
electronics

Article

Development of a High-Performance, FPGA-Based
Virtual Anemometer for Model-Based MPPT of
Wind Generators

Giuseppe La Tona , Massimiliano Luna * , Maria Carmela Di Piazza , Marcello Pucci and
Angelo Accetta

National Research Council (CNR), Institute of Marine Engineering (INM), 90146 Palermo, Italy;
giuseppe.latona@cnr.it (G.L.T.); mariacarmela.dipiazza@cnr.it (M.C.D.P); marcello.pucci@cnr.it (M.P.);
angelo.accetta@cnr.it (A.A.)
* Correspondence: massimiliano.luna@cnr.it; Tel.: +39-091-680-9111

Received: 31 October 2019; Accepted: 10 December 2019; Published: 1 January 2020
����������
�������

Abstract: Model-based maximum power point tracking (MPPT) of wind generators (WGs) eliminates
dead times and increases energy yield with respect to iterative MPPT techniques. However, it requires
the measurement of wind speed. Under this premise, this paper describes the implementation
of a high-performance virtual anemometer on a field programmable gate array (FPGA) platform.
Said anemometer is based on a growing neural gas artificial neural network that learns and inverts
the mechanical characteristics of the wind turbine, estimating wind speed. The use of this device in
place of a conventional anemometer to perform model-based MPPT of WGs leads to higher reliability,
reduced volume/weight, and lower cost. The device was conceived as a coprocessor with a slave
serial peripheral interface (SPI) to communicate with the main microprocessor/digital signal processor
(DSP), on which the control system of the WG was implemented. The best compromise between
resource occupation and speed was achieved through suitable hardware optimizations. The resulting
design is able to exchange data up to a 100 kHz rate; thus, it is suitable for high-performance control
of WGs. The device was implemented on a low-cost FPGA, and its validation was performed using
input profiles that were experimentally acquired during the operation of two different WGs.

Keywords: virtual sensors; anemometer; maximum power point tracking; wind generator;
field-programmable gate array; growing neural gas; artificial neural network

1. Introduction

Suitable maximum power point tracking (MPPT) techniques are employed to optimize the yield
of renewable energy sources, such as wind generators (WGs) and photovoltaic (PV) plants, by trying to
operate them constantly in the maximum power point (MPP) of their nonlinear characteristic for each
environmental condition. Many different MPPT techniques are available in the technical literature;
a review is presented in [1], and examples of implementations are shown in [2–17]. Among them,
the perturb and observe method and the incremental conductance method, their enhanced versions [2–4],
and fuzzy logic-based MPPT [5], are techniques that find and track the MPP iteratively. An advantage
of these MPPT techniques is that they do not require the measurement of the environmental variable
upon which the power being generated depends. However, their drawback is that they result in long
transients or power oscillations around the MPP, particularly when the environmental conditions
change rapidly. Thus, the energy yielded by the renewable generator decreases with respect to the
theoretical performance.

On the contrary, other MPPT techniques employ analytical or black-box models of the renewable
source; thus, they allow finding the MPP in a direct and almost instantaneous way, provided that the

Electronics 2020, 9, 83; doi:10.3390/electronics9010083 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-9097-6626
https://orcid.org/0000-0001-8900-9367
https://orcid.org/0000-0002-1055-9487
https://orcid.org/0000-0003-2229-9210
http://www.mdpi.com/2079-9292/9/1/83?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9010083
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 83 2 of 16

related environmental variable is measured [6–9] or estimated [10–17]. As an example of black box
models, a look-up-table (LUT) can be defined offline starting from the mechanical characteristic of a
WG; then, this LUT can be used online for computing the optimal angular speed reference to control
the WG [11–16].

An advantage of model-based compared to iterative MPPT techniques is that they eliminate dead
times during MPPT operation, and thus, increase the energy yielded. However, their drawback is that,
in principle, additional physical sensors are required, thus increasing the cost/volume of the system
and reducing its reliability. However, a recently emerging approach, i.e., virtual sensing (VS), can help
solving this drawback. In fact, virtual sensors are cheap and reliable. Furthermore, in the application
under study, they provide an additional advantage; i.e., they allow measuring the actual cumulative
effect of the non-uniform wind speed field. Virtual sensors can be developed either leveraging an
analytical model of the system under study or on the basis of experimental data. The estimation
is usually performed using artificial neural networks (ANNs) for their strong ability to learn and
reproduce nonlinear input-output relationships.

An overview of current literature on VS and its applications was presented in [18]. As a matter of
fact, to the best of the authors’ knowledge, no implementations of virtual anemometers have been
presented in the technical literature. Only virtual sensors supporting PV systems [19–24], radio-
controlled servomotors [25], and temperature monitoring in greenhouses [26] have been proposed.

As a matter of fact, most of the above-discussed VS implementations, being conceived
for low-bandwidth monitoring applications, have low computational speed [19–21]. However,
the integration of a virtual sensor into a control system requires faster operation. The higher
computational burden is associated with the execution of the ANN. Traditionally, in research
contexts, virtual sensors and ANNs are implemented on a microprocessor (µP) or microcontroller
(µC), often exploiting rapid control prototyping platforms, such as dSPACE or the like [22,27–29],
which encompass specialized microprocessors such as digital signal processors (DSPs). Such a choice
results in bulky and expensive systems that are not suitable for embedded applications.

In any case, the kind of ANN chosen for such implementations, i.e., the multi-layer perceptron
(MLP) architecture, is not suitable for the development of a virtual anemometer for WG. To overcome
this limit, the virtual anemometer presented in this paper is based on a growing neural gas (GNG)
ANN, which is well known for its compromise between accuracy and ease of implementation [30].
The GNG ANN is trained to learn the operational characteristics of the wind turbine. The choice of
this kind of ANN was related to its inherent capability to perform a function inversion task online,
which cannot be performed by conventional MLP ANNs. The GNG ANN had been previously
implemented on dSPACE [12,13], which is an advantageous platform for lab tests. However, such a
platform is unsuitable for commercial and/or industrial applications. On the other hand, commercial
embedded platforms based on µP/DSPs exhibit insufficient processing power to implement virtual
anemometers that can support the high-bandwidth control systems of WGs.

A field programmable gate array (FPGA) exhibits better performance than a µP/DSP because of
its inherent concurrent nature [31], which is a feature that well suits the parallel processing of the GNG
neurons. However, a successful FPGA design requires a challenging trade-off between speed and
resource occupation. In fact, to obtain adequate speed, the very few existing FPGA implementations of
ANNs have only considered MLP architectures with a very limited number of neurons [24,32].

The virtual anemometer presented in this paper allows performing model-based MPPT of WGs,
and it relies on a GNG ANN implemented on a low-cost FPGA using VHSIC Hardware Description
Language (VHDL). It was conceived as a coprocessor that exchanges data with the main processing
platform that executes the control algorithm of the WG, which can be a µP, µC, or DSP. The use of the
FPGA platform and the choice of serial peripheral interface (SPI) for data exchange allow obtaining
a virtual anemometer with 100 kHz bandwidth, more than enough to support a WG control system.
The experimental validation of such a virtual anemometer was performed using input profiles that
were acquired on the field for two different wind turbines.

Electronics 2020, 9, 83 3 of 16

This paper is an extension of a previous conference work [33]. The paper has been completely
revised, and the following new content has been included:

• A more comprehensive analysis of past works on virtual sensors has been provided, and several
new references have been added;

• The training algorithm for the GNG ANN has been described;
• The interaction between the main processing platform and the virtual anemometer coprocessor is

better described with the help of a new figure;
• The reuse factor of VHDL components that exploit resource sharing has been explicitly stated;
• The code of the chosen parallel sorting algorithm has been added;
• The compatibility of the virtual anemometer FPGA design with application-specific integrated

circuit (ASIC) and system-on-chip (SoC) implementations has been highlighted; in particular,
it has been shown that even the low-end, commercial SoCs have an adequate number of resources
to implement the virtual anemometer.

The paper is structured as follows. The wind turbine models that are learned by the GNG ANN
are presented in Section 2. The details of the GNG ANN, including the steps of the training and
recalling algorithms, are described in Section 3. Then, Section 4 describes several aspects of the FPGA
implementation of the virtual anemometer. The experimental validation procedure and the results are
presented in Section 5. Finally, some conclusions are drawn.

2. Models of Horizontal and Vertical Axis Wind Turbines

The behavior of the proposed virtual anemometer is independent from the type and rating of
the wind turbine under hand; hence, it can work with both vertical-axis and horizontal-axis turbines.
The GNG ANN is trained using the set of mechanical characteristics (power/torque versus angular
speed) of the chosen wind turbine for varying wind speed, which fully describe the steady-state turbine
behavior. In particular, they can be obtained fitting the equations of the following two models, starting
from datasets acquired either through a few experimental tests or as a result of finite element method
(FEM) simulations.

2.1. Horizontal Axis Wind Turbine

The power generated by a horizontal axis wind turbine (HAWT) can be written as [34]:

Pm = Cp(λ, β)
ρA
2

v3, (1)

where Pm is the mechanical power of the turbine in [W], Cp is the performance coefficient of the turbine,
ρ is the air density in [kg/m3], A is the turbine swept area in [m2], v is the wind speed in [m/s], β is the
blade pitch angle in [deg], and λ is the tip speed ratio defined as the ratio of the rotor blade tip to the
speed of the wind:

λ =
ωTR

v
. (2)

In (2), ωT is the turbine angular speed, and R is the turbine radius. The performance coefficient is
expressed by:

CP(λ, β) = c1

(
c2

λi
− c3β− c4

)
e
−c5
λi + c6λ, (3)

with:
1
λi

=
1

λ+ 0.08β
−

0.035
β3 + 1

, (4)

and the coefficients c1 · · · c6 can be determined by fitting the mechanical characteristics of the wind
turbine. Given the mechanical power, the torque produced by the turbine can be computed as:

Electronics 2020, 9, 83 4 of 16

TT = Pm/ωT = CT(λ, β)
ρπR3

2
v2, (5)

where the torque coefficient of the turbine is defined as CT(λ, β) = CP(λ, β)/λ. Finally, it is worth
recalling that both turbine speed and torque should be converted into the machine speed range by
considering the gear ratio n:

ω′T = ωTn = ωrm and T′T = TT/n. (6)

2.2. Vertical Axis Wind Turbine

The power generated by a vertical axis wind turbine (VAWT) can be written as follows:

Pm =
[(

a1 + a2
v
ωT

)
e(−a3

v
ωT

)
+ a4

ωT

v

]
v3. (7)

Therefore, the turbine torque can be expressed as:

TT =
[(

a1 + a2
v
ωT

)
e(−a3

v
ωT

)
+ a4

ωT

v

] v3

ωT
. (8)

The equations of the VAWT present a very similar structure to Equations (1)–(5), but they require
the knowledge of only four coefficients; i.e., a1 · · · a4. As in the HAWT case, the parameters can be
determined by fitting the mechanical characteristics of the wind turbine, either from experimental
measurements or from the results of FEM simulations.

3. The GNG Artificial Neural Network

The growing neural gas (GNG) is a particular kind of self-supervised neural network. The basic
principle of the GNG is to start with an initially small network with only two units (neurons) and
progressively increase the number of units in a growing structure [30,35,36]. The maximum size of
the network is chosen a priori by the user considering the nature of data and the dimensionality of
the working space. The underlying idea is that a limited number of units (neurons) can properly
represent a larger amount of data. To perform this task, the network of neurons must be initially trained.
During the training phase, the network learns the data, and consequently, the final configuration of the
network is determined; such a phase, which is the most demanding from the computational point of
view, is performed offline on a standard PC. Once the network is trained, its online employment is
performed by means of the so-called recalling phase. In this phase, the network is used to predict the
system output starting from previously unseen input data. The recalling phase is usually performed
online and runs on a suitably chosen hardware platform.

In the application under study, once the direct function of Section 2 that expresses the wind
turbine model, i.e., Pm = f (v,ωm) or TT = f (v,ωm), is learned on the basis of the experimental data,
the GNG can compute vestim = f−1(Pm,ωm) or vestim = f−1(TT,ωm) online during the recalling phase.
In this way, it is possible to estimate wind speed on the basis of the actual values of wind turbine
speed and mechanical power/torque. In the following, the algorithms of training and recalling phases
are described.

3.1. Training Phase

The complete algorithm for GNG training is summarized in the following steps:

1. Start with two neurons a and b with random weights wa and wb in<n;
2. Present an input signal ξ belonging to the training dataset;
3. Find the nearest neuron s1 and the second nearest neuron s2;
4. Increment the age of all edges emanating from s1;

Electronics 2020, 9, 83 5 of 16

5. Add the squared distance between the input signal and the nearest neuron in the input space to a
local counter variable:

∆error(s1) = ‖ws1 − ξ‖
2

6. Move s1 in its direct topological neighbors towards ξ by fractions εb and εn, respectively, of the
total distance:

∆ws1 = εb(ξ −ws1)

. . .
∆wn = εn(ξ −wn)

for all direct neighbors n of s1;
7. If s1 and s2 are connected by an edge, set the age of this edge to zero; if such an edge does not

exist, create it;
8. Remove edges with an age larger than amax; if this results in points with no emanating edges,

remove them;
9. If the number of input data presented so far is an integer multiple of a parameter λ, create a new

neuron as follows:

a. Determine the neuron q with the maximum accumulated error;
b. Insert a new neuron r halfway between q and its neighbor f , and remove the original edge

between q and f ;
c. Decrease the error variables of q and f multiplying them by a constant α; initialize the error

variable of r with the new value of the error variable of q;

10. Decrease all error variables multiplying them by a constant d;
11. If a stopping criterion (e.g., net size or performance criterion) is not yet fulfilled, then go to step 2.

The flowchart of the training algorithm, which synthetizes the above-described procedure,
is shown in Figure 1.

Electronics 2019, 8, x FOR PEER REVIEW 5 of 16

6. Move s1 in its direct topological neighbors towards ξ by fractions εb and εn,
respectively, of the total distance: ቐ࢝߂௦భ = ࣈ൫ߝ − .௦భ൯࢝ . ࢝߂. = ࣈ)ߝ − (࢝

for all direct neighbors n of s1;
7. If s1 and s2 are connected by an edge, set the age of this edge to zero; if such an edge

does not exist, create it;
8. Remove edges with an age larger than amax; if this results in points with no emanating

edges, remove them;
9. If the number of input data presented so far is an integer multiple of a parameter λ,

create a new neuron as follows:
a. Determine the neuron q with the maximum accumulated error;
b. Insert a new neuron r halfway between q and its neighbor f, and remove the

original edge between q and f;
c. Decrease the error variables of q and f multiplying them by a constant α;

initialize the error variable of r with the new value of the error variable of q;
10. Decrease all error variables multiplying them by a constant d;
11. If a stopping criterion (e.g., net size or performance criterion) is not yet fulfilled, then

go to step 2.
The flowchart of the training algorithm, which synthetizes the above-described procedure, is

shown in Figure 1.

Figure 1. Flowchart describing the training algorithm of the Growing Neural Gas Artificial Neural
Network.

Figure 1. Flowchart describing the training algorithm of the Growing Neural Gas Artificial Neural Network.

Electronics 2020, 9, 83 6 of 16

3.2. Recalling Phase

The recalling algorithm of the GNG is summarized as follows:

1. Present the input vector ξi;
2. Compute the K Euclidean distances Dk between the vector ξi and the weights wi,k of the K neurons

of the GNG;
3. Sort the Dk’s in ascending order and consider the corresponding first P neurons;
4. Compute the estimated output y by:

y =

∑P
1

wi,k
Dk∑P

1
1
Dk

. (9)

It is worth noting that the GNG ANN works differently from other classic supervised neural
networks like the MLP ANN trained by the back-propagation algorithm. In fact, the GNG ANN
considers the neurons that are closer to the input data, and it computes the output as its weighted
sum (Equation (9)). This way, the computational demand is reduced with respect to the MLP ANN,
which requires the evaluation of several non-linear functions, called activation functions (one for each
neuron). On the other hand, a GNG ANN usually requires a much higher number of neurons in
comparison to an MLP ANN.

4. FPGA Implementation of the Virtual Anemometer

The virtual anemometer consists of a coprocessor in the form of a programmed FPGA that can
be interfaced with the processing platform in which the control scheme of the WG is implemented,
i.e., a µP, µC, or DSP. The interaction between the main processing platform and the coprocessor is
summarized by the synopsis of Figure 2. As for the communication bus, SPI interface was chosen
and implemented in the FPGA because of its high performance, wide diffusion, and availability as a
hardware peripheral within several processing platforms. In the following, a µP-based control system
is assumed with no loss of generality; in fact, if µCs or DSPs are used for WG control, they can exchange
data with the virtual anemometer in the same way because they have at least one SPI interface available
and several general purpose input/output (GPIO) pins.Electronics 2019, 8, x FOR PEER REVIEW 7 of 16

Figure 2. Synopsis of the interaction between the main microprocessor and the coprocessor.

Figure 3. Block scheme of the virtual anemometer’s field programmable gate array (FPGA)
implementation.

4.1. SPI Communication Interface and Protocol

The communication between the microprocessor and the coprocessor exploits an SPI bus with a
12 MHz clock. Data are exchanged through transactions involving three consecutive 8-bit words.

The packet structure for master (microprocessor) and slave (FPGA) communication on SPI bus
is shown in Figure 4. Each command (CMD) is issued by setting the first half word of the packet. If
the master starts sending CMD = 0001, then the following data are the 20 bits of the x and y inputs
for the GNG ANN; if the slave starts answering with CMD = 0001, then the following data are the 10
bits of the z output of the GNG ANN. Other CMD values are currently reserved for future uses; e.g.,
to update ANN weights online.

A finite state machine (FSM) is used as a supervisor that coordinates the data exchange between
the SPI module and the GNG ANN, also providing error detection.

Figure 2. Synopsis of the interaction between the main microprocessor and the coprocessor.

Electronics 2020, 9, 83 7 of 16

The µP that executes the control system of the WG periodically sends the values of the electrical
machine’s angular speed and torque (or power) to the virtual anemometer using the SPI interface.
These are two variables that are already processed in the control system. Then, the virtual anemometer
performs its computation and returns the estimated value of wind speed to the µP, which exploits the
virtual measurement to perform model-based MPPT of the WG and to compute the command signals
for the related power electronic converter accordingly.

In particular, the angular speed is measured by an incremental encoder; the torque, instead,
can be estimated starting from the current signals by suitable torque models (based on flux
observers/estimators) that can be embedded into the control algorithm of the WG. If needed, the power
can be computed multiplying angular speed by torque.

The virtual anemometer is programmed just once using the neuron weights that result from the
training phase of the GNG ANN, in which the whole set of wind turbine characteristics is learned.
Because of this, the virtual anemometer works accurately in the whole wind speed range of the wind
turbine. It is also worth highlighting that the virtual anemometer is equivalent to a real anemometer,
which is a sensor that performs instantaneous measurements of wind speed. As such, it is not able to
make either short-term or long-term predictions of wind load. If this feature is needed, a forecasting
algorithm should be used instead of the virtual anemometer.

To obtain a well optimized design, the VHDL code describing the hardware design of the virtual
anemometer has been manually written. The synopsis of the FPGA design is presented in Figure 3,
where the internal connections of reset and clock lines have been omitted for the sake of simplicity.
The details of the SPI communication interface and the GNG ANN implementation are described in
the following subsections.

Electronics 2019, 8, x FOR PEER REVIEW 7 of 16

Figure 2. Synopsis of the interaction between the main microprocessor and the coprocessor.

Figure 3. Block scheme of the virtual anemometer’s field programmable gate array (FPGA)
implementation.

4.1. SPI Communication Interface and Protocol

The communication between the microprocessor and the coprocessor exploits an SPI bus with a
12 MHz clock. Data are exchanged through transactions involving three consecutive 8-bit words.

The packet structure for master (microprocessor) and slave (FPGA) communication on SPI bus
is shown in Figure 4. Each command (CMD) is issued by setting the first half word of the packet. If
the master starts sending CMD = 0001, then the following data are the 20 bits of the x and y inputs
for the GNG ANN; if the slave starts answering with CMD = 0001, then the following data are the 10
bits of the z output of the GNG ANN. Other CMD values are currently reserved for future uses; e.g.,
to update ANN weights online.

A finite state machine (FSM) is used as a supervisor that coordinates the data exchange between
the SPI module and the GNG ANN, also providing error detection.

Figure 3. Block scheme of the virtual anemometer’s field programmable gate array
(FPGA) implementation.

4.1. SPI Communication Interface and Protocol

The communication between the microprocessor and the coprocessor exploits an SPI bus with a
12 MHz clock. Data are exchanged through transactions involving three consecutive 8-bit words.

The packet structure for master (microprocessor) and slave (FPGA) communication on SPI bus
is shown in Figure 4. Each command (CMD) is issued by setting the first half word of the packet.
If the master starts sending CMD = 0001, then the following data are the 20 bits of the x and y inputs
for the GNG ANN; if the slave starts answering with CMD = 0001, then the following data are the
10 bits of the z output of the GNG ANN. Other CMD values are currently reserved for future uses; e.g.,
to update ANN weights online.

Electronics 2020, 9, 83 8 of 16
Electronics 2019, 8, x FOR PEER REVIEW 8 of 16

Figure 4. Packet structure for serial peripheral interface (SPI) bus communication.

4.2. GNG ANN Implementation

The GNG ANN is supposed not to vary its structure (neuron number and weights) dynamically
online. Thus, the training algorithm, in which the ANN learns the relationship ݕ = ,ݔ)݂ using the (ݖ
provided training dataset, can be executed offline just once on a standard PC obtaining the weights
of the ANN. Such weights are the x-y-z coordinates of each neuron and must be stored in the ROM
XYZ implemented in the FPGA during the programming operation. The recalling algorithm of the
GNG ANN is then the only algorithm implemented and executed online on the FPGA to compute
the inverse function ݖ = ݂ିଵ(ݔ, .starting from the data transmitted by the microprocessor (ݕ

The block diagram describing the implementation of the recalling algorithm according to Section
3.2 is sketched in Figure 5. The goal pursued was to implement such an algorithm achieving a suitable
compromise between computation speed and resource utilization, so as to use a low-range, low-cost
FPGA such as the Altera Cyclone III EP3C25F324 [37]. It is worth noting that wrong technical choices
could negatively affect system performance, either reducing the estimation accuracy or hindering the
implementation on the chosen programmable platform. Hence, 512 neurons have been considered;
i.e., more than enough to obtain the required accuracy in wind speed estimation [13]. Furthermore,
the following other technical choices have been made:

1. The inputs/outputs of the ANN are 10-bit integers as the data width of most ADCs
commonly used within control systems;

2. The weights of the ANN are also 10-bit integers, and they are stored in a ROM that
is implemented using some of the dedicated memory blocks inside the FPGA chip;

3. Hardware multipliers are used for computing blocks Δx2 and Δy2 of Figure 5;
4. Fixed point arithmetic is used; the related precision varies from 10 bit to 32 bit; in

particular, Figure 5 indicates the used datatype as a triplet (s,b,f), where s = sign bit,
b = total number of bits, f = number of fractional bits;

5. The final weighted sum is computed considering the eight neurons closest to the
input data;

6. True parallel implementation was chosen for blocks u−1, u1/u2, sqrt(u);
7. Resource sharing is enforced for blocks u2 and for the sorting component with a reuse

factor equal to 32;
8. For this latter component a fast, parallel sorting algorithm, i.e., bitonic sort [38], has

been chosen; this algorithm was implemented to select the eight smallest values
among 16 input numbers; hence, the obtained VHDL component processes the
distances from the input point to all neurons in blocks of 16 on several consecutive
clock cycles; the bitonic sort algorithm, written as Matlab code, is shown in Algorithm
1.

To obtain a modular and scalable design, several parameters (clock frequencies, neuron number,
input data width, etc.) were implemented as VHDL generics. Therefore, changing such values does
not break the design operation after recompilation. This is an interesting feature that simplifies
further improvements of the virtual sensor and the use of the GNG ANN in other contexts.

The required frequency for the external oscillator is 50 MHz, and Table 1 summarizes the
resources used within the Altera EP3C25F324C8 FPGA. The maximum clock frequency for the
implemented GNG ANN is 7 MHz. Considering this value, the SPI clock frequency, the number of
bits to transmit and the delays required by the SPI protocol, the maximum frequency of data exchange
between the FPGA and the microprocessor is 100 kHz. Hence, the data rate of the virtual anemometer

Figure 4. Packet structure for serial peripheral interface (SPI) bus communication.

A finite state machine (FSM) is used as a supervisor that coordinates the data exchange between
the SPI module and the GNG ANN, also providing error detection.

4.2. GNG ANN Implementation

The GNG ANN is supposed not to vary its structure (neuron number and weights) dynamically
online. Thus, the training algorithm, in which the ANN learns the relationship y = f (x, z) using the
provided training dataset, can be executed offline just once on a standard PC obtaining the weights
of the ANN. Such weights are the x-y-z coordinates of each neuron and must be stored in the ROM
XYZ implemented in the FPGA during the programming operation. The recalling algorithm of the
GNG ANN is then the only algorithm implemented and executed online on the FPGA to compute the
inverse function z = f−1(x, y) starting from the data transmitted by the microprocessor.

The block diagram describing the implementation of the recalling algorithm according to Section 3.2
is sketched in Figure 5. The goal pursued was to implement such an algorithm achieving a suitable
compromise between computation speed and resource utilization, so as to use a low-range, low-cost
FPGA such as the Altera Cyclone III EP3C25F324 [37]. It is worth noting that wrong technical choices
could negatively affect system performance, either reducing the estimation accuracy or hindering the
implementation on the chosen programmable platform. Hence, 512 neurons have been considered;
i.e., more than enough to obtain the required accuracy in wind speed estimation [13]. Furthermore,
the following other technical choices have been made:

1. The inputs/outputs of the ANN are 10-bit integers as the data width of most ADCs commonly
used within control systems;

2. The weights of the ANN are also 10-bit integers, and they are stored in a ROM that is implemented
using some of the dedicated memory blocks inside the FPGA chip;

3. Hardware multipliers are used for computing blocks ∆x2 and ∆y2 of Figure 5;
4. Fixed point arithmetic is used; the related precision varies from 10 bit to 32 bit; in particular,

Figure 5 indicates the used datatype as a triplet (s,b,f), where s = sign bit, b = total number of bits,
f = number of fractional bits;

5. The final weighted sum is computed considering the eight neurons closest to the input data;
6. True parallel implementation was chosen for blocks u−1, u1/u2, sqrt(u);
7. Resource sharing is enforced for blocks u2 and for the sorting component with a reuse factor

equal to 32;
8. For this latter component a fast, parallel sorting algorithm, i.e., bitonic sort [38], has been chosen;

this algorithm was implemented to select the eight smallest values among 16 input numbers;
hence, the obtained VHDL component processes the distances from the input point to all neurons
in blocks of 16 on several consecutive clock cycles; the bitonic sort algorithm, written as Matlab
code, is shown in Algorithm 1.

To obtain a modular and scalable design, several parameters (clock frequencies, neuron number,
input data width, etc.) were implemented as VHDL generics. Therefore, changing such values does not
break the design operation after recompilation. This is an interesting feature that simplifies further
improvements of the virtual sensor and the use of the GNG ANN in other contexts.

Electronics 2020, 9, 83 9 of 16

Electronics 2019, 8, x FOR PEER REVIEW 9 of 16

is considerably faster than the execution time of even the most demanding current loop of any WG
control system. In other words, the use of the virtual anemometer does not worsen the performance
of the WG control system.

Finally, it is worth noting that there are two alternatives to produce the proposed virtual
anemometer. If mass production of the device is needed, the design can be implemented as an
application-specific integrated circuit (ASIC) on the basis of the same VHDL code of the FPGA
implementation. Otherwise, a system-on-chip (SoC) could be used to implement both the
microprocessor and the FPGA coprocessor of Figure 2 on the same device. This choice would reduce
system cost, weight, volume, and power consumption. Being written in standard VHDL, the design
of the virtual anemometer is compatible with the programmable logic of every SoC, provided that
enough hardware resources are available. Only a recompilation for the chosen target would be
needed. For example, the Xilinx Zynq SoC could be used [39]. This device, even in the less performing
version (Zynq Z-7007S), encompasses a powerful ARM Cortex-A9 microprocessor and Artix 7
programmable logic with a sufficient number of hardware resources, as shown in Table 1.

Figure 5. Synopsis of the recalling algorithm implemented on FPGA.

Table 1. Comparison of requested and available resources.

Resource Count
Used by the

proposed
design

Available on Altera
Cyclone III
EP3C25F324

Available on
Xilinx Zynq

Z-7007S
Logic elements/Prog. logic cells 22,148 24,624 23,552

Registers/Flip-Flops 2265 24,624 28,800
Memory bits/Block RAM 6528 608,256 1,887,436

Embedded multipliers/DSP slices 32 132 66

Algorithm 1. Matlab code of Bitonic Sort algorithm.
% this function implements bitonic sort algorithm

% in ascending order for 16 input elements

function outVec = bitonicSorter(inVec)

 outVec = bitonicSort16(inVec);

end

Figure 5. Synopsis of the recalling algorithm implemented on FPGA.

The required frequency for the external oscillator is 50 MHz, and Table 1 summarizes the resources
used within the Altera EP3C25F324C8 FPGA. The maximum clock frequency for the implemented GNG
ANN is 7 MHz. Considering this value, the SPI clock frequency, the number of bits to transmit and the
delays required by the SPI protocol, the maximum frequency of data exchange between the FPGA and
the microprocessor is 100 kHz. Hence, the data rate of the virtual anemometer is considerably faster
than the execution time of even the most demanding current loop of any WG control system. In other
words, the use of the virtual anemometer does not worsen the performance of the WG control system.

Table 1. Comparison of requested and available resources.

Resource Count Used by the
Proposed Design

Available on Altera
Cyclone III EP3C25F324

Available on Xilinx
Zynq Z-7007S

Logic elements/Prog. logic cells 22,148 24,624 23,552
Registers/Flip-Flops 2265 24,624 28,800

Memory bits/Block RAM 6528 608,256 1,887,436
Embedded multipliers/DSP slices 32 132 66

Finally, it is worth noting that there are two alternatives to produce the proposed virtual
anemometer. If mass production of the device is needed, the design can be implemented as
an application-specific integrated circuit (ASIC) on the basis of the same VHDL code of the
FPGA implementation. Otherwise, a system-on-chip (SoC) could be used to implement both the
microprocessor and the FPGA coprocessor of Figure 2 on the same device. This choice would reduce
system cost, weight, volume, and power consumption. Being written in standard VHDL, the design
of the virtual anemometer is compatible with the programmable logic of every SoC, provided that
enough hardware resources are available. Only a recompilation for the chosen target would be needed.
For example, the Xilinx Zynq SoC could be used [39]. This device, even in the less performing version
(Zynq Z-7007S), encompasses a powerful ARM Cortex-A9 microprocessor and Artix 7 programmable
logic with a sufficient number of hardware resources, as shown in Table 1.

Electronics 2020, 9, 83 10 of 16

Algorithm 1. Matlab code of Bitonic Sort algorithm.

% this function implements bitonic sort algorithm

% in ascending order for 16 input elements

function outVec = bitonicSorter(inVec)

outVec = bitonicSort16(inVec);

end

function out = bitonicSort16(in)

out(1:8) = bitonicSort8(in(1:8), true);

out(9:16) = bitonicSort8(in(9:16), false);

out = bitonicMerge16(out, true);

end

function out = bitonicSort8(in, direction)

out(1:4) = bitonicSort4(in(1:4), true);

out(5:8) = bitonicSort4(in(5:8), false);

out = bitonicMerge8(out, direction);

end

function out = bitonicSort4(in, direction)

out(1:2) = bitonicSort2(in(1:2), true);

out(3:4) = bitonicSort2(in(3:4), false);

out = bitonicMerge4(out, direction);

end

function out = bitonicSort2(in, direction)

out = bitonicMerge2(in, direction);

end

function out = bitonicMerge16(in, direction)

for i = 1:8

tmp = compare([in(i); in(i + 8)], direction);

out(i) = tmp(1);

out(i+8) = tmp(2);

end

out(1:8) = bitonicMerge8(out(1:8), direction);

out(9:16) = bitonicMerge8(out(9:16), direction);

end

function out = bitonicMerge8(in, direction)

for i = 1:4

tmp = compare([in(i); in(i + 4)], direction);

out(i) = tmp(1);

out(i+4) = tmp(2);

end

out(1:4) = bitonicMerge4(out(1:4), direction);

out(5:8) = bitonicMerge4(out(5:8), direction);

end

Electronics 2020, 9, 83 11 of 16

function out = bitonicMerge4(in, direction)

for i = 1:2

tmp = compare([in(i); in(i + 2)], direction);

out(i) = tmp(1);

out(i+2) = tmp(2);

end

out(1:2) = bitonicMerge2(out(1:2), direction);

out(3:4) = bitonicMerge2(out(3:4), direction);

end

function out = bitonicMerge2(in, direction)

out = compare([in(1); in(2)], direction);

end

function out = compare(in, direction)

if direction == (in(1) > in(2))

out = [in(2); in(1)];

else

out = in;

end

end

5. Experimental Validation

A standard PC equipped with a Silicon Labs CP2130 USB-to-SPI Protocol Converter has been
used to communicate with the FPGA board. A specific application has been written to exchange data
using the CP2130 C/C++ libraries in the same way as the µP (or µC or DSP) would do.

The virtual anemometer has been validated using two sets of data (wind speed, angular speed,
and power/torque) that have been previously acquired experimentally during the operation of two
WGs: a 5.5 kW horizontal axis wind turbine (HAWT) and a 1 kW vertical axis (Darrieus type) wind
turbine (VAWT). As for wind speed measurement, the first turbine was equipped with a Windmeter
cup anemometer by Soluzione Solare with an RS485 digital output and 1 Hz output sampling rate.
On the other hand, the VAWT was equipped with a DeltaOhm HD 2003 ultrasonic anemometer with
analog output and 1 Hz output sampling rate. The model parameters of the chosen HAWT/VAWT are
shown in Tables 2 and 3, respectively. Figure 6a,b shows the torque versus speed characteristics for
varying wind speed of the HAWT and VAWT under study, respectively.

Table 2. Parameters of the considered horizontal axis wind turbine.

Parameter Value

R [m] 2.50
λopt 7

Cpmax 0.45
n 4.86

Generator rated power [kW] 5.5
Generator rated speed [rpm] 1500

Model coefficients
c1 = 0.5176, c2 = 116,

c3 = 0.4, c4 = 5,
c5 = 21, c6 = 0.0068

Electronics 2020, 9, 83 12 of 16

Table 3. Parameters of the considered vertical axis wind turbine.

Parameter Value

R [m] 0.75
λopt 2

Cpmax 0.15
n 1

Generator rated power [kW] 1.0
Generator rated speed [rpm] 415

Model coefficients

a1 = −25.6815,
a2 = 87.6095,
a3 = 8.0646,

a4 = 0.048076

Electronics 2019, 8, x FOR PEER REVIEW 13 of 16

R [m] 0.75
λopt 2

Cpmax 0.15
n 1

Generator rated power
[kW]

1.0

Generator rated speed
[rpm]

415

Model coefficients

a1 = −25.6815,
a2 = 87.6095,
a3 = 8.0646,

a4 = 0.048076

(a) (b)

Figure 6. Torque versus speed characteristics for several wind speed values: (a) 5.5 kW horizontal axis
wind turbine (HAWT) (locus of the MPPs in yellow); (b) 1 kW vertical axis wind turbine (VAWT).

(a)

(b)

Figure 7. Neurons (red) and neuron connections (green) shown on the characteristic surface of turbine
(gray): (a) torque versus wind speed versus angular speed for 5.5 kW HAWT; (b) power versus wind
speed versus angular speed for 1 kW VAWT.

Figure 6. Torque versus speed characteristics for several wind speed values: (a) 5.5 kW horizontal axis
wind turbine (HAWT) (locus of the MPPs in yellow); (b) 1 kW vertical axis wind turbine (VAWT).

For each scenario, the GNG ANN has been set-up and trained offline in Matlab environment using
70% of the related dataset, obtaining a set of weights that has been stored into the ROM of the virtual
anemometer. Such training data are shown in Figure 7a,b in gray and represent the characteristic
surfaces (in terms of turbine torque/power, wind speed, and angular speed) of the HAWT and VAWT
under study. Furthermore, Figure 7a,b also show the neurons of the trained GNG and their connections.
As the figures show, the neurons lie on the characteristic surfaces.

Electronics 2019, 8, x FOR PEER REVIEW 13 of 16

R [m] 0.75
λopt 2

Cpmax 0.15
n 1

Generator rated power
[kW]

1.0

Generator rated speed
[rpm]

415

Model coefficients

a1 = −25.6815,
a2 = 87.6095,
a3 = 8.0646,

a4 = 0.048076

(a) (b)

Figure 6. Torque versus speed characteristics for several wind speed values: (a) 5.5 kW horizontal axis
wind turbine (HAWT) (locus of the MPPs in yellow); (b) 1 kW vertical axis wind turbine (VAWT).

(a)

(b)

Figure 7. Neurons (red) and neuron connections (green) shown on the characteristic surface of turbine
(gray): (a) torque versus wind speed versus angular speed for 5.5 kW HAWT; (b) power versus wind
speed versus angular speed for 1 kW VAWT.

Figure 7. Neurons (red) and neuron connections (green) shown on the characteristic surface of turbine
(gray): (a) torque versus wind speed versus angular speed for 5.5 kW HAWT; (b) power versus wind
speed versus angular speed for 1 kW VAWT.

Electronics 2020, 9, 83 13 of 16

Since the GNG is a static ANN, the correct operation of the FPGA-based virtual anemometer
in each scenario has been verified with reference to its static behavior by comparing the estimated
and measured wind speed profiles, starting from the test dataset (i.e., the remaining 30% of each
original dataset). The wind speed profile has been estimated by presenting the GNG ANN with
couples of input values (angular speed and power/torque) taken from the test dataset, sequentially.
Therefore, each estimated wind speed value was compared with the measured wind speed value that
corresponded to the angular speed and power/torque used as input for the estimation. In particular,
torque and angular speed profiles have been considered in the first scenario, whereas power and
angular speed profiles have been chosen for the other one. These two different choices depend on the
different electrical signals available in HAWTs and VAWTs, since they exploit different topologies of
power converters and related control systems.

For the sake of clarity, the comparison between estimated and measured wind speed profiles
is presented in Figure 8a,b considering a sample interval for each scenario. As the figures show,
the estimated wind speed tracks the measured wind speed at steady-state. This happens throughout
the entire test dataset. Being this condition verified, each steady-state triplet (wind speed, angular
speed, torque/power) is coherent and represents a point that belongs to the surface of mechanical
characteristics of the wind turbine, validating the estimation process and the static operation of the
virtual anemometer.

Electronics 2019, 8, x FOR PEER REVIEW 14 of 16

(a)

(b)

Figure 8. Estimated and measured wind speed profiles: (a) 5.5 kW HAWT; (b) 1 kW VAWT. Red dots
highlight the sampling instants of the real anemometer.

6. Conclusions

A high-performance implementation of an FPGA-based virtual anemometer that allows model-
based maximum power point tracking (MPPT) of wind generators (WGs) has been presented. It was
based on a growing neural gas artificial neural network (GNG ANN) that was implemented on a
low-cost FPGA platform. As an alternative, it could be implemented as an ASIC or on the
programmable logic of a system-on-chip (SoC) by simply recompiling for the different target.

The best compromise between resource occupation and speed was achieved through suitable
hardware optimizations. The proposed virtual anemometer was conceived for embedded
applications, unlike other virtual sensors proposed in the literature. Since it is able to exchange data
up to a 100 kHz rate, it is suitable for high-performance model-based MPPT of WGs.

The proposed system has been validated on a commercial FPGA, taking advantage of two sets
of wind turbine data (wind speed, angular speed, and power/torque) that have been previously
acquired experimentally, and discussing both the static and dynamic behavior.

Author Contributions: conceptualization and methodology, M.P., M.L., and G.L.T.; software development,
G.L.T., M.L., and A.A.; validation, G.L.T., M.L., M.C.D.P., M.P., and A.A.; writing—review and editing, G.L.T.,
M.L., M.C.D.P., M.P., and A.A.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Reisi, A.R.; Moradi, M.H.; Jamasb, S. Classification and comparison of maximum power point tracking
techniques for photovoltaic system: A review. Renew. Sustain. Energy Rev. 2013, 19, 433–443.

2. Zhou, M.; Bao, G.; Gong, Y. Maximum Power Point Tracking Strategy for Direct Driven PMSG. In
Proceedings of the Asia-Pacific Power and Energy Engineering Conference (APPEEC), Wuhan, China, 25–
28 March 2011, pp. 1–4.

3. Hsieh, G.C.; Hsieh, H.I.; Tsai, C.Y.; Wang, C.H. Photovoltaic Power-Increment-Aided Incremental-
Conductance MPPT with Two-Phased Tracking. IEEE Trans. Power Electron. 2013, 28, 2895–2911.

4. Syahputra, R.; Soesanti, I. Performance Improvement for Small-Scale Wind Turbine System Based on
Maximum Power Point Tracking Control. Energies 2019, 12, 3938.

5. Abo-Khalil, A.G.; Lee, D.-C.; Seok, J.-K. Variable speed wind power generation system based on fuzzy logic
control for maximum output power tracking. In Proceedings of the 35th Annual IEEE Power Electronics
Specialists Conference (PESC 04), Aachen, Germany, 20–25 June 2004.

Figure 8. Estimated and measured wind speed profiles: (a) 5.5 kW HAWT; (b) 1 kW VAWT. Red dots
highlight the sampling instants of the real anemometer.

It is worth remarking that, despite the use of a static ANN, the virtual anemometer exhibits an
estimation transient because, although the real wind speed stays constant after its rising edge, its input
variables are affected by the mechanical dynamics of the wind turbine, which are slower for the HAWT
(Figure 8a) than for the VAWT (Figure 8b).

As for the dynamic behavior of the proposed virtual anemometer, the following considerations
hold. The variation of wind turbine torque/power in response to a wind speed variation is nearly
instantaneous, whereas the angular speed varies according to the mechanical dynamics of the wind
turbine. The virtual anemometer has high bandwidth, so its output variation is instantaneous as the
torque/power variation (t = 0). However, the estimation lag depends on the settlement of angular
speed. On the other hand, the real anemometer has a low sampling rate, so it can update its output up
to one sampling time after the real wind variation. For example, referring to Figure 8a, the output of the
real anemometer (red curve) could have been updated up to 1 second after the output variation of the
virtual anemometer (t = 0), exhibiting almost the same lag. Instead, referring to Figure 8b, the output
of the virtual anemometer does not exhibit an appreciable lag because of the lower mechanical inertia

Electronics 2020, 9, 83 14 of 16

of the VAWT; thus, it meets or exceeds the performance of the real anemometer, whose lag can be up to
1 second.

In any case, the presence of a short lag in the output of the real/virtual anemometer is not a problem.
In fact, the tracking time of a model-based MPPT that exploits such anemometers is significantly faster
than that of any iterative MPPT algorithm, which must be much slower than the mechanical dynamics
of the wind turbine to wait for the settlement after each perturbation.

In other words, the proposed virtual anemometer can be an effective and cheaper alternative to a
real anemometer for performing model-based MPPT.

6. Conclusions

A high-performance implementation of an FPGA-based virtual anemometer that allows
model-based maximum power point tracking (MPPT) of wind generators (WGs) has been presented.
It was based on a growing neural gas artificial neural network (GNG ANN) that was implemented
on a low-cost FPGA platform. As an alternative, it could be implemented as an ASIC or on the
programmable logic of a system-on-chip (SoC) by simply recompiling for the different target.

The best compromise between resource occupation and speed was achieved through suitable
hardware optimizations. The proposed virtual anemometer was conceived for embedded applications,
unlike other virtual sensors proposed in the literature. Since it is able to exchange data up to a 100 kHz
rate, it is suitable for high-performance model-based MPPT of WGs.

The proposed system has been validated on a commercial FPGA, taking advantage of two sets of
wind turbine data (wind speed, angular speed, and power/torque) that have been previously acquired
experimentally, and discussing both the static and dynamic behavior.

Author Contributions: Conceptualization and methodology, M.P., M.L., and G.L.T.; software development, G.L.T.,
M.L., and A.A.; validation, G.L.T., M.L., M.C.D.P., M.P., and A.A.; writing—review and editing, G.L.T., M.L.,
M.C.D.P., M.P., and A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Reisi, A.R.; Moradi, M.H.; Jamasb, S. Classification and comparison of maximum power point tracking
techniques for photovoltaic system: A review. Renew. Sustain. Energy Rev. 2013, 19, 433–443. [CrossRef]

2. Zhou, M.; Bao, G.; Gong, Y. Maximum Power Point Tracking Strategy for Direct Driven PMSG. In Proceedings
of the Asia-Pacific Power and Energy Engineering Conference (APPEEC), Wuhan, China, 25–28 March 2011;
pp. 1–4.

3. Hsieh, G.C.; Hsieh, H.I.; Tsai, C.Y.; Wang, C.H. Photovoltaic Power-Increment-Aided
Incremental-Conductance MPPT with Two-Phased Tracking. IEEE Trans. Power Electron. 2013, 28, 2895–2911.
[CrossRef]

4. Syahputra, R.; Soesanti, I. Performance Improvement for Small-Scale Wind Turbine System Based on
Maximum Power Point Tracking Control. Energies 2019, 12, 3938. [CrossRef]

5. Abo-Khalil, A.G.; Lee, D.-C.; Seok, J.-K. Variable speed wind power generation system based on fuzzy logic
control for maximum output power tracking. In Proceedings of the 35th Annual IEEE Power Electronics
Specialists Conference (PESC 04), Aachen, Germany, 20–25 June 2004.

6. Leidhold, R.; Garcia, G.; Valla, M.I. Maximum efficiency control for variable speed wind driven generators
with speed and power limits. In Proceedings of the 28th Annual International Conference of the IEEE
Industrial Electronics Society (IECON), Sevilla, Spain, 5–8 November 2002; pp. 57–162.

7. Chedid, R.; Mrad, F.; Basma, M. Intelligent control of a class of wind energy conversion systems. IEEE Trans.
Energy Convers. 1999, 14, 1597–1604. [CrossRef]

8. Thongam, J.S.; Bouchard, P.; Ezzaidi, H.; Ouhrouche, M. Artificial neural network-based maximum power
point tracking control for variable speed wind energy conversion systems. In Proceedings of the 2009

http://dx.doi.org/10.1016/j.rser.2012.11.052
http://dx.doi.org/10.1109/TPEL.2012.2227279
http://dx.doi.org/10.3390/en12203938
http://dx.doi.org/10.1109/60.815111

Electronics 2020, 9, 83 15 of 16

IEEE Control Applications, (CCA) & Intelligent Control, (ISIC), St. Petersburg, Russia, 8–10 July 2009;
pp. 1667–1671.

9. Gwang, H.; Seung, R.H.; Lee, K.B. An Improved Maximum Power Point Tracking Method for Wind Power
Systems. Energies 2012, 5, 1339–1354. [CrossRef]

10. Zhang, Y.; Zhang, L.; Liu, Y. Implementation of Maximum Power Point Tracking Based on Variable Speed
Forecasting for Wind Energy Systems. Processes 2019, 7, 158. [CrossRef]

11. Thongam, J.S.; Bouchard, P.; Beguenane, R.; Fofana, I. Neural network based wind speed sensorless MPPT
controller for variable speed wind energy conversion systems. In Proceedings of the 2010 IEEE Electric
Power and Energy Conference (EPEC), Halifax, NS, Canada, 25–27 August 2010; pp. 1–6.

12. Cirrincione, M.; Pucci, M.; Vitale, G. Growing Neural Gas (GNG) based Maximum Power Point Tracking
for High Performance Wind Generator System with Induction Machine. IEEE Trans. Ind. Appl. 2011, 47,
861–872. [CrossRef]

13. Pucci, M.; Cirrincione, M. Neural MPPT Control of Wind Generators with Induction Machines Without
Speed Sensors. IEEE Trans. Ind. Electron. 2011, 58, 37–47. [CrossRef]

14. Mesemanolis, A.; Mademlis, C. A Neural Network based MPPT controller for variable speed Wind Energy
Conversion Systems. In Proceedings of the 8th Mediterranean Conference on Power Generation, Transmission,
Distribution and Energy Conversion (MEDPOWER 2012), Cagliari, Italy, 1–3 October 2012; pp. 1–6.

15. Vitale, G.; Pucci, M.; Luna, M. Metodo e Relativo Sistema Per la Conversione di Energia Meccanica,
Proveniente da un Generatore Comandato da una Turbina, in Energia Elettrica. IT Patent No. 0,001,417,881,
4 September 2015.

16. Vitale, G.; Pucci, M.; Luna, M. Method and Relevant System for Converting Mechanical Energy from a
Generator Actuated by a Turbine into Electric Energy. U.S. Patent No. 9,856,857 B2, 2 January 2018.

17. Di Piazza, M.C.; Luna, M.; Pucci, M.; Vitale, G. PV-based Li-ion battery charger with neural MPPT for
autonomous sea vehicles. In Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics
Society (IECON), Vienna, Austria, 10–13 November 2013; pp. 7267–7273.

18. Liu, L.; Kuo, S.M.; Zhou, M. Virtual sensing techniques and their applications. In Proceedings of the 2009
International Conference on Networking, Sensing and Control (ICNSC), Okayama, Japan, 26–29 March 2009;
pp. 31–36.

19. Chatterjee, A.; Keyhani, A. Neural Network Estimation of Microgrid Maximum Solar Power. IEEE Trans.
Smart Grid 2012, 3, 1860–1866. [CrossRef]

20. Ceylan, I.; Erkaymaz, O.; Gedik, E.; Gürel, A.E. The prediction of photovoltaic module temperature with
artificial neural networks. Case Stud. Therm. Eng. 2014, 3, 11–20. [CrossRef]

21. Ferreira, P.M.; Gomes, J.M.; Martins, I.A.C.; Ruano, A.E. A Neural Network Based Intelligent Predictive
Sensor for Cloudiness, Solar Radiation and Air Temperature. Sensors 2012, 12, 15750–15777. [CrossRef]
[PubMed]

22. Karatepe, E.; Hiyama, T. Artificial neural network-polar coordinated fuzzy controller based maximum power
point tracking control under partially shaded conditions. IET Renew. Power Gener. 2009, 3, 239–253.

23. Mancilla-David, F.; Riganti Fulginei, F.; Laudani, A.; Salvini, A. A Neural Network-Based Low-Cost Solar
Irradiance Sensor. IEEE Trans. Instrum. Meas. 2014, 63, 583–591. [CrossRef]

24. Oliveri, A.; Cassottana, L.; Laudani, A.; Fulginei, F.R.; Lozito, G.M.; Salvini, A.; Storace, M. Two
FPGA-Oriented High-Speed Irradiance Virtual Sensors for Photovoltaic Plants. IEEE Trans. Ind. Informat.
2017, 13, 157–165. [CrossRef]

25. Hwang, Y.; Minami, Y.; Ishikawa, M. Virtual Torque Sensor for Low-Cost RC Servo Motors Based on Dynamic
System Identification Utilizing Parametric Constraints. Sensors 2018, 18, 3856. [CrossRef] [PubMed]

26. Guzmán, C.; Carrera, J.; Durán, H.; Berumen, J.; Ortiz, A.; Guirette, O.; Arroyo, A.; Brizuela, J.; Gómez, F.;
Blanco, A.; et al. Implementation of Virtual Sensors for Monitoring Temperature in Greenhouses Using CFD
and Control. Sensors 2018, 19, 60. [CrossRef] [PubMed]

27. Cotton, N.J.; Wilamowski, B.M.; Dundar, G. A Neural Network Implementation on an Inexpensive Eight Bit
Microcontroller. In Proceedings of the 2008 International Conference on Intelligent Engineering Systems,
Miami, FL, USA, 25–29 February 2008; pp. 109–114.

28. Yang, Y.R. A neural network controller for maximum power point tracking with 8-bit microcontroller. In
Proceedings of the 2011 6th IEEE Conference on Industrial Electronics and Applications, Beijing, China,
21–23 June 2011; pp. 919–924.

http://dx.doi.org/10.3390/en5051339
http://dx.doi.org/10.3390/pr7030158
http://dx.doi.org/10.1109/TIA.2010.2102994
http://dx.doi.org/10.1109/TIE.2010.2043043
http://dx.doi.org/10.1109/TSG.2012.2198674
http://dx.doi.org/10.1016/j.csite.2014.02.001
http://dx.doi.org/10.3390/s121115750
http://www.ncbi.nlm.nih.gov/pubmed/23202230
http://dx.doi.org/10.1109/TIM.2013.2282005
http://dx.doi.org/10.1109/TII.2015.2462293
http://dx.doi.org/10.3390/s18113856
http://www.ncbi.nlm.nih.gov/pubmed/30424000
http://dx.doi.org/10.3390/s19010060
http://www.ncbi.nlm.nih.gov/pubmed/30586913

Electronics 2020, 9, 83 16 of 16

29. Kashif, S.A.R.; Saqib, M.A.; Zia, S.; Kaleem, A. Implementation of neural network based Space Vector Pulse
Width Modulation inverter-induction motor drive system. In Proceedings of the 2009 3rd International
Conference on Electrical Engineering (ICEE), Lahore, Pakistan, 9–11 April 2009; pp. 1–6.

30. Fratta, A.; Griffero, G.; Nieddu, S. Comparative analysis among DSP and FPGA-based control capabilities in
PWM power converters. In Proceedings of the 30th Annual Conference of the IEEE Industrial Electronics
Society (IECON), Busan, Korea, 2–6 November 2004; pp. 257–262.

31. Economou, G.P.K.; Mariatos, E.P.; Economopoulos, N.M.; Lymberopoulos, D.; Goutis, C.E. FPGA
implementation of artificial neural networks: An application on medical expert systems. In Proceedings of
the 4th International Conference on Microelectronics for Neural Networks and Fuzzy Systems, Turin, Italy,
26–28 September 1994; pp. 287–293.

32. Fritzke, B. A Growing Neural Gas Network Learns Topologies, Advances in Neural Information Processing Systems 7;
MIT Press: Cambridge, UK, 1995.

33. Accetta, A.; Di Piazza, M.C.; Tona, G.L.; Luna, M.; Pucci, M. A high-performance FPGA-based virtual
anemometer for MPPT of wind energy conversion systems. In Proceedings of the 2017 IEEE 26th International
Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 926–933.

34. Freris, L.L. Wind Energy Conversion System; Prentice Hall: New York, NY, USA, 1990.
35. Fritzke, B. Growing Cell Structures—A self-organizing network for unsupervised and supervised learning.

Neural Netw. 1994, 7, 1441–1460. [CrossRef]
36. Fritzke, B. Incremental Learning of Linear Local Mappings. In Proceedings of the International Conference

on Artificial Neural Networks (ICANN), Paris, France, 9–13 October 1995; pp. 217–222.
37. Altera Cyclone III Device Handbook Volume 1. Available online: https://www.intel.com/content/dam/www/

programmable/us/en/pdfs/literature/hb/cyc3/cyclone3_handbook.pdf (accessed on 30 October 2019).
38. Batcher, K.E. Sorting Networks and their Applications. In Proceedings of the AFIPS Spring Joint Computer

Conference, Atlantic City, NJ, USA, 30 April–2 May 1968; Volume 32, pp. 307–314.
39. Zynq-7000 SoC Data Sheet: Overview. Available online: https://www.xilinx.com/support/documentation/

data_sheets/ds190-Zynq-7000-Overview.pdf (accessed on 30 October 2019).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0893-6080(94)90091-4
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyc3/cyclone3_handbook.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyc3/cyclone3_handbook.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Models of Horizontal and Vertical Axis Wind Turbines
	Horizontal Axis Wind Turbine
	Vertical Axis Wind Turbine

	The GNG Artificial Neural Network
	Training Phase
	Recalling Phase

	FPGA Implementation of the Virtual Anemometer
	SPI Communication Interface and Protocol
	GNG ANN Implementation

	Experimental Validation
	Conclusions
	References

