is given by the ratio between the number of intervals of length 𝑡 and the number
of all the time intervals.1

As the third and final method for proving the presence of on–off intermittency, we employ power spectrum analysis. In [14], the
authors show that the logarithmic slope of the power spectrum is negative for on–off intermittency, whereas it is null or positive
for noisy chaotic, non intermittent dynamics.

We employ the three aforementioned criteria to assess whether the observed dynamics in Fig. 2 represent on–off intermittency.
In Fig. 3, we present evidence of the logarithmic decrease in the (average) power spectrum and the slope of the distribution of off
phases for 𝛿 = 0.0025701 and the three different cases represented in the left panel of Fig. 2 i.e. 𝐷 = 𝐷𝑐 = 0.12472, 𝐷 = 0.126,
and 𝐷 = 0.13. The corresponding kurtosis values are 621.8507, 85.9402, and 21.8620, respectively, indicating on–off intermittency.
Furthermore, when 𝐷 = 0.2≫ 𝐷𝑐 , the dynamics of the host population becomes chaotic (Fig. 2, on the right) leading to the loss of
on–off intermittency behaviour confirmed by the kurtosis value of 2.5379 < 3.

To generalize our analysis and determine the appearance of on–off intermittency, we localize the pairs (𝛿,𝐷) for which the host
population has kurtosis greater than 3. In Fig. 1, on the right, we show that the region of possible on–off intermittency lies in the
region of 𝑃0 instability, close to the stability curve. This confirms what has been observed in literature for a single equation (see
e.g. Fig. 3 in [18]).

In the next section, our emphasis is on the emergence of intermittency resulting from stochastic variations in the intensity of
the host growth rate 𝑟 in (3). It is worth mentioning that the study in [21] did not explore the emergence caused by stochastic
variations in 𝑟. Therefore, the analysis presented here represents a new investigation into this aspect.

1 In order to numerically reproduce the probability distribution of off-phases, Matlab codes have been uploaded on https://github.com/CnrIacBaGit/
OnOffIntermittency.
4
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Fig. 2. 𝛿𝑡 randomly varying: on the left, the temporal evolution of the host population 𝑋 is shown over the last 1000 time steps, obtained by a simulation of
105 time steps. The parameter values are set to 𝑐 = 1, 𝑘 = 4.9, 𝑟 = 3, and 𝛿 = 0.0025701. Intermittent behaviour becomes evident for values of 𝐷 = 0.126 (second
row) and 𝐷 = 0.13 (third row), both of which are above the critical value 𝐷𝑐 = 0.12472 (first row). Right panel: a simulation is conducted over 105 time steps
and we report the last 600, with 𝐷 = 0.2≫ 𝐷𝑐 . Other parameters are set as in the left panel. The loss of host on–off intermittency is observed, with the system
transitioning to chaotic behaviour.

Fig. 3. 𝛿𝑡 randomly varying: statistical verification of host population on–off intermittency shown in Fig. 2. Parameters 𝐷 = 𝐷𝑐 = 0.12472 (first column), 𝐷 = 0.126
second column) 𝐷 = 0.13 (third column). The other parameters are set as in Fig. 2. Upper panels report the power spectra, lower panels show the distribution
f the off phases (the red line indicates a logarithmic slope −3∕2). As kurtosis values are 621.8507, 85.9402 and 21.8620, all the three statistic tools confirm
he arising of on–off intermittency.

.2. 𝑟𝑡 randomly varying

We consider 𝛿 = 1 and for all 𝑡 ≥ 0 suppose that 𝑟𝑡 = 𝑟 + (𝑅 − 𝑟)𝜖𝑡, where 0 < 𝑟 ≤ 𝑅 and 𝜖𝑡 is a random variable in [0, 1] with
niform distribution. Taking into account that 𝜌 = 𝑟 + 𝑙𝑜𝑔(𝛿) = 𝑟 + 𝑙𝑜𝑔(1) = 𝑟, the model

𝑋𝑡+1 = 𝑋𝑡 exp
[

𝑟𝑡

(

1 −
𝑋𝑡
𝑘

)

− 𝑐 𝑌𝑡

]

𝑌𝑡+1 = 𝑋𝑡
[

1 − exp
(

− 𝑌𝑡
)]

(8)

admits the extinction fixed point 𝑃0 = (0, 0) and the free-parasitoid fixed point 𝑃1 = (𝑘, 0).

The linearized system at the fixed point 𝑃0 = (0, 0) is given by 𝜂𝑡+1 = 𝐽0(𝑡) 𝜂𝑡 with

𝐽 (𝑡)
0 =

[

exp(𝑟𝑡) 0
]

5

0 0
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so that

𝜂𝑡 =

↶
𝑡−1
∏

𝑖=0
𝐽 (𝑖)
0 𝜂0 =

⎡

⎢

⎢

⎢

⎣

𝑡−1
∏

𝑖=0
exp(𝑟𝑖) 0

0 0

⎤

⎥

⎥

⎥

⎦

𝜂0.

As before, the stability of the linearized system is determined by

𝛬𝑇 = lim
𝑡→∞

1
𝑡
ln
|

|

|

|

|

|

𝑡−1
∏

𝑖=0
exp(𝑟𝑖)

|

|

|

|

|

|

= lim
𝑡→∞

1
𝑡

𝑡−1
∑

𝑖=0
𝑟𝑖 = lim

𝑡→∞
⟨𝑟⟩

that can be computed through the phase-space average

𝛬𝑇 = ∫

1

0
𝑟 + (𝑅 − 𝑟)𝜖 𝑑𝜖 = 𝑅 + 𝑟

2
> 0,

proving that 𝑃0 is always unstable. When 𝑅 = 𝑟, it holds that 𝑟𝑡 = 𝑟 + (𝑅 − 𝑟)𝜖𝑡 = 𝑟 and we recover the deterministic scenario. This
implies:

∫

1

0
𝑟 𝑑𝜖 = 𝑟 > 0

and confirms the instability of 𝑃0, even in the deterministic framework. Indeed, the stability properties of 𝑃0, given in Theorem 2
n Appendix A.2, would require 𝜌 = 𝑟 + 𝑙𝑜𝑔(𝛿) < 0 which, for 𝛿 = 1, would ask for 𝑟 < 0.

Consider now the Jacobian matrix at 𝑃1 = (𝑘, 0)

𝐽 (𝑡)
1 ∶=

[

1 − 𝑟𝑡 −𝑘 𝑐
0 𝑘

]

(9)

nd the matrix
↶

∏𝑡−1
𝑖=0 𝐽

(1)
𝑖 that results upper triangular with eigenvalues 𝜆1 =

∏𝑡−1
𝑖=0(1 − 𝑟𝑖) and 𝜆2 = 𝑘𝑡. The evaluation of its largest

singular value is not a trivial task; for this reason, we prefer to use a different quantity 𝛬̃𝑇 , equivalent in sign to 𝛬𝑇 , for determining
the stability of 𝑃1:

𝛬̃𝑇 = lim
𝑡→∞

1
𝑡
ln max

𝑖

|

|

|

|

|

|

|

|

|

𝜆𝑖

⎛

⎜

⎜

⎜

⎝

↶
𝑡−1
∏

𝑖=0
𝐽 (1)
𝑖

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

|

.

nder the hypothesis that 0 < 𝑘 < 𝑟 − 1 ≤ 1, the long-term behaviour of 𝜂𝑡 is determined by

𝛬̃𝑇 = lim
𝑡→∞

1
𝑡
ln

𝑡−1
∏

𝑖=0
(𝑟𝑖 − 1) = lim

𝑡→∞
1
𝑡

𝑡−1
∑

𝑖=0
ln (𝑟𝑖 − 1) = lim

𝑡→∞
⟨ ln(𝑟 − 1) ⟩

that can be approximated as

𝛬̃𝑇 = ∫

1

0
ln (𝑟 + (𝑅 − 𝑟)𝜖 − 1) 𝑑𝜖 = ln

(𝑅 − 1)
𝑅−1
𝑅−𝑟

(𝑟 − 1)
𝑟−1
𝑅−𝑟

− 1.

The stability curve 𝑅𝑐 = 𝑓 (𝑟), associated with 𝛬̃𝑇 = 0, is implicitly determined by the relation

(𝑅𝑐 − 1)
𝑅𝑐−1
𝑅𝑐−𝑟 = exp(1) (𝑟 − 1)

𝑟−1
𝑅𝑐−𝑟 (10)

and is depicted on the left side of Fig. 4. For instance, we focus on the point along the stability curve corresponding to 𝑟 = 1.508
and seek to verify whether 𝑅𝑐 = 2.59131 marks the threshold between stable and unstable dynamics in the model (8), when
0 < 𝑘 < 𝑟 − 1 ≤ 1. To numerically confirm this, we plot orbit diagrams for model (8) with 𝑐 = 1, 𝑟 = 1.508, and 𝑘 = 0.49. The host
attractors are displayed on the left side of Fig. 6. We observe that, while gradually varying 𝑅 from 1.508 to 7, the free-parasitoid
fixed point solution becomes unstable at 𝑅 ≈ 𝑅𝑐 = 2.59131 and the long-term solution transitions into a chaotic regime.

In the right panel of Fig. 4, we can observe the emergence of host intermittency for a value of 𝑅 = 2.6, which is slightly
above the critical value 𝑅𝑐 . Once again, we confirm the presence of on–off intermittency by examining the power spectrum and the
distribution of the off phases, as shown in Fig. 5 on the left and right, respectively. Furthermore, the kurtosis value of 35.28, for
the host population, is significantly greater than 3, which is consistent with the characteristics of on–off intermittent behaviour.

It is worth noting that we have not considered stochastic perturbations of the parameter 𝑘, because changing the value of 𝑘
also results in an alteration of the fixed point 𝑃1 = (𝑘, 0). Consequently, according to the dynamic description provided in the
Introduction, stochastic perturbations in 𝑘 will not correspond to an on–off intermittency scenario.

For the sake of completeness, let us explore the effect of the destabilization of the fixed point 𝑃1 = (𝑘, 0) for different values of
the parameter 𝑘. We recall that 𝑘 corresponds to an eigenvalue of the Jacobian matrix (9), so we consider values of the parameter 𝑘
slightly above the critical value of 1. We aim to investigate the impact of combined destabilization on the host-parasitoid dynamics,
resulting from the stochastic variation of the parameter 𝑟 and instability associated with 𝑘 > 1.
6
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Fig. 4. 𝑟𝑡 randomly varying: on the left, the stability curve of 𝑃1 (cyan solid line) given by 𝑅𝑐 = 𝑓 (𝑟) in (10) is plotted in the (𝑟, 𝑅) plane. In the same figure,
he bisector line 𝑅 = 𝑟 (cyan dashed line), which corresponds to the fully deterministic case, intersects the curve 𝑅𝑐 at 𝑟 = 2. Right plot: the parasitoid population

(second row) maintains a null state during the intermittent behaviour of the host population 𝑋 (first row) over a span of 2000 time steps. Parameters 𝑐 = 1,
= 1.508, 𝑘 = 0.49, 𝑅 = 2.6.

Fig. 5. 𝑟𝑡 randomly varying: statistical verification of on–off intermittency for the host population, shown in the right panel of Fig. 4. The left plot shows the
power spectrum, while the right panel displays the distribution of the off phases. The kurtosis value is 35.28. These three statistical tools provide confirmation
of the on–off nature of host population intermittency around the fixed point 𝑃1.

In the right panel of Fig. 6, we can observe that the parasitoid attractor at the null value remains stable for 𝑘 < 1. However,
hen 𝑘 ≥ 1, the orbit diagrams depicting host-parasitoid attractors for the model (8) reveal that the invariant null parasitoid state
ay destabilize. This is illustrated in Fig. 7 on the right, where we present the orbit diagrams illustrating parasitoid attractors for
= 1.0093, with 𝑟 = 1.508, 𝑐 = 1 and 𝑅 varying from 1.508 to 7. It becomes evident that the parasitoid attractor assumes non-null

alues for 𝑅 < 𝑅𝑝 = 2.605. Notably, beyond this critical value, despite 𝑘 > 1, 𝑌 = 0 remains the sole attractor for parasitoid dynamics.
For 𝑟 = 1.508 and values of 𝑅 within the range 𝑅𝑐 < 𝑅 < 𝑅𝑝, host on–off intermittency persists, even when 𝑘 is slightly greater

han the critical value of 1, as illustrated in Fig. 8 (first row). The kurtosis values for the host population are 17.1848 (for 𝑘 = 1.011)
nd 14.0109 (for 𝑘 = 1.0093), which confirm the presence of on–off intermittency. Also the power spectrum and the distribution
f the off phases, that we do not show here, guarantee the onset of on–off intermittency. In this regime, we also observe irregular
ehaviour in parasitoids (Fig. 8, second row), and we expect that this behaviour is not of an on–off intermittency nature. Indeed,
or the parasitoid population, the kurtosis values are 1.3749 (for 𝑘 = 1.011) and 1.6360 (for 𝑘 = 1.0093), which are much smaller
han 3. This confirms that the observed irregular behaviour in parasitoids is not indicative of on–off intermittency.

.3. Reactivity as a route to intermittency

In a deterministic framework, the exploration of reactivity is of great importance in analysing how dynamical systems respond
o perturbations. Transient fluctuations that occur after perturbations of stable equilibria can often push the system far from its
quilibrium state. In such cases, the equilibrium is referred to as reactive, and the maximum growth rate of a disturbance is
ermed reactivity [25]. Reactivity is a concept that applies to both discrete-time [26] and continuous-time [26] systems. Its practical
pplications cover various fields [27–31], and it has also taken the form of generalized reactivity [32], which has proven to be
articularly valuable in ecological contexts [33,34].

In Appendix A.4, we provide the classical definition of reactivity for an asymptotically stable fixed point 𝐱 in a generic
deterministic discrete system (A.9). It involves the logarithm of the largest singular value of the Jacobian matrix evaluated at the
7
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Fig. 6. Orbit diagrams for model (8) with 𝑐 = 1, 𝑟 = 1.508, and 𝑘 = 0.49. Left plot: host attractors. The free-parasitoid fixed point solution 𝑃1 = (𝑘, 0) becomes
nstable at 𝑅 ≈ 𝑅𝑐 = 2.59131 and the long-term solution transitions into a chaotic regime. Right plot: the null parasitoid attractor 𝑌 = 0 remains stable, regardless
f the value of 𝑅.

Fig. 7. Orbit diagrams for model (8) with 𝑐 = 1, 𝑟 = 1.508, and 𝑘 = 1.0093. Left plot: host attractors. The free-parasitoid fixed point solution 𝑃1 = (𝑘, 0) loses its
tability when 𝑅 ≈ 𝑅𝑐 = 2.59131, resulting in a transition to chaotic dynamics. Right plot: the null parasitoid attractor destabilizes for 𝑅 < 𝑅𝑝 = 2.605, while for
≥ 𝑅𝑝, the null parasitoid attractor remains stable.

Fig. 8. Dynamics of host and parasitoid populations in the scenario with random variations in 𝑟𝑡. The simulation parameters are set to 𝑐 = 1, 𝑟 = 1.508, and
= 2.6 (𝑅𝑐 < 𝑅 < 𝑅𝑝). The on–off intermittency of the host population is illustrated in the first row, while the second row shows irregular parasitoid population

ynamics. The simulations cover 104 time steps (left panel) and 2 ⋅ 104 time steps (right panel) and consider two different values for 𝑘: 𝑘 = 1.011 in the first
olumn and 𝑘 = 1.0093 in the second column.
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fixed point, denoted as 𝐽𝐱. Specifically, when this logarithm is positive or, equivalently, when 𝜎𝑚𝑎𝑥(𝐽𝐱) > 1, the fixed point is classified
as reactive. Here, we generalize the above definition of reactivity, to deal with this concept within the statistical framework.

Definition 1. Given an asymptotically stable fixed point 𝐱 of a stochastically parametrized discrete system, we say that 𝐱 is reactive
(in Euclidean norm) when the phase-space average of the largest singular value of the (non-normal) Jacobian matrix evaluated at
the fixed point is greater than 1.

Similarly to the deterministic case, if the Jacobian matrix is normal, then its largest singular value corresponds to the largest
modulus of its eigenvalues. Therefore, the property that in correspondence of a normal Jacobian matrix a fixed point is reactive if
and only if it is unstable also holds within the statistical framework.

According to the previous definition, for studying the reactivity of the free-parasitoid fixed point 𝑃1 = (𝑘, 0) of the discrete system
(8), we evaluate the largest singular value of the Jacobian matrix in (9), given by

𝜎(𝐽 (𝜖)
1 ) =

√

2
2

√

(1 − 𝑟𝜖)2 + (𝑐2 + 1) 𝑘2 +
√

𝛥𝑟𝜖 ,

where 𝛥𝑟𝜖 = (1 − 𝑟𝜖)4 + 𝑘4 (𝑐2 + 1)2 + 2 𝑘2 (𝑐2 − 1) (1 − 𝑟𝜖)2 and 𝑟𝜖 = 𝑟 + (𝑅 − 𝑟)𝜖. We have that ⟨𝜎(𝐽 (𝜖)
1 )⟩ > 1 when

∫

1

0
𝜎(𝐽 (𝜖)

1 ) 𝑑𝜖 > 1.

Hence, the reactivity curve, defined by the values that satisfy ⟨𝜎(𝐽 (𝜖)
1 )⟩ = 1, can be expressed as follows:

∫

1

0

√

(1 − 𝑟 − (𝑅 − 𝑟)𝜖)2 + (𝑐2 + 1) 𝑘2 +
√

𝛥𝑟+(𝑅−𝑟)𝜖 𝑑𝜖 =
√

2. (11)

n Fig. 9, the reactivity zone of 𝑃1 is delimited by the reactivity curve (11), represented by a green line in the parameter plane where
> 𝑟, for 𝑘 = 0.49 and different values of 𝑐. Below the green line the fixed point is not reactive. In the same figure, we display

he stability curve (red line) for 𝑃1 as defined in (10) together with the kurtosis values of the host population. The region between
he two curves represents the parameter space where 𝑃1 remains both stable and reactive. It is evident that the region where the
urtosis exceeds 3 is in close proximity to the stability curve of the fixed point 𝑃1.

The same observation was previously made for the fixed point 𝑃0, when considering variations in 𝛿𝑡 (see Fig. 1). In that scenario,
he reactivity curve for 𝑃0 coincides with its stability curve, because the Jacobian matrix in (6) is diagonal, making it a normal matrix.

In the scenario with 𝑟𝑡 varying, shown in Fig. 9, it is worth noting that, when the parameter 𝑟 reaches a sufficiently high value,
the region where the kurtosis (of the host population) exceeds 3 extends into the stability zone of 𝑃1, where 𝑃1 is reactive. As a result,
lots in Fig. 9 provide the first numerical evidence that on–off intermittency can emerge even before the fixed point destabilizes,
ccurring within the region where the equilibrium remains stable yet reactive. To verify the onset of on–off intermittency, we
onsider 𝑟 = 1.508 and 𝑅 = 2.58 < 𝑅𝑐 , for which 𝑃1 is stable and reactive (the reactivity is 2.11916). In the left panel of Fig. 10 we
how the temporal behaviour of the host population, that exhibits intermittency. The kurtosis is 1368.9≫ 3, indicating the presence
f on–off intermittency. Moreover, in the same figure, we show the power spectrum (center panel) and the distribution of the off
hases (right panel). All statistical quantities confirm the onset of on–off intermittency.

Our simulations support the idea that fixed point’s reactivity can serve as a route to the emergence of on–off intermittency. This
erspective emphasizes a dynamic aspect that warrants further exploration in future research.

. Propagation of intermittency in coupled host-parasitoid systems

In this last section, we analyse the propagation of intermittency in a network of coupled Beddington-Free-Lawton discrete systems.
e exploit the complex ecological networks formalism which provides a useful abstraction of ecological systems, representing them

s graphs, composed of nodes (species) and edges (interactions). We want to analyse the contribution of networks in clarifying
cosystem properties and functioning, in terms of transmission of climate and environmental variability among species. Notice
hat our approach departs from the one in [18,21] where maps (instead of variables) are locally connected. The use of a complex
etwork comprising Beddington-Free-Lawton discrete maps for modelling host-parasitoid interactions, that is beyond reach a single
opulation dynamics, underscores our innovative approach to characterize on–off intermittency in ecological systems.

Suppose we have 𝑀 interacting host-parasitoid population (𝑋(𝑖)
𝑡 , 𝑌

(𝑖)
𝑡 ) on a regular network. Consider a ring topology, where

ach node is coupled to its 𝐿 < 𝑀 neighbours to the left, so every node has degree 𝐿. With linear host-parasitoid coupling, the
ynamics is given by

𝑋(𝑖)
𝑡+1 = 𝑓 (𝑖)

𝑋 + 𝜎
𝐿
∑

𝑗=1

(

𝑌 (𝑖+𝑗)
𝑡 −𝑋(𝑖)

𝑡

)

𝑌 (𝑖)
𝑡+1 = 𝑓 (𝑖)

𝑌 + 𝜎
𝐿
∑

𝑗=1
(𝑋(𝑖+𝑗)

𝑡 − 𝑌 (𝑖)
𝑡 )

(12)

or 𝑖 = 1,… ,𝑀 . Assuming for the network a ring structure, we set 𝑋(𝑀+𝑗) ∶= 𝑋(𝑗), 𝑌 (𝑀+𝑗) ∶= 𝑌 (𝑗) for 𝑗 = 1,… , 𝐿.
9
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Fig. 9. 𝑟𝑡 randomly varying. The reactivity zone of 𝑃1 delineated by the green curve (11) in the parameter plane 𝑅 > 𝑟, for 𝑘 = 0.49 and values of 𝑐 = 1, 0.1, 0.01.
Below the green curve, the fixed point is non-reactive. The figure shows the stability curve (red line) for 𝑃1 as defined in (10), together with the kurtosis values
(of the host population). As 𝑟 increases, the region with kurtosis (of the host population) exceeding 3 invades the zone of reactivity of the stable fixed point
𝑃1, delimited by the green line. This numerical evidence suggests that on–off intermittency can emerge even before the fixed point destabilizes, within a region
where the equilibrium remains stable yet reactive.

Fig. 10. 𝑟𝑡 randomly varying. On the left, the host population 𝑋 exhibits intermittent behaviour over a duration of 106 time steps. Parameter values are 𝑐 = 1,
𝑟 = 1.508, and 𝑘 = 0.49. The value of parameter 𝑅 = 2.58 < 𝑅𝑐 assures that the fixed point 𝑃1 remains both stable and reactive. The statistical verification of
on–off intermittency for the host population is also presented: in the middle, the power spectrum is shown, and on the right, the distribution of the off phases
is depicted. The calculated kurtosis value is 35.28. These three statistical tools confirm the presence of on–off intermittency in the host population dynamics,
centered around the stable and reactive fixed point 𝑃1.

3.1. Intermittency driven by 𝛿𝑡

In this case, we suppose that the first 𝑀 − 1 populations follow a deterministic evolution corresponding to 𝑓 (𝑖)
𝑋 ∶= 𝑓𝑋 (𝑋

(𝑖)
𝑡 , 𝑌

(𝑖)
𝑡 )

and 𝑓 (𝑖)
𝑌 ∶= 𝑓𝑌 (𝑋

(𝑖)
𝑡 , 𝑌

(𝑖)
𝑡 ), defined by the right hand sides of Eq. (A.2), for 𝑖 = 1,… ,𝑀 − 1. The parameters (𝑐 = 1, 𝑘 = 4.9, 𝑟 = 3,

𝛿 = 0.0025701, 𝑘𝑟 = 1.63 and 𝜌 = 𝑟 + ln(𝛿) = −2.9638(<0)) are chosen in order to assure the stability of the extinction fixed point 𝑃0.
The last 𝑀-th population, instead, evolves according to a random dynamics driven by 𝛿 with 𝑓 (𝑀)

𝑋 , 𝑓 (𝑀)
𝑌 defined by the right hand

sides of Eq. (5). The parameters (𝛿 = 0.0025701, 𝐷 = 0.13, 𝜌 = 3 + ln(𝛿 ) = 3 + ln(𝛿 + (𝐷 − 𝛿)𝜖 )) are chosen in order to assure the
10
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Fig. 11. Intermittency driven by 𝛿𝑡 on a network of 𝑀 = 200 nodes with host-parasitoid coupling and 𝜎 = 0.001. The plots show the population evolution in
selected nodes of the networks over a duration of 600 time steps. The first one (row 1) corresponds to the 20-th node, the lowest one (row 10) corresponds to
he 200-th node. The other 𝑚-th rows with 𝑚 = 2, 3,… , 9 correspond to the 20𝑚-th node of the network. The intermittent behaviour suddenly propagates in the
etwork, affecting not only the host population (on the left) but also the parasitoid population (on the right).

nset of the on–off intermittency. We perform a numerical investigation on the propagation of on–off intermittency in a network
orresponding to 𝑀 = 200 and 𝐿 = 10.

When 𝜎 = 0, the maps are decoupled and, given the chosen parameters 𝛿 and 𝐷, only the host population of the randomly-
riven map undergoes on–off intermittency, while the other deterministic maps tend to a stable zero solution (𝜌 < 0). For 𝜎 = 0.001
he intermittent behaviour suddenly propagates in the network, affecting not only the host population (Fig. 11, left) but also the
arasitoid population (see Fig. 11, right). In this Figure we can also see a shift (in time) from last row (corresponding to the 𝑀-th
ode) to the first row (corresponding to the 10-th node) this indicating that intermittency also propagates over time. The same
ehaviour is also evident if we increase the value of 𝜎 to 0.0085 (see Fig. 12) and 0.009 (see Fig. 13). However, increasing the
oupling parameter to 𝜎 = 0.01 leads to a situation where the intermittent behaviour tends to disappear, as shown in Fig. 14.

.2. Intermittency driven by 𝑟𝑡

In this case, the quantities 𝑓 (𝑖)
𝑋 and 𝑓 (𝑖)

𝑌 , for 𝑖 = 1,… ,𝑀 − 1, represent deterministic dynamics defined by the right hand sides
f Eq. (A.2), with parameter values that assure the stability of the free-parasitoid fixed point (𝑐 = 1, 𝑘 = 0.49, 𝑟 = 1.508, 𝛿 = 1,
𝑟 = 0.3249 and 𝜌 = 𝑟+ln(𝛿) = 𝑟) , while 𝑓 (𝑀)

𝑋 , 𝑓 (𝑀)
𝑌 are defined by the right hand sides of Eq. (8) which provide a random dynamics

riven by 𝑟𝑡, with parameters that assure the onset of on–off intermittency (𝑟 = 1.508, 𝑅 = 2.6, 𝑟𝑡 = 𝑟 + (𝑅 − 𝑟)𝜖𝑡 = 1.508 + 1.092𝜖𝑡).
Again, we perform a numerical investigation of the propagation of intermittency in a network with 𝑀 = 200, 𝐿 = 10.

When 𝜎 = 0 the maps are decoupled and, given the chosen parameters 𝑟 and 𝑅, only the last map undergoes intermittency, while
the others tend to a stable 𝑃1 = (0.49, 0) solution. For increasing values of 𝜎, the intermittent behaviour affects also the parasitoid
population and it propagates across the nodes, see Fig. 15 for 𝜎 = 0.01. At 𝜎 = 0.06 the intermittent behaviour affects all nodes in
the network, see Fig. 16. We recall that the value of 𝜎 represents the intensity of the interaction between populations. Hence, in
contrast to the case of intermittency driven by 𝛿, when intermittency is driven by changes in 𝑟, increasing the interaction intensity
between populations leads to more and more nodes (populations) exhibiting on–off intermittency.

4. Discussion and conclusions

On–off intermittency is a bursting behaviour that has been proposed as a conceptual description for various natural systems, from
the solar cycle [7,8] to earthquakes [11] to population outbreaks [16–21]. Basically, this type of dynamics is found when a ‘‘driven’’
system with an equilibrium solution (in the simplest case, a fixed point) is parametrically perturbed by another (deterministic or
11
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Fig. 12. Intermittency driven by 𝛿𝑡 on a network of 𝑀 = 200 nodes with host-parasitoid coupling parameter 𝜎 = 0.0085. Population evolution in the same number
of time steps and selected nodes of the networks of Fig. 11. As in the previous figure, intermittency propagates through the network, influencing both the host
population (on the left) and the parasitoid population (on the right). Notice that this intermittency propagates not only across the nodes but also over time.

Fig. 13. Intermittency driven by 𝛿𝑡 on a network of 𝑀 = 200 nodes with host-parasitoid coupling parameter 𝜎 = 0.009. Population evolution in the same number
of time steps and selected nodes of the networks of Fig. 11. Increasing the coupling parameter, the intermittent behaviour tends to disappear both in host (on
the left) and parasitoid (on the right) populations.
12
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Fig. 14. Intermittency driven by 𝛿𝑡 on a network of 𝑀 = 200 nodes with host-parasitoid coupling parameter 𝜎 = 0.01. Population evolution in the same number
of time steps and selected nodes of the networks of Fig. 11. The intermittent behaviour is reduced to a single burst in both the host (on the left) and the
parasitoid (on the right) populations.

Fig. 15. Intermittency driven by 𝑟𝑡 on a network of 𝑀 = 200 nodes with host-parasitoid coupling and 𝜎 = 0.01. The plots show the population evolution in
elected nodes of the networks over a duration of 600 time steps. The first one (row 1) corresponds to the 20-th node, the lowest one corresponds to the 200-th
ode. The other 𝑚-th rows with 𝑚 = 2, 3,… , 9 correspond to the 20𝑚-th node of the network. The intermittent behaviour slowly propagates, affecting both the
ost population (on the left) and the parasitoid population (on the right) in the first nodes of the network.
13
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Fig. 16. Intermittency driven by 𝑟𝑡 on a network of 𝑀 = 200 nodes with host-parasitoid coupling and 𝜎 = 0.06. Population evolution in the same selected
odes of the networks of Fig. 15. In contrast to the case of intermittency driven by 𝛿𝑡, increasing the network interaction intensity results in a higher degree of
rregular intermittency behaviour.

andom) system, acting as a driver, that modifies the stability properties of the equilibrium solution of the driven system. Under
ppropriate circumstances, the driven system displays violent excursions from the surroundings of the equilibrium solution, followed
y returns towards the (same) equilibrium. In the simplest cases, the equilibrium solution does not depend on the driver and
here is no feedback of the driven system on the driver, although both assumptions can be (slightly) relaxed. Interestingly, on–
ff intermittency is characterized by specific statistical properties, such as an approximate power-law form of the off phases and a
road, power-lawish and ‘‘red’’ power spectrum of the signal.

In this work, we have conducted a stability analysis of an extended version of the discrete Beddington-Free-Lawton model
xamined in [21]. Our model incorporates random perturbation factors that affect both the grazing intensity and the growth rate of
he host population. These stochastic components play a crucial role in influencing the emergence of on–off intermittency. Expanding
he analysis to incorporate multi-species interactions and trophic relationships will add complexity to the ecological model; future
tudies could examine how the presence of multiple species impacts the onset of on–off intermittency.

We have explored the relationship between the emergence of on–off intermittency and the novel concept of fixed point reactivity
ithin a stochastically parametrized discrete system, from which bursting initiates. The numerical evidence presented in our

imulations supports the notion that fixed point reactivity is a route for the occurrence of on–off intermittency. This perspective
eveals a critical aspect of the system’s dynamics that has been uncharted in earlier research, and highlights a dynamical behaviour
eserving further investigation in future studies. Future research can also explore the mathematical and ecological implications of
he concept of reactivity within various stochastically perturbed ecological models. This exploration may shed light on potential
ariations in the definition or interpretation of reactivity across diverse ecological contexts.

After studying the behaviour of an individual host-parasitoid system, this paper investigates a network of coupled host-parasitoid
ystems. In this network, one system is randomly perturbed in a way that generates on–off intermittency, while the others are
oupled to the network but follow a deterministic dynamics. Interestingly, we found that for small but non-null coupling strengths,
he on–off behaviour, driven by stochastic variation of the grazing parameter and affecting the host on a single node, propagates in
he network so that the other coupled systems undergo similar bursting behaviour. However, as we increase the coupling strength,
he intermittency tends to disappear. Similarly, when we induce on–off intermittency on a single node by considering stochastic
ariations in the growth rate intensity, this intermittent behaviour propagates throughout the network. In contrast, increasing the
nteraction intensity between populations leads to more and more nodes (populations) displaying on–off intermittency.

This result can be extremely interesting when considering how an environmental perturbation in just one system can rapidly
ffect the whole network, leading to global on–off intermittency. Unravelling the mechanisms of potential cascading effects of
n–off intermittency across the network could be useful for understanding its resilience in the face of environmental perturbations.
oreover, we can explore how different coupling mechanisms impact the extent and speed of on–off intermittency propagation.
14
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This can help identify the thresholds where behaviour shifts from local to global, providing valuable information for early warning
systems. Practical applications of these findings in real-world ecological systems can design more effective pest control strategies or
predict the consequences of environmental disruptions in ecosystems.

Analysing how the network’s structure, including its connectivity and the roles of specific nodes, influences the propagation of
ursting behaviour is another promising future investigation. Understanding the architecture that facilitates or inhibits the rapid
pread of on–off intermittency can be subject of future interest.

The model represented by on–off intermittency, with its link to equilibrium reactivity, is once more a useful conceptual tool to
epresent bursting in natural systems, especially when considering the dynamics of coupled components. In addition, it opens up a
ascinating array of future research possibilities.
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ppendix. The Beddington-Free-Lawton model

We study the local stability analysis and bifurcations of the model

𝑋𝑡+1 = 𝛿 𝑋𝑡 exp
[

𝑟
(

1 −
𝑋𝑡
𝑘

)

− 𝑐 𝑌𝑡

]

𝑌𝑡+1 = 𝑋𝑡
[

1 − exp
(

− 𝑌𝑡
)]

.
(A.1)

following the approach in [35]. Setting 𝜌 ∶= 𝑟 + 𝑙𝑜𝑔(𝛿) and 𝑘𝑟 ∶= 𝑘∕𝑟, the model (3) can then be written as

𝑋𝑡+1 = 𝑋𝑡 exp
(

𝜌 −
𝑋𝑡
𝑘𝑟

− 𝑐 𝑌𝑡

)

𝑌𝑡+1 = 𝑋𝑡
[

1 − exp
(

− 𝑌𝑡
)]

.
(A.2)

In what follows, we perform a qualitative analysis of the dynamics of this model, both for what concerns the stability and for the
arising bifurcations, for variations in the parameters 𝜌 and 𝑘 and for a selected ensemble of fixed values of 𝑐.
15
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A.1. Fixed points

The discrete dynamical system in (A.2) admits one extinction fixed point 𝑃0 = (0, 0), one free-parasitoid fixed point 𝑃1 = (𝜌 𝑘𝑟, 0)
which is positive only for 𝜌 > 0, and one coexistence fixed point 𝑃 ∗ = (𝑋∗, 𝑌 ∗) that can be found by solving

𝑋∗ = 𝑋∗ exp
[

𝜌 − 𝑋∗

𝑘𝑟
− 𝑐 𝑌 ∗

]

, 𝑌 ∗ = 𝑋∗ [1 − exp(−𝑌 ∗)
]

btaining (for 𝑋∗ ≠ 0 and 𝑌 ∗ ≠ 0)

𝑋∗ = 𝑘𝑟(𝜌 − 𝑐 𝑌 ∗), 𝑋∗ = 1∕𝜑(𝑌 ∗), 𝜑(𝑦) =
1 − 𝑒𝑥𝑝(−𝑦)

𝑦
.

Proposition 1. A unique, strictly positive, coexistence fixed point exists for 𝜌 > 1∕𝑘𝑟.

Proof. A positive coexistence fixed point lies at the intersection of the straight line 𝑥 = −𝑐𝑘𝑟𝑦+ 𝑘𝑟 𝜌, with negative slope −𝑐𝑘𝑟, and
the curve 𝑥 = 1∕𝜑(𝑦), where 𝜑(𝑦) verifies 0 < 𝜑(𝑦) < 1 for all 𝑦 > 0. By continuity, 𝑥 = 1∕𝜑(𝑦) is equal to 1 for 𝑦 = 0 and increases
for 𝑦 > 0, while 𝑥 = −𝑐𝑘𝑟𝑦 + 𝑘𝑟 𝜌 assumes value 𝑘𝑟𝜌 for 𝑦 = 0 and decreases for 𝑦 > 0. Consequently, a strictly positive intersection
may exist only if 𝑘𝑟 𝜌 > 1. □

From simple geometric considerations (see left plot in Fig. A.17), it results that a positive coexistence fixed point satisfies
0 < 𝑋∗ − 1 < 𝑌 ∗ < 𝑋∗ < 𝑘𝑟𝜌.

Theorem 1. The following statements hold.

1. If 𝜌 ≤ 0, then model (A.2): admits the extinction fixed point; does not admit the free-parasitoid and coexistence fixed points.
2. If 0 < 𝜌 ≤ 1

𝑘𝑟
, model (A.2): admits the extinction and the free-parasitoid fixed points; does not admit the coexistence fixed point.

3. If 𝜌 > 1
𝑘𝑟

, model (A.2) admits the extinction, free-parasitoid and coexistence fixed points.

Proof. The proof easily follows by considering the free-parasitoid fixed point 𝑃1 = (𝜌𝑘𝑟, 0) and Proposition 1. □

A.2. Stability properties

In order to study the stability properties of the fixed points, we consider the Jacobian matrix for system (A.2), that has the
following form

𝐽 =

⎡

⎢

⎢

⎢

⎣

(

1 −
𝑋𝑡
𝑘𝑟

)

exp
(

𝜌 −
𝑋𝑡
𝑘𝑟

− 𝑐 𝑌𝑡

)

−𝑐 𝑋𝑡 exp
(

𝜌 −
𝑋𝑡
𝑘𝑟

− 𝑐 𝑌𝑡

)

1 − exp
(

−𝑌𝑡
)

𝑋𝑡 exp
(

− 𝑌𝑡
)

⎤

⎥

⎥

⎥

⎦

.

heorem 2. The extinction fixed point 𝑃0 = (0, 0) is

(i) asymptotically stable, if 𝜌 < 0;
(ii) a saddle point (unstable), if 𝜌 ≥ 0.

roof. When evaluated at 𝑃0 = (0, 0), the Jacobian matrix reduces to

𝐽0 ∶= 𝐽
|𝑃0 =

[

exp(𝜌) 0
0 0

]

hat admits as eigenvalues 𝜆1 = exp(𝜌) and 𝜆2 = 0. Since |𝜆2| = 0 < 1, 𝑃0 is locally asymptotically stable if |𝜆1| < 1 and unstable
saddle point) if |𝜆1| > 1. Therefore the extinction fixed point is asymptotically stable if exp(𝜌) < 1, that is 𝜌 < 0, and unstable if
xp(𝜌) > 1, that is 𝜌 > 0. If 𝜌 = 0, then 𝜆1 = 1 and 𝑃0 is a nonhyperbolic fixed point. Following the approach in [35], we apply
he center manifold theorem [36] as follows. Usually, the first step consists in making a change of variables so that the fixed point
oincides with origin. In this case we consider 𝑢𝑡 = 𝑋𝑡 and 𝑣𝑡 = 𝑌𝑡. Taking this into account, we rewrite the system (A.2) by adding
nd subtracting 𝜆1𝑢𝑡 and 𝜆2𝑣𝑡 in the first and second equation, respectively. The system obtained has the following form

𝑢𝑡+1 = exp(𝜌)𝑢𝑡 + 𝑓1(𝑢𝑡, 𝑣𝑡)
𝑣𝑡+1 = 𝑔1(𝑢𝑡, 𝑣𝑡)

(A.3)

here

𝑓1(𝑢𝑡, 𝑣𝑡) = 𝑢𝑡 exp
(

𝜌 −
𝑢𝑡
𝑘𝑟

− 𝑐 𝑣𝑡

)

− exp(𝜌)𝑢𝑡

and

𝑔 (𝑢 , 𝑣 ) = 𝑢
[ ( )]
16
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We look for the center manifold and we suppose that is represented by the curve

𝑣 = ℎ(𝑢) = 𝛼𝑢2 + 𝛽𝑢3 + (𝑢4),

where 𝛼, 𝛽 ∈ R need to be determined. We observe that we consider at least a quadratic term (𝑢2) because the center manifold
theorem assumes that ℎ(0) = ℎ′(0) = 0. Since 𝑣𝑡+1 = ℎ(𝑢𝑡+1), we have

𝑔1(𝑢𝑡, 𝑣𝑡) = ℎ
(

exp(𝜌)𝑢𝑡 + 𝑓1(𝑢𝑡, 𝑣𝑡)
)

.

To simplify the notation, in what follows we will use 𝑢, 𝑣 instead of 𝑢𝑡, 𝑣𝑡. We observe that the function ℎ satisfies

𝑔1(𝑢, ℎ(𝑢)) = ℎ
(

exp(𝜌)𝑢 + 𝑓1(𝑢, ℎ(𝑢))
)

therefore we have

𝑢
[

1 − exp (−ℎ(𝑢))
]

= ℎ
(

𝑢 exp
(

𝜌 − 𝑢
𝑘𝑟

− 𝑐 ℎ(𝑢)
))

,

𝑢
[

1 − exp
(

− 𝛼𝑢2 − 𝛽𝑢3
)]

= ℎ
(

𝑢 exp
(

𝜌 − 𝑢
𝑘𝑟

− 𝑐𝛼𝑢2 − 𝑐𝛽𝑢3
))

.

e want to apply the polynomial identity test, thus we write the exponential terms by using their Taylor expansion. Neglecting the
erms of (𝑢4), we finally obtain

𝛼𝑢3 = 𝛼(1 + 𝜌)2𝑢2 + 𝛽(1 + 𝜌)3𝑢3

that yields the unique solution 𝛼 = 𝛽 = 0. The center manifold is given by the equation 𝑣 = ℎ(𝑢) = 0. Therefore we can study the
symptotically stability of (A.2) by considering the stability of the following map

𝑢 → exp(𝜌)𝑢 + 𝑓1(𝑢, ℎ(𝑢))

𝑢 → 𝐿(𝑢) = 𝑢 exp
(

𝜌 − 𝑢
𝑘𝑟

)

We compute the first derivative of 𝐿(𝑢)

𝐿′(𝑢) = exp
(

𝜌 − 𝑢
𝑘𝑟

)(

1 − 𝑢
𝑘𝑟

)

and evaluate it at the fixed point 𝑢 = 0,

𝐿′(0) = exp(𝜌) = 1.

Since 𝐿′(0) = 1, we evaluate the second order derivative and obtain 𝐿′′(0) = − 2
𝑘𝑟

≠ 0. Then, it follows that the fixed point 𝑃0 is
unstable. □

Theorem 3. The free-parasitoid fixed point 𝑃1 = (𝜌𝑘𝑟, 0) exists and is

(i) asymptotically stable, if 0 < 𝜌 < min
[

1
𝑘𝑟
, 2
]

or 𝜌 = 2 < 1
𝑘𝑟

;

(ii) a saddle point, if min
[

1
𝑘𝑟
, 2
]

< 𝜌 < max
[

1
𝑘𝑟
, 2
]

or 𝜌 = 2 > 1
𝑘𝑟

or 𝜌 = 1
𝑘𝑟
< 2;

(iii) an unstable node, if 𝜌 > max
[

1
𝑘𝑟
, 2
]

or 𝜌 = 1
𝑘𝑟
> 2.

Proof. The Jacobian matrix at 𝑃1 = (𝜌 𝑘𝑟, 0)

𝐽1 ∶= 𝐽
|𝑃1 =

[

1 − 𝜌 −𝜌 𝑘𝑟 𝑐
0 𝜌 𝑘𝑟

]

has eigenvalues 𝜆1 = 1 − 𝜌 and 𝜆2 = 𝜌 𝑘𝑟. We recall that a fixed point is asymptotically stable if |𝜆𝑖| < 1 for 𝑖 = 1, 2; it is a saddle
point (unstable) if |𝜆𝑖| > 1 for some 𝑖 and it is an unstable node if |𝜆𝑖| > 1 for 𝑖 = 1, 2. If |𝜆𝑖| = 1, the stability properties follow by
applying the center manifold theorem as in Theorem 2. □

Moreover, 𝑃1 is reactive when the largest singular value of 𝐽1, given by

𝜎(𝐽1) =

√

2
2

√

(1 − 𝜌)2 + (𝑐2 + 1)𝜌2𝑘2𝑟 +
√

𝛥𝜌

where 𝛥𝜌 = (1 − 𝜌)4 + (𝑐2 + 1)2𝜌4𝑘4𝑟 + 2𝜌2𝑘2𝑟 (𝑐
2 − 1)(1 − 𝜌)2, verifies 𝜎(𝐽1) > 1; vice versa it is not reactive. In Fig. A.17 we plot the

stability region of 𝑃1 for different values of 𝜌 and 𝑘𝑟.

Theorem 4. The coexistence fixed point 𝑃 ∗ (exists and) is asymptotically stable if

max
[

𝜓 (𝑐), 1∕𝑘
]

< 𝜌 ≤ max
[

𝜓 (𝑐), 𝜓 (𝑐)
]

17
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Fig. A.17. Upper left panel: geometric location of the positive coexistence fixed point for 𝜌 𝑘𝑟 > 1. Other panels: in green the stability region of the coexistence
fixed point 𝑃 ∗, in red the region where the free-parasitoid 𝑃1 fixed point is stable and reactive, in cyan the region where the free-parasitoid 𝑃1 fixed point is
stable and non-reactive, in yellow the region where the extinction fixed point 𝑃0 is stable. The values of the parameter 𝑐 = 1, 10, 0.001 are reported on the plots.

where

𝜓2(𝑐) =
2 + 2𝑋∗ + 2(𝑐 − 1)𝑌 ∗ + 𝑐𝑋∗𝑌 ∗ − 𝑐(𝑌 ∗)2

1 +𝑋∗ − 𝑌 ∗ ,

𝜓3(𝑐) =
1 −𝑋∗ − (𝑐 − 1)𝑌 ∗ − 𝑐𝑋∗𝑌 ∗ + 𝑐(𝑌 ∗)2

𝑌 ∗ −𝑋∗ ,

𝜓4(𝑐) = 𝑋∗ + (𝑐 − 1)𝑌 ∗ + 1.

Proof. We evaluate the Jacobian matrix at 𝑃 ∗

𝐽 ∗ ∶= 𝐽
|𝑃 ∗ =

[

1 − 𝜌 + 𝑐𝑌 ∗ −𝑐𝑋∗

𝑌 ∗

𝑋∗ 𝑋∗ − 𝑌 ∗

]

and we apply the trace and determinant criterion for the stability analysis. The results follows by imposing that the fixed point is
asymptotically stable when |𝑡𝑟(𝐽 ∗)|−1 < 𝑑𝑒𝑡(𝐽 ∗) < 1, where 𝑡𝑟(𝐽 ∗) = 1−𝜌+𝑋∗ +(𝑐−1)𝑌 ∗ and 𝑑𝑒𝑡(𝐽 ∗) = (1−𝜌+ 𝑐𝑌 ∗)(𝑋∗ −𝑌 ∗)+ 𝑐𝑌 ∗.
In what follows, we report only a sketch of the calculations.

• Solve |𝑡𝑟(𝐽 ∗)| − 1 < 𝑑𝑒𝑡(𝐽 ∗);

– if 𝑡𝑟(𝐽 ∗) ≥ 0, then we solve the system
{

𝑡𝑟(𝐽 ∗) ≤ 0
𝑡𝑟(𝐽 ∗) − 1 < 𝑑𝑒𝑡(𝐽 ∗)

that is
{

𝜌 ≤ 𝑋∗ + (𝑐 − 1)𝑌 ∗ + 1 = 𝜓4(𝑐)

𝜌 > 𝑐
(

𝑋∗𝑌 ∗−(𝑌 ∗)2
)

𝑋∗−𝑌 ∗−1 = 𝑐 𝜓1

and the unique solution is

𝑐𝜓 < 𝜌 ≤ 𝜓 (𝑐) ; (A.4)
18
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– if 𝑡𝑟(𝐽 ∗) < 0, then we obtain the system
{

𝑡𝑟(𝐽 ∗) < 0
− 𝑡𝑟(𝐽 ∗) − 1 < 𝑑𝑒𝑡(𝐽 ∗)

that is
{

𝜌 > 𝑋∗ + (𝑐 − 1)𝑌 ∗ + 1 = 𝜓4(𝑐)

𝜌 < 2+2𝑋∗+2(𝑐−1)𝑌 ∗+𝑐𝑋∗𝑌 ∗−𝑐(𝑌 ∗)2
1+𝑋∗−𝑌 ∗ = 𝑐 𝜓2(𝑐)

and the unique solution is

𝜓4(𝑐) < 𝜌 < 𝜓2(𝑐) . (A.5)

The solution of |𝑡𝑟(𝐽 ∗)| − 1 < 𝑑𝑒𝑡(𝐽 ∗) is given by the union of (A.4) and (A.5), that yields to

min
[

𝑐 𝜓1, 𝜓4(𝑐)
]

< 𝜌 < max
[

𝜓2(𝑐), 𝜓4(𝑐)
]

. (A.6)

• Solve 𝑑𝑒𝑡(𝐽 ∗) < 1, which solution is

𝜌 >
1 −𝑋∗ − (𝑐 − 1)𝑌 ∗ − 𝑐𝑋∗𝑌 ∗ + 𝑐(𝑌 ∗)2

𝑌 ∗ −𝑋∗ = 𝜓3(𝑐) (A.7)

• Finally, the solution of |𝑡𝑟(𝐽 ∗)| − 1 < 𝑑𝑒𝑡(𝐽 ∗) < 1 is obtained by the intersection of (A.6) and (A.7), that is

max
{

min
[

𝑐 𝜓1, 𝜓4(𝑐)
]

, 𝜓3(𝑐)
}

< 𝜌 < max
[

𝜓2(𝑐), 𝜓4(𝑐)
]

. (A.8)

• At last, we guarantee the existence of the fixed point, therefore we intersect (A.8) with the existence condition 𝜌 > 1
𝑘𝑟

given
in Proposition 1. Thus we obtain

max
{

min
[

𝑐 𝜓1, 𝜓4(𝑐)
]

, 𝜓3(𝑐),
1
𝑘𝑟

}

< 𝜌 < max
[

𝜓2(𝑐), 𝜓4(𝑐)
]

.

s shown in Fig. A.17, a positive coexistence fixed point satisfies 0 < 𝑋∗ − 1 < 𝑌 ∗ < 𝑋∗ < 𝑘𝑟𝜌. As a consequence 𝑐𝜓1 < 0, so that
min

[

𝑐 𝜓1, 𝜓4(𝑐)
]

< 0 and, since 𝑘𝑟 > 0, we have that max
{

min
[

𝑐 𝜓1, 𝜓4(𝑐)
]

, 𝜓3(𝑐),
1
𝑘𝑟

}

= max
[

𝜓3(𝑐),
1
𝑘𝑟

]

. □

The results of a numerical investigation about stability properties of the coexistence fixed point are reported in Fig. A.17 for
𝑐 = 1, 10, 0.001.

A.3. Bifurcation analysis and intermittent behaviour

We briefly recall the different types of bifurcation that may occur at fixed points.

Remark 1. A saddle–node bifurcation occurs when the Jacobian matrix has an eigenvalue equal to 1 and the other inside the unit
circle.

Remark 2. A period-doubling bifurcation occurs when the Jacobian matrix has an eigenvalue equal to −1 and the other inside the
unit circle.

Remark 3. A Neimark–Sacker bifurcation occurs when the Jacobian matrix has two complex conjugate eigenvalues on the unit
circle.

Theorem 5. A saddle–node bifurcation occurs at the extinction fixed point, if 𝜌 = 0.

Proof. See Remark 1. □

heorem 6. At the free-parasitoid fixed point,

(i) a period-doubling bifurcation occurs if 𝜌 = 2 and 𝑘𝑟 <
1
2 ;

(ii) a saddle–node bifurcation occurs, if 𝜌 = 1
𝑘𝑟

and 𝑘𝑟 >
1
2 .

Proof. See Remarks 2 and 1. □

Theorem 7. At the coexistence fixed point,

1. a Neimark–Sacker bifurcation occurs, if 𝜌 = 𝜓3(𝑐) and 𝜓5(𝑐) < 𝜌 < 𝜓6(𝑐) where 𝜓5(𝑐) = −1 + 𝑋∗ + (𝑐 − 1)𝑌 ∗ and 𝜓6(𝑐) =
3 +𝑋∗ + (𝑐 − 1)𝑌 ∗;

2. a period-doubling bifurcation occurs if, 𝜌 = 𝜓 (𝑐).
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Fig. A.18. Orbit diagrams depicting attractors with respect to 𝜌 < 5, for 𝑘𝑟 = 1.63 and 𝑐 = 1 (first row) and, for 𝑘𝑟 = 0.3 and 𝑐 = 10 (second row, on the right)
nd 𝑐 = 10 and 𝑘𝑟 = 0.49 (second row, on the left). It is possible to recognize the Neimark–Sacker bifurcation at the coexistence fixed point (first row) and a
eriod-doubling bifurcation at the free-parasitoid fixed point (second row).

roof. By considering Remarks 3 and 2, we apply the trace and determinant criteria. Therefore, we have a Neimark–Sacker
ifurcation if

𝑑𝑒𝑡(𝐽 ∗) = 1 𝑎𝑛𝑑 |𝑡𝑟(𝐽 ∗)| < 2.

period-doubling bifurcation occurs if

1 + 𝑡𝑟(𝐽 ∗) + 𝑑𝑒𝑡(𝐽 ∗) = 0. □

Orbit diagrams in Fig. A.18, depicting the long run-behaviour starting from 𝑋0 = 1.1966 and 𝑌0 = 0.3703, show 𝑋 and 𝑌 attractors
or −0.5 < 𝜌 < 5. We can recognize an example of Neimark–Sacker bifurcation at the coexistence fixed point and a period-doubling
ifurcations at the free-parasitoid fixed point.

Finally, the numerical evaluation of the maximum Lyapunov exponent (A.11), plotted in Fig. A.19 as a function of the parameter
, indicates the route to chaos. We show two examples of onset of chaotic intermittency in the Beddington-Free-Lawton model: for
= 1 and 𝑘𝑟 = 1.63 intermittency is detected at 𝜌 ≈ 2.57811 (see Fig. A.20 on the left); for 𝑐 = 10 and 𝑘𝑟 = 0.3 intermittency of solely

host population can be seen at 𝜌 ≈ 2.781595 (see Fig. A.20 on the right). Notice that this type of intermittent behaviour is not on–off
ntermittency, which we discuss below.

.4. Reactivity, resilience and Lyapunov exponents

Consider the discrete system (or maps)

𝐱(𝑡 + 1) = 𝐟 (𝐱(𝑡)). (A.9)

A.4.1. Stability
To study the stability of a fixed point 𝐱, we analyse the stability of the null equilibrium of the linearized system at 𝐱. Let

(𝑖)
𝐱 =

(

𝜕𝐟 (𝐱(𝑖))
𝜕𝐱(𝑖)

)

|𝐱(𝑖)=𝐱
so that the linearization of the system (A.9) at 𝐱 is given by

𝜂(𝑡) = 𝐽 (𝑡−1)
𝐱 𝜂(𝑡 − 1) = … =

↶
𝑡−1
∏

𝐽 (𝑖)
𝐱 𝜂(0) = 𝐻𝑡,𝐱 𝜂(0).
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Fig. A.19. Maximum Lyapunov exponent 𝐿1,𝜂(0) for 𝜂(0) = (2.44194, 0.528998), 𝑘𝑟 = 1.63, 𝑐 = 1. The maximum Lyapunov exponent is plotted against 𝜌 for
= 1, 𝑘𝑟 = 1.63 on the left and 𝑐 = 10, 𝑘𝑟 = 0.49 on the right.

Fig. A.20. Intermittent behaviour of both host and parasitoid populations is observed at 𝜌 ≈ 2.57811 for 𝑐 = 1 and 𝑘𝑟 = 1.63 (on the left); the arising of host
population intermittency is detected at 𝜌 ≈ 2.781595 for 𝑐 = 10 and 𝑘𝑟 = 0.3 (on the right).

he long-term behaviour of 𝜂(𝑡) is determined by the spectral radius 𝜓(𝐻𝑡,𝐱) of the matrix 𝐻𝑡,𝐱 (i.e. the maximum of the modulus
of its eigenvalues).

A.4.2. Amplification envelope, reactivity and resilience
Suppose 𝐱 asymptotically stable (and assume that the Jacobian is not normal to neglect the trivial case). In [26], the amplification

envelope has been defined as

𝜙(𝑡) ∶= max
‖𝜂(0)‖≠𝟎

‖𝜂(𝑡)‖
‖𝜂(0)‖

= max
‖𝜂(0)‖≠𝟎

‖𝐻𝑡,𝐱 𝜂(0)‖
‖𝜂(0)‖

= |||𝐻𝑡,𝐱|||.

hen ‖ ⋅ ‖ is the Euclidean norm, then the induced norm ||| ⋅ ||| is the spectral norm and

𝜙(𝑡) = 𝜙2(𝑡) ∶=
√

𝜓(𝐻𝑇
𝑡,𝐱𝐻𝑡,𝐱) = 𝜎𝑚𝑎𝑥(𝐻𝑡,𝐱), (A.10)

where 𝜎𝑚𝑎𝑥 is the largest singular value of the matrix 𝐻𝑡,𝐱.
Denote 𝑟(𝑡) ∶= ln𝜙2(𝑡); the maximum rate of departure from 𝐱 immediately following a perturbation 𝜂(0) can be evaluated as

𝑟(1) = ln𝜙2(1) = ln[𝜎𝑚𝑎𝑥(𝐽
(0)
𝐱 )]. When 𝑟(1) > 0 then the system is called reactive.

The resilience of 𝐱 is defined as

𝐿1,𝐱 ∶= lim
𝑡→∞

1
𝑡
𝑟(𝑡) = lim

𝑡→∞
1
𝑡
ln
√

𝜓(𝐻𝑇
𝑡,𝐱𝐻𝑡,𝐱) = lim

𝑡→∞
1
𝑡
ln 𝜎𝑚𝑎𝑥(𝐻𝑡,𝐱).

.4.3. The maximum Lyapunov exponent
The maximum Lyapunov exponent 𝐿1,𝜂(0) determines whether, starting from 𝜂(0), two infinitely close trajectories move away

rom, or approach, each other. By definition, it results that

𝐿1,𝜂(0) = lim
𝑡→∞

1
𝑡
ln
√

𝜓(𝐻𝑇
𝑡,𝜂(0)𝐻𝑡,𝜂(0)) (A.11)

i.e. the maximum Lyapunov exponent is a measure of the resilience of a perturbation 𝜂(0).
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