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Finite-temperature spin dynamics of a two-dimensional Bose-Bose atomic mixture
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We examine the role of thermal fluctuations in uniform two-dimensional binary Bose mixtures of dilute
ultracold atomic gases. We use a mean-field Hartree-Fock theory to derive analytical predictions for the
miscible-immiscible transition. A nontrivial result of this theory is that a fully miscible phase at T = 0 may
become unstable at T �= 0, as a consequence of a divergent behavior in the spin susceptibility. We test this
prediction by performing numerical simulations with the stochastic (projected) Gross-Pitaevskii equation, which
includes beyond mean-field effects. We calculate the equilibrium configurations at different temperatures and
interaction strengths and we simulate spin oscillations produced by a weak external perturbation. Despite some
qualitative agreement, the comparison between the two theories shows that the mean-field approximation is not
able to properly describe the behavior of the two-dimensional mixture near the miscible-immiscible transition,
as thermal fluctuations smoothen all sharp features both in the phase diagram and in spin dynamics, except for
temperature well below the critical temperature for superfluidity.
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I. INTRODUCTION

The study of phase-separation in two-component classical
fluids is of paramount importance and the role of temperature
can be rather nontrivial. Two-component (or multicomponent)
quantum fluids are also available [1,2] and they have been
the subject of intense theoretical investigation over the last
two decades [3–10]. This is supplemented by the ongoing
experimental efforts with binary quantum gases [11–18]. In
particular, the observation of two-species Bose-Einstein con-
densate with atoms of the same element in different hyperfine
states [19–22] has received much attention because of its sim-
plicity, yet, reveal essential kinetics related to the transition
[23,24].

The interaction in dilute gases of ultracold atoms is en-
tirely determined by the s-wave scattering length, a, which
in turn fixes the interaction coupling constant g entering all
relevant equations at the mean-field level. In a two-component
mixture, one has two intracomponent coupling constants, g11

and g22, and one intercomponent coupling constant g12. The
theoretical constraint for phase-separation at zero tempera-
ture is that these constants must satisfy the inequality g2

12 >

g11g22 [1,2]. However, at finite temperature, deviations from
this constraint are expected to appear. Existing theoretical
studies have mainly addressed quasi-one-dimensional (1D)
or 3D systems employing the mean-field treatment including
the Hartree-Fock [25–27], Hartree-Fock-Bogoliubov-Popov
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[9,28,29], and Zaremba-Nikuni-Griffin formalism [30,31].
Stochastic growth dynamics for quasi-1D and quasi-2D multi-
component mixtures has been investigated in Refs. [32,33].
However, there have been few finite-temperature studies for
2D homogeneous Bose mixtures using beyond mean-field the-
ory [34,35]. Recently, Ota et al. [10] predicted a temperature
induced magnetic phase transition in an uniform 3D Bose-
Bose mixture using the Popov theory. It is then natural to ask
whether such a phase-transition also exists in 2D.

It is worth stressing that, in 2D Bose gases, thermal fluctu-
ations are much more important than in 3D, as they inhibit
true Bose-Einstein condensation at finite temperature, ac-
cording to the Mermin-Wagner-Hohenberg theorem [36,37].
Nevertheless, superfluidity still exists below the critical tem-
perature TBKT for the Berezinskii-Kosterlitz-Thouless (BKT)
phase transition [38–41]; the transition from normal gas to
superfluid follows from the binding and unbinding of vortex-
antivortex pairs at TBKT [42]. Observation of such transition in
the domain of ultracold quantum gases has been possible with
quasiuniform box traps [43,44]. One major advantage of using
2D box traps is that the dynamics of phase-separation depends
only on the interplay between kinetic and interaction energy
and one can encounter a novel phase diagram, which would
otherwise be nonexistent due to trap inhomogeneity. Finally,
the 2D planar configuration is more suitable to access local
densities fluctuations with respect to a 3D system, in which
most of the time only column density can be measured.

This sets the stage for our current work. Our goal is to
extend the investigation to the beyond mean-field level and
explore the case of a uniform 2D Bose-Bose mixture occupy-
ing two different hyperfine states and satisfying the miscibility
condition at zero temperature. As a first step, we calculate the
phase diagram as a function of temperature and inter-species
interaction strength and identify the miscible and immisci-
ble regions using the mean-field Hartree-Fock (HF) theory
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[25,27]. By treating the atoms in the two components as up
and down spin states of spin-1/2 particles, the transition from
a miscible to an immiscible mixture can be seen as a magnetic
phase-transition. In the HF theory it occurs where the spin
susceptibility exhibits a sudden discontinuity. A remarkable
result of the theory is that, in the superfluid regime, tempera-
ture increase tends to favor phase separation. This result seems
counter-intuitive, as thermal fluctuations usually acts against
order. An example of a similar type of anomaly in the context
of classical fluid is the temperature driven phase-transition in
water-triethylamine mixtures [45].

As a second step, we use the stochastic (projected) Gross-
Pitaevskii (SGPE) [46,47] theory for the same mixtures. This
formalism describes the system and its fluctuations by using
noisy classical fields coupled to a thermal bath, and includes
effects of thermal fluctuations both in the density and spin
channels, going beyond the HF description. We calculate the
density profiles of the two components at equilibrium at dif-
ferent temperatures and interaction strengths and we simulate
the response of the system to a weak external perturbation
producing a spin oscillation (i.e., an out-of-phase motion of
the two components). From the spin dynamics we also ob-
tain the velocity of spin sound waves. The SGPE simulations
show evidences of the miscible-immiscible phase transition
in the expected range of parameters, in qualitative agreement
with the HF theory; however, thermal fluctuations makes the
transition much smoother, thus hindering the sharp features
predicted by the mean-field theory. Only for temperature T �
0.5TBKT, the two theories provide consistent results.

II. MISCIBLE-IMMISCIBLE PHASE TRANSITION

A. Hartree-Fock theory

We start from a mean-field description of the uniform 2D
interacting Bose mixtures, provided by the Hartree-Fock the-
ory. This theory has been widely used in three dimensions, to
investigate the equilibrium [48,49] properties of the mixtures
at finite-temperature. At equilibrium, the chemical potential
of a given component i = {1, 2} below the superfluid-normal
phase transition is given by [2,25,27]

μi = gii(ni0 + 2niT ) + g12n3−i , (1)

where ni = ni0 + niT is the density of atoms of each compo-
nent. The coupling constants for the intraspecies interaction,
gii, and interspecies interaction, g12, are related to the s-
wave scattering lengths ai j and mass m1 = m2 = m as gi j =
4π h̄2ai j/m. In our work, we consider the case of symmetric
mixtures with g11 = g22 = g and N1 = N2 = N/2 as the num-
ber of atoms.

Although the above expression Eq. (1) is similar in three or
two dimensions, the physical meaning behind the quantity ni0

is formally different; while in 3D the quantity ni0 corresponds
to the condensate density, this identification no longer holds
in 2D, where Bose-Einstein condensation (BEC) is ruled
out at finite temperature [36,37] and ni0 corresponds to the
quasicondensate density, which characterizes the suppression
of density fluctuations. According to Refs. [50,51], one can
define

ni0 =
√

2〈|�̂i|2〉2 − 〈|�̂i|4〉 , (2)

where �̂i is the bosonic field operator and 〈· · · 〉 de-
notes the statistical average. For sufficiently low tempera-
tures, the quasicondensate is known to play the same role
as the true condensate [52]. As for the thermal component,
it can be defined through the Bose distribution function niT =
S−1 ∑

p fi(p) = S−1 ∑
p[eβp2/(2m)z−1

i − 1]−1, where S is the
area and β = (kBT )−1. This expression takes into account the
mean-field effects at the level of the single-particle energy
through the expression zi = exp[β(μi − 2giini − g12n3−i )] for
the fugacity. The thermal atoms density thus takes the explicit
form

niT = − 1

λ2
T

ln (1 − zi ), (3)

where λT is the thermal de Broglie wavelength. It is worth
noticing that Eq. (3) yields a divergent behavior for μi =
2giini + g12n3−i, in accordance with the fact that BEC does
not exist in 2D at finite temperature. However, in the BKT
superfluid phase one can safely use Eq. (1) for the evaluation
of thermodynamic quantities.

B. Thermodynamic quantities

To calculate the phase diagram of the mixture, one can
investigate the dynamical stability of the system. The mixture
is found to be stable against density and spin fluctuations if
the compressibility κT and spin susceptibility κM are positive
[53,54]. The two quantities are defined through the chemi-
cal potential Eq. (1) following the thermodynamic relation
κT (κM ) = [∂ (μ1 ± μ2)/∂ (n1 ± n2)]−1. In the particular case
of the symmetric mixtures considered in this work, the com-
pressibility as well the susceptibility assume the simple form

κT = 2κsc
T

1 + g12κ
sc
T

, κM = 2κsc
T

1 − g12κ
sc
T

, (4)

where we have introduced the isothermal compressibility for
the single-component Bose gas:

κsc
T = 1

g

1 − gβ
(
e

β

2 gn0 − 1
)−1

/λ2
T

1 − 2gβ
(
e

β

2 gn0 − 1
)−1

/λ2
T

, (5)

where n0 = n10 + n20 is the total quasicondensate atom den-
sity. At T = 0, Eq. (5) yields the well-known result κsc

T =
1/g, and the spin susceptibility Eq. (4) reduces to κM =
2/(g − g12), revealing its large increase near the miscible-
immiscible phase transition occurring for g12 = g [55,56].
At finite temperature instead, the miscible mixture is stable
under the condition 1 − g12κ

sc
T > 0. Remarkably, the isother-

mal compressibility in Eq. (5) increases at finite temperature,
compared to the value predicted at T = 0. This behavior is
the direct consequence of exchange effects [1,2], which is re-
sponsible for both the factor 2 in the denominator of Eq. (5), as
well as the temperature dependence of the chemical potential
in Eq. (1).

In Fig. 1(a), we show the single-component compressibil-
ity κsc

T calculated from Eq. (5), using a typical interaction
parameter mg/h̄2 = 0.095 [57]. For comparison, we also
show the results obtained from the universal relation. The
latter predicts that the equation of state of a single-component
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FIG. 1. (a) Isothermal compressibility κ sc
T of a single-component

uniform 2D Bose gas with mg/h̄2 = 0.095, normalized to its T = 0
value. Temperature is normalized to the BKT critical temperature
T 0

BKT (see main text). The blue solid line is the prediction of the HF
theory Eq. (5), while the black circles are results from the univer-
sal relations of Ref. [52]. (b) Spin susceptibility κM , Eq. (4), of a
two-component mixture with interaction parameters g11 = g22 = g,
mg/h̄2 = 0.095 and g12/g = 0.9. The quantity κ sc

T = 1/g12 is also
plotted as the red horizontal line in panel (a); the magnetic instability
occurs at the point where it crosses the blue line.

Bose gas of density nsc in the vicinity of the critical density,
nBKT, depends on a single variable X related to the interaction
g and to the reduced chemical potential βμ according to nsc −
nBKT = f (X ). The universal function f has been evaluated in
Ref. [52] using classical Monte Carlo simulations. In addition,
universal relations also provide a prediction for the BKT su-
perfluid transition temperature of a single-component uniform
Bose gas: T 0

BKT = 2π h̄2nsc/[mkB ln(380h̄2/mg)] [42]. It is
worth noticing that the Hartree-Fock theory is able to capture
the qualitative behavior of the isothermal compressibility be-
low T 0

BKT, with its characteristic increase when T approaches
the BKT transition temperature, although it does not predict
the typical peak just above the critical point.

Our result for the spin susceptibility of the mixture, Eq. (4),
is reported in Fig. 1(b) for g12/g = 0.9. Temperature is nor-
malized to T 0

BKT which for the mixture we define according to

T 0
BKT = 2π h̄2

m

N

2S ln

(
380h̄2

mg

)
. (6)

FIG. 2. Phase diagram of a 2D two-component Bose gas with
g11 = g22 = g and mg/h̄2 = 0.095. The blue solid and the black
dotted lines are the HF predictions for the magnetic instability tem-
perature TM evaluated from the condition κ sc

T = 1/g12 and the small g
expansion Eq. (7), respectively. The red dashed line is an estimate of
the location of the second magnetic instability, above T 0

BKT, obtained
from universal relations, namely, by interpolating the data points
for the equation of state given in Ref. [52]. According to the HF
theory, the mixture is miscible above the blue and red lines, while
it is dynamically unstable against phase separation in the gray area.
The array of markers correspond to the parameters used in SGPE
numerical simulation and the letters serve as a guide to read Figs. 3
and 7.

Since the interspecies interaction is expected to play a little
role for the critical point of the BKT superfluid phase tran-
sition [34,35], the value of T 0

BKT for a symmetric miscible
mixture is close to the actual value of BKT critical temper-
ature; it significantly underestimates it only in the case of
full phase separation. Remarkably, the instability condition
κsc

T = 1/g12, which is graphically represented in panel (a) by
the intersection between the compressibility curve and the
red horizontal line, takes place at a temperature well below
the BKT transition, and the spin susceptibility diverges at
TM � 0.68T 0

BKT.

C. Mean-field phase diagram

The pole of the spin susceptibility 1 − g12κ
sc
T = 0 identifies

the temperature TM at which a magnetic instability occurs. We
can calculate its location for different values of the interac-
tion strengths. The result is shown as a blue line in Fig. 2.
It is worth mentioning that the decrease of κsc

T above T 0
BKT

predicted by the universal relations in Fig. 1(a) suggests that
the instability condition characterizing the magnetic phase
transition should also be satisfied above the BKT transition.
We estimate its location by interpolating the data points for
the equation of state given in Ref. [52] and we plot the cor-
responding TM as a red dashed line. In the interaction versus
temperature phase diagram of Fig. 2, the mixture is expected
to be dynamically unstable against phase separation in the
gray area below the blue or red lines.

We can also derive an analytical result for the temperature
TM by using the small-g expression for the single component
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compressibility: 1/κsc
T � g(1 − 4D−1

0 )/(1 − 2D−1
0 ), with the

phase space density D0 = λ2
T n0. This simple expression al-

lows one to see how the isothermal compressibility reflects the
universal behavior of a 2D Bose gas. Indeed, κsc

T /κsc
T (T = 0)

does not explicitly depend on the value of the coupling con-
stant g and, in the regime T � T 0

BKT, one has D0 � λ2
T n � 1

with n = n1 + n2, thus obtaining the simple estimate

mkBTM

π h̄2n
� 1 − g12

g
, (7)

valid for gn � kBT 0
BKT and 1 − g12/g � 1. This expression is

shown as a black dotted line in Fig. 2, which nicely agrees
with the behavior of the pole of the spin susceptibility (blue
line) at low T .

The above results for the magnetic instability of the bi-
nary mixture suggest the occurrence of a first order phase
transition, the value of TM corresponding to the spinodal tem-
perature above which the unpolarized uniform configuration
of the mixture is dynamically unstable. The actual transition
to a demixed configuration is then expected to take place at
smaller values of the temperature and could be identified by
comparing the free energy of the uniform unpolarized config-
uration with the one of the phase-separated configuration. In a
similar way, the phase diagram for the 3D Bose mixtures has
been obtained in Ref. [10], by means of the Popov theory. The
equilibrium configuration in the new phase-separated phase
was found to be characterized by a full space separation of
the Bose-Einstein condensed components of the two atomic
species, their thermal components remaining instead mixed,
but with a finite magnetization. However, in 2D, the calcula-
tion of the free energy, as well as the characterization of the
new phase can not be assessed within the actual HF theory.
In fact, any mean-field framework based on the notion of the
quasicondensate is expected to fail above the BKT transition
point, where vortex proliferation destroys quasi-long-range
order, and the quasicondensate becomes ill defined. We there-
fore need a reliable theoretical framework, which allows for
the description of the 2D binary mixtures in both the super-
fluid and normal regimes.

III. STOCHASTIC GROSS-PITAEVSKII THEORY

In the following we characterise the behavior of the weakly
interacting Bose-Bose mixture by using the coupled stochastic
(projected) Gross-Pitaevskii equations [32,46,47,58–68]

ih̄
∂

∂t
ψi(x, t ) = P̂

{
(1 − iγ )

[
− h̄2∇2

2mi
+ V (x) + g|ψi(x, t )|2

+ g12|ψ3−i|2 − μi

]
ψi(x, t ) + ηi(x, t )

}
, (8)

where x ≡ (x, y) are the Cartesian coordinates, the operator
∇2 is the Laplacian in 2D,

V (x, y) =
{

0 for {x, y} ∈ (0, Lx ) × (0, Ly),
∞ elsewhere,

is the confining box potential, and the two complex functions
ψi(x, t ) are the “classical” fields (c-fields) accounting for the
macroscopically occupied low-energy modes of each compo-
nent of the gas (labelled by the index i ∈ {1, 2}) subject to

random thermal fluctuations. The c-fields represent the coher-
ent region of the energy spectrum, which includes a large but
finite number of low-lying modes up to an energy cutoff εi

cut.
The energy cutoff is chosen as [46,47,69–72]

εi
cut = kBT ln 2 + μi. (9)

This choice guarantees that the mean occupation of the modes
below εi

cut is of order ∼1 or larger, if one uses the single-
particle Bose-Einstein distribution as an estimate. Note that
the actual value of the cutoff is not crucial and one should
only ensure that it belongs to a reasonable range. The same
choice has also been earlier used in our group to corrobo-
rate experimental results for single component condensates
in similar configurations [68,70,71]. The projector P̂ main-
tains the c-fields within the coherent region at each step of
the numerical solution. The modes above the cutoff repre-
sent the incoherent region of the energy spectrum; it is the
source of a stochastic Gaussian random noise which satisfies
the following fluctuation-dissipation theorem:

〈ηi(x, t )η∗
j (x′, t ′)〉 = 2h̄γ kBT δ(x − x′)δ(t − t ′)δi j, (10)

where 〈· · · 〉 denotes the averaging over different noise real-
izations. The amount of coupling between the coherent and
incoherent regions is fixed by the parameter γ , which accounts
for the thermal equilibration rate. In this work, we choose γ =
0.01, which is the same of Ref. [68]. Similar values were also
used in Refs. [70] and [73]; in the latter case, the parameter γ

was optimized to reproduce typical experimental growth rates
of single component condensates in 3D. The value of γ only
affects the rate at which the system reaches equilibrium, but
it does not play any role in describing the equilibrium prop-
erties. It is worth mentioning that in SGPE individual results
obtained with independent noise realizations are equivalent to
the individual results obtained from independent experimental
runs; due to the random nature of the noise, the outcomes
of each noise realizations will differ from one another as is
the case in experiments. Furthermore, since SGPE describes
a grand-canonical ensemble, the number of atoms is not a
conserved quantity and one has to use the chemical potential
to normalize the number density to the desired value. The
density of the atoms in the c-fields is ni(x, t ) = |ψi(x, t )|2. An
energy-damped or canonical SGPE approach [74–76] might
also be used as an alternative to avoid issues related to number
conservation. However, due to the equivalence of canonical
and grand-canonical ensemble, both variants of SGPE are
expected to render similar physics for the miscible phase at
equilibrium.

To perform simulations which are meaningful for feasi-
ble experiments, we choose our parameters compatible to
those of the ongoing experiments [43,57], with confinement
in rectangular box potential in the x-y plane and harmonic
trap in the z direction. The confinement along z is sufficiently
strong to freeze all degrees of freedom in that direction. In
this work, we consider a uniform 2D hard-wall square box
of dimensions Lx × Ly = (50 × 50) μm. The frequency of the
harmonic confinement in the experimental geometry, ωz, can
be used to relate the actual 3D s-wave scattering length ai j of
the atoms in different hyperfine levels to the 2D coupling con-
stants g and g12 used in this work, related by gi j = √

8πai j/az

such as to ensure that our simulations correspond to realistic
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configurations. Here, az = √
h̄/mωz is the oscillator length

along z. A typical atom number in our simulation is 1.8 × 104

in each component, which corresponds to μ0/kB = 4.8 nK
and T 0

BKT = 33.25 nK, if ωz = 2π × (1500 Hz).

IV. EQUILIBRIUM DENSITY PROFILES

We obtain the equilibrium configurations at a given tem-
perature T by numerically propagating Eq. (8) in real-time
starting from purely random c-fields until equilibrium is
reached, with the constraint μ1 = μ2 = μ. For a finite-size
uniform 2D Bose-Bose mixture one can choose the value
of the chemical potential from the relationship μ ≈ (1 +
g12/g)μ0 obtained from Eq. (1) at zero temperature, μ0 being
the chemical potential of a single component Bose gas. We
have verified, using the universal relations of Ref. [52], that
for a single-component 2D Bose gas, the temperature depen-
dence of the chemical potential is weak enough, so that one
can use its T = 0 value in the whole region of temperature
of our interest. In our numerical simulations, an equilibrium
configuration is assumed to be reached at a time when the
number of atoms in each component saturates around a mean
value, and the fluctuations in the number of atoms around the
respective time average is small (typically within 8% and 3%
for the highest and lowest temperatures, respectively) [77].

The density profiles obtained from typical SGPE simula-
tions with different values of g12/g and T/T 0

BKT are shown
in Fig. 3. Each panel represents the density n1(x, t ) obtained
in the evolution of a mixture starting from a single noise
realization. The density n2(x, t ) is similar, except that it is
larger when n1 is smaller, in such a way that the total density
is almost uniform in the box, apart from thermal fluctuations.
The first two rows correspond to values of the interaction
parameters for which HF theory predicts full miscibility at all
temperatures. Conversely, the lowest row falls into the gray
area of Fig. 2 where the mixture is expected to be immiscible.
The SGPE density profiles are consistent with these predic-
tions, with phase separation clearly visible in the last row,
especially at low T .

The third and fourth rows of Fig. 3 are those where
signatures of the miscible-immiscible phase-transition are ex-
pected to appear. According to HF theory, the parameters of
panels (o), (s), and (t) are such that the mixture should be
phase-separated, though it is miscible at T = 0 for the same
interaction strength. Actually, SGPE shows random patterns,
with archipelagos of atoms, albeit marred by fluctuations in
the equilibrium density profiles, having a close resemblance
to the density profiles for g12/g = 1.1, in panels (x) and (y),
where the immiscibility tends to get suppressed because of
thermal fluctuations.

A caveat of the SGPE simulations is that, depending on
the interaction parameters, the initialization of chemical po-
tential μ can have dramatic effects on the composite system
at equilibrium. In particular, with equal μi and g12/g > 1
and for certain noise realizations, due to the grand-canonical
nature of the SGPE, the number of atoms (N1 or N2) of one
of the components may decrease considerably to lower the
total energy. Anomalous trajectories, with large population
imbalance (N1 − N2)/(N1 + N2), are thus manually rejected.
For the configurations shown in Fig. 3 and those used in

ensemble averages, the imbalance is always small, being sig-
nificant only in the immiscible region of the phase diagram
and at low temperature, corresponding to the panels (u), (v),
and (w) of Fig. 3, where the relative imbalance is of the order
of 0.1 or less; in all the other cases, it is negligible, i.e., ∼10−3

or smaller. Furthermore, when performing configuration aver-
ages in the immiscible region, one has to pay attention also to
the different spatial orientations of the density patterns, which
may hinder the signatures of phase-separation in the average.
These cautions are not needed in the miscible configurations,
and they are also irrelevant in our dynamic simulations where,
as we will see later, the coupling to the bath is switched off,
thus ensuring the subsequent number conservation.

From the equilibrium density profiles we can also calcu-
late the mixing entropy and the overlap integral. To obtain
the mixing entropy we divide the 2D box in Ncell cells and
compute the number of atoms n1, j and n2, j in the cell j, with
j = 1, 2, ..., Ncell for an individual SGPE realization. For the
present work Ncell equals the number of grid points used for
numerical discretization. Then we use the definition [78–80]

Smix = −1

2

Ncell∑
j=1

[
n1, j

n1, j + n2, j
ln

(
n1, j

n1, j + n2, j

)

+ n2, j

n1, j + n2, j
ln

(
n2, j

n1, j + n2, j

)]
. (11)

The result is given in Fig. 4(a). Where Smix has been averaged
over N = 40 realizations. In the low temperature limit the
mixing entropy is large for g12/g < 1 (miscible mixture) and
small for g12/g > 1 (immiscible), while at large temperature
all the curves tends to the same value. A similar behavior
is also found in the temperature dependence of the overlap
integral defined as

� = 2
∫

n1(x)n2(x) dx∫ [
n2

1(x) + n2
2(x)

]
dx

, (12)

shown in Fig. 4(b). Here too, � has been calculated for
equilibrium density profiles obtained from a single SGPE
simulation, and then averaged over N . In both cases, the
purple and green line corresponding to g12/g = 0.8, 0.9, re-
spectively, tend to bend more toward lower entropy and lower
overlap than the curves for smaller values of g12/g, the differ-
ence being larger at finite T than at T = 0. This mild tendency
to demixing seems to qualitatively agree with the expectations
of HF theory; however, the disagreement at the quantitative
level remains large, as there is no sign of sharp transitions.
The convergence of all curves to a constant value at large T
is consistent with the presence of the Gaussian white noise
source Eq. (10) in the SGPE. Ideally, in SGPE formalism,
the ensemble averaging of individual c-field realizations is
first performed to suppress the effects of random noise, fol-
lowed by the computation of different physical quantities [47].
However, in the current work, we first calculate the pertinent
observables corresponding to the equilibrium c-field density
profiles obtained from a single SGPE run, followed by its
averaging. This is essentially done to retain the signatures
of immiscibility within the equilibrium solution, which, as
mentioned earlier can get washed away because of ensem-
ble averaging at the beginning. On the contrary, the inherent

013161-5



ROY, OTA, RECATI, AND DALFOVO PHYSICAL REVIEW RESEARCH 3, 013161 (2021)

-25

-15

0

15

25
(a)

T/T 0
BKT = 0.1

g 1
2
/g

=
0.

2

(b)

T/T 0
BKT = 0.3

(c)

T/T 0
BKT = 0.6

(d)

T/T 0
BKT = 0.9

(e)

T/T 0
BKT = 1.1

-25

-15

0

15

25
(f)

g 1
2
/g

=
0.

5

(g) (h) (i) (j)

-25

-15

0

15

25
(k)

g 1
2
/g

=
0.

8

(l) (m) (n) (o)

-25

-15

0

15

25
(p)

g 1
2
/g

=
0.

9

(q) (r) (s) (t)

-25 -15 0 15 25-25

-15

0

15

25
(u)

x

y

0 13 23

g 1
2
/g

=
1.

1

-25 -15 0 15 25

(v)

0 12 25

-25 -15 0 15 25

(w)

0 19 38

-25 -15 0 15 25

(x)

0 19 38

-25 -15 0 15 25

(y)

0 19 38

FIG. 3. Equilibrium c-field density profiles of the first component n1 obtained from single runs of SGPE simulations at different interspecies
interaction strengths and temperatures in an uniform 2D hard-wall square box of dimensions Lx × Ly = (50 × 50) μm. Colorbar represents
the density of atoms in units of μm−2, where black denotes the absence of atoms, and bright yellow as the maximum density. The values of
T/T 0

BKT and 1 − g12/g in each panel are represented in Fig. 2 by the point associated to the same letter.

presence of noise being dominant at high temperature within
the individual realization of equilibrium density profiles
makes the values of Smix and � saturated.

V. DYNAMICAL RESPONSE

A. Center of mass drift

The miscibility of binary Bose mixtures can also be
assessed within the SGPE theory by evaluating the spin dy-
namics. For this purpose, we follow the approach adopted in

the experimental work of Ref. [55] and evaluate the spin cen-
ter of mass oscillation by applying an external potential. We
first generate the equilibrium density profiles using Eq. (8) at
given interaction strengths and temperature as described in the
previous section. The mixture is then suddenly subjected to a
weak potential tilt, acting on the two components in opposite
directions. We choose a linear potential of the form Vext =
V0xσzθ (t ), where V0 is the strength of the potential which is
of the order 10−2μ0 and σz the Pauli matrix (see Fig. 5). The
system is then let to evolve in absence of dissipation, i.e., with
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FIG. 4. (a) Mixing entropy, Smix, defined in Eq. (11) and normal-
ized to its maximum value, S0

mix = Ncell ln 2/2. (b) Overlap integral
(12). Both quantities are calculated at equilibrium and averaging
over N noise realizations for different values of temperature and
interspecies interaction strength.

γ = 0. This ensures the number of atoms to be conserved all
throughout the evolution. A similar experimental protocol has
been employed to measure the speed of sound in a box for a
single-component Bose gas, both in 2D [57] and 3D [81].

The application of the external potential renders each
species of the mixture adapt itself to a displacement along the
direction of the potential minima. These bring about marked
changes in the density and sound waves are emitted. From the
evolution, we extract the center of mass drift along the x and
y direction through the definition

xcm
i (t ) =

∫
x|ψi(x, t )|2dx∫ |ψi(x, t )|2dx

. (13)

The dynamics of the center of mass drift through Eq. (13)
is then averaged over N = 20 ∼ 40. In what follows, we
investigate in particular the spin dipole moment, given by the
center of mass drift according to

M(t ) = xcm
1 (t ) − xcm

2 (t ). (14)

We notice that the method of evolving in time the states
stochastically generated at t = 0−, using the projected Gross-
Pitaevskii equation for the classical field, has also been earlier
used to model the growth of quasicondensate on an atom chip
[59], and is similar in essence to the truncated Wigner method
for Bose condensed gases [82].

B. Linear response theory

Before presenting the numerical results for the dynamics
of the spin dipole moment we address the problem by means
of linear response theory [2]. In particular we evaluate the
dynamic spin response function of the 2D Bose mixtures using
the random phase approximation (RPA) [83]:

χM (k, ω) = 2χ (k, ω)

1 − g12χ (k, ω)
, (15)

with χ (k, ω) as the density response function for a single-
component Bose gas,

χ (k, ω) = χ0
0 + χ0

T − gχ0
0 χ0

T

1 + g
[
χ0

0

(
1 − 2gχ0

T

) + 2χ0
T

] . (16)

FIG. 5. Schematic diagram to illustrate the linear ramping of
the potential to probe the center of mass response. At t = 0−, the
equilibrium solution of the binary mixture in an uniform box is
obtained through SGPE simulations. Then, at t = 0, a positive and
negative linear potential ramp of the form V0x for respective species
is switched on. The center of mass response of each of the species is
then probed through the dynamics of the composite system for t > 0.

The reference response functions for the quasicondensate χ0
0

and thermal atoms χ0
T are evaluated consistently within the HF

description of Sec. II (we consider the external perturbation
along the x direction k = kex and the long wavelength limit
k → 0):

χ0
0 (k, ω) = − n0

2m

(
k

ω

)2

, (17a)

χ0
T (k, ω) = − 1

(2π h̄)2

∫
d2p

1

px/m − ω/k − iδ

∂ f (p)

∂ px
,

(17b)

where f (p) = [e(p2/(2m)+gn0/2)/(kBT ) − 1]−1 is the Bose distri-
bution function of the 2D ideal Bose gas.

We note on passing that the density response function used
in Ref. [68] is retrieved from Eq. (16) by explicitly putting
n0 = 0 and replacing 2g by g, thus considering the gas as
a normal gas with suppressed density fluctuations. Although
such procedure is found to give a good description of the 2D
Bose gas in the normal phase, in the present work one needs
to properly take into account the effects of density fluctuations
through the temperature dependence of the quasicondensate,
to describe the magnetic phase transition. The present RPA is
compatible with the quasicondensate HF theory of Sec. II, and
one can immediately verify that the compressibility sum-rule
χM (k → 0, ω = 0) = κM yields the HF result for the spin
susceptibility Eq. (4).

To evaluate the linear response of the system under the per-
turbation described in Fig. 5, let us simplify the problem and
consider a uniform mixture subjected to a sudden application
of a spatially periodic potential, producing a sinusoidal modu-
lation of wave vector q0 = π/Lx. This essentially amounts to
neglect finite-size effects coming from the hard-walls. Under
such perturbation, the magnetization density starts to oscillate
with a time-dependent amplitude given by [84,85]

Mx(t ) = V0κM

[
1 − 1

πκM

∫
dω

χ ′′
M (ω/q0)

ω
eiωt

]
, (18)

corresponding to the x component of the spin dipole moment,
and where χ ′′

M is the imaginary part of the spin response
function given by Eq. (15).
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(a)

(b)

FIG. 6. Time evolution of the spin center of mass Eq. (14) as a
function of time for mg/h̄2 = 0.095, T/T 0

BKT = 0.1. Upper panel (a):
g12/g = 0.5. Lower panel (b): g12/g = 1.1. The blue solid line is the
oscillation in the x component along which the external potential is
induced, whereas the red dotted line is the oscillation in the perpen-
dicular y component. The green dashed line in the upper panel is the
RPA prediction from Eq. (18).

C. Spin oscillation dynamics

In Fig. 6, we first show the spin oscillation dynamics M(t )
obtained from SGPE simulation at low temperature T/T 0

BKT =
0.1, for two different values of coupling constant g12/g = 0.5
(upper panel) and = 1.1 (lower panel). As one could expect
from the zero-temperature miscibility criterion g12 < g, we
find that for g12/g = 0.5, the two components are fully mixed,
going back and forth in the direction where the external poten-
tial is induced (blue solid line) until reaching eventually the
new equilibrium position given by the spin susceptibility [see
Eq. (18)]. However, for g12/g = 1.1, the two components are
already phase-separated at t = 0; the distance between their
center of mass is large along x at any time, and the effect of
the external potential is to induce a density oscillation in the
respective component. Another signature of phase-separation
is provided by the oscillation in the direction perpendicular to
the external potential, that is, along the y direction given by
the red dotted line in Fig. 6. The ensuing dynamics couples
both the x and y directions. In particular, in the g12/g = 1.1
case phase-separation is responsible for a well-defined oscil-
lation also in the perpendicular y direction (notice the different
vertical scale). For the miscible case in the upper panel of
Fig. 6, we also show the results obtained from RPA approach

Eq. (18). In RPA, the oscillation frequency at T � 0 is given
by the spin mode of the Bogoliubov sound as ω = csq0, with
cs(T = 0) = √

(g − g12)n/(2m) where n = n1 + n2 is the
total density of atoms, and we find a good agreement with
SGPE simulation. As for the phase-separated case we have
verified that both components oscillate at the frequency of the
Bogoliubov phonon mode for a single-component Bose gas
occupying half area of the box.

A clear distinction between the behavior of a miscible
mixture and a phase-separated gas, as in Fig. 6, can only
be expected at low temperature. In particular, a well defined
phase-separated dynamics can be seen only in configurations
like in Figs. 3(u) and 3(v). The dynamical response of the sys-
tem at higher T and closer to the region of magnetic instability
is more complex.

In Fig. 7, we show the spin center of mass oscillation
obtained with SGPE simulations starting from each of the
configurations in Figs. 3(a)–3(t), followed by averaging over
N . To extract the frequency of the oscillation we use the
expression

Mfit
x (t ) = A0

[
1 − e−�t

(
cos(ω̃t ) + �

ω̃
sin(ω̃t )

)]
, (19)

where A0 ∝ κM is related to the spin susceptibility, while
ω̃ = c/q0 and � correspond to the frequency and damping
rate of the spin sound mode, respectively. Equation (19) has
been obtained by assuming a damped harmonic oscillator
model for the response function χM in Eq. (18). The fitted
functions are shown as green dotted lines in Fig. 7. While we
obtain good fit at low and intermediate temperature, the fitting
seems to become less accurate at high temperature, where
the oscillations are strongly damped and thermal fluctuations
become dominant.

The values of the spin sound velocity c extracted from the
fit to the SGPE oscillations are shown in Fig. 8, where they
are normalized by the single-component Bogoliubov sound
c0 = √

gn/(2m). The solid lines correspond to the RPA pre-
dictions for the same interaction strengths. In the superfluid
phase T < T 0

BKT, the spin sound velocity is found to decrease
by increasing both the temperature and the ratio g12/g. Re-
markably, RPA predicts a vanishing sound velocity at finite
temperature, associated to the magnetic instability discussed
in Sec. II. This can be understood by recalling that the ratio
between the energy weighted and inverse energy weighted
moments of the dynamic response function provides an es-
timate for the mean excitation energy [2]:

cs � 1

h̄k

√
m1

m−1
=

√
n

mκM
. (20)

Therefore, the divergence of the spin susceptibility is re-
sponsible for the vanishing of spin sound mode. However,
the speed of sound extracted from SGPE simulation does
not show this kind of behavior. This discrepancy points out
that, contrary to the single-component 2D Bose gas where
mean-field approach provides a qualitatively correct picture
of the system below T 0

BKT (see Fig. 1(a) and Ref. [68]), the
HF theory seems inadequate in describing 2D Bose mixtures,
except at low T where the sound velocity is indeed close
to the SGPE results. This is because HF theory assumes
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FIG. 7. Spin center of mass oscillation as a function of time for mg/h̄2 = 0.095. The values of temperature and interaction strength are
the same as in the corresponding Figs. 3(a)–3(t). The blue solid line is the oscillation in the x-component (averaged over N ) along which the
external potential is introduced, whereas the green dotted line is a fit using the fitting function Eq. (19).

single-particle excitation spectrum and includes only number
fluctuations arising from the interaction of two thermal atoms
in the same atomic species. On the contrary, SGPE includes
thermal fluctuations arising from the scattering of coherent
and incoherent atoms, both in the density and spin channels,
as well as the ones coming from the scattering between atoms
in the coherent states.

FIG. 8. Spin sound velocity normalized to the Bogoliubov speed
of sound for a single component Bose-gas calculated for mg/h̄2 =
0.095. From top to bottom: g12/g = 0.2, 0.5, 0.8, 0.9. Points refer
to the spin sound velocity obtained from SGPE simulation extracted
using the fitting function Eq. (19), while lines are the RPA prediction.

As regards the damping rate, in general, we observe that
the oscillation becomes broad and damped as one increases
the temperature (that is, from left to right in each row). This
is likely due to Landau damping, arising from the coupling
between the collective sound mode and the thermally popu-
lated single-particle excited states, which is properly included
in the SGPE theory (see Ref. [68] for a discussion in the case
of a single-component 2D gas). However, the quality of the
fit, especially at high T , is not good enough to permit a quan-
titative analysis. In addition, in the T → 0 limit, the SGPE
theory, while correctly approaching the T = 0 results for the
speed of sound, is not expected to be reliable in determining
the damping rate, which is more sensitive to the way in which
fluctuations are included in the theory; this may also be the
origin of the anomalous high damping in Figs. 7(k) and 7(p).

VI. CONCLUSIONS

We have carried out a systematic investigation of the
role of thermal fluctuations in two-dimensional homogeneous
bosonic mixtures of dilute atomic gases. To this end, we
have employed the Hartree-Fock mean field framework com-
plemented with beyond mean-field effects through stochastic
(projected) Gross-Pitaevskii formalism to demonstrate the
role of finite temperature on the miscibility-immiscibility
phase transition. A remarkable result predicted by the mean-
field theory is the existence of phase-separation induced by
thermal fluctuations, occurring even for mixtures which are
miscible at zero temperature (g12 < g). Analytical predic-
tions based on mean-field HF theory are then compared with
the equilibrium density solutions obtained by numerically
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solving SGPE at different coupling strengths and temperature.
The spin dynamics of the mixture brought about by a weak
external perturbation is also simulated, which shows some
qualitative agreement with the mean-field predictions for
temperatures well below the critical temperature for super-
fluidity. However, with the inclusion of beyond mean-field
effects through SGPE, both the density profiles as well as spin
dynamics are devoid of any sharp distinctive features near
the phase transition point predicted by the HF theory. This,
we believe, would also be the scenario in actual experiments.
The recent availability of box like traps would be of value to
corroborate these features.

Important open issues concern the extension of the
HF theory to take into account effects of thermal fluctuations
in the spin channel, to clarify the observed discrepancy be-
tween the mean-field and stochastic approaches. Indeed, while
HF theory is widely used in describing single-component
Bose gas as well as 3D mixtures in the density channel, our
work points out its failure for the investigation of spin physics.

Development of beyond mean-field theory for the 2D Bose
mixtures along the line of those in Refs. [86,87] could provide
further insight on magnetic properties of binary mixtures at
finite temperatures.
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