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Abstract

Cancer prevalence is the proportion of people in a population diagnosed
with cancer in the past and still alive. One way to estimate prevalence is
via population-based registries, where data on diagnosis and life status of all
incident cases occurring in the covered population are collected, as described
in Gigli et al. (2000).

This paper describes in more details the analytical approach to the es-
timation of the variance of the completeness index, which in turn allows to
compute the variance of the complete prevalence. !

keywords: limited duration prevalence, complete prevalence, completeness
index, variance estimation, cancer registries

1 Introduction

Complete prevalence of a chronic disease is the proportion of people alive on
a certain date who previously had been diagnosed of the disease, regardless
of how long ago it was diagnosed.

For populations covered by disease registration, data on diagnosis and life
status of all incident cases collected by the registry provide the most reliable
basis for the calculation of prevalence. In a population-based registry all
disease incidence cases occurring in the covered population are registered.

The most direct method to estimate prevalence from registry data is
the counting method, which consists in counting the number of registered
cases that survive at any specified time and age. In practice, however, the
estimation is complicated by several phenomena such as migrations, cases
registered only at death, cases lost to follow-up, cases diagnosed before the
start of registration.

Correction for the first three phenomena yields to the so-called limited
duration prevalence. The last one, however, is the most important for newly-
estabilished registries, and causes a bias in the prevalence estimation whose
extent depends on the length of the registration period and the shape of the
patient incidence and survival functions. Capocaccia and De Angelis (1997)
developed a method to account for this bias, which consists of estimating a
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correction factor named completeness index. By dividing the limited duration
prevalence by the completeness index we obtain what we call the complete
prevalence.

In order to compute the variance of the complete prevalence we need to
estimate the variance of the completeness index, and this is the aim of this
work.

The report is structured as follows. Section 2 introduces definitions and
notations; section 3 illustrates the general method to compute the complete-
ness index variance; sections 4 and 5 describe the survival and incidence
models used in the estimation of the completeness index; section 6 explains
the algorithm for the computation of the completeness index variance; finally
section 7 suggests some further developments.

2 Definitions

In a birth cohort ¢ let us define the prevalence N(z) as the proportion in a
population of individuals of age = alive on a certain date who previously had
been diagnosed of the disease; when the prevalence is computed regardless
of how long ago the disease was diagnosed, it is called complete prevalence.

When the disease is irreversible and assuming that the birth process is
independent of the subsequent life stories, there is a simple relationship be-
tween prevalence, incidence and survival, given by the convolution

N(z) = /0 C1(0)S(x —t, t)dt

where I(t) is the incidence hazard at age t and S(z — ¢, ) is the probability
that individuals diagnosed with cancer at age ¢ are still alive at age .

The estimation of N is particularly simple if I and S are known para-
metric functions: if ¥ denotes the parameter vector the resulting modelled
prevalence will be denoted by N(x;1)).

If L is the lenght time (in years) the registry has been operating, the
modelled prevalence N(x;1)) decomposes into two parts: No(z, L; 1)), the
(modelled) observed prevalence at age x of incident cases registered in age
interval [x — L, z| and Ny(z, L; ), the (modelled) unobserved prevalence at
age z of unregistered cases diagnosed in age interval [0,z — L] and still alive

N("an) = No(.’E,L; ¢) + NU(xaL; ¢)a



where

z

No(z, L; ¢) :/

r—

B I(t;9)S(z —t,t;)dt

and

L
No(o, Lip) = [ 1(69)S (@ — 1, ).

The completeness index R is the proportion of modelled prevalence which
is observed, and is defined as

NO(xaLuw)

o B0 = "N sy)

(1)

3 The computation of var(R)

Let ﬁ be the vector of the maximum likelihood estimates of the incidence and
survival parameter vector ¢ and let V be the estimated covariance matrix of
1&. An approximation to the variance of R can be calculated by applying the
delta method:

var[R(z, L; )] ~ (Z—j \M)TV (Z—i \w) 2)

where OR/0% is the vector of partial derivatives of R with respect to the
incidence and survival parameters.

The first step for solving (2) is the computation of dR/0v, for each com-
ponent of

or _ gy Nolw, L) — R(z, Liw) N (w: )
o N(z;9)

We need to calculate the two derivatives with respect to each component of
the vector of the parameter estimates. The derivatives of N(z;) are

0
s

Similarly for Np, where only the integration limits change.
Once the integrand in (4) is computed, we estimate the correspondent

. (3)

Niaiw) = [ 5 UG0S =t ) de )

integral via the Simpson method and obtain Bin(x; ) and %No(x; ).
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The results are then plugged into (3) and gTR are obtained for each param-

eter. We substitute (3) into (2) and obtain the variance of the completeness
index.

4 Survival model
Let
S(z—t,t;9) = {(1 - Q) + Qexp[—[A(z — t)|P]yPln o) tnalttesoltnd (5)

be the model for the cumulative relative survival function for a patient di-
agnosed in year t + ¢ at age ¢, who survives until age z (De Angelis et al. ,
1999). This class of models assumes that only a portion @ of the individuals
with cancer will die with a relative survival following a Weibull distribution
with parameters A, 3, while the remaining (1 — @) have the same mortality
rate as the general population, and consequently their relative survival is 1.
In the model considered here the death hazard due to cancer is assumed to
be linearly dependent, on a logarithmic scale, of age at diagnosis and cal-
endar time of diagnosis; the corrections due to the risk of being diagnosed
one year older than the reference age ty and one year later than the refer-
ence year sy are parameterized by ; and 7y, respectively (we take ¢y as the
mean age at diagnosis, which varies according to the different cancer site,
and s as the year 1983.5); finally the reference race/ethnicity is white and
the correction due to the risk of belonging to black or hispanic race/ethnicity
is parameterized as 73, while § is a dummy variable for the race/ethnicity.

5 Incidence models

For the incidence hazard we distinguish two models: the exponential model,
based on the strong assumption of independence between age and cohort,
which has been shown to have a biological rationale for a general class of
cancers (Armitage and Doll, 1954); and the polynomial model which applies
to cancers whose growth depends on hormonal factors (Capocaccia et al. |
1990).



5.1 Exponential incidence

Let

I(x;%)) = exp(ac)z® (6)
be the cancer incidence for a person of current age x who belongs to the
¢ — th birth cohort. In presence of rare events (such as cancer) I — 0 and
(6) can be approximated by

(o ) = !

1 + exp{—[a. + blog(z)]}’

which in turn leads to

logit(I(x; v)) = a. + blog(z).

The parameter b is to be estimated, while the variable a., which depends on
the birth cohort, is a multiplicative variable which will cancel out in the ratio
(1) and therefore in what follows will not be considered.

5.2 Polynomial incidence

Various studies have reported that, in those cancers for which the polynomial
model applies, the best fit of the incidence hazard is obtained by a 6-degree
polynomial. Here we use the notation proposed by Merrill et al. (2000): let

1
I(z;9) = L+ exp{—[ac+bi(x —t1) + ba(x —t1)2 + ...+ be(x — t1)8]}’ g

where a, is the logit of the incidence at the c-th birth cohort, when age is
equal to the reference age ¢, by, ..., bs are the parameters to be estimated,
together with a., which for polynomial incidence does not cancel out in the
ratio (1). The corresponding logit is

IOglt(I(l‘, Qﬁ) = Q.+ bl(ﬂ’) — tl) + bQ(.?? — t1)2 + ...+ bs(l‘ - t1)6.

6 Partial derivatives of I x S

6.1 Exponential incidence

From models (5) and (6) we obtain the parameter vector ¢ = (Q, \, 8,71, V2,73, b),
where the incidence parameter b is independent of the survival parameters.
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Let

F(t,x;0) = I(t;9) * S(z —t,t;0) =t*{1 — Q + Qe—ﬁ,l}exp(/{@)’

where

k1= [Mz = 1)),

Ko = 71(t — to) + 7a(t + ¢ — s0) + 730,

and let F;(t,z;v) = %F(t,x;@b), fori=1,...,7.

We have

Fi(t,z;¢) = %F(t,$;¢)=F(t,x;7/))*fiz(g;_fQ_e}Zl
Byt = 2Pl ay) = Fl —Qripen
2("77’1[]) - a (,l’,l[])— (’x’w)*(l—Q—er_’“))\

Fs(t,z,v) = EF(t,x;lﬁ) = F(t,z;9) * —Qk1 log(ky)er>"

op (1-Q+Qe™™)p
F(t,z,0) = %F(t, 230) = F(t,550) % €7 (t — 1) log(1 — Q + Q=)
Rt z,0) = %F(t, 230) = F(t,0590) % € (t + ¢ — 50) log(1 — Q + Qe ™)
Rt z,0) = a%p(t, 230) = Pt 2:) + 6 log(1 — @ + Q=)
Fr(t,z;9) = %F(t, z31) = F(t,251) * log(t).

6.2 Polynomial incidence

From models (5) and (7) we obtain 6 survival and 7 incidence parame-
ters, mutually orthogonal to each other, and the parameter vector is 1 =
(Qa )‘a ﬂa V15725735 Qe bla ey bG)

Let

1— —K1 eXP('W)
F(t,z;9) = I(t;4)S(x —t,t,4) = ! 1Q++efpe(—/i)

where

k1= \az - 1)),

Ko = ’Yl(t - to) + ’Yg(t +c— 80) + ’}/35,

K3 = Q. + bl(.’L' — tl) + bQ(./L' — t1)2 —+ ..+ bG(ZE — t1)6,



and let Fi(t,z;v) = ain(t,x;w), fori=1,...,13.

We have
Fi(t, @ 9)
Fy(t, z,v)
F5(t, z,v)
Fy(t, z,v)
F5(t, z,v)
Fy(t,z, )
Fi(t, z;9)
Fy(t, z;9)
Fy(t, z;9)

Fuo(t, z;9)

Fu(t,z;9)

Fro(t, z;9)

F13(ta X, 1/))

7 Further developments

Q
0

—F(t,x;¢) = F(t,z,v¢) *

()
0

—F(t,z;v¢) = F(t,z;9) *

B
0
o
0

O Ptz ) = F(t,a:0)

K2 _Nl_l
I G

1—Q+Qe

—Qk fe™

(1-Q+Qe ™)\
—Qr1 log(ky)er2—m

(1-Q+Qe™)B
~—F(t,z;9) = F(t,7;¢) * €™ (t — tp) log(1 — Q + Qe™™)

—F(t,z;¢) = F(t,z;v¢) xe®(t + ¢ — s0) log(1 — Q + Qe ")

072

A F(ta;) = F(t,z;9) x €dlog(1 — Q + Q™)

oa,
0

~—F(t,7;9) = F(t, ;) * I(t;9) * (v — t1) exp(—k3)

0b,
0

0by
0bs

Oby
0

0bs
0

0Obg

F(t,;9) = F(t, x;4) * I(t; ) * exp(—rs)

O p(t,a3) = F(t,230) # I(t6) * (2 — 1) exp(—ks)
O p(t,a3) = F(t,39) # 1(t6) * (2 — 1)° exp(—ks)
O p(t,a) = F(t,z3) 1) * (2 — 1) exp(—ks)
O p(t,ai) = F(t,730) * 1) * (2 — )7 exp(—ks)

—F(t,x;1) = F(t,z;%) * I(t; ) * (x — 1) exp(—ks3)

In those cases where the polynomial model fits the incidence hazard better
than the exponential model, the 6-degree polynomial could be approximated
by a cubic spline, which provides smoother estimated curves. In particular



the use of a restricted cubic spline, which is forced to be linear before the
first and after the last knot, seems suitable to deal with the problem of data
scarcity at both ends of the age interval.

The algorithm for the computation of the derivatives of I * S does not
change in its structure, but a special care should be paid in the choice of the
knots.
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