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Catastrophic and major disasters in real-world systems, such as
blackouts in power grids or global failures in critical infrastruc-
tures, are often triggered by minor events which originate a
cascading failure in interdependent graphs. We present here a
self-consistent theory enabling the systematic analysis of cascad-
ing failures in such networks and encompassing a broad range of
dynamical systems, from epidemic spreading, to birth–death pro-
cesses, to biochemical and regulatory dynamics. We offer testable
predictions on breakdown scenarios, and, in particular, we unveil
the conditions under which the percolation transition is of the
first-order or the second-order type, as well as prove that account-
ing for dynamics in the nodes always accelerates the cascading
process. Besides applying directly to relevant real-world situa-
tions, our results give practical hints on how to engineer more
robust networked systems.

cascading failure | interdependent network | spreading | robustness

In recent years, lots of studies concentrated on catastrophic
events affecting the Internet, power grids, or other critical

infrastructures (1–6). Most such major disasters are in fact trig-
gered by minor events, which may originate a cascading failure in
interdependent graphs (7–12). Understanding the robustness of
these networks with respect to minor perturbations is of utmost
importance for preventing system crashes (13, 14). An example
is power and communication networks: Power stations adminis-
ter energy to communication nodes and depend on them at the
same time for control, so that malfunctions may spread from one
network to the other (15). Cascading failures have been studied
intensively in statistical physics on single graphs or on networks
that interact with (and/or depend on) each other (16, 17).

To capture the spreading mechanisms in such graphs, one
needs a mathematical scaffold able to seize 2 basic aspects:
the structural and functional interdependence between the net-
works, and the spreading of failures within each single graph.
So far, the first issue was dealt with by examining changes in
the structure connectivity caused by node dependence between
networks (12, 15, 18), and the critical properties of the fail-
ure process were unveiled with the help of percolation theory
(19–23). Interdependency between network constituents funda-
mentally alter the percolation properties (8, 24–30). In particu-
lar, Parshani et al. (22) found that, when a critical fraction of
nodes in one network fails at a weak (strong) interdependence
level between the networks, the system undergoes a second-
order (first-order) phase transition due to recursive processes
of cascading failures. As for the second issue, studies concen-
trated on the conditions and outcome for cascading failures
(31–34). Different from structural failures caused by removed
nodes, overload failures usually propagate in the system through
invisible paths (35–40). In particular, Barzel and Barabási (39)
developed a self-consistent theory able to analyze the case of

a perturbation localized in one node which spreads within the
structure of the graph.

In this paper, we contribute a fresh mathematical framework
for cascading failures, providing answers to fundamental ques-
tions such as: 1) What happens when a finite fraction of nodes
experiences a dynamical overload on a single network? 2) How
can the failure process caused by dynamical perturbations and
interdependence be properly characterized? 3) Which factors
determine the cascade to be a second- or a first-order phase
transition? 4) What are the universal properties that are common
to the spreading of cascading failures for different dynamical
systems, dependence strengths, and network structures?

Results
Cascade Size in Single Networks. We start by considering the
case of a fraction of nodes being perturbed in a graph.
Here, each node i (i = 1, . . . ,N ) of a pristine network is
assigned a time-dependent variable xi(t), obeying a generic rate
equation (39)

dxi
dt

=W (xi (t))+

N∑
j=1

AijQ (xi (t), xj (t)). [1]
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Table 1. Dynamical model and failure size in ER networks

Dynamics Model ω(1−p) 〈C〉

B dxi
dt = F−Bxi −

∑N
j=1 AijR̃xixj 1−p

∑∞
0 PC (C)pC ∼ δ−1

BD dxi
dt =−Bxκi +

∑N
j=1 Aijx

ρ
j 1−pe(p−1)〈C〉p〈C〉−αδ

2
3 <C

2
3 > α

−3
2 δ−1 < k

3
2 >

E dxi
dt =−Bxi +

∑N
j=1 AijR(1− xi)xj 1−pe(p−1)〈C〉p〈C〉−αδ

1
2 〈C〉 α−1δ

−1
2 < k>

R dxi
dt =−Bxi +

∑N
j=1 RH(xj) 1−pe(p−1)〈C〉p〈C〉−αδ〈C

2〉 α
−1

2 δ
−1

2 < k
1
2 >

W (xi) accounts for the evolution of xi in the absence of network
interactions, Aij is the graph adjacency matrix, and Q(xi , xj ) is
a function describing all pairwise interactions. With appropriate
W (xi) and Q(xi , xj ), Eq. 1 can be mapped exactly into several
dynamical models (Table 1 and SI Appendix), such as epidemic
processes (where xi represents the local probability of infection)
(41, 42), biochemical dynamics (in which xi represents the con-
centration of a reactant) (43), birth–death processes (in which
xi represents the population of a given species at site i) (44),
and regulatory dynamics (in which xi is the expression level of a
gene) (45).

In the absence of perturbations, each node i of a pristine
network reaches its asymptotic steady state x̃i . A tolerance coef-
ficient δ is introduced, and when perturbations are present, the
node i readjusts its asymptotic state into xi . If | 1− xi/x̃i |>δ, the
node i is considered to fail (i.e., it is removed from the network
together with all its incident links), and the value xi is perma-
nently set to zero. Therefore, a perturbation affecting a given
node j (consisting of a permanent vanishing of x̃j ) generates a
readjustment of the network, which may lead to the failure of
other nodes, triggering this way a cascade which ends only when
all of the nodes in the final graph have values within the fixed
network’s tolerance.

In ref. 39, it was shown that the cascade size Ci (the num-
ber of nodes failing after a perturbation affecting node i) is
Ci ∼ ki

(
δk1−γ

i

)− 1
β+1 , where ki is the degree of the node i , and

γ and β are parameters accounting, respectively, for the local
impact and the propagation dynamics of the perturbation. Thus,
one can get the distribution of the failure size caused by per-
turbing one node. When β+ γ 6= 0, the connectivity of one node

comes out to be ki =α(δ
1

β+1Ci)
β+1
β+γ ; here, α is a mapping coef-

ficient between the real cascading failure size and the node
degree. Notice that for biochemical dynamics with β= 0 and
γ= 0, one gets 〈C 〉=Ci ∼ δ−1. Furthermore, the correspon-
dence between the node connectivity and the cascading failure
size is one to one (ki to Ci). Hence, we can get the cascading
failure size distribution of each component from the degree dis-
tribution within an arbitrary network. Assuming that the graph’s
degree distribution is Pk (k), then the cascading failure size
distribution of the system (see the derivation in SI Appendix)
follows

PC (C )=Pk (αδ
1

β+γ C
β+1
β+γ ). [2]

Let us now discuss the case of a fraction 1− p of nodes being
perturbed randomly. If the failure range of each node only
covers its nearest neighbors, the failure size is ς(1− p) = 1−

p
∞∑
k=0

Pk (k)pk , where the overlap conditions are considered as

well. And applying it to the cascading cases, the failure size
ω(1− p) is

ω(1− p) = 1− p

∞∑
C=0

PC (C )pC . [3]

Table 1 illustrates 4 distinct dynamical models and their cor-
responding failure size [according to Eq. 3] on single Erdös-
Rényi (ER) networks. The results are in good agreement
with simulations, as shown in Fig. 1. Notice that, for BD,
E , and R models in ER networks, we can approximate
the failure size (see SI Appendix for details) as ω(1− p)≈

1− pe(p−1)〈C〉p<C>−α<C
β+1
β+γ >δ

1
β+γ .

Interdependent Graphs. Let us now move from isolated to inter-
dependent networks (46–50), and let us consider 2 networks, A
and B (having, respectively, NA and NB nodes [with, in gen-
eral, NA≤NB ]) with a fraction qA (qB ) of network A’s nodes
(of network B ’s nodes) depending on nodes in network B (A).
If node i in network A (B) stops functioning, the dependent
node j in network B (A) fails to work as well. The nodes in
network A or B have dynamical activity. In the absence of pertur-
bations, each node i of networks A and B reaches its asymptotic
steady state x̃i . Once again, a tolerance coefficient δ is intro-
duced, and if due to perturbations, the new state xi of node
i verifies | 1− xi/x̃i |>δ, then the node is considered to be non-
functional, its value xi is permanently set to zero, and it is
removed from the network together with all its incident links.
In this way, when a perturbation is added to a fraction of

A

C D

B

Fig. 1. The cascade size ω(1− p) vs. the fraction 1− p of perturbed nodes
for the 4 models of Table 1. All data refer to ensemble averages over 100 dif-
ferent realizations of ER networks with N =1,000. Diamonds and solid lines
are used for indicating the simulation results and the analytical solutions in
Table 1, respectively. (A) Comparison of simulation results and theoretical
solutions of ω(1− p) of ER networks with 〈k〉 = 5 for B. (B–D) Same as A,
but the results for BD with 〈k〉 = 2 (B), for E with 〈k〉 = 5 (C), and for R
with 〈k〉 = 5 (D) are presented, respectively.
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nodes in network A randomly, cascading failures in the system
may occur. The cascading failure process is schematically illus-
trated in Fig. 2: The failure caused by the fraction 1− p of
perturbed nodes diffuses initially within a single graph, then it
crosses into the dependent network, and an iterative process
starts which ends when there are no new failures or when the
system collapses completely. Notice that this interdependency
scheme differs from (and is complementary of) a recent study
(51), where, instead, dependency was ruled by the local value
of an order parameter describing the transition to a collec-
tive state.

Failures with the E , B, BD, and R Dynamics. We now specialize to
the case in which the interacting graphs A and B are hosting the
dynamical models of Table 1. The nodes of network A(B) are
connected with degree distribution PA(k) [PB (k)], and a frac-
tion qA (qB ) of nodes in network A(B) depends on nodes in
network B(A) with no-feedback condition (15).

When an infinitesimally small fraction 1− p of nodes in net-
work A is perturbed, the fraction of intact nodes is λ′1 = p′=
1−ω(1− p) (at the A’s perturbed steady state), and the frac-
tion of nodes which belongs to the giant component of A is
λ1 =λ′1gA (λ′1), gA being the fraction of nodes belonging to
the giant components of network A. As the functioning of a
fraction (qB ) nodes in B depends on that of the linked nodes
in A, the fraction of failing nodes in B is (1−λ1)qB = [1−
λ′1gA (λ′1)]qB . From Eq. 3, the remaining fraction of nodes in B
is ϕ′1 = 1−ω ((1−λ′1gA (λ′1))qB ). Hence, its giant components
are ϕ1 =ϕ′1gB (ϕ′1), with gB being the fraction of nodes belong-
ing to the giant components of network B . Iteration of the above
steps gives the fraction of intact nodes in A and B at each stage

of the cascade failure. The general form is given by (15, 22)

λ′1 = p′, λ1 =λ′1gA
(
λ′1
)
,

ϕ′1 = 1−ω
((

1− p′gA
(
λ′1
))
qB
)
, ϕ1 =ϕ′1gB

(
ϕ′1
)
,

λ2
′= p′(1−ω((1− gB (ϕ1

′))qA)), λ2 =λ′2gA
(
λ′2
)
,

...

ϕ′t = 1−ω
((

1− p′gA
(
λ′t
))
qB
)
, ϕt =ϕ′tgB

(
ϕ′t
)
,

λ′t = p′
[
1−ω

((
1− gB (ϕ′t−1)

)
qA
)]

, λt =λ′tgA
(
λ′t
)
.

[4]

At the end of the cascade, no further failures occur, and the
system attains its steady state. Namely, at the limit of t→∞,
λ∞
′=λ′t+1 =λ′t , and ϕ∞

′=ϕ′t+1 =ϕ′t . Therefore, the giant
components of each network are P∞,A =λ∞=λ∞

′gA(λ∞
′) and

P∞,B =ϕ∞=ϕ∞
′gB (ϕ∞

′).
As compared with conclusions in refs. 15 and 22, what is strik-

ing here is the universality of the failure condition formula (our
results in the case of no dynamical behavior are in full agree-
ment with those of ref. 22; Fig. 3A), which entitles us to explore a
very rich variety of dynamical models, networks’ topologies, and
interdependence strengths (results are reported in Fig. 3 B–F, as
well as in SI Appendix).

First- and Second-Order Transitions. According to the definition of
gA and gB (Materials and Methods), one has gA (ξ)= 1− fA and
gB (ξ)= 1− fB . Furthermore, in accordance with Eqs. 4 and 6,
these relationships can be solved with respect to fB (fA) and
fA (fB ). The condition leading to a first-order phase transition
(where the size of the giant component abruptly changes from a

spreading split into
clusters

giant component(GC)

split into
clusters

spreading

structure failure

giant component

failure nodes

dependent nodes
failure from A to B

dependent nodes
failure from B to A

giant component（GC）

perturbed nodes

nodes above threshold value

intact nodes

failure in network A

failure in network B

Fig. 2. Schematic illustration of the cascading failure occurring in interdependent graphs. In the absence of perturbations, each node i of networks A and
B reaches its asymptotic steady state x̃i . If, due now to perturbations, a given node i reaches a new state xi such that | 1− xi/x̃i |>δ, the node is considered
to be nonfunctional, its value xi is permanently set to zero, and it is removed from the network together with all its incident links. In this way, when a
permanent perturbation is added to a fraction of nodes in network A randomly, cascading failures may occur because a fraction qA (qB) of network A’s
nodes (of network B’s nodes) are dependent on nodes in network B (A) in the sense that if node i in network A (B) stops functioning, the dependent node j
in network B (A) fails as well.
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A

C

E F

D

B

Fig. 3. P∞,A (see main text for definition) vs. 1− p, after the end of
the cascade failure in ER–ER networks of size NA = NB = 500. (A) P∞,A vs.
1− p in the absence of dynamical behaviors. Notice that by increasing the
interdependence coupling strength, one has a change from a second- to
a first-order percolation transition. (B) P∞,A vs. 1− p with tolerance coef-
ficient δ= 1 and δ= 0.15 for BD−BD. (C–F) Same as A, but now the
different dynamical processes (B−B [C], BD−BD [D], E −E [E], and
R−R [F]) of Table 1 are incorporated. Strikingly, the nodes’ dynamics accel-
erates the change from second- to first-order transition. In all cases, triangles
and diamonds are used for the simulations and solid lines for the analytical
results.

finite value to zero) is dfB (fA)
dfA

· dfA(fB )
dfB

= 1 (22), and one can find
the 3 unknowns fA = fA1 , fB = fB1 and p = p1 for all given values
of kA, kB , qA, qB , δ. The condition, instead, for the system featur-
ing a second-order phase transition (where the size of the giant
component smoothly decreases to zero) is fB = 1 or fA = 1, and
one can find fA = fA2 , fB = fB2 and p = p2, which (for any fixed
value of kA, kB , qA, qB , δ) define a line of occurrence.

Taking the BD−BD model in ER–ER interdependent net-
works as an example, Fig. 4 highlights the factors influencing
the failure condition and its relationship with the percolation
transition. Comparing, indeed, the case of only structural depen-
dence (blue line in Fig. 4A), interdependent networks (black
line) are more vulnerable, and first-order phase transitions occur
more often. In Fig. 4 B and D, one notices that the critical
point decreases as the network connectivity and threshold value
are increased, which means that enabling the occurrence of
first-order transitions here requires disturbing more nodes or
increasing the number of interdependent nodes in the networks.
Fig. 4C reports that the increase of qB (the fraction of depen-
dent nodes in network B) accelerates the occurrence of the
first-order transition. More information on B−B, E −E , and
R−R models is reported in Fig. 5 (showing the contour maps

of the transition condition) and in SI Appendix. The threshold
value for failure spreading condition accelerates the change from
the continuous failure mode (green regions) to abrupt failures
(orange regions). Meanwhile, even with weak coupling strengths,
the dynamic processes may lead to a first-order percolation
transition.

Discussion
In this work, we have presented a generic theory of failure
spreading for randomly connected graphs with arbitrary degree
distributions, able to give quantitative predictions on the
transition points to percolation.

Our findings show that the interdependent network within
dynamical behavior always accelerates the cascading process.
In other words, interdependent networks are more vulnera-
ble, and first-order phase transitions occur more often when
dynamical behaviors are considered. In particular, when the
tolerance coefficient is large enough, our results are in full
agreement with the case of no-dynamical-behavior. Due to its
general applicability, our theory entitles us to explore a very rich
variety of dynamical models and interdependence strengths. SI
Appendix contains further analytical and numerical results on
different dynamical models and different topological structures
of the graphs. It is there shown that the first- and second-
order phase transitions occur indeed not only in ER networks,
but also for scale-free networks with the same dynamical mod-
els E , B, BD, and R. Together with contributing to a better
understanding of the mechanisms underlying cascading fail-
ures in real-world interdependent networks, the importance of
our results relies also on the fact that they furnish practical
hints on how to engineer more robust and resilient networked
systems.

A

C D

B

Fig. 4. (A) Comparison of the percolation phase transition in ER–ER net-
works (blue line) with the transition occurring with a BD−BD model
(black line). 1− qA is the fraction of independent nodes in network A, and
1− p is the removed fraction. Solid (dashed) lines denote the first-order
(second-order) percolation transition, and balls indicate the critical points.
The system is more vulnerable when the dynamics is incorporated into its
failure analysis. B–D show the contributions to the system failure mode of
3 factors: the average degree (〈k〉 = 4, 5, and 6 from left to right) (B), the
interdependence strength qB (qB = 0.6, 0.4, 0.3, and 0.2 from left to right)
(C), and the tolerance coefficient (δ = 0.05, 0.08, 0.10, and 0.15 from left to
right) (D).
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A B C D

E F G H

I J K L

Fig. 5. Contour maps of the transition condition from continuous (green region) to abrupt failure mode (orange region) with ER–ER interdependent
networks. (A–D) The transition condition for the models B−B (A), BD−BD (B), E −E (C), and R−R (D) when consider the impact of the average
connectivity 〈k〉. (E–H) Same as A–D, but explore the impact of the coupling strength qB for the models B−B (E), BD−BD (F), E −E (G), andR−R (H).
(I–L) Same as E–H but test the contribution of the tolerance coefficient δ to the transition condition for B−B (I), BD−BD (J), E −E (K), and R−R (L),
respectively.

Materials and Methods
Generating Functions. In order to estimate the giant component caused by a
cascading failure, the role of the pristine graph’s topological structure needs
investigation. Starting from a portion 1− p of perturbed nodes, the fraction
of failed nodes at the perturbed steady state is 1− p′ =ω(1− p) (according
to Eq. 3), so the random variable ξ satisfies ξ= p′f +

(
1− p′

)
, and the giant

component of the network is

P∞ = p′g
(
p′
)
, [5]

where g
(
p′
)
= 1−G

(
1− p′

(
1− f

(
p′
)))

, f
(
p′
)
= H

(
p′f
(
p′
)
+ 1− p′

)
.

One can then derive the generating function of the underlying branching
processes, which is H(ξ) = G′(ξ)/G′(1).

Theoretical Analysis of Critical Conditions. Let us now specify our approach
for the case of 2 coupled ER networks, for which we suppose a Poisson
degree distribution and average degrees kA and kB, respectively. Then,
GA (ξ)= HA (ξ)= exp [kA (ξ− 1)]and GB (ξ)= HB (ξ)= exp [kB (ξ− 1)]. Eqs. 4
become λ′t = p′ [1−ω (fBqA)], ϕ′t = 1−ω

((
1− p′ (1− fA)

)
qB
)
, where fA

and fB satisfies the transcendental equation

fA = e[kAλ
′
t(fA−1)], fB = e[kBϕ

′
t(fB−1)]. [6]

At the end of the cascade process, λt = p′ (1− fA)[1−ω (fBqA)] and ϕt =

(1− fB)(1−ω((1− p′(1− fA))qB)). From Eq. 6, one obtains fA =

exp
[
kAp′ [1−ω (fBqA)](fA− 1)

]
, fB = exp

[
kB
(
1−ω

((
1− p′ (1− fA)

)
qB
))

(fB− 1)].

The first (second) of the above equations can be solved with respect to fB

(fA), and one eventually obtains

ω (fBqA)=1−
τA

p′
,

ω
((

1− p′ (1− fA)
)
qB
)
=1− τB, [7]

where τA = ln(fA)/(kA(fA− 1)), τB = ln(fB)/(kB(fB− 1)).
The solutions of Eqs. 7 are either fB(fA) or fA = 1 [respectively, fA(fB) or

fB = 1] and are restricted to the square 0≤ fA≤ 1, 0≤ fB≤ 1.

dfB(fA)

dfA
·

dfA(fB)

dfB
= 1. [8]

When adding this condition to Eqs. 7, one finds the 3 unknowns fA =

fA1 , fB = fB1 and p = p1 for all given values of kA, kB, qA, qB, δ.
The condition, instead, for the system featuring a second-order phase

transition (where the size of the giant component smoothly decreases to
zero) is 

1−
τA

p′
−ω (qA)= 0,

1−
1

kB
−ω

((
1− p′ (1− fA)

)
qB
)
= 0.

[9]

When adding fB = 1 or fA = 1 to Eqs. 7, one finds fA = fA2 or fB = fB2 and p =

p2, which (for any fixed value of kA, kB, qA, qB, δ) define a line of occurrence
for second-order phase transitions.

So far, we have shown that, if both conditions of Eqs. 8 and 9 hold, one
can obtain the critical point at which the system-failure process changes

22456 | www.pnas.org/cgi/doi/10.1073/pnas.1904421116 Duan et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ju
ne

 3
, 2

02
0 

https://www.pnas.org/cgi/doi/10.1073/pnas.1904421116


A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

from a second- to a first-order percolation transition. Adding to Eqs. 7 the
first-order condition of Eq. 8 and the second-order condition fB = 1 or fA = 1
allows one to find the critical parameters fB = fBc , fA = fAc , p = pc, and qA =

qAc as functions of kA, kB, qB, δ.
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