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Abstract

This study presents a series of self-correcting models that were obtained by in-
tegrating information about seismicity and fault sources in Italy. Four versions of the
stress release model are analyzed, in which the evolution of the system over time is
represented by the level of strain, moment, seismic energy, or energy scaled by the
moment. We carried out the analysis on a regional basis by subdividing the study
area into eight tectonically coherent regions. In each region, we reconstructed the
seismic history and statistically evaluated the completeness of the resulting seismic
catalog. The conditional intensity function that characterizes each self-correcting
model was estimated following the Bayesian paradigm and by applying Markov chain
Monte Carlo methods. In this way, we obtain not only the parameter estimates given
by their posterior mean, but also a measure of their uncertainty expressed by the
simulated posterior distribution. The comparison of the four models through the
Bayes factor indicates overall significant, albeit to different degrees, evidence in fa-
vor of the stress release model based on the scaled energy. Therefore, among the
quantities considered, this turns out to be the most appropriate measure of the size
of an earthquake for use in stress release models. At any instant, the ’time to the
next event’ is the realization of a Gompertz distributed random variable with a shape
parameter that depends on time through the value of the conditional intensity at that
instant. In light of this result, the issue of the forecasting problem is tackled through
both retrospective and prospective approaches. Retrospectively, the forecasting pro-
cedure is carried out on the occurrence times of the events recorded in each region,
to determine whether the stress release model reproduces the observations used in
the estimation procedure. Prospectively, the estimates of the time to the next event
are compared with the date of the earthquakes that occurred after the end of the
learning catalog. Four earthquakes of Mw ≥ 5.3 occurred in the 2003-2012 decade,
excluding their aftershocks, and all of these fall within the 75% highest probability
density intervals of the forecast.
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1 Introduction

The formulation of stochastic models for seismic hazard assessment in probabilistic terms
is essentially based on phenomenological analyses or physical hypotheses. Phenomenolo-
gical analyses generate models that belong to the class of the self-exciting models (Hawkes
and Oakes, 1974) that describe the temporal and spatial clustering of earthquakes [Kagan
(1991), Ogata (1988), Ogata (1999), and references therein]. These models were origin-
ally proposed to explain the decay of secondary shocks following a strong earthquake, and
then they were applied for the detection of anomalies in seismic activity [Matsu’ura (1986),
Ogata (1997)]. These empirical models aspire to provide a good descriptive fit to the data,
but they do not necessarily strive for a context-specific physical explanation. Models based
on physical hypotheses are more challenging, as these embody features that relate directly
to the underlying scientific knowledge. Using these models, the aim is to explain how the
evolution of the process depends on its history, in ways that can be interpreted in terms
of the underlying mechanisms. Examples of such physical models are the block-slider, the
branching for fractures, percolation, and cellular automata (Bhattacharyya and Chakrabarti

et al., 2006); these operate typically on small space-time scales. The most popular mod-
els that attempt to incorporate physical knowledge into the probabilistic framework and are
concerned with large space-time scales are those included in the class of self-correcting mod-
els. In the seismological context, the elastic rebound theory still has the leading role, even
though it was proposed by Reid a century ago (Reid , 1910). As a first approximation, mod-
ern measurements using global positioning system (GPS) largely support the Reid theory as
the basis of seismic movement along faults. Vere-Jones (1978) transposed this Reid theory
into the framework of stochastic point processes, and in particular of the self-correcting
models, through the first version of the stress release model (Vere-Jones, 1978). Enriched
versions of this model have been extensively adopted for over 20 years now [Vere-Jones and
Yonglu (1988), Zheng and Vere-Jones (1991), Zheng and Vere-Jones (1994), Bebbington
and Harte (2003), Kuehn et al. (2008)]. One of their peculiarities is that they allow for
possible interactions among neighboring fault segments as an explanation for the presence
of clusters of even large earthquakes, in contrast to the quiescence that one would expect
after a strong earthquake according to the elastic rebound theory.

In this study, we analyze a series of self-correcting models by integrating the available
information on the key components that are internationally considered among the most
common input to probabilistic seismic hazard assessment. These are usually the historical
(macroseismic) and instrumental catalogs of seismicity, which are characterized by epicent-
ral/hypocentral location, origin time, and magnitude, and the map of seismogenic faults,
as active faults deemed to be sources of large earthquakes and characterized by rupture
parameters, such as area, mechanism, and magnitude.

In Section 2, we propose four versions of the stress release model in which the evolution of
the system over time is represented by the amount of strain, seismic moment, seismic energy,
or scaled energy. The four models are analyzed on a regional basis, by subdividing the Italian
territory into eight large tectonically coherent zones, hereinafter called the macroregions
(MRs). Using publicly available databases (Section 3), we put together eight independent
datasets, one for each MR, including earthquakes (Mw ≥ 5.3), and their most likely fault
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sources. Statistical treatment of the possible incompleteness of the seismicity is also taken
into account (Appendix A).

In Section 4, model parameters are estimated following the Bayesian paradigm and
applying Markov chain Monte Carlo (McMC) methods for sampling from the posterior
probability distributions of the parameters. In this way, we obtain not only the parameter
estimates, typically as their posterior mean, but also a measure of their uncertainty as
expressed through the simulated posterior distribution of each parameter. The four models
are compared one to the other through the Bayes factor, to determine which among the
proposed measures of the size of an earthquake provides the best fit to the data. We find
that the scaled energy is the measure of earthquake size that ensures the best performance
of the stress release model.

We also deal with the forecasting problem by an analysis of the probability distribution
F (ωt|Ht) of the ’time to the next event’ conditioned on the previous history Ht of the
process. In the case of the stress release model, this distribution turns out to be a Gompertz
distribution, with two parameters that depend on the model parameters and the value of the
hazard function at time t (Section 5). After summarizing its main properties, we examine the
Gompertz distribution in the Bayesian framework by an evaluation of its posterior predictive
distribution through the Markov chains generated from the posterior distributions of the
model parameters in the estimation procedure (the McMC algorithm is detailed in Appendix
B). Retrospective validation is performed by evaluation of the expected time to the next
event immediately after each earthquake in the datasets (Section 6). The mean square (and
absolute) error between the forecast and the observed occurrence times further supports
scaled energy as the best choice for fitting the data in most of the MRs (for a complete
summary of results, see Appendix C). The same analysis is then carried out in a prospective
sense, which considers the earthquakes that occurred from the end of the learning catalog
to the end of 2012. These test events have been drawn from the available instrumental
and parametric catalogs, while remaining as consistent as possible with the characteristics
of the learning catalog.

All of the forecasts were carried out using data based on 2002 knowledge, as they were
made available by the database compilers, so that our results are independent of subjective
choices and only reflect the capability of the applied model in an actual context.

2 Self-correcting models

Let us take into account a region that can be considered as a seismic unit on the basis, for
instance, of the kinematic context and the expected rupture mechanism. Adopting the Reid
elastic-rebound theory, we generically use the word “stress” to indicate the quantity X that
governs the state of the system in that region. We assume that X increases linearly with
time at a constant loading rate ρ imposed by external tectonic forces, until it exceeds the
strength of the medium. X then abruptly decreases each time an earthquake occurs. This
hypothesis can be formalized by:

X(t) = X0 + ρ t− S(t), (1)
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which expresses the variation of X(t) over t ∈ [0, T ], where X0 is the initial level of “stress”
and S(t) is the accumulated “stress” released by the earthquakes in the region at times
0 < ti < t, which is S(t) =

∑

i:ti<tXi. Assuming that the probability λ(t) of instantaneous
occurrence in (t, t+ dt) is a monotonic increasing function ψ of the “stress” level, we have
λ(t|Ht) = ψ[X(t)] where Ht is the accumulated history of the process. In the original
version of this model, given by Vere-Jones (1978), the form of the intensity function was
λ(t) = [ν + β(t− τS(t)]+, where [x]+ is 0 if x < 0; otherwise [x]+ = x. Then, to guarantee
the positivity of λ, an exponential function for ψ was chosen such that:

λ(t|Ht) = exp {ν + βX(t)} = exp {ν + β[X0 + ρ t− S(t)]} (2)

with β > 0. This implies that when X(t) assumes a positive and larger value (i.e., low
seismic activity), the intensity ψ[X(t)] is also larger, and the occurrence probability increases;
conversely, smaller negative values of X(t) reduce the probability. This model belongs to
the class of self-correcting point processes of Isham and Westcott (1979), with history-
conditioned intensities. In other words, the model given by Equation (2) can be thought of
in terms of the balance between the expected and observed values of the physical quantity
X . In Equation (1), at each ti, it can be seen that X0 + ρti is the estimated “stress” in
the region, whereas S(ti) is the stress released by all of the earthquakes before ti, and thus
represents the lowest boundary of the stress estimate in the region. This line of reasoning
implies that when the observed stress is lower than the expected, a seismic event is more
likely to occur.

In Equation (2), X can be any physical parameter that constitutes a proxy measure
of the strength of an earthquake, with the only constraint being that, when dealing with
long-term seismic hazard, this physical quantity can be evaluated from historical events. In
the first applications of the stochastic model given by Equation (2) [Vere-Jones and Yonglu

(1988), Zheng and Vere-Jones (1991), Zheng and Vere-Jones (1994)], X(t) is a scalar
quantity - the Benioff strain - that can be calculated from:

log10X =
1

2
log10 E = 0.75 Ms + 2.4 (3)

where E is the unknown seismic energy and Ms is the earthquake magnitude, which incor-
porates proportionality between the stress drop and the square root of the energy release
(Benioff , 1951). To also take into account the contribution of energy lost to heat during
an earthquake, the seismic moment M0, given by:

log10M0 = 1.5 Mw + 9.1 (M0 in Nm), (4)

(Kanamori and Brodsky , 2004) better represents the total seismic release. Note that Ms

and Mw do not differ significantly for earthquakes with rupture lengths of 100 km or less
(Kanamori , 1977).

The seismic moment depends on the coseismic displacement, and it is a static measure of
the earthquake size related to its long-term tectonic effects. In contrast, the radiated energy
is a dynamic measure of seismic potential for damage to anthropogenic structures. Hence
energy and moment can be considered as complementary size measures in the estimation
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of seismic hazard. For recent earthquakes, however, the seismic energy computed through
direct spectral analysis of broadband seismic waveforms can have significant regional and
tectonic variations (Choy and Boatwright, 1995) that are largely neglected when using
empirical formulae. In the case of historical earthquakes, ways to measure the amount of
energy released that contain information on source, tectonic setting, and faulting mechanism
can compensate for the inability to provide direct measurements of the energy.

Several studies have analyzed the scaling relationship for the apparent stress as a func-
tion of the seismic moment M0, the rupture area A, and the average slip acceleration
[Senatorski, 2005, 2006]. Considering different earthquake sets, from mining-induced, to
small-to-moderate, up to large earthquakes (Kanamori et al., 1993), Senatorski (2007) de-
duced that the E-M0 relationship is not linear, and the scatter in the logE-logM0 plot
can be noticeably reduced by taking into account the rupture area. Hence he proposed the
relationship:

E ∝ M1.5
0√
A
. (5)

Another influential seismic parameter that gives information on the rupture behavior
(Kanamori and Heaton, 2000) is the scaled energy Es, a non-dimensional radiated energy
scaled with M0, such that:

Es =
E

M0

. (6)

Substituting the expression of Equation (5) for E in Equation (6), the following expression
for the scaled energy is obtained:

Es ∝
M0

0.5

√
A
. (7)

In the present study, we examine the four different versions of the stress release model (Eq.
2) that can be obtained by substituting X with the Benioff strain XB (3), the seismic
moment XM (4), the seismic energy XE (5), or the scaled energy XS (7). The four models
depend on the magnitude and threshold magnitude Mth, and are expressed by:

XB = 100.75 (Ms−Mth), (8)

XM = 101.5 (Mw−Mth), (9)

XE =
102.25 (Mw−Mth)

A
, (10)

XS =
100.75 (Mw−Mth)

A
, (11)

Hereinafter, we denote these models by RB, RM, RE, and RS, respectively.

3 Databases

In the present study, we used two independently developed and publicly available data-
bases (at the time this study was carried out): the Database of Individual Seismogenic
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Sources (DISS, version 3.0.2; (DISS Working Group, 2007)), and the Parametric Cata-
log of Italian Earthquakes, version 2004 (CPTI04; (CPTI Working Group, 2004)). These
two databases reflect the level of knowledge at the end of 2002. To test our results we
then used the most recent version of the Parametric Catalog of Italian Earthquakes, ver-
sion 2011 (CPTI11; (Rovida et al., 2011)), which extends its records until 2006, and, from
2007 onwards, we used the Italian Seismic Instrumental and parametric Data-base (ISIDe;
http://iside.rm.ingv.it/iside/standard/index.jsp).

3.1 Fault sources

DISS is a large repository of geological, tectonic and active fault data for Italy and the
surrounding areas, which was compiled from first-hand experience of the authors and from
a large amount of literature data (Basili et al. (2008), Basili et al. (2009)).

Figure 1: Map of the Composite Seismogenic Sources (CSS) from the DISS database,
version 3.0.2 (DISS Working Group, 2007), classified according to the faulting mechanism.
Shaded area: vertical projection of the fault plane to the ground surface. The outlined
polygons are the MRs described in the text and Table 3.
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The database stores two main categories of parameterized crustal fault sources: Indi-
vidual Seismogenic Sources (ISS) and Composite Seismogenic Sources (CSS), both of which
are considered to be capable of releasing earthquakes of Mw 5.5 or greater. In most cases,
the ISS represent the preferred source solutions of well-known large earthquakes of the past
that ideally ruptured the fault from end to end (i.e., a fault segment). In recognition of the
inherent difficulties in the identification of all possible fault segments in the tectonic record,
however, in 2005 the DISS was extended to include the CSS, a source category that was
also meant to expand the territorial coverage and completeness, and hence the capabilities,
of the database. A CSS is essentially an active structure where the definition is based on
a regional surface and subsurface geological data that are exploited to identify and map
entire fault systems. As opposed to the ISS, the termination of a CSS can be either an
identified fault limit or a significant structural change. This implies that such fault sources
can comprise an unspecified number of different potential ruptures, and can produce earth-
quakes of any size, at least in principle, up to an assigned maximum. The DISS (version
3.0.2) contains 81 such fault sources, most of which are located in Italy, whereas seven fault
sources, which are not used in this study, are located in neighboring countries (Figure 1).

3.2 Earthquakes

Figure 2: Map of earthquakes from the CPTI04 catalog (CPTI Working Group, 2004).
Associations among earthquakes, MRs, and fault sources are listed in Tables 1-2. Stars
indicate earthquakes that occurred after the end of the learning catalog, and were used to
validate the forecast (see Section 6).
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Table 1: List of earthquakes in MR1-MR4 and their association to fault sources from DISS. Fault types: LL, left-lateral strike-slip;
RL, right-lateral strike-slip; N, normal; R, reverse.
region CSS fault type date Mw region CSS fault type date Mw region CSS fault type date Mw

MR1 22 R 1644/02/15 5.88 1971/07/15 5.61 1791/01/00 5.37
1818/02/23 5.55 12 R 1967/12/30 5.36 1815/09/03 5.37
1819/01/08 5.34 18 R 1828/10/09 5.67 1859/08/22 5.70
1831/05/26 5.54 20 R 1908/11/16 5.3 1873/07/12 5.40
1854/12/29 5.77 1943/10/03 5.81 1874/12/06 5.47
1887/02/23 6.29 27 R 1768/10/19 5.84 1904/02/24 5.67

23 RL 1808/04/02 5.67 1781/06/03 6.23 1915/01/13 6.99
MR2 2 R 1802/05/12 5.67 1799/07/28 5.93 1916/11/16 5.48

7 R 1836/06/12 5.48 1869/06/25 5.32 1922/12/29 5.60
48 R 1901/10/30 5.67 1873/03/12 5.88 1964/08/02 5.44
61 R 1812/10/25 5.70 1873/09/17 5.52 1979/09/19 5.90

1873/06/29 6.33 1918/11/10 5.79 1984/05/07 5.93
1936/10/18 5.90 1937/12/10 5.42 N 26 1834/02/14 5.64

62 R 1776/07/10 5.82 1951/09/01 5.31 1837/04/11 5.65
64 R 1794/06/07 5.55 1972/11/26 5.34 1914/10/27 5.79

1920/05/05 5.48 1998/03/26 5.33 1920/09/07 6.48
1977/09/16 5.54 30 R 1916/05/17 5.85 N 28 1747/04/17 5.93

66 R 1931/12/25 5.36 1916/08/16 5.92 1751/07/27 6.30
1976/05/06 6.43 31 R 1972/06/14 5.40 1791/10/11 5.32
1976/09/15 5.92 32 R 1897/09/21 5.50 1838/02/14 5.63

67 LL 1788/10/20 5.71 1924/01/02 5.59 1997/09/26 6.05
1908/07/10 5.34 1930/10/30 5.94 37 N 1745/03/00 5.37
1924/12/12 5.53 39 R 1786/12/25 5.67 1767/06/05 5.44
1928/03/27 5.75 1875/03/17 5.74 1789/09/30 5.8

MR3 1 R 1781/04/04 5.84 44 R 1786/04/07 5.31 1832/01/13 5.80
1781/07/17 5.53 46 R 1818/12/09 5.57 1854/02/12 5.37
1813/09/21 5.32 47 R 1929/04/20 5.55 1878/09/15 5.55
1870/10/30 5.59 49 R 1996/10/15 5.44 1910/06/29 5.37
1911/02/19 5.38 51 R 1796/10/22 5.63 1917/04/26 5.80
1935/06/05 5.34 1909/01/13 5.53 1919/06/29 6.18
1963/08/09 5.32 MR4 25 N 1703/01/14 6.81 40 N 1762/10/06 5.90

8 R 1917/11/05 5.36 1703/02/02 6.65 41 N 2001/11/26 5.37
9 R 1831/09/11 5.48 1719/06/27 5.32 56 N 1984/04/29 5.68

1832/03/13 5.59 1730/05/12 5.85

8



Table 2: List of earthquakes in MR5-MR8 and their association to fault sources from DISS. Fault types: LL, left-lateral strike-slip;
RL, right-lateral strike-slip; N, normal; R, reverse.
region CSS fault type date Mw region CSS fault type date Mw region CSS fault type date Mw

MR5 3 RL 1941/08/20 5.37 1998/09/09 5.6 68 LL 1783/03/01 5.92
2002/10/31 5.78 63 N 1694/09/08 6.87 1783/03/28 6.94

5 RL 1846/08/08 5.33 1910/06/07 5.87 1821/08/02 5.37
1990/05/05 5.84 MR7 15 N 1767/07/14 5.83 1905/09/08 7.06

58 RL 1841/02/21 5.40 1835/10/12 5.91 1947/05/11 5.71
1875/12/06 6.07 1854/02/12 6.15 2001/05/17 5.60
1889/12/08 5.55 1870/10/04 6.16 80 LL 1828/03/12 5.33
1893/08/10 5.44 1886/03/06 5.56 MR8 14 R 1613/08/25 5.57
1948/08/18 5.58 1887/12/03 5.52 1726/09/01 5.61

59 RL 1881/09/10 5.59 1913/06/28 5.65 1736/08/16 5.47
75 RL 1950/09/05 5.73 16 N 1783/02/06 5.94 1739/05/10 5.54
79 RL 1933/09/26 5.68 1908/12/28 7.24 1823/03/05 5.87
84 N 1930/07/23 6.72 1909/07/01 5.55 1892/03/16 5.38
89 RL 1851/08/14 6.33 1975/01/16 5.38 1940/01/15 5.34

MR6 24 N 1688/06/05 6.72 19 R 1824/12/11 5.53 1979/12/08 5.44
1702/03/14 6.32 1832/03/08 6.48 1980/05/28 5.71
1732/11/29 6.61 1836/04/25 6.16 2002/09/06 5.89
1805/07/26 6.57 1917/06/12 5.50 17 LL 1693/01/11 7.41
1905/11/26 5.32 1932/01/02 5.62 1818/02/20 6.00
1962/08/21 6.19 1983/11/08 5.37 1914/05/08 5.30

34 N 1826/02/01 5.68 53 N 1743/12/07 5.79 21 R 1968/01/15 6.12
1853/04/09 5.90 1783/02/05 6.91 35 LL 1624/10/03 5.57
1857/12/16 6.96 1783/02/07 6.59 1818/03/01 5.63
1980/11/23 6.89 1791/10/13 5.92 42 RL 1717/04/22 5.40

38 N 1708/01/26 5.61 1928/03/07 5.90 1786/03/10 6.02
1831/01/02 5.46 55 RL 1894/11/16 6.05 1926/08/17 5.32
1836/11/20 5.83 1907/10/23 5.93 1978/04/15 6.06
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CPTI04 is a parametric catalog of earthquakes that exploits all of the sources of in-
formation that are available in historical documents and published scientific studies. The
thresholds for including an earthquake in the catalog are as follows: for the pre-1980 section,
I0 = 5/6 MCS orMs = 4.0; for the post-1980 section, Ms = 4.15; and for earthquakes loc-
ated in the Etna volcano area, Ms = 3.0 (Figure 2). The catalog is supplied in declustered
form, such that events that occurred within 90 days and 30 km from the principal events
(mainshocks) in seismic sequences have been removed. Each event in the catalog is char-
acterized by its origin time, location, number of macroseismic intensity points, maximum
and epicentral intensities, and moment and surface-wave magnitudes, which are based on
empirical relationships for older events and on instrumental catalogs for modern events.
ISIDe is a parametric catalog of seismicity that includes revised quasi-real-time earthquake
locations based on data collected from the Italian National Seismic Network. The sizes of
the events are given in the local magnitude scale (Ml). This catalog has been published
half-monthly since April 16, 2005.

3.3 Dataset construction

To carry out the model analysis in a regionalized way, we subdivided the Italian territory
into eight large zones (see Table 3, Figures 1 and 2), which we refer to as the MRs (i.e.,
macroregions), because they are larger than the usual sizes of the zones in zonation models
that are used for standard seismic hazard assessments in Italy. To construct these MRs,
we aggregated zones from the seismic ZS9 zonation (Meletti et al., 2008) based on their
common tectonic characteristics, and refined the boundaries to include fault sources that
belong to the same tectonic domain. Earthquakes from CPTI04 that are explicitly associated
with an ISS based on geological/geophysical studies in the DISS are also associated with
the CSS, which contains the ISS. The remaining earthquakes are associated with the nearest
CSS (Fracassi U. and Valensise G., personal communication).

To allow for potential underestimation of the earthquake magnitude, we considered all
of the earthquakes with moment magnitude larger than 5.3. It is necessary to note that
the algorithm used for the locating of historical events from macroseismic data used in
CPTI04 cannot determine the hypocentral depth or reliably locate offshore events. The
latter are automatically located near the coast, and can be mistaken for actual coastal
events. To address the issue of the possible incompleteness of the catalog in the time span
(T0, Tf ) covered by the data, we follow the statistical approach based on the detection of a
changepoint in the occurrence rate function (Rotondi and Garavaglia, 2002); this point is
meant as the beginning of the complete part of the catalog. The model and the estimation
procedure are briefly recalled in Appendix A. Table 4 summarizes the results obtained in the
eight MRs: ĥ2 and š are estimates of the occurrence rates in the complete part and of the
changepoint.
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Table 3: Faulting mechanisms in the macroregions.

ID Name Mechanism
MR1 Western Alps Mixed faulting mechanisms.
MR2 Eastern Alps Dominating south-verging thrust faulting mechanism

with some strike-slip faulting in the easternmost
portion of the MR (Slovenia).

MR3 Central northern Exclusively northeast-verging thrust faulting
Apennines east mechanism. Faulting depth is progressively shallower

towards the northeast.
MR4 Central northern Exclusively normal faults with NE-SW extension axis

Apennines west affecting the crest of the Apennine mountain chain.
MR5 Southern Apennines - E-W trending right-lateral strike-slip faulting.

Apulia depth of faulting often deeper than in other regions.
MR6 Southern Apennines Exclusively normal faults with NE-SW extension axis

West affecting the crest of the Apennine mountain chain.
MR7 Calabrian Arc N-S to NE-SW trending normal faults, minor

oblique-slip faults located inland, and thrust faults in
the Ionian offshore. These last are mainly located in the
overriding plate, and they are poorly mapped and difficult
to associate with specific earthquakes.

MR8 Sicily Dominating thrust faulting, north-verging in the
Tyrrhenian offshore, south-verging inland. Strike-slip
faulting in the southwestern corner of Sicily.

Table 4: Completeness of the learning datasets by MR.

region T0 š ĥ2 Tc
MR1 1448 1887.15∗ 0.0126 1584
MR2 1197 1776.52 0.0676 1762
MR3 1264 1781.25 0.164 1763
MR4 1244 1703.03 0.120 1695
MR5 1260 1841.13 0.0764 1829
MR6 985 1688.42 0.0461 1667
MR7 931 1767.53 0.108 1735
MR8 1168 1613.64 0.0488 1593

š = posterior mode of the position of the

change-point, ĥ2 = posterior mean rate, Tc = left end of the time interval under examination
(see Equation (12)), ∗ dataset considered as a complete set.
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In spite of the criterion adopted in the choice of the initial time T0 (see Appendix A),
the model allows only poorly for the censored interval between the latest event tn and the
end of the catalog Tf ; indeed, š tends to be very close to t1. We thus moved š to Tc, so
that the time interval that separates the beginning of the complete part of the catalog from
the first event is equal to the average inter-event time, which is calculated by taking into
account the censored observation related to the time elapsed between the latest event and
Tf . Thus, we have the relationship:

Tc = t1 −
∑n−1

i=1 (ti+1 − ti) + (Tf − tn)

n− 1
. (12)

Extending the analyzed time interval in this way, no events are added to the original
dataset. Thus, we start to observe the phenomenon when the stress level accumulated in
the system is reasonably small, and a recharge period is roughly at the beginning. Notice
that the estimated changepoint of MR1 falls beyond the most recent event (see 1887.15∗

in Table 4), which implies that the entire dataset can be considered as complete. Then, by
applying Equation (12) to the data after 1600, we have the year 1584 as the initial time for
the analysis.
Tables 1 and 2 list the earthquakes that make up the datasets modeled by self-correcting
models, which are sorted according to MR and fault source.

4 Model parameter estimation and model comparison

In this section, we deal with the problems of estimating the model parameters, and then
of selecting the best model from the group of candidate models. Point processes are char-
acterized by their intensity function λ(t|Ht) conditioned on the history Ht of the process
itself. Hence, we have:

λ(t|Ht) = exp







ν + β[X0 + ρ t−
∑

i:ti<t

Xi]







(13)

where Xi is the strain XB (8), the seismic moment XM (9), the seismic energy XE (10),
or the scaled energy XS (11), depending on the version of the stress release model under
examination. The quantity Xi is released at time ti by an earthquake where the magnitude
is scaled by a threshold magnitude Mth. The rupture area involved in the expression of the
seismic energy (5) and the scaled energy (7) is obtained as a function of the earthquake
moment magnitude, by the regression log10Aw = a+b Mw (Wells and Coppersmith, 1994),
where the parameters a and b depend on the faulting type of the associated fault source.
Tables 1 and 2 provide the faulting types of each fault source.

The parameter vector to be estimated is θ = (α, β, ρ) where α = ν+β X0 (see Equation
(13)). According to the Bayesian paradigm, we assume the model parameters θ as random
variables and model them through prior distributions, which are initially assigned based on
the literature [Votsi et al. (2011), Jiang et al. (2011)] and the results of previous projects
[Rotondi and Varini (2007)]. Then the prior distributions are better calibrated through pilot
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runs of the estimation algorithm. In the Bayesian framework, the prior distribution of the
parameter θ is denoted by π0 and the log-likelihood function is given by:

logL(data | θ) =
N
∑

i=1

log λ(ti)−
∫ Tf

Tc

λ(s) ds. (14)

Through Bayes’ theorem, the posterior distribution is given as:

π(θ | data) = L(data | θ) π0(θ)
∫

Θ L(data | θ) π0(θ) dθ
(15)

from which the estimate of the parameter can be obtained, which is typically given by the
posterior mean, and measures of its uncertainty expressed through measures of location
(median and mode), dispersion (variance and quantiles), and shape of the distribution
(skewness and kurtosis). The explicit formulation of the posterior distribution generally
requires the computation of multi-dimensional integrals. This can seldom be done in the
closed form; numerical methods on integral approximations are a standard solution for this
problem. Recently, methods based on the stochastic simulation of Markov chains have
turned out to be highly efficient and flexible tools. McMC methods are a class of algorithms
for sampling from probability distributions, which are based on constructing a Markov chain
that has the desired distribution as its equilibrium distribution. The states of the chain
after a large number of steps can be used as samples from the desired distribution. In the
Bayesian context, the target distribution is the posterior distribution of the parameter θ.
The algorithm applied to generate the Markov chains is summarized in Appendix B.

Table 5 gives the collected parameter estimates of the different models obtained through
the McMC algorithm by generating a chain of R = 250, 000 elements, after discarding the
burn-in, and recording the output every 20th iteration, for each parameter.
The prior and posterior densities of the parameters of the four models for MR3 and MR4

are shown in Figures B.1 and B.2, respectively.
As an example, Figures 3 and 4 show the results for the estimate of the conditional

intensity function that is obtained by applying the various models to the data from MR3 and
MR4, which can be followed in two ways. The first is to replace the parameter estimates in
the different versions of the expression (2), thereby obtaining the so-called plug-in estimate
λ̃(t) = λ(t | θ̂,HT ), where θ̂ is the vector of posterior means. The second way is to estimate
the conditional intensity through the ergodic mean λ̂(t) = 1

R

∑R
j=1 λ(t | θ(j),HT ), where

θ(j) is the jth element of the Markov chain generated for each parameter by the McMC

algorithm. Through the sequence
{

λ(t | θ(j),HT )
}R

j=1
, we can also obtain the median and

the quartiles of the pointwise estimate λ̂(t).
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Figure 3: Conditional intensity function of the RB, RM, RE, RS models: ergodic mean,
plug-in estimate, and median, are all represented by solid lines that are practically indis-
tinguishable from each other; 1st and 3rd quartiles (dashed line), 10% and 90% quantiles
(dotted line). Poisson rate shown for comparison (horizontal thin line). The lowest panel
shows the time history of the earthquakes scaled by their moment magnitudes (Mw). Ex-
ample taken from MR3.
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Figure 4: Same as Figure 3. Example taken from MR4.
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Table 5: Parameter estimates for RB, RM, RE, and RS models in each MR.
RB RM

α̂ β̂ ρ̂ α̂ β̂ ρ̂
MR1 -5.3508 0.2367 0.0571 -6.6818 0.1810 0.1413
MR2 -3.0279 0.1020 0.1735 -2.9561 0.0115 0.6093
MR3 -1.8252 0.0508 0.3098 -1.7104 0.0112 0.6514
MR4 -2.0357 0.0257 0.3624 -2.0443 0.0018 2.6527
MR5 -2.6620 0.0713 0.2410 -2.7102 0.0058 1.4626
MR6 -2.6449 0.0469 0.2827 -2.6144 0.0045 3.0722
MR7 -2.2067 0.0100 0.6617 -2.3179 0.0007 9.4255
MR8 -3.4371 0.0276 0.2664 -3.3183 0.0010 6.3041

RE RS

α̂ β̂ ρ̂ α̂ β̂ ρ̂
MR1 -6.3043 0.3624 0.0560 -5.7141 2.0955 0.0079
MR2 -3.2435 0.0476 0.2553 -3.2435 1.7120 0.0232
MR3 -1.6010 0.0533 0.2257 -2.0779 0.5719 0.0528
MR4 -2.0275 0.0044 1.4209 -2.2461 0.9074 0.0334
MR5 -2.7300 0.0203 0.5817 -2.6639 2.5655 0.0240
MR6 -2.4334 0.0116 1.7385 -2.6036 1.6341 0.0174
MR7 -2.2292 0.0008 5.1907 -2.3543 0.4887 0.0449
MR8 -3.2833 0.0007 6.2831 -4.0703 1.4187 0.0175

We adopt the Bayesian approach to quantify the evidence in favor of one model in pairs
of candidate models, through the Bayes factor. Given the models M1, M2, and the dataset
D, the Bayes factor is the ratio of the posterior odds of M1 to its prior odds; that is to say:

B12 =
pr(D | M1)

pr(D | M2)
=

pr(M1 |D)

pr(M2 |D)
÷ pr(M1)

pr(M2)
. (16)

When the prior probabilities of the two competing hypotheses are equal, the Bayes factor
coincides with the posterior odds. The densities pr(D | Mk), k = 1, 2, are obtained by
integrating over the parameter space with respect to their prior distributions

pr(D | Mk) =
∫

pr(D | θk,Mk) π(θk|Mk) dθk (17)

where π(θk|Mk) is the prior density of the parameter θk under Mk, and pr(D | θk,Mk)
is the likelihood function of θk. The quantity pr(D | Mk) is a marginal (or integrated)
likelihood ; it is also referred to as evidence for Mk. Details on the computational aspects
concerning the evaluation of the Bayes factor can be found in Rotondi and Varini (2007).
Table 6 shows the marginal log10-likelihood of each model, as applied to the various MRs,
under the assumption that the prior probabilities of the models are equal; the maximum
value represents the best model.

To compare more easily these results, Table 7 shows the set of pairwise Bayes factors
for each MR: according to the interpretation of Jeffreys’ scale given by Kass and Raftery

(1995), values in the three ranges (0, 0.5), (0.5, 1), (1, 2) of the log10B12 indicate barely
worth mentioning, positive, and strong evidence in favor of the model M1, respectively.
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Table 6: Marginal log10-likelihood of the four stress release model versions. In bold: the
maximum value indicating the best model in each MR.

P
P
P
P
P
P
P
P
P

region
model

RB RM RE RS

MR1 -15.2526 -13.8646 -13.8297 -15.6588
MR2 -27.3753 -27.6254 -28.1152 -27.1912
MR3 -48.9303 -49.0073 -49.1549 -49.0412
MR4 -50.4663 -50.7873 -51.5084 -50.0828
MR5 -22.0331 -22.3722 -23.1623 -21.4748
MR6 -28.3109 -28.2706 -28.5527 -28.0712
MR7 -43.3095 -43.5711 -43.4778 -43.3455
MR8 -35.6121 -36.4351 -35.7348 -34.9708

Table 7: Bayes factors log10B12 comparison of the four stress release models, pair by pair
(M1 vs M2), in every MR. The Jeffreys’ scale is used for rating the evidence in favor of
M1 models. Legend: gray checkered, 0-0.5, “barely worth mentioning”; gray striped, 0.5-1,
“positive evidence”; dark-gray striped, 1-2, “strong evidence”.
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5 Probability distribution of the ’time to the next event’

In this Section, in an explicit way, we derive the probability distribution of the time to the
next event for the specific class of stress-release models. At the instant t, let us consider
the conditional intensity function:

λ(t|Ht) = exp {α + β[ρ t− S(t)]}

of the general stress release model with parameter vector θ = (α, β, ρ). Let Wt be the
random waiting time for the next event given the history Ht up to t; hence the occurrence
time of the next event will be T = t + Wt. Hereinafter, for the sake of simplicity, we
substitute the explicit indication of the conditioning on Ht with the subscript t.

The conditional cumulative distribution of Wt is given by:

Ft(w | θ) = Pr(Wt ≤ w | θ) = 1− Pr(Wt > w | θ) = 1− Pr(Nt+w −Nt = 0 | θ) =

= 1− exp
(

−
∫ t+w

t
λ(u) du

)

=

= 1− exp

[

− 1

βρ

(

eα + β(ρ(t+ w)− S(t)) − eα + β(ρt− S(t))
)

]

=

= 1− exp

[

−λ(t)
βρ

(eβρw − 1)

]

,

where Ns is the number of earthquakes recorded by time s. If we set φt = λ(t)/(βρ) and
η = βρ, then we have:

Ft(w | θ) = 1− exp{−φt (e
ηw − 1)} , (18)

which is a Gompertz distribution with shape parameter φt > 0, scale parameter η > 0, and
support w ≥ 0. As the probability that an event occurs before a fixed time w increases
with φt, the shape parameter φt can be interpreted as the propensity of the region to the
occurrence. The probability density function is such that:

ft(w | θ) = ηφte
ηweφt exp(−φte

ηw). (19)

This function can take a large variety of shapes. It can be skewed to the right or to the
left. To describe the characteristics of the Gompertz distribution (18), we give its summary
statistics: mode, mean, variance, and quartiles. The mode of the density function (19) is
as follows:

w∗ =











1

η
log

1

φt
,with 0 < F(w∗) < 1− e(−1) = 0.632 if 0 < φt < 1

0 if φt ≥ 1.

The expected waiting time for the future event is such that:

E(Wt | θ) = −e
φt

η
Ei(−φt), (20)
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where Ei() is the exponential integral Ei(x) = −
∫ ∞

−x
(e−u/u) du (Abramowitz and Stegun

(1972), p. 228).
For a given η, when φt (or equivalently λ(t)) gets close to 0, the equation (20) approaches

∞; i.e., after a large reduction in the hazard function λ(·) due to a very high ‘stress’
release, an unusually long waiting time should elapse before the next event. At the same
time, the expected waiting time can be short even when it is evaluated after relatively
large earthquakes, because through the parameter φt it depends on the value of the hazard
function computed at the occurrence time. Indeed, if an earthquake of size Xi occurs at
time ti, the drop of the hazard function, ∆λ(ti) = λ(t−i ) [1− exp(−βXi)], depends on the
value of the hazard function λ(t−i ) computed before the occurrence time. Consequently,
variations in the hazard function caused by two events of the same size, but that occurred
at different times, are typically different. Depending on the conditions of the system at that
moment, the stress release model does not preclude a small waiting time, even immediately
after a strong event.

The variance of Wt is such that:

V (Wt | θ) =
1

η2

∫ 1

0
log2

(

1− log u

φt

)

du− [E(Wt | θ)]2 =

=
φte

φt

η2

{

(log2 φt + 2γ log φt + π2/6 + γ2)

φt
− 2 3F3

[

1, 1, 1
2, 2, 2

;−φt

]}

+

− [E(Wt | θ)]2

where γ = 0.5772 . . . is the Euler-Mascheroni constant, and 3F3 is the generalized hyper-
geometric function.
The generic quantile of order q, and hence also the median corresponding to q = 0.50, is
given by:

Wq = η−1 log(1− φ−1
t log(1− q)).

Consistent with the definition of conditional intensity function, the hazard rate holds that
ht(w | θ) = ft(w | θ)/[1 − Ft(w | θ)] = φtηe

ηw = λ(t)eηw = λ(t + w), and hence it is an
exponential increasing function.

In the case where additional time h has elapsed after the issue time t of the forecast,
and no event has occurred during that time h, the distributions of the waiting times Wt

and Wt+h can be compared. The second distribution is thus issued at time (t + h), and it
is enriched by the additional knowledge that no event has occurred between t and t+ h.

For all h > 0, we have φt+h = φte
ηh ≥ φt. Hence the expected waiting time of Wt+h

decreases as h increases, and also E(Wt | θ) ≥ E(Wt+h | θ):

E(Wt | θ) = −e
φt

η
Ei(−φt) =

eφt

η

∫ +∞

φt

e−u

u
du

[u=φt(z+1)]
=

1

η

∫ +∞

0

e−φtz

z + 1
dz ≥

≥ 1

η

∫ +∞

0

e−φt+hz

z + 1
dz = E(Wt+h | θ)

As φt+h tends to infinity as h increases, it holds (Abramowitz and Stegun (1972), p. 229)

19



that:
1

2η
ln

(

1 +
2

φt+h

)

< E(Wt+h | θ) < 1

η
ln

(

1 +
1

φt+h

)

. (21)

Therefore the expected waiting time tends to zero as h grows to infinity and approaches
its limit with a convergence rate of O(e−ηh). Similarly, it can be shown that the variance
decreases to zero when h tends to infinity.

5.1 Forecast of the ’time to the next event’ in the Bayesian frame-

work

The Bayesian approach not only provides a point estimate of the parameters, but also a
measure of their uncertainty in terms of the posterior distribution. Taking into account this
uncertainty, the posterior predictive distribution of Wt is given by:

Ft(w) = P (Wt < w) =
∫

Θ
P (Wt < w | θ)π(θ | data)dθ ,

where the conditional Gompertz distribution ofWt is integrated with respect to the posterior
distribution of the parameters. Pointwise approximation of the resulting probability distri-
bution can be obtained by varying the model parameters into the Markov chains generated
for their estimation (see Section 4):

Ft(w) ≈ F̂t(w) =

∑R
j=1 P (Wt < w | θ(j))

R
. (22)

The expected waiting time of Wt is estimated by the average of the expected waiting times
E(Wt | θ(j)), j = 1, ..., R, as given by (20); similarly for the variance ofWt, as the θ

(j) have
negligible correlation, as indicated by the diagnostics on the convergence of the Markov
chains. The mode of Wt can be evaluated through a numerical optimization algorithm
(e.g., we use the direct search complex algorithm), which finds the waiting time in which
the density function of Wt reaches the global maximum. The quantile of order q is the
solution wq of the equation F̂t(w) = q; we have solved this by the Müller method, as
implemented in IMSL numerical libraries, version 4.0 (IMSL, 2000). Through the quantiles,
we then estimate the Highest Posterior Density (HPD) (or credible) interval of order q
(0 < q < 1) for the waiting time Wt, which is the time interval that satisfies the following
two conditions: (a) the probability of that interval is q; and (b) the lowest density of any
point within that interval is greater than or equal to the density of any point outside the
interval. In other words, the most likely waiting times belong to the HPD interval, which
turns out to be the smallest interval of order q.

The relationship T = t +Wt, which links the time of the next event T with the cor-
responding waiting time Wt, allows the estimation of the distribution F (·) of T and its
summary statistics, so that it is possible to perform both retrospective and prospective val-
idations.

20



6 Results

In this Section, we first illustrate the results obtained by performing a Bayesian comparison
of the four versions of the stress release model introduced in Section 2, and then we show
how these models can be tested through earthquake forecast procedures.

6.1 Bayesian model comparison

Based on the Bayes factor, we evaluated how well, comparatively, the four versions (RB,
RM, RE, RS) of the stress release model fit to the events that occurred in the eight MRs.
Table 6 shows the marginal likelihood of each model for each MR. The frequency of the
highest values indicates that the most plausible model is RS, and RB appears to be the
second best. More specifically, comparing the Bayes factors (Table 7) of all of the model
pairs in each MR with Jeffreys’ scale (Kass and Raftery , 1995), it can be seen that:

In MR1, RE behaves quite similarly to RM, and both of them show strong evidence against
RB and RS;

In MR2, there is slight-to-moderate evidence in favor of RS compared to the other models,
whereas RE shows the worst performance;

In MR3, RB performs just slightly better than the other models, with RE being the worst
again;

In MR4, RS behaves similarly to RB and performs from substantially-to-strongly better
than the other two models;

In MR5, there is clear evidence in favor of RS, and substantial evidence against RE; RB

is the second best;

In MR6, there is minimal evidence in favor of RS, and minimal evidence against RE;

In MR7, RB performs slightly better, whereas RM performs slightly worse than the re-
maining two models;

In MR8, there is substantial-to-strong evidence in favor of RS, and the same against RM.

Note that MR1 counts only seven events associated with two fault sources and a poorly
constrained tectonic setting; therefore, the results of this MR must be considered with
caution. In MR4, MR5, and MR8, and also in MR2, RS performs substantially better than
the other three models if we assimilate RB to RS in consideration of the low value of the
Bayes factor for this couple of models. There is no substantial difference among models
in MR3, MR6, and MR7. With reference to Equations (8-11), these results indicate that
a coefficient of 0.75 in the exponential term should be preferred rather than the other
alternatives, because it is shared by the two best-performing models. The information
on the faulting geometry provided through the rupture area (A) appears to improve the
performance of the RS model in all MRs in which the results are significant. Therefore,
improvements in the fault-scaling laws used to estimate the rupture area could further
improve the performance of the RS model.
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6.2 Retrospective- and prospective-forecast validation

The retrospective validation is carried out by forecasting the occurrence time of each earth-
quake (target event) included in each MR dataset, right after the occurrence of the event
that precedes it; the discrepancy between the forecast time and the actual earthquake oc-
currence time is then calculated. The discrepancies are used to rate the various forms of
the stress release model in each MR. To this end, we use the Gompertz distribution (Equa-
tion 22) and its statistical summaries: mean, median, 75% HPD interval, and 90% HPD
interval. Figure 5 provides two forecast examples: one, (retrospectively) issued in MR2 on
1812/10/25, the date of the occurrence of a Mw 5.70 earthquake, shows a waiting time to
the next event that relatively closely predicts the occurrence date of the 1836/06/12, Mw

5.48, earthquake; the other is issued in MR7 on 1975/01/16, the date of occurrence of a
Mw 5.38 earthquake, and closely predicts the waiting time to the 1983/11/08, Mw 5.37,
earthquake. Note the different shapes of the two density functions that characterize the
expected inter-event times varying from almost 25 to less than 10 years.
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Figure 5: Examples of the estimated density functions of the time to the next event, and
their statistical summaries. Legend: Gompertz density function (solid curve), mean (open
circle), median (solid circle), 75% HPD (solid horizontal segment) and 90% HPD (dotted
horizontal segment) intervals. The forecast issue date is denoted by a short vertical bar (|),
and the occurrence time of the target event by a long, dashed, vertical line. The examples
are based on the RS model and taken from MR2 (left) and MR7 (right).

Figure 6 shows the results of the retrospective validation of all of the data in MR3 by
representation of the statistical summaries of the estimated Gompertz density functions (see
examples in Figure 5). The results for the other MRs are shown in Appendix C (Figures
C.1-C.7). In these figures the reliability of the forecasts is expressed as the time discrepancy
with respect to the actual occurrence of the targeted event. As a visual tip, for comparing
the various discrepancies one with the other, time lines are vertically aligned with respect
to the actual occurrence time of the target events. Forecasts to the right of the alignment
thus correspond to overestimations of the inter-event time, and the opposite for those to
the left. In the case of MR3, the actual event time is outside the 90% HPD interval only
for 4 of the 40 events examined, whereas for 33 events it is within the 75% HPD interval.
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Table 8 summarizes the discrepancies of the forecasts for the four versions of the stress
release models in the eight MRs, in terms of average length of the 75% HPD and 90% HPD
intervals, as well as the mean square (absolute) error between the mean (median) and the
observed time. The lowest values (or minimum discrepancy) are most often provided by the
RS model, which suggests the scaled energy as the most appropriate quantity to be used in
stress release models.

−45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20
discrepancy time (years)
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Figure 6: Time lines of 40 retrospective forecasts for MR3, RS model, in order of descending
date from the top to the bottom. Each forecast is imagined to have been issued on the
occurrence date (shown on the left, and marked by a vertical bar) of an event in the MR
dataset, and to be aimed at predicting the date (on the right) of the next event (target).
The forecasts are shown by the statistical summaries of their Gompertz density functions
(see Figure 5). The time lines are shifted laterally so that they intersect the vertical dashed
line at the actual occurrence date of the target event.
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To conduct a prospective validation, there is the need to first determine which earth-
quakes that occurred since the beginning of 2003 are consistent with the learning dataset
used; to this end, we used the CPTI11 for the period from 2003-2006, and ISIDe for the
period from 2007-2012 (see Section 3), and we found the following four earthquakes:

1. 2003/09/14, Mw = 5.29 ± 0.09 (from CPTI11), Bolognese Apennines, reverse
faulting, MR3;

2. 2008/12/23, Mw = 5.4, (Ml = 5.2, from ISIDe), Parma, reverse faulting, MR3;

3. 2012/05/20, Mw = 5.9 (Ml = 5.9, from ISIDe), Finale Emilia, reverse faulting,
MR3;

4. 2009/04/06, Mw = 6.1 (Ml = 5.9, from ISIDe), L’Aquila, MR4.

The CPTI11 catalog assigns earthquake #1 a magnitude that is very close to the
threshold (Mw ≥ 5.3) we considered for the learning phase. However, Rovida et al. (2011)
reported that the use of new empirical relations in CPTI11 decreases the magnitudes < 5.5
and increases those > 5.5, with respect to the CPTI04. Therefore, according to the rules
of our learning catalog (CPTI04), the 2003/09/14 earthquake would be likely to be beyond
the threshold, and we thus include it in the validation procedure with Mw = 5.3. The three
earthquakes with Mw ≥ 5.3 that occurred in the period 2007-2012 (#2, #3, and #4) are
taken from ISIDe by exclusion of their aftershocks, i.e., for homogeneity with the CPTI04
declustering, events that occurred within 30 km and 90 days are excluded. Note also that
ISIDe uses local magnitude (Ml), and thus we obtain Mw values using the same conversion
formula (Mw = 0.812 Ml + 1.145) used for the compilation of CPTI04 (MPS Working

Group 2004 , 2004).
The various magnitude determinations for earthquake #4 span a wide range that depends

on the co-existence of source and path complexities and heterogeneities in the local seismic
response (Ameri et al., 2012). The most significant magnitude values are: Ml = 5.9, based
on the INGV seismic bulletin from ISIDe; Mw = 6.08, based on the time-domain moment
tensor (Scognamiglio et al., 2010); Mw = 6.13, based on the regional moment tensor
(Herrmann et al., 2011); Ml = 6.08 ± 0.17, based on the Huber mean of accelerometric
determinations (Maercklin et al., 2011); and Mw = 6.3, based on the regional centroid
moment tensor (Pondrelli et al., 2010). We thus adopt Mw = 6.1, as this appears to be
the most frequent.

Table 9 summarizes the prospective forecasts provided by the RS model for each MR.
Note that the forecast issue dates considered here are: the date of the latest event in each
MR learning dataset; the end date of the learning catalog (end of 2002, everywhere); the
date when any earthquake occurred in each MR over the years 2003-2012 (in our case MR3

and MR4); and the beginning of 2013. Forecasts are addressed in terms of the probability
distribution of the time to the next event, as summarized by the median, the mean, and its
standard deviation, as well as by the 75% HPD and 90% HPD intervals.

In MR4, after the last observed event in the learning catalog (2001/11/26; Table 9, first
line in MR4 block), it can be expected that the next earthquake with Mw ≥ 5.3 will be in
early 2011 according to the mean, with a standard deviation of ±8.3 years; or by 2008.9,
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2015.2, or 2022.6 with probabilities of 50%, 75%, and 90%, respectively. A little more than
a year later (2003/01/01; Table 9, second line), by adding the information that no event had
occurred in the meanwhile, the expected time to the next event moves forward by almost a
year. This additional information not only lengthens the waiting time to the next event, but
also reduces the uncertainty on the HPD interval length. After the 2009/04/06 earthquake
(Table 9, third line), the estimation of the model parameters is fully repeated when the new
earthquake is added to the dataset. Based on the seismic and tectonic knowledge available
in 2002, and reinforced only with the addition of about 10 years of seismic history (Table 9,
fourth line), the RS model predicts that the next earthquake with Mw ≥ 5.3 in MR4 can
be expected in 2021, according to the mean value, or by 2019.5, 2025.4, and 2032.5, with
probabilities of 50%, 75%, and 90%, respectively.

In MR3, three earthquakes occurred in the period 2003-2012, and thus the forecasts are
successively updated after each one of them. Note that all of these successive forecasts fall
within the 75% HPD interval, and that the average absolute error of the forecast time for
all three of these occurrences is 1.57 years when considering the median values, whereas the
mean square error is 7.14 years when considering the mean values.

We note that the model parameters are fully re-estimated after every new earthquake, by
its inclusion in the learning dataset of the MR. The robustness of these parameter estimates
is shown by the similar intensity functions (Figure 7) they allow, and the similar values they
achieve (Table B.1.

For completeness of information, Table C.1 provides a summary of all of the forecasts
issued at the end of the learning catalog (end of 2002) for the four versions of the stress
release model in every MR.
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Figure 7: Estimate (ergodic mean) of the intensity function for the RS model in MR3 and
MR4, updated whenever new information (earthquake occurrence) is included in the relevant
dataset.
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7 Final remarks

We examined four different versions of the classic stress-release model, based on the probab-
ilistic translation of the elastic rebound theory and including the contribution of the tectonic
information. All of these model versions imply a sudden hazard reduction right after a strong
earthquake (threshold set at Mw ≥ 5.3) and an exponentially increasing hazard function
between two consecutive earthquakes (excluding the aftershock sequences).

The four model versions, however, differ from one to the other in the quantity - strain,
moment, energy, and scaled energy - chosen to represent the physical process responsible for
the generation of earthquakes. Equations (8)-(11) highlight the key elements (earthquake
magnitude, fault rupture area, exponential coefficient) that quantify the abrupt change in
the system when an earthquake occurs. The affinity among these elements is reflected in
the similarity of the shape of the relevant conditional intensities (Figures 3 and 4). Despite
the general similarity, note that the conditional intensity variation (equivalent to a hazard
drop) is different in different stress release models, depending on the size of the intervening
earthquake. With reference to Figure 4, take for example the amount of the vertical drop
in the conditional intensity after the 1915/01/13, Mw = 6.99, earthquake and the vertical
drop after all of the other moderate earthquakes (Mw < 6). The ratio between these two
values for the RS model is much smaller than the same ratio in any of the RB, RM, and
RE models. In other words, when the scaled energy is adopted, the stress release model
produces a hazard decrease that is relatively heightened for smaller earthquakes and abated
for larger earthquakes.

As for the model comparison, the Bayes factor indicates (Table 7) that the RS model
performs from substantially (RS vs. RB) to strongly (RS vs. RM and RE) better than
the other models in MR2, MR4, MR5, and MR8. RE and RM perform considerably better
than the others only in MR1; nevertheless, we recall that results for this MR should be taken
cautiously because of its reduced number of events (only seven) and its non-uniform tectonic
characterization. Inconclusive results are instead obtained in MR3, MR7, and MR6, in which
the Bayes factor shows only slight evidence in favor of either RS orRB. Considering that the
RS model performance prevails in the analyzed cases, we maintain that the scaled energy
is likely to be the best way of measuring the size of earthquakes in stress release model
applications.

The probability distribution of the time to the next event for the stress release model
has been analytically identified as the Gompertz distribution (Section 5). This finding brings
about an immediate benefit, by allowing modelers to avoid approximating this distribution
through numerical simulations [e.g., Wang et al. (1991)]. We thus used the Gompertz dis-
tribution and its statistical summaries to run a set of retrospective and prospective forecasts
of the occurrence times of the main shocks, and then we validated the procedure against
the data observed.

Retrospective forecasts have also been used as a further criterion for supporting the
selection of the best stress release model versions. Different measures of the discrepancy
between the expected occurrence time of an earthquake and the time of its actual occurrence
(Table 8) have shown that the retrospective analysis supports the choice of the RS model
in most of the cases analyzed.
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Table 8: Ability of retrospective forecasting of the four stress release models in each MR, in
terms of the following indicators: average length of the 75% and 90% HPD intervals, mean
square (absolute) error between expected mean (median) and observed occurence times. In
bold, the lowest values.

region model HPD average length average discrepancy
90% 75% median mean

MR1 RB 101.7 68.5 29.4 42.7
RM 67.0 46.3 16.2 28.8

RE 68.3 47.4 18.5 29.7
RS 104.3 75.1 34.7 45.1

MR2 RB 33.7 21.5 9.2 12.6
RM 36.1 21.7 9.3 13.3
RE 37.1 23.0 10.0 14.6
RS 30.8 21.7 9.1 11.7

MR3 RB 14.5 8.9 4.6 7.4
RM 14.6 8.8 4.7 7.5
RE 14.9 9.1 4.6 7.5
RS 14.4 9.2 4.5 7.2

MR4 RB 20.4 12.4 6.6 8.8
RM 20.9 12.5 6.7 9.1
RE 22.0 13.2 6.9 9.3
RS 19.6 12.9 6.5 8.4

MR5 RB 31.7 20.1 8.9 12.1
RM 34.0 20.5 9.2 12.9
RE 37.6 23.4 10.2 14.7
RS 26.9 20.0 8.2 10.2

MR6 RB 51.3 33.5 12.7 17.6
RM 52.1 34.4 13.1 18.0
RE 53.0 37.4 13.8 18.9
RS 47.0 34.0 12.5 16.3

MR7 RB 21.6 13.0 6.9 8.5
RM 22.0 13.3 7.0 8.7
RE 22.2 13.3 7.0 8.7
RS 21.2 13.6 6.8 8.4

MR8 RB 52.7 33.0 15.4 20.6
RM 58.6 36.6 16.6 23.4
RE 54.7 33.0 15.2 21.2
RS 45.2 31.7 14.0 17.6
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Based on the knowledge available in 2002 in terms of the seismicity and tectonics,
prospective forecasts issued at the very beginning of 2003 indicated that in decreasing order
of immediacy, MR3, MR7, and MR4 were the most prone areas to be hit by earthquakes
of Mw ≥ 5.3 in the following decade (Table 9). Of these MRs, earthquakes have actually
occurred in MR3 (three events) and MR4 (one event) with forecasts in terms of median and
mean with an average accuracy of about 5 years. However, no earthquake has occurred in
MR7, up until the end of 2012. By adding this information to the 2013 update, the forecast
considerably postpones the expected occurrence time of the next event (by more than 10
years).

As we anticipated in Section 5, updating a forecast during the waiting time by adding
the information that no earthquake has occurred tends to postpone the time to the next
event and to reduce the uncertainty around that value. This effect is achieved through the
shortening and peaking of the probability density function of the time to the next event.
The prospective forecasts reported in Table 9 confirm this general behavior, although the
amount of delay and uncertainty gain remains variable, depending on repeated parameter
estimates.

It is important to recall that both the time and space scales of the stress release models
and their associated uncertainties that we have investigated here depend on the character-
istics of the available datasets. Note that there is a trade-off between the size of the region
to be investigated and the length of the learning dataset. On the one hand, a reduction in
the size of the region would be likely to improve its tectonic characterization, which would
allow the analyst to single out homogeneous faults and avoid mixing tectonic structures that
obey mechanically different stress-loading systems. It would also imply a smaller spatial do-
main within which the forecasted earthquakes can occur. On the other hand, a smaller area
would capture fewer earthquakes for building the learning dataset, thereby worsening the
robustness and overall quality of the stress release model. The balancing of these factors
(tectonics and seismicity) in the Italian case allowed us to investigate only a limited number
of cases (the eight MRs). Additional studies are thus needed for the exploration of more
fault systems with different seismic histories, to further test the scaled energy as the best
option in stress release models, and for the refining of the time-space limits of the stress
release model applications in robust earthquake forecasting.

Depending on the data availability, possible future research directions could also aim at
developing the linked (or coupled) version of the stress release model (e.g.: Bebbington and

Harte (2003), Kuehn et al. (2008)) on the same Italian data, using the scaled energy as the
measure of the sizes of the events.
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Table 9: Prospective forecasts in each MR according to the RS version of the stress release
model. All dates are expressed in decimal years. The estimated probability distribution of
the time to the next event is expressed as: 75% and 90% HPD intervals, median, mean,
and standard deviation (years).

region date of forecast issue HPD 75% HPD 90% median mean (st.dev.)
MR1 1887.2 1887.2-2011.7 1887.2-2056.9 1968.5 1977.8 (45.1)

2003.0 2003.0-2048.9 2003.0-2084.5 2025.0 2038.8 (45.1)
2013.0 2013.0-2060.8 2013.0-2098.4 2035.8 2050.1 (47.6)

MR2 1977.7 1977.7-2014.9 1977.7-2028.3 2000.6 2003.4 (18.2)
2003.0 2003.0-2023.5 2003.0-2034.1 2014.2 2017.4 (12.5)
2013.0 2013.0-2030.7 2013.0-2040.5 2022.5 2025.6 (11.6)

MR3 1998.2 1998.2-2006.2 1998.2-2011.1 2002.3 2003.9 ( 5.4)
2003.0 2003.0-2010.0 2003.0-2014.5 2006.6 2008.0 ( 4.9)
2003.7(1) 2003.7-2010.9 2003.7-2015.4 2007.4 2008.8 ( 5.0)
2009.0(2) 2009.0-2016.1 2009.0-2020.6 2012.6 2014.1 ( 4.9)
2012.4(3) 2012.4-2020.0 2012.4-2024.6 2016.3 2017.8 ( 5.1)
2013.0 2013.0-2020.5 2013.0-2025.1 2016.9 2018.3 ( 5.1)

MR4 2001.9 2001.9-2015.2 2001.9-2022.6 2008.9 2011.2 ( 8.3)
2003.0 2003.0-2015.9 2003.0-2023.2 2009.8 2012.0 ( 8.1)
2009.3(4) 2009.3-2022.4 2009.3-2029.8 2016.2 2018.5 ( 8.2)
2013.0 2013.0-2025.4 2013.0-2032.5 2019.5 2021.7 ( 7.9)

MR5 2002.8 2002.8-2016.7 2002.8-2023.9 2010.6 2012.8 ( 3.6)
2003.0 2003.0-2016.8 2003.0-2023.9 2010.6 2012.9 ( 9.0)
2013.0 2013.0-2024.2 2013.0-2031.4 2018.8 2021.3 ( 8.9)

MR6 1998.7 1998.7-2025.9 1998.7-2039.7 2013.9 2018.0 (17.0)
2003.0 2003.0-2028.0 2003.0-2041.4 2016.7 2020.9 (16.3)
2013.0 2013.0-2035.2 2013.0-2048.4 2024.8 2029.2 (15.8)

MR7 2001.4 2001.4-2009.5 2001.4-2015.2 2005.4 2007.4 ( 8.1)
2003.0 2003.0-2010.9 2003.0-2016.5 2006.9 2008.8 ( 6.3)
2013.0 2013.0-2021.9 2013.0-2028.4 2017.3 2019.6 ( 7.4)

MR8 2002.7 2002.7-2038.6 2002.7-2055.1 2022.6 2027.2 (19.7)
2003.0 2003.0-2038.8 2003.0-2055.2 2022.8 2027.4 (19.6)
2013.0 2013.0-2045.2 2013.0-2060.2 2030.9 2035.1 (18.0)

(1) just after 2003/09/14 earthquake, Mw 5.3
(2) just after 2008/12/23 earthquake, Mw 5.4
(3) just after 2012/05/20 earthquake, Mw 5.9
(4) just after 2009/04/06 earthquake, Mw 6.1

A Completeness of the catalog: statistical analysis

Let us consider a catalog covering the time interval (T0, Tf), and suppose that there is a
point s in this interval in which the seismicity rate changes, so that the global model for
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the number of events within the given time interval is the mixture of two Poisson processes,
with the intensity function λ(t) given by:

λ(t) = h1 It<s(t) + h2 It≥s(t)

where h1 and h2 are the seismicity rate of the pre-complete and complete parts, respect-
ively. According to the Bayesian approach, both the rates and the position of the change-
point s are random variables; we assume that both h1 and h2 follow the prior distribution
Gamma(a0, b), with density function b−a0e−h/bha0−1/Γ(a0), while s is uniformly distrib-
uted on (T0, Tf). A priori information on the variability of the yearly occurrence rate is
inferred from general considerations on the average number of events under examination.
In the present study, we considered the shocks with Mw ≥ 5.3 recorded in the CPTI04 for
1600-2002, a period generally considered sufficiently complete in the literature on Italian
seismicity (Stucchi et al., 2004). The uncertainty on the occurrence rate is then incorporated
in the model through a further hierarchical level by considering b as an InvGamma(c0, f0)
distributed random variable. In our case, parameter a0 and hyperparameters c0 and f0 are
set as a0 = 0.1, c0 = 3, and f0 = 5. As for the time interval (T0, Tf ), we set Tf = 2003, the
end of the CPTI04, while T0 varies in each macroregion. To balance the final gap between
Tf and the time tn of the last event, we approximately set T0 back by (Tf − tn), so we have
T0 = t1 − Tf + tn, with t1 as the time of the first event in the dataset.

We estimate the model parameters h1, h2, s, and b through Gibbs sampling, one of
the most popular McMC methods, which is a class of methods that are based on the
simulation of samples of dependent values that constitute a realization of a stationary
Markov chain asymptotically convergent in distribution to the quantity to estimate (Gilks et
al., 1996). For a detailed description of the algorithm, see Rotondi and Garavaglia (2002).
Model estimations provide the posterior probability distributions of the parameters; the most
probable value (mode) of s is assumed as the beginning of the complete part of the dataset,
whereas the posterior mean of h2 gives the estimate of the corresponding seismicity rate.
We recall that measures of the uncertainty of the estimates, expressed through measures of
location (mean, mode) and dispersion (variance, quantiles), can be drawn from the posterior
distribution of the parameters.

B McMC methods

We implemented the Metropolis-Hastings algorithm to generate a Markov chain for each
parameter, as summarized below. Suppose to have some transition kernel q(θ, θ∗) (called
the proposal distribution), which is easy to simulate from, such that:

1. Initialize the chain by simulating θ(0) from the prior distribution π0(θ), and set the
iteration counter j = 1.

2. Generate a proposed value θ∗ using the kernel q(θ(j−1)), θ∗).

3. Evaluate the acceptance probability α(θ(j−1), θ∗) of the proposed move, where α(θ(j−1), θ∗) =

min

{

1,
π(θ∗|data) q(θ∗, θ(j−1))

π(θ(j−1)|data) q(θ(j−1), θ∗)

}

.
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4. Put θ(j) = θ∗ with probability α(θ(j−1), θ∗), otherwise retain the current value of θ:
θ(j) = θ(j−1).

5. Change the counter from j to j + 1 and return to step 2.

Given a function g(θ), under suitable regularity conditions, it has been shown that the

ergodic mean

∑R
j=1 g(θ

(j))
R

converges almost surely to Eθ|data {g(θ)} as R → ∞; therefore,

if we set g(θ) = θ or g(θ) = [θ − E(θ)]2, by applying this theorem we obtain the estimate of
the mean and variance of θ respectively. It is important to note that the density of interest
π(· | data) only enters in the acceptance probability as a ratio, and so the method can be
used when this density is known up to a normalizing constant, for instance π(θ | data) ∝
L(data | θ) π0(θ). The Markov chain generated through the algorithm is reversible and has
a stationary distribution π(θ | data) irrespective of the choice of the proposal distribution.
The critical point of this method is how to assess the convergence of the sampler; to solve

this issue, we first discard the ’burn-in’ of the simulated sequence
{

θ(j)
}R

j=0
, i.e., its initial

part (ca. 10%), to reduce the dependence on the initial value; then we apply one of the
software tools that are available for McMC convergence diagnostics. In particular, we chose
the open-source package BOA (Smith, 2005) for the R system for statistical computing (R
Development Core Team, 2006), and checked that all of the generated sequences did not
fail the following tests: Geweke test, Heidelberger & Welch test, and Raftery & Lewis test
(Smith, 2007). Table B.2 reports the prior and proposal distributions used in the McMC
algorithm for the parameter estimation: we note that the mean of every proposal is given
by the current value of the chain, whereas the value of the variance is assigned through
some pilot runs of the algorithm so that the acceptance probability varies in the range of
25% to 40% - a range that has been suggested to be the best in the statistical literature.
As an example, Figure B.2 shows the prior density and the kernel density estimates of the
posterior density of each parameter of the various models obtained by analyzing the data
from the MR4 MR. We note that the posteriors are relatively peaked even when the priors,
which are based on rather vague information, are very flat.

Table B.1: Parameter estimates of the RS model updated by enlarging the history Ht on
which the intensity function is conditioned - MR3 and MR4 macroregions.

RS

t α̂ β̂ ρ̂
MR3 (end of the catalog) 2002/12/31 -2.0779 0.5719 0.0528

(event) 2003/09/14 -2.1317 0.5720 0.0541
(event) 2008/12/23 -2.1317 0.5774 0.0541
(event) 2012/05/20 -2.1539 0.5791 0.0545

2012/12/31 -2.1472 0.5812 0.0543
MR4 (end of the catalog) 2002/12/31 -2.2461 0.9074 0.0334

(event) 2009/04/06 -2.2730 0.8982 0.0337
2012/12/31 -2.2473 0.9215 0.0334
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Table B.2: Prior and proposal distributions of the model parameters θ = (α, β, ρ) adopted
in the McMC estimation method. Mean and variance of every prior/ proposal distribution
are reported, so that, e.g., for the Gamma distribution, the shape and scale parameters can
be derived. The mean of each proposal distribution is set equal to the current value of the
corresponding parameter in the Markov chain.

prior distribution proposal distribution
model region α β ρ α β ρ
RB MR1 N(-5.50; 6.25) Γ(0.20; 3.0E-2) Γ(0.10; 8.0E-3) N(∗; 2.00) LogN(∗; 2.6E-3) LogN(∗; 7.0E-4)

MR2 N(-5.50; 6.25) Γ(0.20; 3.0E-2) Γ(0.20; 3.0E-2) N(∗; 8.0E-1) LogN(∗; 1.5E-3) LogN(∗; 6.0E-3)
MR3 N(-5.50; 6.25) Γ(0.20; 3.0E-2) Γ(0.30; 4.0E-2) N(∗; 3.0E-1) LogN(∗; 4.0E-3) LogN(∗; 1.2E-3)
MR4 N(-5.50; 6.25) Γ(0.20; 3.0E-2) Γ(0.35; 8.0E-2) N(∗; 3.5E-1) LogN(∗; 9.0E-4) LogN(∗; 2.0E-2)
MR5 N(-5.50; 6.25) Γ(0.20; 3.0E-2) Γ(0.30; 4.0E-2) N(∗; 9.0E-1) LogN(∗; 1.0E-2) LogN(∗; 2.0E-2)
MR6 N(-5.50; 6.25) Γ(0.20; 3.0E-2) Γ(0.20; 3.0E-2) N(∗; 8.0E-1) LogN(∗; 3.0E-3) LogN(∗; 1.3E-3)
MR7 N(-5.50; 6.25) Γ(0.20; 3.0E-2) Γ(0.90; 4.9E-2) N(∗; 3.5E-1) LogN(∗; 2.0E-4) LogN(∗; 2.0E-1)
MR8 N(-5.50; 6.25) Γ(0.05; 6.0E-4) Γ(0.20; 3.0E-2) N(∗; 6.0E-1) LogN(∗; 6.0E-4) LogN(∗; 1.5E-3)

RM MR1 N(-5.50; 6.25) Γ(0.20; 2.3E-2) Γ(0.5; 1.6E-1) N(∗; 2.00) LogN(∗; 5.0E-3) LogN(∗; 1.5E-4)
MR2 N(-5.50; 6.25) Γ(0.02; 2.0E-4) Γ(0.70; 3.6E-1) N(∗; 8.0E-1) LogN(∗; 2.0E-4) LogN(∗; 2.5E-1)
MR3 N(-5.50; 6.25) Γ(0.02; 2.0E-4) Γ(0.70; 3.6E-1) N(∗; 3.0E-1) LogN(∗; 2.0E-4) LogN(∗; 1.5E-1)
MR4 N(-5.50; 6.25) Γ(0.02; 2.0E-4) Γ(3.00; 8.00) N(∗; 3.0E-1) LogN(∗; 5.0E-6) LogN(∗; 3.5)
MR5 N(-5.50; 6.25) Γ(0.02; 2.0E-4) Γ(2.00; 3.00) N(∗; 9.0E-1) LogN(∗; 8.0E-5) LogN(∗; 1.8)
MR6 N(-5.50; 6.25) Γ(0.02; 2.0E-4) Γ(4.00; 4.00) N(∗; 8.0E-1) LogN(∗; 2.5E-5) LogN(∗; 1.3)
MR7 N(-5.50; 6.25) Γ(0.02; 2.0E-4) Γ(12.0; 4.9E+1) N(∗; 3.5E-1) LogN(∗; 1.0) LogN(∗; 4.6E+1)
MR8 N(-5.50; 6.25) Γ(0.01; 2.5E-5) Γ(5.00; 1.6E+1) N(∗; 6.0E-1) LogN(∗; 1.0) LogN(∗; 1.0E+1)

RE MR1 N(-5.50; 6.25) Γ(0.30; 2.3E-2) Γ(0.50; 1.6E-1) N(∗; 2.00) LogN(∗; 2.3E-2) LogN(∗; 2.0E-4)
MR2 N(-5.50; 6.25) Γ(0.10; 2.5E-3) Γ(0.50; 1.6E-1) N(∗; 8.0E-1) LogN(∗; 1.7E-3) LogN(∗; 2.0E-2)
MR3 N(-5.50; 6.25) Γ(0.10; 2.5E-3) Γ(0.50; 1.6E-1) N(∗; 3.0E-1) LogN(∗; 2.3E-3) LogN(∗; 7.0E-3)
MR4 N(-5.50; 6.25) Γ(0.10; 2.5E-3) Γ(1.50; 1.40) N(∗; 4.0E-1) LogN(∗; 2.0E-5) LogN(∗; 6.0E-1)
MR5 N(-5.50; 6.25) Γ(0.10; 2.5E-3) Γ(0.50; 1.6E-1) N(∗; 8.0E-1) LogN(∗; 7.0E-4) LogN(∗; 1.5E-1)
MR6 N(-5.50; 6.25) Γ(0.10; 2.5E-3) Γ(1.50; 1.40) N(∗; 7.0E-1) LogN(∗; 1.0E-4) LogN(∗; 2.0E-1)
MR7 N(-5.50; 6.25) Γ(0.02; 2.0E-4) Γ(5.00; 1.6E+1) N(∗; 4.0E-1) LogN(∗; 1.0E-6) LogN(∗; 1.4E+1)
MR8 N(-5.50; 6.25) Γ(0.02; 2.0E-4) Γ(5.00; 1.6E+1) N(∗; 6.0E-1) LogN(∗; 8.0E-7) LogN(∗; 1.5E+1)

RS MR1 N(-5.50; 6.25) Γ(5.00; 9.00) Γ(0.10; 8.1E-3) N(∗; 1.40) LogN(∗; 1.50) LogN(∗; 8.0E-6)
MR2 N(-5.50; 6.25) Γ(5.00; 9.00) Γ(0.10; 8.1E-3) N(∗; 7.0E-1) LogN(∗; 1.40) LogN(∗; 1.5E-5)
MR3 N(-5.50; 6.25) Γ(5.00; 9.00) Γ(0.10; 8.1E-3) N(∗; 3.0E-1) LogN(∗; 3.0E-1) LogN(∗; 5.0E-5)
MR4 N(-5.50; 6.25) Γ(5.00; 9.00) Γ(0.10; 8.1E-3) N(∗; 4.0E-1) LogN(∗; 8.0E-1) LogN(∗; 2.0E-5)
MR5 N(-5.50; 6.25) Γ(5.00; 9.00) Γ(0.10; 8.1E-3) N(∗; 8.0E-1) LogN(∗; 5.00) LogN(∗; 2.0E-5)
MR6 N(-5.50; 6.25) Γ(5.00; 9.00) Γ(0.10; 8.1E-3) N(∗; 8.0E-1) LogN(∗; 2.00) LogN(∗; 1.0E-5)
MR7 N(-5.50; 6.25) Γ(5.00; 9.00) Γ(0.10; 8.1E-3) N(∗; 5.0E-1) LogN(∗; 3.0E-1) LogN(∗; 8.0E-5)
MR8 N(-5.50; 6.25) Γ(5.00; 9.00) Γ(0.10; 8.1E-3) N(∗; 5.0E-1) LogN(∗; 5.0E-1) LogN(∗; 5.0E-5)
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Figure B.1: From top to bottom, theRB,RM,RE,RS models. Prior (dotted) and posterior
(solid) density functions of the parameters. Example taken from the MR3 macroregion.
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MR4 : ĉ=2.6527

c

de
ns

ity

prior
posterior

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0
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Figure B.2: Prior (dotted) and posterior (solid) density functions of the parameters of the
RB, RM, RE,RS models (from top to bottom). Example taken from the MR4 macroregion.
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C Retrospective validation

Figure C.1-C.7 summarize the retrospecive analysis of the forecasts issued at the occurrence
time of every event in the datasets concerning the next event.
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|
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observed time
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median time
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Figure C.1: As for Figure 6, validation results related to macroregion MR1 - RS model.
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Figure C.2: As for Figure 6, validation results related to macroregion MR2 - RS model.
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Figure C.3: As for Figure 6, validation results related to macroregion MR4 - RS model.
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Figure C.4: As for Figure 6, validation results related to macroregion MR5 - RS model.
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Figure C.5: As for Figure 6, validation results related to macroregion MR6 - RS model.
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Figure C.6: As for Figure 6, validation results related to macroregion MR7 - RS model.

40



−80 −60 −40 −20 0 10 20 30 40 50 60
discrepancy time (years)

MR8 − RS

1613.71593 |

1624.81613.7 |

16931624.8 |

1717.31693 |

1726.71717.3 |

1736.61726.7 |

1739.41736.6 |

1786.21739.4 |

1818.11786.2 |

1818.21818.1 |

1823.21818.2 |

1892.21823.2 |

1914.31892.2 |

1926.61914.3 |

19401926.6 |

19681940 |

1978.31968 |

1979.91978.3 |

1980.41979.9 |

2002.71980.4 |
|

Retrospective forecast

initial time
observed time
average time
median time
75%−HPD interval
90%−HPD interval

Figure C.7: As for Figure 6, validation results related to macroregion MR8 - RS model.
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Table C.1: Prospective forecast after the ending date of the learning catalog. Summary of
the estimated probability distribution of the time to the next event in each MR provided by
all of the models: the 75% and 90% HPD intervals, median, mean and standard deviation.

region model HPD 75% HPD 90% median mean (st.dev.)
MR1 RB 2003.0-2061.7 2003.0-2108.1 2031.1 2048.8 (59.2)

RM 2003.0-2127.0 2003.0-2187.2 2073.7 2091.0 (74.9)
RE 2003.0-2139.2 2003.0-2213.3 2077.3 2100.5 (90.2)
RS 2003.0-2048.9 2003.0-2084.5 2025.0 2038.8 (45.1)

MR2 RB 2003.0-2027.1 2003.0-2042.4 2015.2 2020.4 (17.5)
RM 2003.0-2028.4 2003.0-2046.9 2015.3 2021.9 (21.0)
RE 2003.0-2033.4 2003.0-2054.6 2017.9 2025.3 (23.8)
RS 2003.0-2023.5 2003.0-2034.1 2014.2 2017.4 (12.5)

MR3 RB 2003.0-2010.0 2003.0-2014.8 2006.4 2008.1 ( 5.3)
RM 2003.0-2010.2 2003.0-2015.4 2006.5 2008.3 ( 5.7)
RE 2003.0-2009.1 2003.0-2013.3 2006.0 2007.4 ( 4.7)
RS 2003.0-2010.0 2003.0-2014.5 2006.6 2008.0 ( 4.9)

MR4 RB 2003.0-2015.3 2003.0-2023.7 2009.1 2011.9 ( 9.2)
RM 2003.0-2015.1 2003.0-2023.6 2008.9 2011.9 ( 9.5)
RE 2003.0-2015.7 2003.0-2024.7 2009.2 2012.4 (10.0)
RS 2003.0-2015.9 2003.0-2023.2 2009.8 2012.0 ( 8.1)

MR5 RB 2003.0-2019.7 2003.0-2031.5 2011.2 2015.4 (13.5)
RM 2003.0-2020.5 2003.0-2033.7 2011.4 2016.2 (15.0)
RE 2003.0-2022.9 2003.0-2038.1 2012.5 2018.0 (17.4)
RS 2003.0-2016.8 2003.0-2023.9 2010.6 2012.9 ( 9.0)

MR6 RB 2003.0-2032.0 2003.0-2050.8 2017.7 2024.2 (22.1)
RM 2003.0-2034.5 2003.0-2053.7 2019.3 2025.6 (21.9)
RE 2003.0-2040.6 2003.0-2060.0 2023.7 2029.6 (23.7)
RS 2003.0-2028.0 2003.0-2041.4 2016.7 2020.9 (16.3)

MR7 RB 2003.0-2013.7 2003.0-2021.4 2008.2 2010.9 ( 8.5)
RM 2003.0-2014.0 2003.0-2021.7 2008.4 2011.0 ( 8.5)
RE 2003.0-2015.9 2003.0-2025.1 2009.3 2012.5 (10.2)
RS 2003.0-2010.9 2003.0-2016.5 2006.9 2008.8 ( 6.3)

MR8 RB 2003.0-2021.7 2003.0-2035.1 2012.2 2016.9 (15.1)
RM 2003.0-2017.9 2003.0-2029.0 2010.2 2014.1 (12.6)
RE 2003.0-2020.9 2003.0-2034.4 2011.5 2016.4 (15.1)
RS 2003.0-2038.8 2003.0-2055.2 2022.8 2027.4 (19.6)

This study was partially funded by the Italian Dipartimento della Protezione Civile in the
framework of the 2007-2009 Agreement with Istituto Nazionale di Geofisica e Vulcanologia
(INGV), project S1: “Analysis of the seismic potential in Italy for the evaluation of the
seismic hazard”. The authors thank Fracassi and Valensise for providing the earthquake
association with fault sources.
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