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Abstract 

Crystallography and quantum mechanics have always been tightly connected because reliable 

quantum mechanical models are needed to determine crystal structures. Due to this natural 

synergy, nowadays accurate distributions of electrons in space can be obtained from 

diffraction and scattering experiments. In the original definition of quantum crystallography 

(QCr) given by Massa, Karle and Huang, direct extraction of wavefunctions or density 

matrices from measured intensities of reflections or, conversely, ad hoc quantum mechanical 

calculations to enhance the accuracy of the crystallographic refinement are implicated. 

Nevertheless, many other active and emerging research areas involving quantum mechanics 

and scattering experiments are not covered by the original definition although they enable to 

observe and explain quantum phenomena as accurately and successfully as the original 

strategies. Therefore, we give an overview over current research that is related to a broader 

notion of QCr, and discuss options how QCr can evolve to become a complete and 

independent domain of natural sciences. The goal of this paper is to initiate discussions 

around QCr, but not to find a final definition of the field. 
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1. Introduction 

Properties of materials as well as modes of action of drugs are directly related to their 

electronic structure. Therefore, one of the most important challenges in modern science is the 

accurate determination of the electronic structure, from which structure-function relationships 

can be derived. One way of obtaining information on electronic structure is by calculating 

wavefunctions of the materials or compounds under investigation using quantum mechanics. 

Wavefunctions are mathematical objects that intrinsically contain all the information of 

quantum mechanical systems in specific pure states. They can be obtained as approximate 

solutions of the Schrödinger equation (e.g., through numerical calculations) and allow to 

determine various expectation values that can be directly measured through experiments. 

Another class of experimental “observables” are available only by means of modeling, 

namely through optimizations of some parameters that replicate a physical quantity within the 

assumptions of a given theoretical framework (for example, electron density, magnetization, 

etc.). At the same time, some models based on electron density functions may return partial 

information also on the wavefunction: for example, an approximate form of the spin part of 

the wavefunction or an approximate part of the atomic or molecular orbitals. Due to the 

increasing computational power and the continuing development of sophisticated methods 

and software, wavefunctions can provide profound insights into electronic distributions and 

are becoming increasingly important.  

Although quantum chemistry has reached great maturity and a broad base of applications, it is 

worth bearing in mind that even the most rigorous first principle calculations for systems 

bigger than the hydrogen atom depend on approximations. Therefore, their predictions must 

find validations. In quantum chemistry, this is particularly cogent because the uncertainty 

intrinsically associated with the approximation chosen for the calculation is unknown. One 

can only evaluate the performance of a given theoretical method by using a set of 

experimental values as benchmarks. In molecular quantum chemistry, the experimental 

validations often come from spectroscopy. However, in materials science and solid-state 

chemistry, the best “eye” to probe the quantum behavior of matter is the scattering of 
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radiation or particles of sufficient energy, typically X-ray, γ-rays, electrons and neutrons. The 

measured diffraction pattern is a representation of the charge-density distribution in the 

compound under examination. X-rays and γ-rays interact with the thermally smeared 

electrons in a crystal, so that one can model either the dynamic electron density or the positive 

and negative charge-density distributions independently after deconvolution into atomic 

displacement parameters and static electron density. Neutrons interact with nuclear particles 

and, therefore, they map the probability distribution of atomic nuclei, from which one can 

easily derive the positive charge density distribution. Electrons interact with the electrostatic 

potential generated by electrons and nuclei. There is an additional benefit from measuring 

scattering of ordered matter, such as crystals (or even quasi-crystals), namely the cooperative 

effect of molecules, which represents a kind of magnifying lens of the scattering of individual 

objects. 

Thus, theoretical calculations and scattering experiments are complementary approaches to 

gain insight into the electronic structure of compounds. Actually, X-ray diffraction and 

wavefunctions have always been intimately related, because modeling crystal structures 

requires a theoretical framework to interpret the measured data, i.e. charge density is an 

“observable” available by means of modeling. The simplest model assumes that diffraction is 

caused by a combination of non-interacting atoms, each of them represented by a spherically 

averaged ground-state electron density.[1] This model, universally known as Independent 

Atom Model (IAM), implies calculation of atomic wave functions, thus relying on quantum 

mechanics (QM).[2] The vast majority of modern crystal structure refinements adopts this 

model to obtain comparably accurate atomic positions and displacement parameters for non-

hydrogen atoms.[3,4] However, already in 1915, Debye pointed out that there is more 

information in the measured X-ray diffraction pattern than the atomic positions. In particular, 

he recognized that “it should be possible to experimentally determine the special 
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arrangements of the electrons inside an atom”1.[5] More than half a century later, this proposal 

became reality.[6] Today, more accurate crystallographic models are available, which allow to 

obtain a picture of the “special arrangements of the electrons” (namely, the electron density) 

from X-ray diffraction measurements.[7]  

In this context, besides maximum entropy methods,[8-10] the most popular technique is the 

atomic multipolar expansion of the electron density, based on the projection of the electron 

density in atomic terms.[11-15] The multipole model is the result of necessary approximations. 

In fact, a rigorous treatment of two-center scattering would be quite complicated even for 

simple compounds, although reported for some diatomic molecules.[16] Furthermore, the 

modeling of atomic displacements initially led to additional problems in case of two-center 

electron density functions.[17,18] The one-center expansion led to a much easier formalism, 

where radial and angular parts derived from atomic orbitals are used as atomic density 

functions, and where pseudo-atoms are naturally defined.[19] The radial decay of the pseudo-

atoms and the core and valence scattering factors in multipole models are directly calculated 

from wavefunctions and hence the analytical shape of the refined electron density is 

significantly influenced by quantum chemistry. It is important to mention that, to a good 

approximation, the set of multipolar orbitals may be related to atomic hybridization states[20] 

and even to some individual orbital occupancies, for example that of d-orbitals in transition 

metals,[21] and more recently that of f-orbitals in lanthanides.[22] Moreover, an extension of the 

traditional multipole model is the spin-polarized multipole model, adding the spin-density 

information to the charge density.[23] 

Cross-fertilized by charge-density research, ways of directly fitting the shapes of orbitals and 

wavefunctions to the measured diffraction pattern were also devised. This is at the heart of the 

original definition of quantum crystallography (QCr) given by Massa, Karle and Huang, 

which encompasses methods where the information resulting from traditional quantum 

                                                             
1 German original: „…muß es dann gelingen, die besondere Anordnung der Elektronen im 
Atom experimentell festzustellen.“ 
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chemistry calculations is enhanced by external information intrinsically contained in the 

experimental crystallographic data.[24] The first discussion about the perspective of obtaining 

wavefunctions from X-ray scattering (here: Compton scattering) goes back to 1964 and the 

first Sagamore conference,[25,26] whereas the first quantum crystallographic method according 

to the original definition[24] and based on X-ray diffraction was proposed by Clinton and 

Massa in 1972.[27] Nowadays, Jayatilaka’s X-ray constrained wavefunction (XCW) fitting 

approach[28-32] and its later developments[33-40] are the most popular modern versions of the 

original quantum crystallographic methods based on X-ray diffraction. They practically aim 

at determining wavefunctions that minimize the energy, while reproducing, within the limit of 

experimental errors, X-ray structure factor amplitudes collected experimentally. As an 

alternative, joint refinement methods for the complete reconstruction of N-representable one-

electron density matrices exploit both X-ray diffraction and inelastic Compton scattering data. 

[41-43] More detailed reviews of methods can be found in reference[44] and reference[45]. 

In 1999, Massa, Huang and Karle also pointed out[46]  that there is another stream of quantum 

crystallographic techniques that directly use wavefunctions and orbitals – not multipoles – to 

improve the accuracy and information contents of crystallographic refinements. This is 

basically the converse of their original definition of QCr. In this converse sense, the first 

developments are associated with Quantitative Convergent-Beam Electron Diffraction 

(QCBED)[47-50] for which the knowledge of the wavefunction describing the high-energy 

electron passing through the crystal is essential for solving the dynamical electron scattering 

equations. The solutions to these equations give the scattered intensities in calculated 

diffraction patterns that are compared to experimental ones in QCBED refinements. Another 

area in which the converse definition of QCr plays an important role is macromolecular 

crystallography,[51,52] where quantum mechanically derived restraints are successfully 

exploited to supplement the limited resolution and amount of diffraction data compared to the 

number of parameters needed to model atomic positions and displacements in large systems. 

Finally, the most recent technique in this framework is the Hirshfeld Atom Refinement 

(HAR),[53,54] which exploits ad hoc Hartree-Fock (HF) or Density Functional Theory (DFT) 
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computations to derive fragment electron densities for refinements that provide the most 

accurate and precise structural results currently attainable from X-ray data. In reference [45] 

both aspects of the Massa-Huang-Karle QCr definition were discussed in detail. From here 

on, these two aspects together are termed “original quantum crystallography”. 

 

Figure 1. The participants at the CECAM Discussion Meeting in Nancy (and co-authors of this 

paper) with a selection of the fields that they represent. These fields are important pillars at the 

outset of a discussion about a new meaning of quantum crystallography. They are not exclusive, 

but the starting point for a broadening of QCr. 

 

This viewpoint paper has been initiated at the Discussion Meeting “Quantum 

Crystallography: Current Developments and Future Perspectives” (Nancy, France, 19-20 June 

2017) under the umbrella of the European Centre for Atomic and Molecular Calculation 

(CECAM, Centre Européen de Calcul Atomique et Moléculaire), which was organized to 

discuss the meaning and perspectives of quantum crystallography in light of the recent and 

significant increase in the use of this term and related techniques in the scientific literature 

(Figure 1).[55-58] Therefore, in the following section, we will show how this increased interest 

in QCr manifests itself in method developments and applications that are not necessarily 

within the original definition of QCr or in the framework of conventional multipole-based 
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experimental charge density research as discussed above. In fact, if all fields and applications 

where quantum chemistry and experimental approaches based on diffraction and scattering 

mutually enrich each other are to be accommodated within a unified research area, the 

original definition of QCr is too narrow. In this light, in section 3 we will present and discuss 

the different points of view on QCr as they emerged during the recent CECAM Meeting. This 

will highlight different ways in which the rapid and fruitful scientific evolutions touched upon 

in section 2 could eventually lead to a broadened definition of quantum crystallography and to 

the foundation of a new and flourishing research field and community (see Figure 1). 

 

2. Current Developments 

In this section, the authors of this paper will outline current highlights from their own 

research activities to exemplify the wide scope of methods and applications that might be 

included into a broadened definition of quantum crystallography. This section can neither be 

an exhaustive review nor will it cover all possible areas of overlap and interest for QCr. It will 

show the diversity of the field, not a unified picture, so that it will pave the way for 

discussions about the meaning and usefulness of QCr. 

In the first three subsections, we will present the two traditional ways to conduct quantum 

crystallographic investigations, namely the completely theoretical approach (subsection 2.1) 

and the completely experimental approach - the latter discussed both in terms of new 

technical and instrumental developments (subsection 2.2) and in terms of the traditional 

experimental charge density methods (subsection 2.3). We will afterwards illustrate 

techniques in the framework of both aspects of the original definition of quantum 

crystallography by introducing density-matrix- and wavefunction-based refinement strategies 

(subsections 2.4 and 2.5, respectively), quantum crystallographic techniques to refine crystal 

structures of biological macromolecules (subsection 2.6) as well as the Kernel Energy Method 

(KEM, subsection 2.7). We will conclude the overview of the methods of the original 

definition of QCr by discussing dynamic quantum crystallography (particularly the NoMoRe 

approach, subsection 2.8) and the quantitative convergent-beam electron diffraction 
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(QCBED) technique (subsection 2.9). In subsection 2.10, we will present techniques to derive 

information on chemical bonding from wavefunctions and electron densities. In the last five 

subsections, we will show how quantum crystallographic approaches are already fundamental 

for many interesting applications in different fields, such as in crystal engineering (subsection 

2.11), in the determination of magnetic properties (subsection 2.12), in the study of molecular 

and extended solids (subsection 2.13), in materials science (subsection 2.14) and in crystal 

structure prediction (subsection 2.15).  

 

2.1 Theoretical Quantum Crystallography 

Quantum mechanical methods are one of the main ingredients of QCr. We briefly discuss 

here the most important approximations involved and some of the available computer codes. 

Any quantum mechanical method starts with an idealization of the atomic structure. Isolated 

molecules can be accurately represented by a set of atomic coordinates. Solids are typically 

represented as perfect, infinite crystals, defined by a unit cell and a lattice, under periodic 

boundary conditions. However, real crystals differ from this ideal situation, due to defects, 

impurities, surface relaxations, non-stoichiometry, and disorder. A strength of theory is that 

model systems can be simulated irrespective of their existence in nature, allowing the 

investigation of effects associated with different modifications on system properties. 

The direct solution of the many-particle Schrödinger equation is an intractable task for most 

systems of interest in QCr. Simplifying the electronic wavefunction to a single Slater 

determinant leads to the Hartree-Fock method.[59] The often severe deviation of the HF 

solution from the exact one is collectively termed as electron correlation. There are many so-

called post-HF methods,[59] which approximate electron correlation and yield accurate many-

electron wavefunctions, e.g., configuration interaction and coupled cluster methods, as 

sketched in Figure 2. However, the additional accuracy comes at the price of steeply 

increasing computational cost.  

An alternative route is Density Functional Theory with the much simpler ground-state 

electron density 𝜌𝜌(𝒓𝒓)  as the main variable. The ground state energy 𝐸𝐸  of a system is a 
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functional of 𝜌𝜌(𝒓𝒓), [60] whose mathematical form is however unknown, thus requiring 

approximations. Kohn and Sham[61] (KS) proposed a scheme to make DFT calculations 

feasible by mapping the interacting system of electrons onto a non-interacting one that leads 

to the true density. The search for better DFT energy functionals is an active field of research 

(see, e.g., references[59,62]). The main categories of functionals are, in order of increasing 

complexity (see Figure 2): the Local Density Approximations (LDA),[61,63] the Generalized 

Gradient Approximation (GGA)[64,65] and meta-GGAs.[66] These functionals depend upon the 

local values of 𝜌𝜌, |𝛻𝛻𝜌𝜌|, 𝛻𝛻2𝜌𝜌 and/or 𝜏𝜏 (the kinetic energy density). It is interesting to note that 

these same quantities are also used in the topological analysis of the chemical bond (see 

section 2.10). Hybrid functionals[67] additionally include a certain fraction of HF exchange. 

Unfortunately, there is not a single optimal DFT functional that works well for all cases and 

properties. Hence, compromises are necessary. We refer the reader to a recent paper[68] 

critically analyzing DFT functionals in terms of accuracy and addressing their differences for 

molecules and solids. 

There are several computer codes for molecular and solid-state quantum mechanical 

simulations, e.g., Quantum ESPRESSO,[69] Turbomole,[70] and WIEN2k,[62,71] implementing 

three very different approaches (plane waves and pseudopotentials, Gaussian basis-sets, all-

electron augmented plane waves). The variety of computer codes is very useful, since each 

code has a different focus, but raises the issue of reproducibility of results obtained by 

different codes. Recently, the calculated values for the equation of states were compared 

using 40 different DFT method types showing that deviations between the accurate codes are 

smaller than those of experiments.[72] A comparison of charge densities obtained with 

different methods (DFT or HF-based) and different basis sets (plane waves, Gaussians) has 

been done in reference[73]. 

In summary, approximations make simulations feasible but need to be verified and improved 

if necessary. The combination of QM and diffraction/scattering experiments within QCr is 

certainly a promising route for future progress in this field. For example, there are numerous 

examples that demonstrate that experiments guided by QM are often the only way to an 
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unambiguous atomic structure determination of low-dimensional systems.[74] As a further 

example, the usage of modern non-local functionals coupled with molecular dynamics has 

allowed to interpret experimental results in molecular crystals at finite temperature.[75] 

 

 
Figure 2. The most important quantum mechanical approximations and methods. The many-

particle Schrödinger equation is simplified using the Born-Oppenheimer approximation. From 

there, one route is DFT and the other is the HF method. The most important post-HF methods that 

approximate electron correlation missing in HF are based on Coupled Cluster (CC) and 

Configuration Interaction (CI) techniques as well as the Møller–Plesset (MP) perturbation theory. 

 

2.2 Development of experimental techniques and instruments 

Outstanding data quality is required for performing a traditional multipole refinement[15] or an 

X-ray Wavefunction Refinement (XWR)[76]. In addition to highest quality crystals, a high-end 

experimental setup is the key to extracting a meaningful crystallographic outcome. 

Coupled to multilayer X-ray optics, high-brilliance microfocus sealed tubes[77] and rotating 

anode sources dramatically increase the available X-ray flux density in comparison to 

conventional sealed tubes, a major benefit in the field of experimental charge density 

research. Data collection times can thereby be reduced from weeks to days/hours and weakly 

diffracting samples can now be studied more easily. Modern short-wavelength sources (Ag/In 

Kα) extend the data resolution limit and minimize X-ray absorption and extinction. In 
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parallel, large-scale facilities (synchrotrons) are becoming more widely accessible. Properties 

like the extraordinary X-ray flux and a tunable wavelength make them attractive, although 

“only a minor fraction of the published electron density literature” data is collected there.[78] 

This may seem surprising but is explained with the fact that there is no dedicated charge 

density beam line satisfying the special requirements to collect high-quality charge density 

data.[77]  

Alongside source development, major accomplishments in the field of X-ray detection have 

been achieved. Today’s HPADs (Hybrid Pixel Array Detector) and CPADs (Charge 

Integrating Pixel Array Detector) are detectors based on Complementary Metal-Oxide-

Semiconductor (CMOS) technology and these are capable of fast shutterless data collection. 

This removes significant sources of errors such as read-out overhead, shutter jitter and 

goniometer repositioning inaccuracies. The HPAD technology is presently the standard 

technology at protein synchrotron end stations. Such detectors are known for their sensitivity, 

high speed, and dynamic range. However, HPADs do have limitations for charge density 

experiments. Strong low-resolution reflections, which contain the bonding electron density 

information, may suffer from count-rate saturation[79] and charge-sharing effects can lead to 

information loss. [78,80,81] 

The appearance of X-ray Free Electron Laser (XFEL) facilities led to the development of 

CPADs to overcome these limitations.[82] The high-frequency readout and mixed mode 

operation, combining the advantages of integration for strong signals with the photon 

counting approach for weak signals, recently became available for the home laboratory. 

Although CPADs have excellent count-rate linearity, they can suffer from pixel saturation, 

leading to missing reflections. Sophisticated data-scaling programs aid to ensure data 

completeness by handling different frame exposure times or different primary beam 

intensities (e.g. beam attenuation).[83] 

Besides sources and detectors, precise multi-axis goniometers allow the collection of true data 

multiplicity and keep the crystal scattering volume as constant as possible. Together with 

rigid sample mounts, this is a key to data quality. 
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Sophisticated software is necessary to accurately process the carefully collected frames. 

Images measured with a scan width significantly smaller than the crystal mosaicity are 

beneficial for data quality when using modern detectors.[84] Up-to-date integration routines 

apply an incident-angle correction, which takes the X-ray conversion factors of the individual 

detector into account.[85] Absorption and Lorentz/Polarization corrections as well as scaling, 

the latter being particularly important for Gaussian-shaped beam profiles, guarantee high data 

quality.[86] Some programs even offer a dedicated charge density mode,[82] which, among other 

functionalities, prevents data bias introduced by standard structure error-model settings.[87] 

In conclusion, an impressive number of recent technological innovations support the scientists 

to successfully determine charge-density distributions. The on-going collaboration between 

researchers, hardware and software providers will drive future developments from which the 

QCr community, as well as the entire single-crystal X-ray diffraction community, will benefit. 

 

2.3 Charge Density from X-ray diffraction 

The charge density of a crystal is a quantum mechanical observable in an X-ray diffraction 

experiment. In principle, Fourier summation of measured structure factors should provide 

direct access to experimental electron densities. In practice, it is necessary to use a model of 

the charge density to minimize consequences of the lack of structure factor phases, 

experimental errors and finite resolution.  

The most widely used Stewart-Hansen-Coppens multipole model[15,88] relies on the 

observation that spherically-averaged free-atom electron densities provide a very good zero-th 

order approximation of the electron density of a crystal (and a molecule). The multipole 

model consists of atomic electron densities, which are pre-computed from first-principles of 

quantum mechanics at a high level of theory. The spherical atomic cores are supplemented 

with additional pre-defined radial functions, which are combined with spherical harmonics to 

account for the asphericity of the atomic electron density. Only selected parameters of the 

multipole model are allowed to vary. Traditionally these are populations and 

expansions/contractions of valence electron densities. More recently,[89] the corresponding 
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parameters of core densities were allowed to change as well.  

The model, starting from free quantum-physical atoms, allows to 'measure' the response of 

𝜌𝜌(𝒓𝒓) to the formation of molecules (chemical bonds),[90] supramolecular assemblies[91] and 

crystals,[92] and to other physical stimuli, such as different temperatures,[93] high pressure,[94] 

light[95] or possibly an external electric field.[96,97] Parameters of the multipole model are 

usually refined by a least-squares fitting against experimental observations. Thus, first 

principles of quantum mechanics are not imposed during this process, as they are in the case 

of quantum mechanical computations. Therefore, the wavefunction is not a result of a 

multipole refinement and information contained in the experimental data alone should 

guarantee that the obtained model obeys first principles. Nevertheless, the multipole model 

can provide a charge density model as good as a double-zeta basis-set representation, is 

mature and its application is fast. Moreover, unlike in X-ray wavefunction refinement,[98] the 

extracted experimental information can be easily identified and the danger to "get what you 

put in" is smaller ("in data we trust"[99]).  

With the ever-rising quality of experimental data, more and more fine details of the electron 

density are observed with the help of the multipole model: chemical bonds, lone pairs, crystal 

field effects on electron density of transition metals,[100] core region contraction upon 

chemical bond formation,[89] intermolecular charge transfer [101] and electron density 

polarization upon interaction with neighboring molecules.[92] In addition, the model provides 

the means to observe a high degree of transferability of atoms in similar chemical 

environments and to build pseudoatoms databanks. [102-105]  

Therefore, the multipole model allows to study many quantum phenomena, and to obtain a 

predominantly experimental answer to research questions that depend on 𝜌𝜌(𝒓𝒓). However, as 

with any other model, care must be taken not to interpret the model beyond its limits[106] and 

not to ask for information absent in the experimental data.[107] An example of a suitable 

research question is measuring the correct covalent bond distance from X-ray diffraction in 

bonds involving hydrogen atoms. Here the multipole model permitted to get a better answer 

than the IAM early on,[105,107] in rather close agreement to HAR.[108,109] More recently, the 
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bond distance of hydrogen in the vicinity of a metal atom was characterized.[110] The power of 

the multipole model is also illustrated by research that aims at understanding interactions in 

macromolecular complexes of biological importance. Here the model provides fast access to 

electrostatic potential, electrostatic energies and the topology of 𝜌𝜌(𝒓𝒓) ,[111,112] while still 

maintaining the accuracy of quantum mechanical computations.[113,114]  

 

2.4 Density matrix refinement and data combination 

To this day, quantum crystallography mostly relies on the interplay between spin or charge 

densities derived from first-principles calculations and X-ray Diffraction (XRD) or high-

resolution Polarized Neutron Diffraction (PND) experimental data. Despite their high quality 

and the absence of extinction effects, few studies have made sole use of QCBED-derived 

structure factors to reconstruct charge densities (see Introduction and Subsection 2.9). Their 

number is usually small and a full reconstruction process necessitates complementing them 

with higher-Q Fourier components obtained by “traditional” X-ray methods.[115,116] This is a 

clear example of the need of combining two experimental data sets to take the best of what is 

available experimentally. As explained in Subsection 2.12, the problem is found to be rather 

similar in the spin density case, although the limitations are not as stringent as those 

encountered in the QCBED technique.[117] However, when such difficulties are circumvented, 

electron density reconstruction is still not a (spin resolved) wavefunction extraction.  

The work carried out on electron spin density can be somewhat extended by considering the 

reduced density matrix formalism. Obviously, no N-electron wavefunction has yet been 

recovered this way, but significant advances can be (and have been) made, including the 

possibility of tackling the problem from a phase-space perspective. In its simplest expression, 

the one-electron reduced density matrix (1-RDM), which was strongly promoted by Weyrich 

or Massa and co-workers during the 1980s and 1990s,[118-121] can be seen as the most direct 

object to connect position and momentum space properties[122] and thereby offers an efficient 

means to combine XRD, QCBED and PND data with experimental results provided by 

inelastic scattering techniques, such as polarized or non-polarized X-ray Compton, gamma-e-
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gamma scattering or positron annihilation.[123] Moyal or Wigner functions (see, for example, 

reference[124]), could equally be considered to play the same role. The pure state 1-RDM 

𝜌𝜌(𝒓𝒓,𝒓𝒓′) is associated with the 𝑁𝑁-electron wavefunction from: 

𝜌𝜌𝑘𝑘(𝒓𝒓,𝒓𝒓′) = �𝜓𝜓𝑘𝑘∗(𝒓𝒓,𝒓𝒓2, … , 𝒓𝒓𝑁𝑁) 𝜓𝜓𝑘𝑘(𝒓𝒓′,𝒓𝒓2, … , 𝒓𝒓𝑁𝑁) 𝑑𝑑𝒓𝒓2. . . 𝑑𝑑𝒓𝒓𝑁𝑁        (1). 

This puts rather strong constraints on the form taken by experimentally derived 1-RDMs 

which are required to be N-representable (see also Subsection 2.7) and, in the pure-state case, 

idempotent ∫ 𝜌𝜌𝑘𝑘(𝒓𝒓,𝒓𝒓′′) 𝜌𝜌𝑘𝑘(𝒓𝒓′′,𝒓𝒓′)𝑑𝑑𝒓𝒓′′ = 𝜌𝜌𝑘𝑘(𝒓𝒓,𝒓𝒓′). Nevertheless, no such condition can be 

imposed on experimentally derived 1-RDMs, which are expected to originate from a mixture 

of states and expressed by means of each microstate canonical probability 𝑝𝑝𝑘𝑘, 

𝜌𝜌𝑘𝑘(𝒓𝒓,𝒓𝒓′) = 𝜌𝜌↑(𝒓𝒓,𝒓𝒓′) + 𝜌𝜌↓(𝒓𝒓,𝒓𝒓′) = �𝑝𝑝𝑘𝑘𝜌𝜌𝑘𝑘(𝒓𝒓,𝒓𝒓′)     (2),
𝑘𝑘

 

where the spin up and down contributions have been made explicit. For data from XRD, 

PND, non-polarized Compton Scattering (CS) and Magnetic Compton Scattering (MCS), the 

spin-resolved 1-RDM, for a given scattering vector 𝒈𝒈 , is connected to structure factors 

through 

𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋(𝒈𝒈) = ��𝜌𝜌↑(𝒓𝒓,𝒓𝒓) + 𝜌𝜌↓(𝒓𝒓,𝒓𝒓)� 𝑒𝑒−𝑖𝑖2𝜋𝜋𝒈𝒈∙𝒓𝒓𝑑𝑑𝒓𝒓      (3) 

and 

𝐹𝐹𝑃𝑃𝑁𝑁𝑋𝑋(𝒈𝒈) = ��𝜌𝜌↑(𝒓𝒓,𝒓𝒓)− 𝜌𝜌↓(𝒓𝒓,𝒓𝒓)� 𝑒𝑒−𝑖𝑖2𝜋𝜋𝒈𝒈∙𝒓𝒓𝑑𝑑𝒓𝒓       (4) 

and, for Compton profiles in a scattering direction given by 𝒖𝒖, through 

𝐽𝐽𝐶𝐶𝐶𝐶(𝑞𝑞,𝒖𝒖) = ��𝜌𝜌↑(𝒓𝒓,𝒓𝒓′) + 𝜌𝜌↓(𝒓𝒓,𝒓𝒓′)� 𝑒𝑒−𝑖𝑖𝒑𝒑∙(𝒓𝒓−𝒓𝒓′) ℏ⁄ 𝛿𝛿(𝒑𝒑 ∙ 𝒖𝒖 − 𝑞𝑞)𝑑𝑑𝒓𝒓 𝑑𝑑𝒓𝒓′𝑑𝑑𝒑𝒑      (5) 

and 

𝐽𝐽𝑀𝑀𝐶𝐶𝐶𝐶(𝑞𝑞,𝒖𝒖) = ��𝜌𝜌↑(𝒓𝒓,𝒓𝒓′) − 𝜌𝜌↓(𝒓𝒓,𝒓𝒓′)� 𝑒𝑒−𝑖𝑖𝒑𝒑∙(𝒓𝒓−𝒓𝒓′) ℏ⁄ 𝛿𝛿(𝒑𝒑 ∙ 𝒖𝒖 − 𝑞𝑞)𝑑𝑑𝒓𝒓 𝑑𝑑𝒓𝒓′𝑑𝑑𝒑𝒑      (6). 

These equations demonstrate the importance of density matrix determination of experimental 

quantities derived from scattering techniques, which are at the very heart of crystallography. 

Results provided by coherent elastic scattering of X-rays, polarized neutrons, polarized X-
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rays and electrons are related to the Fourier coefficients of the electron or spin density in 

crystals, hence the diagonal elements of the density matrix (see equations (3) and (4)). 

Conversely, spectra from X-ray incoherent inelastic scattering, as well as spectroscopic 

methods, such as positron annihilation or e-gamma-e, dominantly address the off-diagonal 

part of the same 1-RDM (see equations (5) and (6)). Therefore, the 1-RDM, as the simplest 

and closest transcription of a wavefunction, but adapted to mixed state configurations, can be 

considered as a common denominator of a large range of experimental techniques, making it 

possible to check their mutual coherence. 

While the refinement of 1-RDM models can still be considered as a very recent research field, 

the past decade has witnessed strong advances thanks to the fruitful joint efforts of 

theoreticians and experimentalists with respective expertise in scattering techniques as 

complementary as high resolution XRD, PND, CS and MCS. An example of a tentative 1-

RDM reconstruction from pseudo-data is given in Figure 3. 

 

 

Figure 3. Refined 1-RDM for the toy model triplet-state urea in a periodic lattice with parallel 

molecules separated by 3 Å. Left: a path through O, C, N and H in the molecular plane. Right: a 

similar path but 0.5 Å above the plane. The upper half is the refined 1-RDM for a simple single 

molecule model (expressed on a 3-21G(d) basis set). The lower half represents the reference 

result, namely a periodic DFT computation with an extended basis-set (pob-TZVP), from which 

12 MCS profiles and 500 PND structure factors were computed and used for the refinement.[125]  

 

2.5 Wavefunction-based refinement 
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The wavefunction is the fundamental entity that intrinsically contains all the information 

about a system. Therefore, there is a direct relationship between the structure factors of X-ray 

or electron diffraction – the Fourier transforms of the electron density – and the wavefunction. 

With modern computing power and increasing experimental accuracy, this relationship can be 

exploited more and more efficiently for crystallographic refinement. 

On the one hand, the already mentioned X-ray constrained wavefunction fitting approach[28-32] 

(see introduction) plays a prominent role. It was initially developed in the framework of the 

Restricted Hartree-Fock formalism[28,29,31] and was afterwards extended to other approaches 

(e.g., Density Functional Theory,[32] relativistic Hamiltonians,[33,34] Extremely Localized 

Molecular Orbitals (ELMOs),[35-38] etc.). Several investigations have shown that XCW fitting 

allows not only to obtain reliable charge density distributions, but also to determine physical 

properties of materials[126-129] (e.g., non-linear optical properties) and to consistently capture 

electron correlation,[130]  polarization and crystal field effects. Other exciting ongoing studies 

also focus on the capability of the method in capturing relativistic effects[34] and in reliably 

determining experimental spin densities for interesting open-shell systems, such as the cyclic 

alkylaminocarbene radical cAAC-SiCl3,[131] for which preliminary results are  available.  

From the methodological point of view, future challenges for the technique are its extensions 

to periodic systems and to multi-determinant wavefunction approaches, although the recent 

X-ray Constrained ELMO-Valence Bond (XC-ELMO-VB) method[39,40] can be already 

considered an attempt in the latter direction. 

On the other hand, tailor-made wavefunctions have already been successfully used to improve 

X-ray structure refinements by means of HAR.[53,54] In its current implementation, molecular 

electron densities are theoretically calculated and afterwards partitioned using Hirshfeld’s 

stockholder partitioning method.[132,133] This enables a “classical” atom-centered 

crystallographic description and a least-squares refinement of atomic positions and thermal 

parameters using quantum atoms. These contain all the information from the parent 

wavefunction (or electron density) from which they have been partitioned. The HAR 

procedure is iteratively repeated until convergence is reached. Recent investigations have 
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revealed that HAR currently provides the most accurate and precise structural results from X-

ray data, even for the positions of hydrogen atoms.[108,109,134] A future challenge for HAR is 

the need of extending its applicability to large molecules (e.g., proteins) and to heavy-metal 

systems (e.g., coordination compounds). Coupling HAR with ab initio linear-scaling 

strategies (e.g., techniques based on the transferability of ELMOs[135,136]) would allow 

considerable progress in this respect. 

Finally, an intriguing future perspective in this framework is the systematic coupling of the 

two approaches discussed above (i.e., XCW fitting and HAR) to give rise to what has been 

termed X-ray Wavefunction Refinement.[98] A thorough validation of XWR has recently been 

conducted and showed that the new approach can indeed be considered as a method for both 

structure and charge density determination from experiment.[76] 

 

2.6 Quantum refinement of biological molecules 

Quantum refinement is a method to supplement standard crystallographic refinement with 

quantum mechanical calculations.[51,52,137,138] In the refinement process, the model is optimized 

to provide an ideal fit to the experimental raw data (the structure factors).[139] For resolutions 

obtained for most biological macromolecules, 1–3 Å, available data are not numerous enough 

to determine the exact positions of all atoms. Therefore, as a first attempt, the experimental 

data were supplemented by empirical chemical information in the form of a Molecular 

Mechanics (MM) force field. Consequently, the refinement takes the form of a minimization 

of the function:[139] 

𝐸𝐸cryst = 𝐸𝐸𝑋𝑋−𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑤𝑤A𝐸𝐸MM      (7) 

where 𝑤𝑤A is a weight factor that is required because the crystallographic (𝐸𝐸X−ray) and MM 

(𝐸𝐸MM) energy functions do not have the same units. 

This works fairly well for proteins and nucleic acids, for which there are plenty of 

information about the ideal geometry so that a MM description works well.[139] However, for 

other parts of the structure, e.g. metal sites, substrates, inhibitors, cofactors and ligands, such 
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information is normally missing or much less accurate. Moreover, the MM description is 

rather inaccurate, omitting electrostatics, polarization and charge transfer. This can be solved 

by employing a more accurate energy function, provided by QM calculations, which involve 

all energy terms and do not require any parameterization.[51,52,137,138] In the first 

implementation of this quantum-refinement approach, QM was employed for a small, but 

interesting part of the macromolecule, using the energy function[51,137]  

𝐸𝐸QM−refine = 𝐸𝐸X−ray12 + 𝑤𝑤A�𝐸𝐸QM1 + 𝐸𝐸MM12 − 𝐸𝐸MM1�     (8) 

where 𝐸𝐸QM1  is the QM energy and the subscripts indicate whether the method is used for the 

whole macromolecule (12) or only for the QM region (1).  

This approach was implemented in 2002 using DFT calculations.[51,137] It was shown to 

locally improve the geometry of metal sites in proteins.[140] Moreover, the protonation state of 

metal-bound ligands could be determined by comparing quantum-refined structures optimized 

in different protonation states using real-space R factors and comparing geometries and 

energies with those obtained for the QM system in vacuum.[141] In the same way, the 

oxidation state of metal sites could be deduced, although it often changes during data 

collection, owing to photoreduction by electrons released in the crystals by the X-rays.[142,143]  

In 2004, a related approach was presented, in which a linear-scaling semiempirical QM 

method was employed for the entire protein, obtained by simply replacing 𝐸𝐸MM in Equation 7 

by 𝐸𝐸QM.[52,138] It was shown that the re-refinement could correct structural anomalies in the 

original refinement of a 1 Å-resolution protein structure. This approach has later been 

extended to other software, including also QM/MM and ab initio methods.[52,138,144]  

Quantum refinement has been applied to many systems of biological or chemical interest, e.g. 

heme proteins, zinc proteins, superoxide dismutase, hydrogenase and 

nitrogenase.[51,52,137,138,141-143,145-149] Typical applications regard the nature, protonation and 

oxidation state of the active site, comparing different structural alternatives, as shown in 

Figure 4. Applications to drug design and ligand refinement[144,150-155] have advanced the 

accuracy of the determination of small-molecule parameters in active site pockets over what 
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is possible with standard models, in which the ligand force-field is generally less well 

validated than that for the protein. Naturally, the largest effects are typically seen for low 

resolutions and at resolutions better than ~1 Å, effects of systematic errors in the QM method 

start to be apparent. The method has been extended to neutron,[156] NMR[157-163] and EXAFS 

(Extended X-ray Absorption Fine Structure) refinement.[164-168] 

 

Figure 4. Electron-density maps of two possible protonation states of the homocitrate ligand in 

nitrogenase.[149] The 2mFo –DFc maps are contoured at 1.0 σ and the mFo – DFc maps are 

contoured at +3.0 σ (green) and –3.0 σ (red). The structure to the left fits the experimental data 

better, especially around the O1 and O7 atoms. This is also reflected by the real-space difference 

density Z-scores, which are 3.0 and 3.2, respectively. Reprinted with permission from 

reference[149] (Copyright 2017 American Chemical Society).  

 

2.7 X-ray diffraction and N-representability 

The compliance with the N-representability is a sine qua non to obtain quantum mechanically 

rigorous density matrices from X-ray diffraction data. In this context, the conversion of X-ray 

diffraction data into an electron density matrix 𝜌𝜌(𝒓𝒓,𝒓𝒓′) = 𝑇𝑇𝑇𝑇𝑷𝑷 𝝍𝝍(𝒓𝒓)𝝍𝝍(𝒓𝒓′)  (where P is a 

population matrix and 𝝍𝝍 is a column-vector collection of atomic basis functions) that reflects 

the antisymmetry of an N-electron wavefunction is accomplished by applying iterative 

Clinton matrix equations[169] of the form:  

𝑷𝑷𝑛𝑛+1 = 3𝑷𝑷𝑛𝑛2 − 2𝑷𝑷𝑛𝑛3 + �𝜆𝜆𝑘𝑘
(𝑛𝑛)

𝑘𝑘

𝑶𝑶𝑘𝑘           (9) 

where −𝜆𝜆𝑘𝑘
(𝑛𝑛)  is the 𝑘𝑘 -th Lagrangian multiplier pertaining to enforcement of an X-ray 

scattering observable represented by the matrix Ok. 
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Figure 5 pictures all antisymmetric wavefunctions and all N-representable 1-body density 

matrices. Given a valid wavefunction, by integration over its square, one obtains a quantum 

mechanically satisfactory density matrix. In general, an arbitrary 1-body function 𝑓𝑓(𝒓𝒓,𝒓𝒓′) will 

not map back to the set of valid antisymmetric wavefunctions. However, beginning with an 

N-representable density matrix, this will map back to a wavefunction, which defines it as N-

representable.  

 

 

Figure 5. Sketch depicting the mapping problem associated with wavefunction N-

representability of density matrices.[170] 

 

For single determinant N-representability, the density matrix shall be a projector, i.e., 𝑷𝑷2 = 𝑷𝑷, 

encompassing that of Density Functional Theory solutions of the Kohn-Sham equations. 

Walter Kohn was fond of saying that “…the only purpose of the KS orbitals is to deliver the 

exact density”. In this regard, one may take notice that orbitals of the experimental X-ray 

determined density matrix of form 𝑷𝑷2 = 𝑷𝑷 do just that.  

This would be satisfactory and deliver a complete quantum mechanics for small organic 

molecules containing a few tens of atoms. However, this would not work for biological 

molecules containing very large numbers of atoms, 𝑁𝑁𝑟𝑟𝑎𝑎 . That is because the number of 

unknowns grows more rapidly with increasing 𝑁𝑁𝑟𝑟𝑎𝑎  than does the number of experimental 

data. To surmount the difficulty arising from insufficient data one may invoke the Born-
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Oppenheimer approximation, using nuclear positions obtained from crystallography, and 

then, instead of an experimental fit, theoretically calculating the density matrices. 

Nevertheless, at this point the problem is that the difficulty of quantum chemical calculations 

rises as a high power of the number of atoms.  

The Kernel Energy Method (KEM) is a successful way of calculating the ab initio density 

matrices for molecules of any size. KEM was devised by Massa, Huang and Karle[24] based 

upon previous work related to the Clinton equations and it has been thoroughly tested against 

a wide variety of biological molecules and also extended aromatics with and without imposed 

strong external electric fields. 

The KEM working equation for the total energy is, 

𝐸𝐸 𝑎𝑎𝑡𝑡𝑎𝑎𝑟𝑟𝑙𝑙
(𝐾𝐾𝐾𝐾𝑀𝑀)

= � � 𝐸𝐸𝑟𝑟𝑎𝑎 − (𝑚𝑚− 2)�𝐸𝐸𝑐𝑐

𝑚𝑚

𝑐𝑐=1

𝑚𝑚

𝑎𝑎=𝑟𝑟+1

𝑚𝑚−1

𝑟𝑟=1

   (10) 

and the corresponding KEM density matrices are 

𝜌𝜌2 = � � 𝜌𝜌2𝑟𝑟𝑎𝑎 − (𝑚𝑚− 2)�𝜌𝜌2𝑐𝑐

𝑚𝑚

𝑐𝑐=1

𝑚𝑚

𝑎𝑎=𝑟𝑟+1

𝑚𝑚−1

𝑟𝑟=1

   (11), 

𝜌𝜌1 = � � 𝜌𝜌1𝑟𝑟𝑎𝑎 − (𝑚𝑚− 2)�𝜌𝜌1𝑐𝑐

𝑚𝑚

𝑐𝑐=1

𝑚𝑚

𝑎𝑎=𝑟𝑟+1

𝑚𝑚−1

𝑟𝑟=1

   (12), 

𝜌𝜌 = � � 𝜌𝜌𝑟𝑟𝑎𝑎 − (𝑚𝑚 − 2)�𝜌𝜌𝑐𝑐

𝑚𝑚

𝑐𝑐=1

𝑚𝑚

𝑎𝑎=𝑟𝑟+1

𝑚𝑚−1

𝑟𝑟=1

      (13). 

In the above equations, 𝐸𝐸𝑟𝑟𝑎𝑎  is the energy of a double kernel of name ab, 𝐸𝐸𝑐𝑐  is the energy of a 

single kernel of name c, 𝜌𝜌2, 𝜌𝜌1, 𝜌𝜌 symbolize respectively, two-body density matrices, one-

body density matrices and electron densities.  

Notice that the QCr/KEM procedure extracts the complete quantum mechanics based on the 

X-ray experiment. However, there is no mathematical requirement that the KEM summation 

of kernels must be N-representable. Again, to resolve this QCr/KEM shortcoming, the Clinton 

equations will prove to be sufficient (see for example illustrations in reference[171]). 

Summarizing, the importance of the Clinton equations within QCr/KEM means that true 
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quantum mechanics can be extracted based on X-ray data (this in KEM form) and then made 

to be guaranteed single Slater determinant N-representable. This paragraph emphasizes 

discussion of the complete quantum mechanics in single determinant form, for both small and 

large molecules, a close experimental analogy to the theoretical single determinant form of 

DFT.  

 

2.8 Dynamic Quantum Crystallography 

A plethora of important bulk solid-state properties depend on crystal vibrational properties. 

The atomic and molecular motions determine the vibrational entropy of crystals, and are 

therefore crucial for understanding stabilities and phase changes. Mechanical properties, such 

as the elastic moduli of the crystal, are also intrinsically linked to the crystal lattice dynamics.  

Information on the correlation of atomic motion is lost in the standard elastic scattering 

experiment. However, the atomic motion gives rise to changes in the diffraction intensities, 

which are taken into account in the form of the Debye-Waller factor. The temporal and spatial 

average of the atomic fluctuations - mean square displacements - can therefore be retrieved 

from a diffraction measurement, and in recent work this information has been combined with 

lattice-dynamical models derived from periodic DFT calculations.[172,173] In this approach, the 

amplitudes of the acoustic and lowest-frequency optical phonons are refined against the 

diffraction intensities. In the simplest model, these phonon modes are approximated by the 

motion at the Gamma point of the Brillouin zone.  

Despite the very simple lattice dynamical model, these Normal Mode Refinements (NoMoRe) 

capture essential information about the crystal dynamics from the experiment. In Figure 6 the 

heat capacity of naphthalene obtained from calorimetric measurements is compared with the 

heat capacities obtained by the NoMoRe procedure, as well as with the related models of 

Bürgi and Aree.[174] 

The atomic mean square displacements obtained by fitting the normal modes against the 

diffraction intensities compare well with the displacements obtained from standard 

crystallographic models.  Additionally, the hydrogen atom anisotropic displacements compare 
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well with independent information from neutron diffraction experiments. However, by 

combining aspherical atom refinement and normal mode refinement, it is evident that there is 

information in the diffraction experiments that is not captured by the model;[175] there is 

plenty of room for improvements. One obvious next step in quantum crystallographic studies 

of dynamics is to model Thermal Diffuse Scattering (TDS). 

Studies of diffuse scattering from crystals are experiencing a renaissance in these years. This 

is due to the advent of very sensitive low-noise detectors and because high-performance 

computing has made it possible to construct ab initio models of crystals that can explain 

diffuse patterns. Diffuse scattering patterns originate from ordering at length scales larger 

than the unit cell dimensions. The ordering can be of either static or dynamic character, and in 

both cases, it reveals important information about the physical properties of the crystal. 

The TDS signal can be diminished by cooling the crystals to very low temperatures, but it can 

never be fully removed. If TDS is not accounted for it will give rise to additional systematic 

changes in the Bragg intensities, and thus create artifacts in the crystallographic models, as it 

was recently demonstrated in a model study on silicon and cubic boron nitride.[176] This 

implies that even in quantum crystallographic studies where the dynamics is of secondary 

interest, it is important to have an accurate model of motion in order to properly take these 

contributions into account. 
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Figure 6. (a) Heat capacity (Cp) of naphthalene: from thermodynamic measurements (blue curve), 

calculated from frequencies obtained after NoMoRe (red curve) and estimated by Aree and Bürgi 

(green curve), (b) difference between Cp from calorimetric measurements and Cp estimated by 

Aree and Bürgi (green curve) and from NoMoRe (red curve). Reprinted from reference[173] under 

the general license agreement of IUCr journals. 
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2.9 Electron density from quantitative convergent-beam electron diffraction  

The electron density, 𝜌𝜌(𝒓𝒓), and the electrostatic potential, 𝑉𝑉(𝒓𝒓), at position 𝒓𝒓 within a crystal 

can be described by the following Fourier sums: 

 

𝜌𝜌(𝐫𝐫) =  
1
𝛺𝛺
�𝐹𝐹𝐠𝐠  𝑒𝑒−𝑖𝑖2𝜋𝜋𝐠𝐠∙𝐫𝐫   (14) 
𝐠𝐠

 

and 

𝑉𝑉(𝐫𝐫) =  �𝑉𝑉𝐠𝐠  𝑒𝑒−𝑖𝑖2𝜋𝜋𝐠𝐠∙𝐫𝐫 
𝐠𝐠

     (15). 

The sums are over reciprocal lattice vectors g, 𝛺𝛺 is the unit cell volume, and 𝐹𝐹𝐠𝐠 and 𝑉𝑉𝐠𝐠   are the 

Fourier coefficients (structure factors) of the electron density and crystal potential, 

respectively. By applying Poisson’s equation in relating charge distribution to electrostatic 

potential, the Mott formula[177] describes the relationship between 𝐹𝐹𝐠𝐠 and 𝑉𝑉𝐠𝐠   as follows: 

𝐹𝐹𝐠𝐠 = ∑ 𝑍𝑍𝑗𝑗𝑒𝑒−2𝜋𝜋𝑖𝑖𝐠𝐠∙𝒓𝒓𝑗𝑗 𝑒𝑒−𝐵𝐵𝑗𝑗𝑠𝑠2 −  𝑉𝑉𝐠𝐠 �
16𝜋𝜋2𝜀𝜀0𝛺𝛺𝑠𝑠2

|𝑒𝑒|
�     (16). 

The sum is over all atoms, j, in the unit cell with atomic numbers 𝑍𝑍𝑗𝑗  and Debye-Waller factors 

𝐵𝐵𝑗𝑗 and positions 𝒓𝒓𝒋𝒋. The free-space permittivity is 𝜀𝜀0, |𝑒𝑒| is the magnitude of the electronic 

charge and 𝑠𝑠 =  (𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃)/𝜆𝜆. 

In X-ray diffraction experiments, 𝐹𝐹𝐠𝐠  are the observables because X-rays interact with the 

electron distribution, whilst in electron diffraction, 𝑉𝑉𝐠𝐠   are the observables because electrons, 

being charged, interact with the crystal potential.  From equations 14-16, it is evident that X-

ray and electron diffraction measure quantum mechanically valid features of crystals, namely 

the electron distribution and the electrostatic potential. They are, therefore, complementary 

techniques in quantum crystallography. 

Electrons, being charged, can be focused into nanometer-sized (or smaller) probes using 

electromagnetic lenses in standard electron microscopes. Additionally, the position of the 

focal point within the specimen can be controlled (using electromagnetic deflection) with sub-

nanometer precision. Due to their charge, electrons interact about 104 times more strongly 
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with matter than X-rays and specimens must therefore be very thin (~100 nm) in order to 

avoid strong absorption. This high spatial confinement and selectivity means that Convergent-

Beam Electron Diffraction (CBED) patterns can be obtained from regions of perfect 

crystallinity, avoiding grain boundaries, dislocations, stacking faults, voids, surface blemishes 

and other imperfections. 

The technique of Quantitative Convergent-Beam Electron Diffraction (QCBED) involves the 

matching of a simulated CBED pattern to an experimental one whilst varying the structure 

factors of reflections at or near the Bragg condition, 𝑉𝑉ℎ𝑘𝑘𝑙𝑙  (i.e. 𝑉𝑉𝐠𝐠  ), and the specimen 

thickness, 𝐻𝐻, to optimise the fit.  Over the last three decades, QCBED has developed to where 

it can routinely measure bonding-sensitive low-order structure factors with uncertainties of 

the order of 0.1%.[178-186]  Furthermore, it can do so without extinction and scale problems 

because the analysis uses a full dynamical treatment of electron scattering, necessitated by the 

strong interaction of electrons with matter.  Figure 7 schematically illustrates QCBED from 

data collection to the determination of a deformation electron density. From the refined values 

of the structure factors given in the caption, the very high level of precision within such a 

refinement is evident. 
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Figure 7:  A summary of QCBED. The first step is CBED data collection from a region of perfect 

crystal (~10-25 m3 in volume). Very high spatial selectivity makes it easy to avoid crystal 

imperfections and surface blemishes. The CBED patterns are corrected for instrumental point 

spread function[187] (PSF) and are differentiated to remove the inelastic background.[185,188] 

Selected reflections are pattern matched with full dynamical electron scattering calculations using 

either the multislice[189] or Bloch-wave[190,191] formalisms. The structure factors of reflections at or 

near the Bragg condition, 𝑉𝑉ℎ𝑘𝑘𝑙𝑙 or 𝑉𝑉𝐠𝐠 , and the crystal thickness, 𝐻𝐻, are refined to minimize the 

mismatch (following the loop of the grey arrow). The refined 𝑉𝑉𝐠𝐠   can be converted to 𝐹𝐹𝒈𝒈 via the 

Mott formula[177] for the determination of the deformation electron density, ∆𝜌𝜌(𝒓𝒓), as shown here 

for the example of aluminium[186] (drawn with VESTA[192]). In this example, the CBED pattern was 

collected with 160 keV electrons along [001]. The refined structure factors were V200 = 5.29±0.01 

V (F200 = 33.39±0.03 e-) and V220 = 3.219±0.006 V (F220 = 29.35±0.04 e-) at T=0K. The refined 

specimen thickness at the electron probe position was H = 1056±1 Å. 

 

2.10 Chemical bonding analysis  

A pillar of the emerging field of quantum crystallography is represented by the group of 

methods aiming at analyzing the chemical information contained in experimental and 

theoretical static electron density distributions. Quantum Chemical Topology (QCT) does so 
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by analyzing local functions, f, which yield a chemical picture of the system: 

f : R3 (molecular space) → R (chemical picture) 

These methods are epitomized by Bader’s Quantum Theory of Atoms in Molecules 

(QTAIM)[193] whose departing function is the electron density, 𝑓𝑓 = 𝜌𝜌(𝒓𝒓). The existence of a 

bond is associated with the presence of a first-order Critical Point (CP) in the electron density 

(or Bond Critical Point, BCP) and of the gradient line joining it to the linked atoms (or Bond 

Path, BP).[194] Figure 8 shows the ability of bond paths to reveal both covalent and 

intermolecular interactions in a benzene crystal. QTAIM, through integrations over atomic 

basins, yields atomic properties such as QTAIM charges (carbon and hydrogen charges, q, 

shown in Figure 8), atomic multipoles and volumes. The examination of BCPs provides 

insight into the structure and stability of crystals revealed in the bonding patterns that can be 

obtained from either theoretical or experimental electron densities.[195] 

Localization and delocalization (sharing) indices have also been defined within QTAIM by 

integrals of the Fermi hole density (or exchange-correlation hole density in correlated 

calculations). Delocalization indices 𝛿𝛿 can yield insight on the driver of the binding between 

monomers of a dimer, whether “through bond” or “through space” (i.e., non-bonded 

atoms)[196] (see Figures 8 and 9). This information can be condensed in matrix format known 

as the Localization-Delocalization Matrix (LDM).[197]  LDMs are of fundamental interest but 

also have practical applications in Quantitative Structure-Activity Relationship (QSAR) 

predictions of molecular properties.[197,198]  LDMs need the first- and second-order density 

matrices for their construction, which for experimental densities requires the techniques 

introduced in the previous sections. Thus, generally at the time of writing, when only the 

electron density is available, then LDMs cannot be calculated from the experimental data 

alone. However, a complete population analysis including localization and delocalization 

information can be derived from the Laplacian of the electron density, an experimentally 

accessible quantity, from the Bader-Gatti Source Function (SF)[199] which can also be casted 

in a matrix form and used in a similar fashion as LDMs.[200] 
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Due to their delocalized nature, special f functions have been designed to visualize non-

covalent interactions. As an example, the reduced density gradient (aka NCI for Non Covalent 

Interactions)[201] has been designed to detect weak interactions such as halogen bonds from 

the electron density. It helps to provide more stable pictures that do not change upon the 

quality of X-ray refinement.[202] Weak interactions in a benzene crystal are shown within this 

approach in Figure 8. The delocalized nature of CH-𝜋𝜋 vs CH-C interactions is apparent.  

Another important set of f functions are those for the analysis of electron pairing, such as the 

electron density Laplacian,[203] the Electron Localization Function (ELF)[204] and the Electron 

Localizability Indicator (ELI).[205] This family of functions identifies localized electrons, such 

as those in covalent bonds and lone pairs (Figure 8). By integration over bonds and lone pairs, 

properties (e.g. valence populations as shown in Figure 8) can be obtained. This analysis 

allows for example to rationalize the formation of channels in MOFs, clathrates or molecular 

crystals.[206] It is important to note that the ELF and ELI require the first-order density matrix, 

so that quantum crystallography developments also hold great potential for these analyses.[57]  

 

 

Figure 8. CH-π and CH-C interactions in a benzene crystal: (a) QTAIM, (b) NCI, (c) ELF. (d) 

LDM for isolated benzene (see Figure 9 for LDM of the benzene dimer). 



33  

 
 

Figure 9. (Top) Localization-Delocalization Matrix of an isolated benzene molecule, and (middle 

and bottom) the two partial LDMs (sub-matrices) of monomers A and B of a benzene dimer 

(without the 2x12x12 interaction elements that appear in the full 24x24 matrix of the dimer). Note 

that the sum of column or rows of the isolated benzene molecule is 42.001 indicating a +0.001 

cumulative integration error (numerical noise), which is 0.002% of the exact electron population 

of benzene (N = 42). The full 24x24 LDM of the dimer (not shown) sum to 83.996 (with a 

cumulative integration of -0.004). The difference between that total dimer population (that 

includes the numerical noise) and the sum of the populations of monomers A (41.936) and B 

(41.917) within the dimer is 0.143 electrons. Those 0.143 electrons are delocalized between the 

two rings and hold them together, taking as the most dominant delocalization bridges the atoms 

connected by inter-monomer bond paths, namely, (C4,H22) 0.02δ = , (C12,H18) 0.01δ = , 

but also other atoms mainly (C4,C10) 0.01δ = , and (C7,H18) 0.01δ = . 
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2.11 Crystal Engineering  

Molecular recognition, molecular assembling and molecular organization in space are three of 

the most important aspects in the study of intermolecular interactions. They have a strong 

impact in large domains of science such as crystal growth, crystal engineering, 

supramolecular chemistry and materials science, because the physical-chemical properties of 

supramolecular entities and crystalline solids do not only depend on the molecules they are 

constituted of, but also on the way molecules interact with each other. This is a 

straightforward consequence of the structure-properties relationship. The case of 

polymorphism in crystalline solids can be invoked as an example of the modification of the 

solid properties induced by different organizations of the same molecules in space. The 

variability that these molecules can display in their assembling can thus be understood in 

terms of the several possibilities existing in the recognition between different molecular 

regions.  

From the Hellmann-Feynman theorem,[207,208] the electron density distribution 𝜌𝜌(𝒓𝒓) in the 

ground state of any molecular system only depends on the nuclear positions. Accordingly, 

𝜌𝜌(𝒓𝒓) is straightforwardly related to the molecular structure, because the latter is defined by 

the atomic positions that are in turn identified by those of the nuclei. On the other hand, the 

Hohenberg & Kohn theorem[60] states that the total energy of a system can be written in terms 

of its electron density distribution. Hence, bringing together both fundamental theorems, the 

𝜌𝜌(𝒓𝒓)  function emerges as a conceptual bridge between the structure and the energetic 

properties of molecular systems. A good strategy to understand the relationship between them 

is thus the analysis of 𝜌𝜌(𝒓𝒓), which codes essential features of the molecular organization in 

space because it reflects the molecular interactions in the system. By extension, these features 

are not only implicitly coded in 𝜌𝜌(𝒓𝒓), but also in its derived properties, as in the Laplacian 

∇2𝜌𝜌(𝒓𝒓) and the electrostatic potential V(r). These scalar functions characterize the regions of 

the space where 𝜌𝜌(𝒓𝒓) is locally concentrated (∇2𝜌𝜌(𝒓𝒓) < 0) or depleted (∇2𝜌𝜌(𝒓𝒓) > 0) and the 

molecular electrophilic (𝑉𝑉(𝒓𝒓) > 0) and nucleophilic (𝑉𝑉(𝒓𝒓) < 0) regions.  
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The topological analysis of any scalar function provides richer information than appears from 

the direct observation of the function itself. In the widely used QTAIM theory,[193] this kind of 

analysis has been deeply developed for 𝜌𝜌(𝒓𝒓) to characterize many aspects that this function 

exhibits in atoms, molecules and their interactions. As an alternative, analogous topological 

concepts to ∇2𝜌𝜌(𝒓𝒓) and 𝑉𝑉(𝒓𝒓) can be applied to get insights into recognition, assembling and 

organization of molecules in space. Hence, the study of the topological critical points (CP) of 

∇2𝜌𝜌(𝒓𝒓) has indicated that charge concentration (CC) and charge depletion (CD) sites found in 

the valence shell of atoms are driving geometric preferences of molecules in the solid 

state.[209-211] This is shown in Figure 10a, where directional nucleophilic-electrophilic 

interactions between several CC and CD sites are simultaneously involved in the relative 

orientation of three molecules in a crystal. Additionally, specific CPs along bonding 

directions point out the nature of interactions.[212,213] Thus, in the polyiodide chains of the 

crystal structure of tyrosinium polyiodide hydrate (Figure 10b), iodines are distinguished 

from iodides by the type of CPs found in their interactions with surrounding atoms. In the 

case of 𝑉𝑉(𝒓𝒓) , its gradient vector field (i.e. the electric field 𝜖𝜖(𝒓𝒓) = −∇𝑉𝑉(𝒓𝒓) ) and the 

corresponding zero-flux surfaces originating from its topology permit to characterize the force 

lines driving the early interaction between molecules and the extension of the influence zones 

that molecular electrophilic and nucleophilic sites exhibit in intermolecular regions (Figure 

10c).[214] Furthermore, the intersection of the gradient vector fields of 𝜌𝜌(𝒓𝒓) and 𝑉𝑉(𝒓𝒓) has 

shown to bring the elements for the understanding of the counterintuitive assembling of 

anion-anion and cation-cation aggregates,[215-218] pointing out the regions of space that are 

involved in local attractive electrostatic interactions in hydrogen[219] and halogen[212] bonding. 

To illustrate these features, Figure 10d shows the phosphate-phosphate aggregation at 

equilibrium geometry, where attractive electrostatic forces take place in the hydrogen-

bonding region and keep the complex assembled. Indeed, in spite of the global destabilizing 

interaction due to Coulombic repulsion (interaction energy > +100 kJ/mol), the system is 
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trapped in a sharp potential well and ∼70 kJ/mol are needed to overcome the energetic barrier 

to dissociate the aggregation. 

 

Figure 10. (a) 𝐿𝐿(𝒓𝒓)  =  −∇2𝜌𝜌(𝒓𝒓) experimental map in intermolecular regions of the C8O2H4Se 

crystal structure: CC sites are represented by (3,-3) CPs of L (yellow spheres), CD sites are 

denoted by (3,+3) (violet), (3,+1) (pink) and (3,-1) (green) CPs of L. CC…CD directions closely 

correspond to internuclear directions (dashed lines), which in turn almost superimpose with bond 

path directions (bond critical points are in blue). (b) CPs of 𝐿𝐿(𝒓𝒓)  =  −∇2𝜌𝜌(𝒓𝒓)  in two regions of a 

poly-iodide chain (same color-code used in (a)): covalent bonds are identified by (3,-3) CPs in the 

middle of the bonds of I1-I2, I4-I5 and I9-I10, while intermolecular interactions are characterized 

by (3,+1) CPs in the middle of I2…I3…I4 and I8…I9 regions. I9 is an iodine atom making a type-

II halogen bonding interaction with iodine I8 (I8(CC)…(CD)I9) and a covalent interaction with 

I10, whereas I3 is an iodide displaying non-covalent interactions with both I2 and I4 iodine. (c) 

Experimental gradient vector field of 𝑉𝑉(𝒓𝒓) for the L-histidinium cation in the crystal structure of 

L-histidinium phosphate phosphoric acid: the influence zone of its nucleophilic COO-group is 

limited by a zero-flux surface of 𝑉𝑉(𝒓𝒓), the distance up to the saddle point in the surface ((3,+1) 
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CP, red sphere) being approximately 6 Å.  (d) At the equilibrium geometry of the 

phosphate…phosphate complex, the O-atomic basin (grey region) lays within the influence zones 

(electrostatic basins) of the H-nuclei. Black 𝜖𝜖(𝒓𝒓) lines crossing the region between the zero flux 

surfaces of 𝜌𝜌(𝒓𝒓) (grey border) and 𝑉𝑉(𝒓𝒓) (red lines border) are attractive force lines, whereas blue 

𝜖𝜖(𝒓𝒓) dashed-lines crossing the same region are repulsive force lines. Figure 10a reprinted with 

permission from reference[211], Copyright 2013 American Chemical Society; Figure 10b 

reproduced from reference[212] with permission from the Royal Society of Chemistry; Figure 10c 

reprinted with permission from reference[214], Copyright 2007 American Chemical Society; Figure 

10d is adapted from Figure 3 (upper left, including atomic labels) in reference[216], Copyright 

2013, with permission from Elsevier. 

 

 

2.12 Spin Densities 

Modeling magnetic properties of crystalline compounds by experiments is a challenging task 

for many reasons. First, the electrons contributing to the magnetism are few compared to the 

overall content of the unit cell. A second problem comes from the necessity of obtaining good 

quality crystals of suitable size for neutron diffraction (mm3) supporting high irradiation and 

longtime data collection. Finally, the magnetic properties usually appear at very low 

temperature (helium cooling) and experiments require magnetic fields to be applied on the 

samples, excluding routine experiments. At the end, the number and the experimental 

resolution of the collected data are limited, allowing to refine models with only a limited 

number of parameters. 

Recently, new methodological routes and software have being developed combining data 

obtained by different techniques such as X-ray and polarized neutron diffraction[23,220] or 

polarized neutron and X-ray magnetic diffraction.[221] Combining different experiments is a 

way to overcome limited resolution and leads to more precise models of spin or spin-resolved 

electron densities. From these joint refinements, experimental charge density or 

wavefunction-based models can be obtained. These experimental models are of utmost 

importance to test high-level theoretical calculations, as recently shown for a paramagnetic 

radical.[117] 
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To analyze these modeled (or theoretical) spin densities, new methods are developed or 

adapted, thus giving rise to new tools to explore magnetic pathways in crystals. For example, 

the Source Function method can produce representations that allow for visualization of the 

magnetic pathways and for conclusions about the specific role played by each atom along 

them.[222] 

Another complementary way is to combine theoretical calculations and experimental data sets 

in constrained wavefunction refinement approaches.[28-30,32] This method has proven to be 

efficient for combining X ray data and calculations, but one can imagine to include in this 

approach experimental magnetic structure factors. 

All these promising developments should not mask several critical aspects. First, neutron 

diffraction facilities are undergoing significant changes: most reactors will close (ILL in 

Grenoble, LLB in Saclay), but spallation sources appeared around the world (Switzerland, 

Japan, USA…) and a new one is under construction in Sweden (ESS, Lund) for the European 

researchers. These new facilities should develop beam-lines able to carry out polarized 

neutron diffraction experiments (like MAGIC at ESS), but also ensure our community with a 

sufficient beamtime access. To support this demand, we have to enlarge the number of 

possible users of our methods and this represents the second important point. For this, we 

have to consider that, until now, the studied crystals are mainly organic or metal-organic 

compounds. To open our community to solid-state physicists, we have to apply our methods 

to inorganic compounds in order to prove their capabilities in exploring the magnetic 

properties of these materials. A possible approach consists in including delocalized electrons 

in our models. Indeed, experimental Compton and magnetic Compton profiles can be used to 

model delocalized spin and charge densities that are of fundamental importance in inorganic 

material (for example, in conducting properties studies). Proposing this kind of new and more 

complete model is a currently ongoing effort.[223] 
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2.13 Molecular & Extended Solids 

Molecular and extended solids (M&ES) include quite diverse objects: on the one hand 

molecular crystals made by organic, inorganic or metallorganic molecules and, on the other 

hand, extended systems formed by n-dimensional (n=1-3) periodic networks, such as ionic 

solids (salts), covalent/polar solids  (e.g. semiconductors; binary compounds: carbides, 

silicides, nitrides, ...) and metallic, intermetallic and low-dimensional organometallic 

compounds. Focus here is only on the non-organic M&ES, although some of the exposed 

considerations apply equally to the organic M&ES in specific cases.   

Most M&ES are of relevance for their technological applications and are intensely 

scrutinized, with QCr playing a basic role in the puzzle that relates their geometrical structure, 

chemical bonding nature and properties to each other.  

A common trait of many M&ES is that the sole knowledge of their crystal structure is not 

enough to infer their chemical and electronic structure.[195,224,225] Chemists always like to draw 

dashes, arrows and dotted lines connecting atoms or groups of them, but there are plenty of 

M&ES where this operation is ambiguous or simply impossible, if based on their structure 

alone. Electron density and wavefunction analyses are often used to provide insights. 

Nevertheless, even with these tools, the answer may not be unique, as it may depend on the 

kind of descriptor that is used and on the physical space with which such descriptor is 

associated (1-electron → R3, 2-electrons → R6, basis-function space, local or non local, 

etc.).[224] 

There are M&ES in which two or more alternative pairs of atoms compete for a bond path 

and where even a negligible change of geometry leads to an abrupt change in the crystal 

graph (which is the entirety of the bond paths in the crystal). Description in terms of topology 

is sharply discontinuous in such a case, while it is continuous in terms of electron sharing 

between pairs of atoms, regardless of a bond path linking them exists or does not exist.[224] 

This impasse, partly solved by showing that BPs play the role of privileged electron exchange 

channels,[226] has called for an ever increasing adoption of continuous descriptors, 

directly/indirectly related to electron pairing and able to characterize multi-center bonding as 
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well as  the strengthening or weakening of competing interactions in series of chemically 

related systems.[224] The delocalization indices (DI),[196,227,228] the ELF,[229] the ELIs,[230] the 

Domain Averaged Fermi Hole (DAFH), [231,232] the Source Function[233] and the descriptors 

inherent to the Interacting Quantum Atom (IQA)[230] energy decomposition supply a non 

exhaustive list of them. Their joint use provides complementary, often compelling insight, but 

warrants thoughtful analyses.[195,224] Apart from the Source Function, all these descriptors 

require the pair density or at least the 1-RDM for their evaluation, calling for QCr tools to 

retrieve them directly from ab initio methods or, indirectly, through the XCW approach. 

Although akin to an orbital picture, DAFH analysis is fully derived from a quantum 

observable. It so establishes a link with the localised single-particle states approaches 

(ELMOs,[234] Natural Bond Orbitals (NBOs)[235], extremely localized Wannier functions[236]). 

Besides defining the network of bonds, QCT methods serve for characterizing their nature. 

When heavy atoms are involved, the task is not as simple as for bonds within light 

elements.[195,224] It calls for additional descriptors to be examined[237] and/or conventional ones 

to be reinterpreted.[195,224]  

Many properties of M&ES, like those related to electronic transport, depend directly on 

reciprocal space properties (e.g. energy dispersion of electronic bands in k-space). Yet, not 

much is known on how the characteristic features in the band structure are reflected in the 

electron density.[238] This relevant, although seldom explored QCr aspect, has been tackled in 

a study on transition metal carbides[238] and for optimizing thermoelectric compounds via 

orbital engineering.[239]  

M&ES provide an endless field of application and development for QCr approaches. Figure 

11 details two examples. 
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Figure 11. Examples of application of QCr methods to the realm of molecular and extended 

solids. (Left) Two separated valence shell charge concentrations, indicative of two lone pairs, are 

present in the non-bonding region of the central Si atom. They confirm the interpretation of the 

compound (cAAC)2Si as a silylone stabilized by two cyclic alkyl amino carbenes  (experimental 

electron density Laplacian isosurfaces, ∇2ρ = -2.5 eÅ-5). Adjusted from Scheme 1 and Figure 1 

with permission from reference[240], Copyright 2014 Wiley-VCH Verlag GmbH & Co. KGaA, 

Weinheim. (Right) A combined experimental and theoretical charge density study on the 

quintuply bonded dichromium complex (1) Cr2(dipp)2 (dipp = (Ar)NC(H)N(Ar) and Ar = 2,6-i-Pr2 

-C6H3) The electron density at the Cr-Cr BCP is essentially determined by the metal ions, as 

shown by the Source Function percentage (SF%) contributions [contrast SF% values for Cr-Cr 

and Cr-X (X=N,O) interactions]. Blue and red balls indicate sources and sinks, respectively. Data 

for compound 2 with formal bond order 4 are reported for the sake of comparison. Adjusted from 

Figure 8 with permission from reference[241], Copyright 2011 American Chemical Society. 

 

 

2.14 Quantum Crystallography and Materials Science 

Although quantum mechanics may appear as a complicated theory that is understandable only 

to experts in the field, a huge array of recent inventions rely on it (opto-electronic 

components, devices to store and transform energies, thermoelectric materials, etc.). Even if 

many phenomena were known also in the pre-quantum mechanics era, only after its 

development one could correctly interpret the mechanisms and therefore design materials, 

beyond models based on classical mechanics. Nonetheless, the quantum mechanical 

information extracted from experiments remains largely unused, and this is true in 

crystallography as well. However, the recent research in quantum crystallography opens new 

perspectives and potential applications, as described in the following.  
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Quantum magnets are appealing materials, consisting of spin centers coupled through 

exchange interactions. They may give rise to extended networks of different dimensionality as 

well as to zero dimension molecular magnets. Superconducting quantum interference or muon 

spin spectroscopy are methods to measure magnetic susceptibility, spatial ordering and spin 

dynamics, and thereafter derive simple models of exchange. However, the quantum 

information is limited to the spin states and their relative energies, whereas scattering 

experiments, in particular elastic or inelastic neutron diffraction, enable to model the 

magnetic structure of a crystal and its dynamics. Moreover, flipping ratios measurements[242] 

of polarized neutron diffraction allow the refinement of spin density distributions in 

solids,[243,244] even in combination with the charge density, as recently demonstrated.[23] The 

charge and spin density models inform on the electron correlation, the preferential exchange 

paths and the corresponding strength of spin coupling. This is vital to understand how the 

magnetism works and how to optimize the material design.[245] 

Dielectric properties are equally important in materials science. The industry of 

semiconductors seeks for high- or low-dielectric constant materials (with respect to SiO2), 

necessary for the miniaturization of micro-electronic components, to reduce the size of gate 

dielectrics or to guarantee better separation between transistors.[246] In telecommunication 

industry, transparent materials with high refractive index are fundamental to improve the 

performances of fiber optics.[247] The direct observation of atomic and molecular polarizations, 

due to the internal electric fields in crystal, is a clue of the atomic/molecular polarizability. 

Spackman and Jayatilaka[126] demonstrated the possibility of calculating polarizabilities of 

molecules in crystals using X-ray constrained molecular orbital calculations. Using the 

quantum theory of atoms in molecules, one can calculate polarizabilities of atoms, functional 

groups or molecules embedded in crystalline matrices and therefore recognize key factors for 

the technological requests.[248] 

Quantum crystallographic approaches also enable the characterization of non-equilibrium 

phenomena in molecular crystals, due to photo-excitation or X-ray probe pulses.[249] Because 

these phenomena depend on structural changes on a wide time scale, time-resolved 
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experiments (down to femtosecond resolution) are essential to understand processes that 

underlie material behaviors. Although experimental requirements do not yet allow a very 

accurate mapping of the charge density, one may envisage a fruitful synergy between 

theoretical approaches and experimental measurements to overcome current limitations. 

Quantum crystallographic studies on many other kinds of materials, such as thermoelectric 

pulses, metals and alloys, superconductors etc.,[250] have appeared with the goal of finding a 

more robust structure-property correlation. The advanced methodologies of quantum 

crystallography may certainly enable to gain more insights into the nature of properties. 

  

2.15 Crystal Structure Prediction 

Crystal Structure Prediction (CSP) was an almost impossible challenge for a long time,[251,252] 

but recent methodological developments[253] have eventually made CSP manageable and led 

to many successes and impressive discoveries. [254-257] Given a chemical formula, CSP stands 

for finding the corresponding stable crystal structure at a given pressure (and temperature). A 

simultaneous prediction of all stable stoichiometries and structures for a set of composing 

elements is performed using the variable-composition variant of CSP methods.[258] 

CSP is a global optimization problem since the stable structure is associated with the lowest 

minimum of the free energy surface.[253] The starting point in metadynamics, simulated 

annealing, basin hopping, and minima hopping approaches is chosen in a good region of 

configuration space to avoid sampling in poor regions, while in the self-improving methods 

the best structures are located step by step, using evolutionary algorithms. The latter are 

particularly suited and powerful for CSP, being unbiased, fully ab initio (only the exact or 

variable chemical composition need to be known) and able to produce, by their own nature, 

increasingly good structures in subsequent generations.[258] 

Intimate relationships link CSP and QCr. An enthalpy or free energy value needs to be 

computed for each sampled structure in CSP approaches. Depending on the method, also a 

local structural relaxation is derived using quantum mechanical (periodic electronic structure) 
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calculations or suitable force fields, calibrated via QM calculations. DFT approaches are 

generally adopted, but they have their well-known limits - a tendency to prefer electron 

delocalization (HF methods behave oppositely)[259] favoring delocalized metal-like structures 

over covalently bonded insulating structures. In addition DFT has the difficulty in properly 

evaluating dispersion energy effects with a uniform accuracy in the whole range of sampled 

pressures.[260,261] Therefore predicted structures and phase diagrams need to be validated[254-257] 

through experiments, also inherently related to QCr (X-ray diffraction, Raman spectroscopy, 

etc.).  

CSP often involves exploring unbeaten tracks of potential energy surfaces, leading to the 

discovery of new structures where a totally new chemistry emerges, with exotic, 

unanticipated bonding situations. [254-257,262,263] Indeed, even at moderate pressure (< 10 GPa), 

the compressive energy, which adds up to the system internal energy, is akin to the energy of 

a moderate strength hydrogen bond and, at high pressure (<100 GPa), is large enough to break 

normal chemical bonds.[262] Our usual chemical knowledge is based on the periodicity of 

atomic properties (radii), reflecting the periodicity in the electron configurations of the 

outermost shell. When pressure increases, the variation in atomic radii across the periodic 

table becomes much less important and thus, e.g., the distinction between alkali and transition 

elements progressively vanishes.[262] For a study of chemical bonding in such unconventional 

cases, this requires completely unbiased approaches, such as the Quantum Chemical 

Topology methods,[264] based on QM observables, the heart of QCr.  

One representative example is the recent discovery[256] of Na2He, the first neutral 

thermodynamically stable compound of He (at pressure > 113 GPa), using a variable-

composition evolutionary CSP approach, followed by experimental validation and 

rationalization of its geometrical and electronic structures in terms of QCT methods (Figure 

12). Na was loaded into a He medium in a laser-heated diamond anvil cell and compressed up 

to 155 GPa, with synchrotron X-ray diffraction used to monitor sample evolution. Na2He 

resembles a 3D checkerboard with Na8 cubes alternatively filled with He or allocating an 

interstitially localized electron pair, revealed by a non-nuclear attractor electron density 
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maximum and a massive accumulation in the deformation electron density map. Na2He is an 

electride, with localized electron pairs forming 8-center-2-electron bonds within the empty 

Na8 cubes.  

 

 

Figure 12. Na2He: (Top left): predicted convex hulls of the Na-He system, based on the 

theoretical ground states of Na and He at each pressure.  The calculated ΔHformation(NaxHe1−x) = 

xH(Na) + (1−x)H(He) − H(NaxHe1−x) (H = enthalpy) indicates that Na2He has a lower enthalpy, 

hence is thermodynamically more stable, than the mixture of elemental Na and He, or any other 

mixture, at pressures above 160 GPa. (Top right): Synchrotron XRD data. Below 113 GPa only 

single crystal reflections of elemental Na were observed, whereas above this pressure new single 

crystal reflections appeared, which became even stronger after laser heating to a temperature > 

1500 K.  Vertical ticks correspond to expected positions and intensities of XRD peaks of Na2He, 

tI19-Na, Re (gasket) and W (pressure gauge). (Bottom left): Geometric and electronic structure of 

Na2He. (Bottom right): Interaction density in the (100) plane of Na2He passing through He atoms. 

This quantity was obtained by making separate calculations on the Na and He sublattices (i.e. 

Na2He without He and without Na, respectively) and subtracting the resulting electron densities 

from that of Na2He. NNAs indicate interstitial electron localizations. Insertion of He pushes 

electron density out, causing its interstitial localization. Adjusted from Figures 1, 3 and 4 with 

permission from reference[256] and (bottom right) from Figure 1 in reference[265], with permission 

from and credit to Artem Oganov, Skolkovo Institute, Moscow, Russia. 
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3. Future Perspectives  

In the previous sections, it emerged that significant research based on quantum mechanics 

encompasses several areas of crystallography, both experimental and theoretical, with a 

strong interplay between them. This implies the existence of a field of quantum 

crystallography, although a concise and comprehensive definition is difficult, at least at this 

stage. Thus, the question remains: what exactly is quantum crystallography? 

According to Feynman,[266] quantum mechanics “is the description of the behavior of matter 

and light in all its details and, in particular, of the happenings on an atomic scale”. Among 

various fields, he mentioned also the study of periodically arranged quantum systems. Often 

scientists use “quantum mechanics” and “quantum physics” as synonyms, to emphasize the 

intrinsic quantum nature of all investigations dealing with atoms and molecules. For this 

reason, in physics, quantum mechanics is not a purely theoretical discipline, but it embraces 

all aspects of a natural science: observations, rationalizations, theorizations and applications. 

On the contrary, quantum chemistry and quantum biology, although lacking of a formal 

definition, are often perceived only as theoretical disciplines that provide answers by 

performing computer calculations and exploiting sophisticated software. Nevertheless, both of 

them have experimental counterparts, mainly spectroscopy or any form of energy conversion. 

On the other hand, quantum crystallography is more naturally bound to scattering 

experiments, as clearly reflected in the original definition by Massa, Karle and Huang,[24,46] as 

well as in many previous works on refinements of electron densities, density matrices and 

wavefunctions.[6,14,15,27,28,88] In fact, historically, the interplay between quantum mechanical 

models and experimental scattering data has been enormous and vital for crystallography in 

its entirety (see Introduction).  

We want to highlight that, in general, the term “quantum” does not only refer to 

computational approaches. In fact, experiments by themselves can reveal the quantum nature 

of matter and describe quantum mechanical phenomena (e.g. the Stern-Gerlach experiment, 

Bose-Einstein condensation, superconductivity, tunneling effects, or, in fact, scattering of X-

rays by electrons and of electrons by the electric potential). In turn, crystallography, being a 
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natural science, is not only associated with observations (and not only with scattering 

techniques). Quantum mechanical models have always been necessary to interpret the 

measurements and overcome the loss of the phase information in the X-ray diffraction data. 

Furthermore, crystallography also consists of direct applications of first-principle quantum 

mechanical methods with periodic boundary conditions (nowadays implemented in world-

wide recognized software, such as Quantum Espresso,[69] WIEN2k, [62,71] Crystal,[267] 

VASP,[268-271] Turbomole[70]) to solve problems in solid-state physics/chemistry. 

Nevertheless, while the original definition of QCr encompasses only the developments and 

applications of strategies that combine quantum mechanics and experimental scattering in a 

strictly intertwined protocol, it is evident that other facets of quantum crystallography foster a 

broadening of its definition. In the following subsections, we present the different 

perspectives that have emerged so far and their possible implications. 

 

I. First option: Preserving the original meaning 

According to this view, quantum crystallography would remain tightly linked to wavefunction 

or density matrix modeling with constraints to scattering experiments and, conversely, to the 

improvement of crystallographic information via ad hoc QM calculations. In this option, the 

purpose of QCr is making predictions of crystal features and properties more reliable than 

from pure first-principle calculations or experimentally derived models. An advantage of this 

option is that a clear definition is possible that coincides with the historic development of the 

term, thus avoiding misunderstandings. One relevant drawback of this vision is the exclusion 

of charge density refinements, which exploit the more traditional multipole model techniques 

or the maximum entropy method. 

 

II. Second Option: Outcome-based definitions. 

Option 1 clearly limits QCr to the instrumental scope of enhancing quantum mechanical 

models or crystallographic information through their suitable combination, when, actually, 

information on a system may also be enhanced the other way around. A different definition 
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could indeed be based on the purpose of the study, without a rigid limitation to 

experimentally constrained wavefunction strategies or refinements intrinsically linked to 

updated wavefunction information. This implies a more classical approach: experiments 

validate and stimulate theoretical predictions and vice versa. In fact, crystallographic data 

contain information on a real system (which is in principle “unknown”, defective, at a given 

temperature, etc.) and on a space/time averaged basis, whereas QM calculations refer to a 

model system (with a certain composition, geometry, Hamiltonian, etc.) and have both the 

advantages and the disadvantages of treating a well-defined, but approximate object. 

In this view, QCr would be the branch of science studying the quantum mechanical functions 

(and properties derived from them) in crystals. This includes the investigation, in position or 

in momentum space, of charge and spin density, wavefunctions, density matrices, based on 

experiments, on theoretical calculations or on a combination of them. 

 

III. Third option: Crystals as quantum objects 

According to this view, QCr is the study of properties and phenomena that occur in crystalline 

matter and can be explained only by quantum mechanics. Again, a combination of 

experimental methodologies and theories describe, understand and predict those phenomena. 

In keeping with Feynman, the various theories concern especially the interaction between 

matter and radiation (which reveals the atomic and electronic structure of a compound) as 

well as the bonding between atoms or molecules (which dictates the electronic structure and 

explains the behavior of a material). The experimental methods include scattering and 

spectroscopic techniques, with observations enabling to refine quantum mechanical models 

that reveal structural or functional features. Specific goals of QCr are the determination of 

quantum related functions and quantities (such as wavefunctions, charge and spin densities, 

density matrices, electric or magnetic moments, etc.), the evaluation of the properties of 

materials and the analysis of the bonding features between the atoms and molecules that 

constitute a crystal. 
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This open definition reflects the broad definitions of quantum biology and quantum 

chemistry, i.e. the application of quantum mechanical concepts to chemical compounds and 

biologically relevant objects. This implies that QCr does not only include determination of 

wavefunctions, density matrices or electron densities, but, more generally, it concerns the 

study of electronic structures and their changes, including, for example, the determination of 

magnetic structures, photo-induced processes, electric and magnetic polarizations and 

polarizabilities, etc. In this definition, the simple determination of crystal structures is not per 

se a quantum crystallographic study, if the purpose is simply mechanical but not quantum-

mechanical. In other words, the determination of a structure to provide a “ball and stick” 

picture of a molecule or a solid cannot be considered quantum crystallography, although 

quantum crystallographic methods may find application also for more general purposes (see 

also next section). On the other hand, determinations of structures of photo-excited species or 

(electric or magnetic) field-polarized compounds clearly belong to quantum crystallography. 

This open definition means that QCr is the field that bridges structure and functions through 

the distribution and dynamics of electrons in space. 

 

IV. Fourth option: quantum crystallography as a multidisciplinary field.  

If quantum crystallographic studies tackle all quantum mechanics-based problems in 

crystallography, then the possible connections with other disciplines are enormous. Molecular 

chemists, biochemists and solid-state chemists may take advantage of improved models for 

equilibrium structures at specific thermodynamic conditions. Material scientists may 

appreciate an improved knowledge of the dynamics of atomic and electronic structures under 

perturbation. Theoretical chemists will find new and more precise ways to test their 

theoretical models.  

However, this concept of QCr is not limited to solid-state science, but also includes surface 

science as well as studies of nanoscale materials, e.g. via radiation-damage free femtosecond 

X-ray protein nanocrystallography[272-274] or via electron diffraction in thin films and 

monolayers.[275]   Since QCr is inherently associated with scattering, an obvious extension of 
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the domain is the scattering and imaging of isolated (macro-)molecules or single objects such 

as cells,[276] which is nowadays feasible with new X-ray lasing or intense electron sources.[277-

281] In this respect, we note that the term “quantum crystallography” has been also used for 

these kinds of studies.[56] 

 

Risks and opportunities:  

One of our goals is finding a new definition of QCr. However, this includes the inherent risk 

of confusing the new meaning/definition of QCr with the original one that has just recently 

been reviewed[44,45] or the risk of excluding new facets that will naturally emerge due to a 

continuous progress of crystallography and quantum mechanical methods. Therefore, it is 

important to dynamically fill the new definition with applications and examples in order to be 

acknowledged as useful and meaningful. This will allow beneficial interactions with 

neighboring research areas where important innovations are expected. This article intends to 

provide a first attempt to set the domain, to address the connections with other disciplines and 

the possible implications of quantum crystallographic studies. Strong synergies are expected 

with materials and life sciences, including many different fields of crystallography. 
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Between Two Worlds – A New World. An amalgamation of quantum mechanics and 
diffraction experiments is a magnifying lens for the quantum phenomena in molecules and 
materials. In this discussion paper, the new research domain “quantum crystallography” is 
debated in the context of current research fields. The perspective of becoming an independent 
natural science is outlined. 
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