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Abstract
This paper proposes a new time scaled Wiener process with random effects
that has been specially designed to allow the description of non-monotonic
degradation phenomena with bathtub shaped degradation rate, here intended
as derivative of the mean function. Two different parameterizations of the pro-
posed Wiener process are suggested, and the main features of the process are
illustrated and discussed. The maximum likelihood estimation of its parameters
is addressed. A failure threshold model is adopted to formulate and estimate
the probability distribution function of the remaining useful life, which consti-
tutes the core prognostic tool in condition-based maintenance. As a motivating
example, the proposed model is applied to a set of real degradation data of
metal-oxide-semiconductor field-effect transistors, where, as a result of prelim-
inary analyses, some of the process parameters are assumed to be random in
order to describe the considerable heterogeneity observed between the degrada-
tion paths of different units. Obtained results demonstrate the affordability and
utility of the proposed model, especially for the estimation of unit-specific fea-
tures performed on the basis of degradation data collected in the early phase of
the life of a unit belonging to the considered heterogeneous population.

K E Y W O R D S

bathtub shaped degradation rate, estimation of unit-specific features from early data, random
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1 INTRODUCTION

The most of gamma, inverse Gaussian and Wiener based degradation models proposed in the literature (see, e.g.,
Abdel-Hameed,1 van Noortwijk,2 Ye & Chen,3 Whitmore and Schenkelberg,4 Wang,5 Wang & Xu,6 Ye et al.,7 and Kahle
et al.8) are characterized by a monotonic degradation rate function, here intended as the derivative of the mean degrada-
tion function. However, the degradation mean function of technological units is often inverse S-shaped, and hence the
degradation rate function is typically bathtub-shaped. In fact, real world degradation processes generally present three
phases: a first phase where the degradation rate function presents a decreasing behavior, a second phase where it is almost
constant, and a third phase where it increases. These three phases are usually referred to as accommodation phase, steady
state (or normal) phase, and degenerative (or catastrophic) phase, respectively (see, e.g., Gertsbakh and Kordonskiy9).
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F I G U R E 1 The degradation paths (in percent transconductance loss) and the empirical mean of the five MOSFETs (data pertaining to
the same degradation path are connected by lines to improve readability)

Models with monotonic degradation rate function are clearly able to describe only two of these three phases. On the
other side, these models are usually applied to sets of degradation data that do not exhibit all of the mentioned three
phases. This is not the case of the set of real degradation data of metal-oxide-semiconductor field-effect transistors (MOS-
FETs) displayed in Figure 1, which gives clear evidence that the empirical mean function of the observed degradation
process (see the black dashed line) is inverse S-shaped, so that the degradation rate function is bathtub-shaped.

Nonetheless, at the best of the authors knowledge, the only example of continuous-time, continuous-state degradation
process with bathtub degradation rate function is provided by Peng et al.10 who proposed a 3-parameter inverse S-shaped
mean function, both for the Inverse Gaussian process and for the competing gamma and Wiener processes considered in
the same paper for comparative purposes.

An alternative strategy for modeling the degradation data reported in Figure 1 is suggested in Chen et al.11 where the
bathtub shaped behavior of the degradation rate function is modeled by adopting a change point approach. This approach,
which is commonly adopted to describe degradation phenomena where the degradation rate and/or other characteristics
of the degradation phenomenon of interest change abruptly at a given change-point, consists in using different models to
describe the evolution of the degradation process before and after the change point (see, e.g., Wang et al.,12 Kong et al.,13

Liu et al.,14 Gao et al.,15 and Lin et al.16). A limitation of this method is that the resulting whole model is usually indexed
by a large number of parameters. In addition, the model parameters are estimated by adopting cumbersome procedures
that, to put it simply, consist in detecting the location of the change point by means of semi-heuristic algorithms and in
estimating the parameters of the model used in a given phase from the data collected in that phase only. As a consequence,
by using such a change-point approach, it is very difficult, if not impossible, to make inference on the residual reliability
and/or on the remaining useful life when the most of available data are collected during the early phase or just after the
change-point.

Motivated by the mentioned arguments, in this paper we propose and apply to the MOSFET data a new time scaled
Wiener process (see, e.g., Whitmore and Schenkelberg4 and Wang5) with random effect that can describe degradation
phenomena where the degradation rate function is bathtub-shaped. An important characteristic of the proposed model
is that it can be used to make inference on features of a (new) unit belonging to the considered heterogeneous population
also from data collected only in the early phase of its life. Obtained results show that the proposed model fits adequately
the MOSFET data and demonstrates the effectiveness and affordability of the proposed approach.

The paper is organized as it follows. Section 2 introduces the proposed Wiener process in its basic form and illus-
trates its main features. In particular, two different parameterizations of the proposed WP are formulated, which allows
describing different forms of unit-to-unit variability and (hence) accounting for the presence of different forms of het-
erogeneities. The remaining useful life of the units and its probability distribution are here defined and formulated, by
adopting a failure threshold model. Section 3 discusses the maximum likelihood estimation of the parameters of the basic
model. Section 4 is devoted to the analysis of the MOSFET data. In this section, a preliminary analysis is performed that
gives evidence of the presence of form of heterogeneity among the degradation paths of the different units. Hence, in
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order to account for this form of (unit-to-unit) variability, the basic model is extended to incorporate random effects. This
extended version of the proposed new time scaled Wiener model is then applied to the MOSFET data. Finally, Section 5
is devoted to final considerations.

2 THE PROPOSED WIENER PROCESS

The aim of this paper is proposing a new characterization of the time scaled Wiener process (WP) that can describe degra-
dation phenomena where the degradation rate function is bathtub-shaped. The time scaled Wiener process {W(t), t ≥ 0}
is a stochastic process with independent, non-stationary, and Gaussian distributed increments, that can be defined as:

W(t) = Λ(t) + 𝜎0B(Λ(t)), (1)

where {B(t), t ≥ 0} is the standard Brownian motion, 𝜎0 > 0 is the diffusion coefficient, andΛ(t) is a monotonic increasing
function, which represents the mean function of the process, E{W(t)}. In this paper, by degradation rate function we
intend the first derivative of Λ(t) with respect to t.

The proposed model is obtained by assigning to Λ(t) (and hence to E{W(t)}) the following 4-parameter expression:

Λ(t) = E{W(t)} = (t∕𝛼1)𝛽1 + (t∕𝛼2)𝛽2
, (2)

where 𝛼1, 𝛼2, 𝛽1, and 𝛽2 are positive valued parameters. As requested, the resulting time scaled WP can describe (among
the others) phenomena where the degradation rate function is bathtub shaped. In fact, under the proposed model, the
degradation rate function has the following expression:

dΛ(t)
dt

= dE{W(t)}
dt

= 𝛽1

𝛼1

(
t
𝛼1

)
𝛽1−1

+ 𝛽2

𝛼2

(
t
𝛼2

)
𝛽2−1

, (3)

which is bathtub shaped, provided that (𝛽1 − 1) ∕ (𝛽2 − 1) < 0. It is worth to note that the degradation rate function (3) has
the same functional form of the bathtub shaped hazard function suggested in Xie and Lai.17 Indeed, alternative bathtub
shaped characterizations of the time scaled WP can be readily obtained by assigning to the degradation rate function
dΛ(t)∕dt functional forms that coincide with other bathtub shaped hazard functions proposed in the literature (see Lai
et al.18 and Nadarajah19 for a review of existing models).

From (3), being:

d2E{W(t)}
dt2 = 𝛽1 (1 − 𝛽1)

𝛼

2
1

(
t
𝛼1

)
𝛽1−2

+ 𝛽2 (1 − 𝛽2)
𝛼

2
2

(
t
𝛼2

)
𝛽2−2

, (4)

the inflection point tinfl of the mean function, that is, the time at which the degradation rate function reaches its minimum
and d2E{W(t)}∕dt2 = 0, is located at:

tinfl =

[
−𝛽2 (𝛽2 − 1)
𝛽1 (𝛽1 − 1)

𝛼

𝛽1
1

𝛼

𝛽2
2

]1∕(𝛽1−𝛽2)
. (5)

In Figure 2 the degradation mean of the proposed WP is depicted for selected parameters (𝛼2, 𝛽1, 𝛽2) and common inflec-
tion point, say tinfl = 50. In the cases considered in this figure, the inequality (𝛽1 − 1) ∕ (𝛽2 − 1) < 0 is always satisfied.
Moreover, in order that tinfl = 50, the scale parameter 𝛼1 is set to:

𝛼1 =
[
−50𝛽1−𝛽2

𝛼

𝛽2
2
𝛽1 (𝛽1 − 1)
𝛽2 (𝛽2 − 1)

]1∕𝛽1

. (6)

Figure 3 shows the degradation rate functions corresponding to the mean functions represented in Figure 2, which
confirm the ability of the proposed model to describe different bathtub behaviors and give evidence of the flexibility of
the proposed model.
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F I G U R E 2 Shapes of the mean function of proposed WP with different values of process parameters and common inflection point
tinfl = 50

F I G U R E 3 Shapes of the degradation rate function of the proposed WP with different values of process parameters and common
inflection point tinfl = 50

Given an initial condition, the proposed time scaled WP is fully defined by the probability density function (pdf) of
the degradation increment ΔW(t,Δt) during the time interval (t, t + Δt). This pdf can be expressed as:

fΔW(t,Δt)(𝛿) =
1√

2𝜋 𝜎2
0 ΔΛ(t,Δt)

exp

[
−1

2
(𝛿 − ΔΛ(t,Δt))2

𝜎

2
0 ΔΛ(t,Δt)

]
,−∞ < 𝛿 < ∞, (7)

where 𝜎0 > 0 is the diffusion coefficient, Λ(t) is the mean function (2), and ΔΛ(t,Δt) = Λ(t + Δt) − Λ(t).
From (7), and the corresponding cumulative distribution function (Cdf) of the degradation increment is given by:

FΔW(t,Δt)(𝛿) = Φ

(
𝛿 − ΔΛ(t,Δt)
𝜎0
√
ΔΛ(t,Δt)

)
, (8)

where Φ(⋅) denotes the standard normal Cdf.
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The variance function of the process is given by:

V{W(t)} = 𝜎2
0 Λ(t) = 𝜎

2
0

[(
t
𝛼1

)
𝛽1

+
(

t
𝛼2

)
𝛽2
]
, (9)

and the variance-to-mean ratio V{W(t)}∕E{W(t)} is constant with the operating time and equal to the squared diffusion
coefficient 𝜎2

0 .
An alternative parameterization of the proposed WP is given by:

W(t) = 𝜇 Λ∗(t) + 𝜎B (Λ∗(t)) , (10)

where Λ∗(t) = t𝛽1 + (t∕𝛼)𝛽2 , 𝜇, 𝛼, 𝛽1, 𝛽2, 𝜎 > 0, and (𝛽1 − 1) ∕ (𝛽2 − 1) < 0. This alternative parameterization has been
obtained from (1) and (2) by setting 𝜇 = (1∕𝛼1)𝛽1 , 𝛼 = 𝛼2∕𝛼

𝛽1∕𝛽2
1 , and 𝜎 = 𝜎0∕𝛼

𝛽1∕2
1 .

The pdf of the degradation increment ΔW(t,Δt) under this alternative parameterization is given by:

fΔW(t,Δt)(𝛿) =
1√

2𝜋 𝜎2ΔΛ∗(t,Δt)
exp

[
−1

2
(𝛿 − 𝜇 ΔΛ∗(t,Δt))2

𝜎
2ΔΛ∗(t,Δt)

]
, −∞ < 𝛿 <∞, (11)

where ΔΛ∗(t,Δt) = Λ∗(t + Δt) − Λ∗(t). The mean E{W(t)} and variance V{W(t)} functions of the degradation process
(10) are given by, respectively:

E{W(t)} = 𝜇
[
t𝛽1 + (t∕𝛼)𝛽2

]
, (12)

V{W(t)} = 𝜎2 [t𝛽1 + (t∕𝛼)𝛽2
]
, (13)

and the (constant) variance-to-mean ratio is now equal to 𝜎2∕𝜇. Obviously, it is 𝜎2∕𝜇 = 𝜎2
0 .

Finally, under this alternative parameterization, the degradation rate function dΛ∗(t)∕dt is given by:

dΛ∗(t)
dt

= 𝛽1t𝛽1−1 +
(
𝛽2

𝛼

)( t
𝛼

)
𝛽2−1

and the inflection point tinfl of the mean curve, which in this case depends only on three process parameters, say 𝛼, 𝛽1,
and 𝛽2, is located at:

tinfl =
[
−𝛽2 (𝛽2 − 1)
𝛽1 (𝛽1 − 1)

1
𝛼
𝛽2

]1∕(𝛽1−𝛽2)
. (14)

It is useful to remark that, considering alternative parameterizations of the proposed WP in the absence of unit-to-unit
variability does not give any advantages in term of fitting ability of the model. On the contrary, when some parameters
are unit-specific, different parameterizations can be useful for describing different forms of heterogeneity.

2.1 Remaining useful life and reliability

Degrading units are usually assumed to fail when their degradation level passes an assigned failure threshold, say D. More
precisely, when the underling degradation process is non monotonic, the unit lifetime X is defined as the first passage
time of the hidden degradation process to D:

X = inf{x ∶ W(x) > D} (15)

and the remaining useful life (RUL) Xt, at the current time t, is defined as

Xt = max{0,X − t}, (16)

so that, Xt is equal to X − t if the unit at t is unfailed, and is assumed to be 0 otherwise.
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From Giorgio and Pulcini,20 the conditional pdf and Cdf of the RUL under the proposed WP (1) with bathtub shaped
degradation rate function, given the degradation level wt at the current time t, are respectively given by:

fXt (x|wt) =
D − wt√

2𝜋 𝜎2
0 [ΔΛ(t, x)]3

exp

[
−1

2
(D − wt − ΔΛ(t, x))2

𝜎

2
0 ΔΛ(t, x)

]
dΔΛ(t, x)

dx
, x ≥ 0, (17)

and

FXt (x|wt) = Φ
(√

𝜆

ΔΛ(t, x)

(
ΔΛ(t, x)
D − wt

− 1
))

+ exp

[
2 (D − wt)

𝜎

2
0

]
Φ
(
−
√

𝜆

ΔΛ(t, x)

(
ΔΛ(t, x)
D − wt

+ 1
))

, (18)

where 𝜆 = ( D − wt)2∕𝜎2
0 and, from (2):

dΔΛ(t, x)
dx

= 𝛽1

𝛼1

(
t + x
𝛼1

)
𝛽1−1

+ 𝛽2

𝛼2

(
t + x
𝛼2

)
𝛽2−1

. (19)

Details about the derivation of these functions in the case of the basic Wiener process (i.e., when Λ(t, x) ∝ x) are given in
Kahle et al.8

From (17), the conditional mean RUL is given by:

E {Xt|wt} =
∫

∞

0
x fXt (x|wt) dx (20)

and the conditional reliability function is RXt (x|wt) = 1 − FXt (x|wt).
In computing the distribution of Xt, we have implicitly assumed that, if the degradation level at the time t is below the

threshold limit D, then the probability that the process has passed this threshold before t is null. In fact, this assumption
works quite satisfactorily when the mean of the increment is relatively large with respect to its standard deviation (a
circumstance that often occurs in the case of real degradation processes). Note that, under this assumption, since the WP
is Markovian, the conditional pdf (17) and Cdf (18), given W(t) = wt, are independent of the past history of the process,
depending only on the current degradation level wt.

From (17) and (18), by setting wt = 0 and t = 0, so that ΔΛ(0, x) ≡ Λ(x) and
√
𝜆 = D∕𝜎0, the pdf and the Cdf of the

useful life X of a new unit are given by:

fX (x) =
D√

2𝜋 𝜎2
0 [Λ(x)]3

exp

[
−1

2
(D − Λ(x))2

𝜎

2
0 Λ(x)

]
dΛ(x)

dx
, x ≥ 0, (21)

and:

FX (x) = Φ
(

D
𝜎0

√
1
Λ(x)

(
Λ(x)

D
− 1

))
+ exp

(
2 D
𝜎

2
0

)
Φ
(
− D
𝜎0

√
1
Λ(x)

(
Λ(x)

D
+ 1

))
, (22)

where dΛ(x)∕dx ≡ dE{W(t)}∕dt is given in (3).
Clearly, all the above distributions can be expressed under the alternative parameterization (10) suggested at the end

of the Section 1, by replacing 𝜇 Λ∗(x), 𝜇 ΔΛ∗(t, x), and 𝜎∕
√
𝜇 to Λ(x), ΔΛ(t, x), and 𝜎0, respectively.

3 THE LIKELIHOOD FUNCTION

Let us suppose that the degradation levels of m identical units that operate under identical operating conditions are
recurrently observed at planned inspection epochs. Moreover, let ni and ti,1, … , ti,ni (i = 1, … ,m) denote the number of
inspections performed on the unit i and the corresponding inspection times, respectively.
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Based on these data, under the basic WP (1), the log-likelihood function relative to the degrading unit i is given by:

𝓁 (𝜹i) = −
ni

2
ln(2𝜋) − ni ln(𝜎0) −

1
2

ni∑
j=1

ln
(
ΔΛi,j

)
−

ni∑
j=1

(
𝛿i,j − ΔΛi,j

)2

2 𝜎2
0 ΔΛi,j

, −∞ < 𝛿i,j < ∞ (23)

where ΔΛi,j = ΔΛ
(

ti,j−1, ti,j − ti,j−1
)
, 𝛿i,j is the observed degradation increment of the unit i during the j-th time interval(

ti,j−1, ti,j
)
, with ti,0 = 0 for all i, and 𝜹i =

(
𝛿i,1, … , 𝛿i,ni

)
is the vector of the observed degradation increments of the unit i.

Consequently, from (23), the likelihood function relative to the m units results in:

𝓁(𝜹) = −N
2

ln(2𝜋) − N ln(𝜎0) −
1
2

m∑
i=1

ni∑
j=1

ln
(
ΔΛi,j

)
−

m∑
i=1

ni∑
j=1

(
𝛿i,j − ΔΛi,j

)2

2 𝜎2
0 ΔΛi,j

, (24)

where N =
∑m

i=1ni is the total number of observations and 𝜹 = (𝜹1, … , 𝜹m) is the vector of all observed degradation
increments.

The maximum likelihood (ML) estimates of 𝛼1, 𝛽1, 𝛼2, 𝛽2, and 𝜎0 are the values 𝛼1, ̂𝛽1, 𝛼2, ̂𝛽2, and 𝜎0 that maximize the
likelihood function (24). The ML estimate 𝜎0 of 𝜎0 is given by:

𝜎0 =

√√√√√√ 1
N

m∑
i=1

ni∑
j=1

(
𝛿i,j − ̂ΔΛi,j

)2

̂ΔΛi,j
,

and depends on the ML estimates 𝛼1, ̂𝛽1, 𝛼2, and ̂
𝛽2, of the parameters 𝛼1, 𝛽1, 𝛼2, and 𝛽2 through ̂ΔΛi,j =

(
ti,j∕𝛼1

)̂
𝛽1 +(

ti,j∕𝛼2
)̂
𝛽2 −

(
ti,j−1∕𝛼1

)̂
𝛽1 −

(
ti,j−1∕𝛼2

)̂
𝛽2 . The ML estimates 𝛼1, ̂𝛽1, 𝛼2, and ̂𝛽2 are not available in closed form. However, they

can be easily retrieved by using a numerical optimization method.
Clearly, due to the invariance property of the ML estimators, the ML estimates of the parameters 𝜇, 𝛼, and 𝜎 under

the alternative parameterization (10) proposed at the end of the Section 1 can be easily obtained from the ML estimates
𝛼1, ̂𝛽1, 𝛼2, ̂𝛽2, and 𝜎0 as it follows: 𝜇 =

(
1∕𝛼1

)̂
𝛽1
, 𝛼 = 𝛼2∕𝛼

̂
𝛽1∕̂𝛽2
1 , and 𝜎 = 𝜎0∕𝛼

̂
𝛽1∕2
1 .

4 CASE STUDY

Let us consider the set of percent transconductance degradation data of some metal-oxide-semiconductor field-effect
transistors (MOSFETs) reported in Table 1. These data were initially given in Lu et al.21 and successively used in Yang22

and Chen et al.11 The dataset consists of 135 degradation measures of 5 MOSFETs. Specifically, there are 35 measures for
each MOSFET, obtained at n = 35 measurement times, t1, t2, … , t35, up to t35 = 40,000 sec. The measurement times are
the same for all the MOSFETs.

As depicted in Figure 1, the degradation paths of the units 2–5 are clearly inverse S-shaped. Moreover, the dataset
contains 12 negative and 32 null increments, which makes the proposed WP a reasonable candidate for describing these
data. Nevertheless, although both the considered transistors and their operating conditions are: nominally identical, the
same Figure 1 gives also evidence of the presence of differences among the five paths that can be hardly modeled by a
process with independent increments, such as the proposed WP in its basic form. In fact, this type of heterogeneity is
usually accounted for by assuming that one or more parameters of the model vary randomly from unit to unit.

On the basis of this guesswork, we have tentatively applied the proposed WP (i.e., the WP (1) with mean function
(2)) in the basic form (i.e., by assuming that all the parameters are common to all the units) to the whole set of MOSFET
data reported in Table 2. The ML estimates of the model parameters (obtained by maximizing the log-likelihood (24)) are
given in Table 2. The corresponding estimated log-likelihood is ̂𝓁(1)0 = −40.65.

Figure 4 shows the ML estimate of the mean function (2) of the process together to the empirical mean evaluated at
the measurement epochs. Similarly, Figure 5 displays the ML estimate of the variance function (9) of the process and the
empirical estimates of the variance.

As expected, the Figure 5 gives clear evidence that the proposed WP in its basic form is not able to describe adequately
the variability exhibited by the MOSFET data, being only able to fit satisfactorily the mean. In fact, the result obtained
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T A B L E 1 MOSFET degradation data (in percent transconductance loss)

Unit i Unit i

1 2 3 4 5 1 2 3 4 5

tj (sec) w1,j w2,j w3,j w4,j w5,j tj (sec) w1,j w2,j w3,j w4,j w5,j

100 1.05 0.58 0.86 0.60 0.62 4000 6.60 5.00 4.20 3.00 2.80

200 1.40 0.90 1.25 0.60 0.64 4500 7.00 5.60 4.40 3.00 2.80

300 1.75 1.20 1.45 0.60 1.25 5000 7.80 5.90 4.60 3.00 2.80

400 2.10 1.75 1.75 0.90 1.30 6000 8.60 6.20 4.90 3.60 3.10

500 2.10 2.01 1.75 0.90 0.95 7000 9.10 6.80 5.20 3.60 3.10

600 2.80 2.00 2.00 1.20 1.25 8000 9.50 7.40 5.80 4.20 3.10

700 2.80 2.00 2.00 1.50 1.55 9000 10.50 7.70 6.10 4.60 3.70

800 2.80 2.00 2.00 1.50 1.90 10,000 11.10 8.40 6.30 4.20 4.40

900 3.20 2.30 2.30 1.50 1.25 12,000 12.20 8.90 7.00 4.80 3.70

1000 3.40 2.60 2.30 1.70 1.55 14,000 13.00 9.50 7.20 5.10 4.40

1200 3.80 2.90 2.60 2.10 1.50 16,000 14.00 10.00 7.60 4.80 4.40

1400 4.20 2.90 2.80 2.10 1.55 18,000 15.00 10.40 7.70 5.30 4.10

1600 4.20 3.20 3.15 1.80 1.90 20,000 16.00 10.90 8.10 5.80 4.10

1800 4.50 3.60 3.20 2.10 1.85 25,000 18.50 12.60 8.90 5.70 4.70

2000 4.90 3.80 3.20 2.10 2.20 30,000 20.30 13.20 9.50 6.20 4.70

2500 5.60 4.20 3.80 2.40 2.20 35,000 22.10 15.40 11.20 8.00 6.40

3000 5.90 4.40 3.80 2.70 2.50 40,000 24.20 18.10 14.00 10.90 9.40

3500 6.30 4.80 4.00 2.70 2.20

T A B L E 2 ML estimates of parameters obtained from the whole dataset under the basic model

ML estimates

�̂�1(sec) 𝜷1 �̂�2(sec) 𝜷2 𝝈0

206.7 0.4797 35,166 8.048 0.549

for the variance function is the one that is typically obtained when a model that does not account for the presence of
unit-to-unit variability is used to fit a set of heterogeneous degradation paths.

Hence, to verify whether an extended version of the proposed WP that incorporates random effects could adequately
fit the considered degradation paths, we have carried out an ad hoc extensive preliminary investigation. The aim of this
preliminary study was to identify the parameters to be treated as random into the suggested model, to assign them a
(possibly mathematically convenient) probability distribution that properly describes the way in which these parameters
vary from unit to unit, and then to check whether the resulting model was actually able to adequately fit the observed
data, accounting for all the existing forms of variability.

The preliminary study is illustrated in detail in the Appendix. Obtained results prove that the proposed WP with
common parameters 𝛽1, 𝛼2, and 𝛽2, and unit-specific parameters 𝛼1 and 𝜎0, fits well the MOFETs degradation paths. Thus,
in the following, the WP (1) with mean function (2) and random parameters 𝛼1 and 𝜎0 will be adopted.

4.1 Degradation process with random effects

The objective of this subsection is incorporating random effects into the proposed WP in order to fully describe all the
observed forms of variability. Based on the results of the preliminary analyses illustrated in the Appendix, which proved
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F I G U R E 4 ML estimates of the mean function E{W(t)} of the basic model (solid line) and empirical estimates of the degradation
mean (dots) at the measurement epochs

F I G U R E 5 ML estimates of the variance function V{W(t)} (solid line) of the basic model and empirical estimates of the degradation
variance (dots) at the measurement epochs

that the only parameters that can be assumed to be unit-specific are 𝛼1 and 𝜎0, we will use the proposed WP, with mean
function (2), under the assumption that the parameters 𝛼1 and 𝜎0 are random.

This modeling solution allows to estimate all the parameters of the model taking full (direct) advantage of all the
available degradation data and to predict the evolution of the degradation process of a generic transistor that pertains to
the considered population, taking into account that some features of its degradation path are unit-specific.

More specifically, we assume that the scale parameter 𝛼1 is distributed as a Gamma random variable with positive
shape parameter c and scale parameter d:

f (𝛼1) =
𝛼

c−1
1

dc Γ(c)
exp(−𝛼1∕d) , 𝛼1 ≥ 0, (25)

and that the squared diffusion coefficient v = 𝜎2
0 (i.e., assumed to be stochastically independent on 𝛼1) is distributed as

an inverse gamma variable with positive shape parameter a and scale parameter b:

f (v) = ba

Γ(a)
1

va+1 exp(−b∕v), v ≥ 0 . (26)
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T A B L E 3 Point ML estimates of the process parameters when 𝛼1 and v are random

ML estimates

ĉ d̂ (sec) 𝜷1 �̂�2(sec) 𝜷2 â b̂

2.002 124.8 0.4658 35,372 8.346 2.411 0.406

The choice to assign this inverse gamma distribution to v is due to numerical opportunity, because, as shown below, this
choice allows to reduce the mathematical complexity of the model. In addition, both the gamma and the inverse gamma
distributions are quite flexible to model different behaviors. Under this latter setting, from (23), the conditional likelihood
function relative to the generic unit i (i = 1, … , 5), given the process parameters 𝛼1 and v, is given by:

 (𝜹i|𝛼1, v) =
( 1

2𝜋

)n∕2 P
vn∕2 exp

(
−Si

v

)
, (27)

where:

P =
n∏

j=1

[
ΔΛ

(
tj−1, tj − tj−1

)]−1∕2
,

Si =
n∑

j=1

1
2

(
𝛿i,j − ΔΛ

(
tj−1, tj − tj−1

))2

ΔΛ
(

tj−1, tj − tj−1
) ,

and t0 = 0. It is worth to note that both P and Si depend on 𝛼1 through ΔΛ(⋅, ⋅) (see (2)).
The marginal likelihood  (𝜹i) relative to the unit i can be expressed as:

 (𝜹i) =
∫

∞

0 ∫

∞

0
 (𝜹i|𝛼1, v) f (𝛼1) f (v) dv d𝛼1

=
( 1

2𝜋

)n∕2 ba

dc
1

Γ(a) Γ(c)∫

∞

0
P 𝛼c−1

1 exp
(
−𝛼1

d

)(
∫

∞

0

exp
[
− (Si + b) ∕v

]
vn∕2+a+1 dv

)
d𝛼1

=
( 1

2𝜋

)n∕2 ba

dc
Γ(n∕2 + a)
Γ(a) Γ(c) ∫

∞

0

P 𝛼c−1
1 exp(−𝛼1∕d)

(Si + b)n∕2+a d𝛼1 (28)

The (marginal) likelihood  (𝜹i) is not in closed form and hence its computation requires a (numerical) univariate
integration.

From (28), the log-likelihood function relative to all m = 5 units is given by:

𝓁(𝜽|𝜹) =
m∑

i=1
ln( (𝜹i)) , (29)

where 𝜽 = (c, d, 𝛽1, 𝛼2, 𝛽2, a, b) is the parameter vector of the process. The maximization of 𝓁(𝜽|𝜹) requires the numerical
computation of m = 5 univariate integrals. The point ML estimates of the parameters of the proposed WP with random
𝛼1 and v, are given in Table 3.

From the values in Table 3, we can note that the ML estimates of the fixed parameters 𝛽1, 𝛼2, and 𝛽2, under the
assumption that 𝛼1 and v are random, are very close to the ML estimates reported in Table 2 obtained under the assumption
that all process parameters values are not unit-specific.

From (2) and (25), the degradation mean of the transistors population is in closed form:

E{W(t)} =
∫

∞

0
(t∕𝛼1)𝛽1 f (𝛼1) d𝛼1 + (t∕𝛼2)𝛽2 =

( t
d

)
𝛽1 Γ (c − 𝛽1)

Γ(c)
+
(

t
𝛼2

)
𝛽2

, (30)

and its ML estimate is depicted in Figure 6 together to the empirical estimate of the mean at the measurement times. The
plot shows a good fit of the proposed model to the observed data.
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F I G U R E 6 ML and empirical estimates of the degradation mean E{W(t)}

F I G U R E 7 ML and empirical estimates of the degradation variance V{W(t)}

From (9), (25), and (26), the variance function of the process can be expresses as:

V{W(t)} = E
{
[W(t)]2

}
− [E{W(t)}]2

=
∫

∞

0 ∫

∞

0

⎧⎪⎨⎪⎩
v

[(
t
𝛼1

)
𝛽1

+
(

t
𝛼2

)
𝛽2
]
+

[(
t
𝛼1

)
𝛽1

+
(

t
𝛼2

)
𝛽2
]2⎫⎪⎬⎪⎭

f (𝛼1) f (v) d𝛼1dv −

[( t
d

)
𝛽1 Γ (c − 𝛽1)

Γ(c)
+
(

t
𝛼2

)
𝛽2
]2

= b
a − 1

[( t
d

)
𝛽1 Γ (c − 𝛽1)

Γ(c)
+
(

t
𝛼2

)
𝛽2
]
+
( t

d

)2𝛽1

{
Γ (c − 2𝛽1)

Γ(c)
−
[
Γ (c − 𝛽1)
Γ(c)

]2
}
.

The ML estimate of the variance function is depicted in Figure 7 together to the empirical estimate of vari-
ance at the measurements times. This plot shows that the proposed model with random effects describes the
empirical variance much better than the basic model (see Figure 5), providing a fit that, although not fully sat-
isfactory, is very good, also taking into account that each empirical estimate is obtained on the basis of only 5
observations.
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F I G U R E 8 ML estimate of the pdf of the useful life X for D = 15% and D = 25%

From (21), (25), and (26), the pdf of the useful life X of a generic resistor, randomly selected from the considered
population, is given by:

fX (x) =
∫

∞

0 ∫

∞

0
fX (x|𝛼1, v) f (𝛼1) f (v) dvd𝛼1

= D√
2𝜋

ba

dc Γ(a)Γ(c) ∫

∞

0

𝛼

c−1
1 exp

(
− 𝛼1

d

)

[Λ(x)]
3
2

dΛ(x)
dx

(
∫

∞

0

1

va+ 3
2

exp
[
−1

v

(
[D − Λ(x)]2

2 Λ(x)
+ b

)]
dv
)

d𝛼1

= D√
2𝜋

baΓ(a + 1∕2)
dc Γ(a) Γ(c) ∫

∞

0

𝛼

c−1
1 exp(−𝛼1∕d)
[Λ(x)]3∕2

dΛ(x)
dx

(
[D − Λ(x)]2

2 Λ(x)
+ b

)−a−1∕2

d𝛼1 . (31)

Its ML estimate is provided in Figure 8 for D = 15% and D = 25%.
From (25)–(28), the joint conditional pdf of the parameters 𝛼1 and v, given the vector of increments 𝜹i of the unit i, is

given by:

f (𝛼1, v|𝜹i) =
 (𝜹i|𝛼1, v) f (𝛼1) f (v)

 (𝜹i)
= 1

C
𝛼

(
1

2𝜋

)n∕2 ba

dc
1

Γ(a) Γ(c)
P 𝛼

c−1
1

vn∕2+a+1(
1

2𝜋

)n∕2 ba

dc
Γ(n∕2+a)
Γ(a) Γ(c)

exp
(
−𝛼1

d
− Si + b

v

)

= 1
C
𝛼

1
Γ(n∕2 + a)

P 𝛼c−1
1

vn∕2+a+1 exp
(
−𝛼1

d
− Si + b

v

)
, (32)

where:

C
𝛼
=
∫

∞

0

P 𝛼c−1
1

(Si + b)n∕2+a exp
(
−𝛼1

d

)
d𝛼1 . (33)

From (32), the marginal conditional pdfs of 𝛼1 and v, given the vector of increments 𝜹i of the unit i, easily follow:

f (𝛼1|𝜹i) =
∫

∞

0
f (𝛼1, v|𝜹i) dv = 1

C
𝛼

P 𝛼c−1
1

(Si + b)n∕2+a exp
(
−𝛼1

d

)
(34)

f (v|𝜹i) =
∫

∞

0
f (𝛼1, v|𝜹i) d𝛼1 =

1
C
𝛼

1
Γ(n∕2 + a)

1
vn∕2+a+1∫

∞

0
P 𝛼c−1

1 exp
(
−𝛼1

d
− Si + b

v

)
d𝛼1. (35)

In Figures 9 and 10 the ML estimates of the conditional pdfs f (𝛼1|𝜹i) and f (v|𝜹i) relative to each unit i (i = 1, … , 5)
are depicted. The randomness of the scale parameter 𝛼1 and of the squared diffusion coefficient v = 𝜎2

0 is evident.
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F I G U R E 9 ML estimate of the conditional pdf of 𝛼1 of each unit i, given the observed degradation increments of the unit

F I G U R E 10 ML estimate of the conditional pdf of v = 𝜎2
0 of each unit i, given the observed degradation increments of the unit

In addition, from the conditional pdf f (𝛼1|𝜹i) in (34), it is easy to obtain the conditional pdf of the inflection point tinfl
in (5), which does not depend on 𝜈. Indeed, by making the change of variable

𝛼1 =
[
−𝛼2

𝛽1 (𝛽1 − 1)
𝛽2 (𝛽2 − 1)

]1∕𝛽1

t1−𝛽2∕𝛽1
infl , (36)

the conditional pdf f
(

tinfl|𝜹i
)

of the inflection point, given the vector of increments 𝜹i of the unit i, is given by:

f
(

tinfl|𝜹i
)
= 1

C
𝛼

P
(Si + b)n∕2+a

[
−𝛼2

𝛽1 (𝛽1 − 1)
𝛽2 (𝛽2 − 1)

](c−1)∕𝛽1

t(c−1)(1−𝛽2∕𝛽1)
infl exp

⎧⎪⎨⎪⎩
−

[
−𝛼2

𝛽1(𝛽1−1)
𝛽2(𝛽2−1)

]1∕𝛽1
t1−𝛽2∕𝛽1
infl

d

⎫⎪⎬⎪⎭
|||||

d𝛼1

dtinfl

||||| , (37)

where

|||||
d𝛼1

dtinfl

||||| =
[
−𝛼2

𝛽1 (𝛽1 − 1)
𝛽2 (𝛽2 − 1)

]1∕𝛽1

t−𝛽2∕𝛽1
infl

||||1 −
𝛽2

𝛽1

|||| .
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F I G U R E 11 ML estimate of the conditional pdf of the inflection point tinfl of each unit i, given the observed degradation increments of
the unit

In Figure 11 the ML estimates of the conditional pdf f
(

tinfl|𝜹i
)

relative to each unit i (i = 1, … , 5) are depicted. The
randomness of the inflection point over the five units is evident.

From (7), the conditional pdf of the degradation increment ΔW (tn, 𝜏) during the (future) time interval (tn, tn + 𝜏),
given 𝛼1 and v = 𝜎2

0 , is given by:

fΔW(tn,𝜏) (𝛿|𝛼1, v) =
1√

2𝜋 v ΔΛ (tn, 𝜏)
exp

[
−1

2

(
(𝛿 − ΔΛ (tn, 𝜏))2

v ΔΛ (tn, 𝜏)

)]
, (38)

where ΔΛ (tn, 𝜏) depends, of course, on 𝛼1. From (32) and (38), the conditional pdf of the (future) degradation increment
ΔW (tn, 𝜏) of the unit i, given the vector of the observed increments 𝜹i until tn = 40,000 sec, is given by:

fΔW(tn,𝜏) (𝛿|𝜹i) =
∫

∞

0 ∫

∞

0
fΔW(tn,𝜏) (𝛿|𝛼1, v) f (𝛼1, v|𝜹i) dv d𝛼1

= 1
C
𝛼

1√
2𝜋

1
Γ(n∕2 + a)∫

∞

0

P 𝛼c−1
1 exp(−𝛼1∕d)√
ΔΛ (tn, 𝜏)

⎛⎜⎜⎜⎜⎝
∫

∞

0

exp
[
− 1

v

(
(𝛿−ΔΛ(tn,𝜏))2

2 ΔΛ(tn,𝜏) + Si + b
)]

vn∕2+a+3∕2 dv

⎞⎟⎟⎟⎟⎠
d𝛼1

= 1
C
𝛼

1√
2𝜋

Γ(n∕2 + a + 1∕2)
Γ(n∕2 + a) ∫

∞

0

P 𝛼c−1
1 exp(−𝛼1∕d)

(𝛿−ΔΛ(tn,𝜏))2

2 ΔΛ(tn,𝜏) + Si + b

1√
ΔΛ (tn, 𝜏)

d𝛼1. (39)

The conditional Cdf and the conditional mean of the degradation increment, given 𝜹i, are respectively:

FΔW(tn,𝜏) (𝛿|𝜹i) =
∫

𝛿

0
fΔW(tn,𝜏) (z|𝜹i) dz (40)

E {ΔW (tn𝜏) |𝜹i} =
∫

∞

0
𝛿 fΔW(tn,𝜏) (z|𝜹i) dz. (41)

In Figure 12 the ML estimate of the conditional pdfs of the degradation incrementΔW (tn, 𝜏) of the unit i (i = 1, … , 5)
for 𝜏 = 10,000 sec are depicted. All the above pdfs are centered roughly around the same mean value (the estimated
mean of the degradation increment ranges indeed from 15.9 to 17.6), due to the limited influence of the (random) scale
parameter 𝛼1 on the distribution of the future degradation increment, whereas the noticeable differences in the variance
of the above pdfs is due to the random nature of the squared diffusion coefficient 𝜐 = 𝜎2

0 .
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F I G U R E 12 ML estimate of the conditional pdf of the increment ΔW (tn, 𝜏) of each unit i, for 𝜏 = 10,000 sec

From (17), the conditional pdf of the remaining useful life (RUL) Xt, given the process parameters 𝛼1 and v and the
degradation level wt at the current time t, is given by:

fXt (x|𝛼1, v,wt) =
D − wt√

2𝜋 v [ΔΛ (tn, x)]
3
2

exp
[
−1

2
(D − wt − ΔΛ (tn, x))2

v ΔΛ (tn, x)

]
dΔΛ (tn, x)

dx
, (42)

whereas, form (18), the conditional Cdf is given by:

FXt (x|𝛼1, v,wt) = Φ
(√

𝜆

Λ (tn, x)

(
ΔΛ (tn, x)

D − wt
− 1

))
exp

[
2 (D − wt)

v

]
Φ
(
−
√

𝜆

ΔΛ (tn, x)

(
ΔΛ (tn, x)

D − wt
+ 1

))
, (43)

where 𝜆 = ( D − wt)2∕v. Thus, the conditional pdf of the RUL of the unit i at time tn, which for economy of notation is
indicated as Xn, given the vector of the observed increments 𝜹i until tn, is given by:

fXn (x|𝜹i) =
∫

∞

0 ∫

∞

0
fXn

(
x|𝛼1, v,wi,n

)
f (𝛼1, v|𝜹i) dvd𝛼1

=
D − wi,n

C
𝛼

√
2𝜋

1
Γ(n∕2 + a)∫

∞

0

P 𝛼c−1
1 exp(−𝛼1∕d)

[ΔΛ (tn, x)]3∕2
dΔΛ (tn, x)

dx

×
(
∫

∞

0

1
vn∕2+a+3∕2 exp

[
−1

v

((
wM − wi,n − ΔΛ (tn, x)

)2

2 ΔΛ (tn, x)
+ Si + b

)]
dv

)
d𝛼1

= 1
C
𝛼

D − wi,n√
2𝜋

Γ(n∕2 + a + 1∕2)
Γ(n∕2 + a) ∫

∞

0

P 𝛼c−1
1 exp(−𝛼1∕d)[

(D−wi,n−ΔΛ(tn,x))2

2 ΔΛ(tn,x) + Si + b
]n∕2+a+1∕2

1
[ΔΛ (tn, x)]3∕2

dΔΛ (tn, x)
dx

d𝛼1, (44)

where wi,n =
∑n

j=1𝛿i,j is the degradation level of the unit i measured at the last observation time tn, and from (19):

dΔΛ (tn, x)
dx

= 𝛽1

𝛼1

(
tn + x
𝛼1

)
𝛽1−1

+ 𝛽2

𝛼2

(
tn + x
𝛼2

)
𝛽2−1

. (45)

The (conditional) residual reliability of the unit i and the conditional mean of its RUL Xn, given 𝜹i, are:

RXn (x|𝜹i) = 1 −
∫

x

0
fXn (z|𝜹i) dz (46)

E {Xn|𝜹i} =
∫

∞

0
x fXn (x|𝜹i) dx, (47)

respectively.
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F I G U R E 13 ML estimate of the residual reliability of each unit i, for D = 25%

T A B L E 4 ML estimate of the conditional mean of the remaining useful life (in sec), for D = 25%

Unit 1 2 3 4 5

̂E {Xn|𝜹i} 901 5834 8010 9270 9732

In Figure 13, the ML estimate of the residual reliability function (46) of the unit i (i = 1, … , 5), given all observed
increments of the unit, is depicted, having assumed that the failure threshold is D = 25%. The estimates of the conditional
mean (47) of the RUL (in sec) are given in Table 4.

An important feature of the proposed WP is that it allows to make inference, for example, on the RUL and on the
(random) inflection point of a new unit belonging to the considered heterogeneous population also from data collected
only during the early phase of its useful life. Thus, let t(N)j and 𝛿(N)j (j = 1, … , k) denote, respectively, the k inspection

times and the observed degradation increments of the new unit over the time intervals
(

t(N)j−1, t
(N)
j

)
, with t(N)0 = 0.

In particular, under the assumed WP with random 𝛼1 and 𝜎0, from (44), the conditional pdf of the RUL X (N)
k of the

new unit, evaluated at time t(N)k , given the vector 𝜹(N)k =
(
𝛿

(N)
1 , … , 𝛿

(N)
k

)
of the observed “early” increments, is given by:

fX (N)
k

(
x|𝜹(N)k

)
= 1

C(N)
𝛼

D − w(N)
k√

2𝜋

Γ(k∕2 + a + 1∕2)
Γ(k∕2 + a)

×
∫

∞

0

P(N) 𝛼c−1
1 exp(−𝛼1∕d)[(

D−w(N)
k −ΔΛ

(
t(N)k ,x

))2

2 Λ
(

t(N)k ,x
) + S(N) + b

]k∕2+a+1∕2
1[

ΔΛ
(

t(N)k , x
)]3∕2

dΔΛ
(

t(N)k , x
)

dx
d𝛼1, (48)

where w(N)
k =

∑k
j=1𝛿

(N)
j is the degradation level at the last early observation time of the new unit:

P(N) =
k∏

j=1

[
Λ
(

t(N)j−1, t
(N)
j − t(N)j−1

)]−1∕2
,

S(N) =
k∑

j=1

1
2

(
𝛿

(N)
j − ΔΛ

(
t(N)j−1, t

(N)
j − t(N)j−1

))2

ΔΛ
(

t(N)j−1, t
(N)
j − t(N)j−1

) ,

dΛ
(

t(N)k , x
)

dx
= 𝛽1

𝛼1

(
t(N)k + x
𝛼1

)
𝛽1−1

+ 𝛽2

𝛼2

(
t(N)k + x
𝛼2

)
𝛽2−1

,
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T A B L E 5 The pseudo-random sample w(N)
j , j = 1, … , 35, of a new unit

t(N)j (sec) 100 200 300 400 500 600 700 800 900

w(N)
j 0.66 0.80 1.18 1.47 1.59 1.81 1.97 2.20 2.22

t(N)j (sec) 1000 1200 1400 1600 1800 2000 2500 3000 3500

w(N)
j 2.36 2.67 2.94 3.16 3.34 3.54 3.91 4.44 4.68

t(N)j (sec) 4000 4500 5000 6000 7000 8000 9000 10,000 12,000

w(N)
j 4.98 5.22 5.65 6.16 6.91 7.69 8.04 8.45 9.57

t(N)j (sec) 14,000 16,000 18,000 20,000 25,000 30,000 35,000 40,000

w(N)
j 10.57 10.89 11.68 12.08 13.58 15.34 17.06 19.25

F I G U R E 14 Conditional pdfs fX (N)
k

(
x|𝜹(N)k

)
of the RUL of the new unit, given the pseudo-random data 𝜹(N)k observed up to t(N)k = 9,000,

16,000, 20,000, and 40,000 sec

and

C(N)
𝛼

=
∫

∞

0

P(N) 𝛼c−1
1(

S(N) + b
)K∕2+a exp

(
−𝛼1

d

)
d𝛼1.

Of course, the residual reliability RX (N)
k

(
x|𝜹(N)k

)
of the new unit and the conditional mean E

{
X (N)

k |𝜹(N)k

}
of its RUL, given

the early k data of the new unit, can be easily obtained by numerical integrations, as in (46) and (47).
Likewise, the conditional pdf f

(
tinfl|𝜹(N)k

)
of the inflection point tinfl of the new unit, given the vector 𝜹(N)k =(

𝛿

(N)
1 , … , 𝛿

(N)
k

)
of the observed “early” increments, can be obtained from (37) by substituting P, Si, and n with P(N), S(N),

and k, respectively.
In order to shows the ability of the proposed WP to make inference on a new unit on the base of its early data, a

pseudo-random set of degradation levels measured at the same inspection times tj (j = 1, … , 35) of Table 1 has been
simulated by setting the model parameters equal to the ML estimates ̂𝛽1 = 0.4658, 𝛼2 = 35,372 sec, ̂𝛽2 = 8.346, and by
drawing the unit-specific (pseudo-random) values of 𝛼1 and 𝜈 = 𝜎2

0 from the corresponding estimated distributions (25)
and (26), say 𝛼1 = 98.3 sec and 𝜈 = 0.1204. This pseudo-random sample is given in Table 5.

Thus, on the basis of the early data gathered up to t(N)k = 9000, 16,000, and 20,000 sec (corresponding to k = 25, 29, and
31, respectively), as well as on the basis of the entire pseudo-random sample (k = 35), the conditional pdfs of the RUL
X (N)

k and of the inflection point tinfl of the new unit, given the observed “early” k increments 𝜹(N)k , have been estimated.

In Figure 14 the conditional pdfs fX (N)
k

(
x|𝜹(N)k

)
are depicted for selected K values, where on the abscissa axis the sum

t(N)k + x is given in order to easily compare the above pdfs.
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F I G U R E 15 Conditional pdfs f
(

tinfl|𝜹(N)k

)
of the inflection point of the new unit, given the pseudo-random data 𝜹(N)k observed up to

t(N)k = 9,000, 16,000, 20,000, and 40,000 sec

From Figure 14 we can note that a good estimate of the RUL of the new unit has been obtained also on the basis of
its very early data, say those observed up to 9000 sec. In particular, the sum t(N)k + E

{
X (N)

k |𝜹(N)k

}
of last observation time

t(N)k and of the conditional mean E
{

X (N)
k |𝜹(N)k

}
of the RUL is equal to 45,092 sec when the entire dataset (k = 35) is used,

and is equal to 45,601 and 45,102 sec when only the early data observed up to t(N)k = 9,000 and 16,000 sec, respectively,
are used.

Finally, Figure 15 provides the conditional pdfs f
(

tinfl|𝜹(N)k

)
of the inflection point tinfl of the new unit for the same

selected k values. From this figure, we can note that a good estimate of the inflection point of the new unit has been
obtained also on the basis of its early data. In particular, the mean inflection point E

{
tinfl|𝜹(N)}, obtained by numerical

integration of the conditional pdf, is equal to 24,878 sec when the entire dataset (k = 35) is used, and is equal to 24,642
and 24,799 sec when the early data observed up to t(N)k = 9000 and 16,000 sec, respectively, are used.

5 CONCLUSIONS

Although in the literature it is recognized that the degradation rate function (here intended as the derivative of the mean
degradation function) of technological units is typically bathtub-shaped, presenting three phases during which the degra-
dation rate decreases, is constant, and decreases, respectively, almost all the Wiener degradation models proposed in the
literature are characterized by a monotonic degradation rate function. This circumstance represents a potential limitation
for their successfully application in real settings. In fact, models with monotonic degradation rate function are clearly
able to describe only two of the mentioned three phases of the degradation phenomena.

Motivated by these arguments and by a set of real degradation data of metal-oxide-semiconductor field-effect tran-
sistors (MOSFETs), which exhibit an inverse S-shaped behavior of the (empirical) mean function and (consequently)
a bathtub shaped degradation rate function, in this paper we have proposed a new Wiener process that can describe
phenomena characterized by bathtub-shaped degradation rate functions.

The main features of the proposed Wiener process, which is formulated under two different parameterizations, have
been illustrated and discussed. The remaining useful life (RUL) of a unit and its residual reliability have been formulated
by adopting a failure threshold model. Maximum likelihood estimation of the process parameters and some functions
thereof has been addressed.

The proposed Wiener process has been then applied to the MOSFET data. Having verified, as a result of preliminary
analyses, that the proposed model in its basic form (i.e., in absence of random effects) is not able to adequately fit the MOS-
FET data, an extended version of the Wiener process, where selected parameters are assumed to vary randomly from unit
to unit, has been formulated and applied to the MOSFET data. The obtained results demonstrated the effectiveness and
affordability of the proposed approach. In particular, the application gives clear evidence that the proposed process can
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be successfully used to make inference on the RUL and on the inflection point of a new unit belonging to the considered
heterogeneous population also on the basis of its early data alone.

Finally, the formulation of different inverse S-shaped mean degradation functions, able to extend the range of
applicability of the proposed Wiener process, will be the subject of future studies and applications.
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APPENDIX A. PRELIMINARY STUDY

The aim of the preliminary study illustrated in this Appendix is to verify whether the proposed WP can adequately fit the
individual paths, as well as to verify whether some parameters can be assumed to be common to all the units and which
parameters must instead be assumed to be random.

As first step, we have estimated unit-by-unit (i.e., for i = 1, 2, … , 5) the parameters of the proposed WP (1) with mean
function (2), by maximizing the log-likelihood (23). Obtained results are reported in Table A1, together to the coefficient
of variation (CV) computed from the estimates of each parameter. The corresponding estimate of the log-likelihood is
̂𝓁(1)1 = 4.34.

Figure A1 shows the observed degradation paths together to the ML estimates of the mean degradation function
E{W(t)} obtained by computing (unit-by-unit) the mean function (2) at the ML estimates reported in Table A1. The plot
gives evidence that the estimated models fit well the observed degradation paths.

For the sake of comparison, we have also modeled the single paths by using the Wiener process with the 3-parameter
S-shaped mean function:

Λ(t) = 𝜑 exp(𝛾 t∕𝜑 − 𝜔 𝜑∕t), 𝛾, 𝜑, 𝜔 > 0, (A.1)

suggested by Peng et al.10

The plots of the ML estimate of the mean functions depicted in Figure A2 give clear evidence that this latter model is
not able to fit the MOSFET data.

A formal comparison between the fitting ability of the WP with mean (2) and the WP with mean (A.1) can be
performed by using the Akaike information criterion (AIC),23 which leads to prefer the model with the smaller value
of the AIC index. The AIC index is defined as AIC = 2k − 2 ̂𝓁, where k is the number of unknown parameters of the
model and ̂𝓁 is the estimated log-likelihood function. On the basis of the estimated log-likelihoods, the AIC value rela-
tive to the WP with mean function (2) is equal to 41.31, whereas the AIC value relative to the WP with mean function
(A.1) is equal to 137.26, a result that proves the clear superiority of the proposed model in describing the MOSFET
data.

So stated, to formally check that the proposed WP with parameters that are all unit-specific fits the MOSFET data
better than the proposed WP with all common parameters, we have performed a likelihood ratio test for checking the
following null and alternative hypotheses:

T A B L E A1 ML estimates of the process parameters and their coefficient of variation under the hypothesis that all parameters are
unit-specific

Unit i

1 2 3 4 5 CV

𝛼1 (sec) 95.2 139.2 105.8 566.1 212.5 0.88

̂
𝛽1 0.5240 0.4804 0.3978 0.4709 0.3455 0.16

𝛼2 (sec) 41,439 34,619 34,706 35,016 35,916 0.08

̂
𝛽2 20.812 7.438 8.624 9.358 11.066 0.47

𝜎0 0.310 0.331 0.298 0.597 0.961 0.57

info:doi/10.1109/TAC.1974.1100705
info:doi/10.1109/TAC.1974.1100705
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F I G U R E A1 Observed degradation data (dots) and ML estimate of E{W(t)} of each unit (dashed lines) obtained under the assumption
that all the parameters are unit-specific

F I G U R E A2 Observed degradation data (dots) and ML estimate of E{W(t)} of each unit (dashed lines) obtained by using the WP with
mean function (A.1), under the assumption that all the parameters are unit-specific

• null hypothesis H(1)
0 : all parameters are common;

• alternative hypothesis H(1)
1 : all parameters are unit-specific.

The corresponding test statisticΛ(1,1) = −2 ⋅
(
̂𝓁(1)0 − ̂𝓁(1)1

)
takes the value −2 ⋅ (−40.65 − 4.34) = 90.00. Under the null

hypothesis H(1)
0 the test statistic Λ(1,1) is approximately distributed as a chi-square random variable with 25 − 5 = 20

degrees of freedom (dof). The resulting p-value is p(1,1) = 7 ⋅ 10−11, thus confirming that the null hypothesis H(1)
0 should

be rejected at any plausible significance level.
The value of the coefficients of variation (CV) of each parameter given in the last column of Table A1 depends on two

contributions: (i) the fluctuation of estimates due to random sampling, and (ii) the (possible) existence of heterogeneity
among the values of the parameter used to describe the degradation path of different units. Hence, it is realistic to expect
that the parameters that are unit-specific are those with the highest CV . Based on this semi-heuristic rule, we begin our
investigation by supposing that only 𝛼1, 𝛽2, and 𝜎0 are unit-specific. Hence, in order to check whether this latter WP
provides a better trade-off between complexity and fitting ability than the WP where all the parameters are unit-specific,
the likelihood ratio test is again applied to check the following null and alternative hypotheses:



22 GIORGIO et al.

T A B L E A2 Likelihood ratio test results relative to MOSFET data, under the original parameterization

Null hypothesis H0 Alternative hypothesis H1 𝚲 dof p-value Decision

All parameters are common All parameters are unit-specific 90.00 20 7 ⋅ 10−11 Reject H0

Only 𝛼1, 𝛽2, and 𝜎0 are unit-specific All parameters are unit-specific 5.25 8 0.731 Not reject H0

Only 𝛼1 and 𝛽2 are unit-specific 𝛼1, 𝛽2, and 𝜎0 are unit-specific 51.18 4 2 ⋅ 10−10 Reject H0

Only 𝛼1 and 𝜎0 are unit-specific 𝛼1, 𝛽2, and 𝜎0 are unit-specific 6.60 4 0.159 Not reject H0

Only 𝛽2 and 𝜎0 are unit-specific 𝛼1, 𝛽2, and 𝜎0 are unit-specific 46.50 4 2 ⋅ 10−9 Reject H0

Only 𝛼1 is unit-specific 𝛼1 and 𝜎0 are unit-specific 47.79 4 2 ⋅ 10−8 Reject H0

Only σ0 is unit-specific 𝛼1 and 𝜎0 are unit-specific 41.84 4 1 ⋅ 10−9 Reject H0

• null hypothesis H(2)
0 : only 𝛼1, 𝛽2, and 𝜎0 are unit-specific,

• alternative hypothesis H(1)
1 : all parameters are unit-specific.

The parameters under the null hypothesis H(2)
0 have been therefore estimated, and the resulting estimated

log-likelihood is equal to ̂𝓁(2)0 = 1.72. Hence, the corresponding likelihood ratio statistic results in Λ(2,1) = −2 ⋅(
̂𝓁(2)0 − ̂𝓁(1)1

)
= −2 ⋅ (1.72 − 4.34) = 5.25. In this case, under the null hypothesis H(2)

0 , the test statistic Λ(2,1) is approxi-
mately distributed as a chi-square random variable with 25 − 17 = 8 dof. The corresponding p-value is p(2,1) = 0.731, thus
indicating that the null hypothesis H(1)

0 can not be rejected at any plausible significance level.
To refine the analysis, the (currently) accepted hypothesis that only the parameters 𝛼1, 𝛽2, and 𝜎0 are unit-specific,

now referred to as H(2)
1 , is tested against the following three null hypotheses:

• H(3)
0 : only 𝛼1 and 𝛽2 are unit-specific,

• H(4)
0 : only 𝛼1 and 𝜎0 are unit-specific,

• H(5)
0 : only 𝛽2 and 𝜎0 are unit-specific.

Also in this case the parameters under the above null hypotheses have been estimated, and the corresponding esti-
mated log-likelihoods are ̂𝓁(3)0 = −23.87, ̂𝓁(4)0 = −1.58, and ̂𝓁(5)0 = −21.53. Obviously, the estimated log-likelihood under
the alternative hypothesis H(2)

1 is ̂𝓁(2)1 = ̂𝓁(2)0 = 1.72. The likelihood ratio statistics result in Λ(3,2) = 51.18, Λ(4,2) = 6.60,
andΛ(5,2) = 46.50, respectively. All these three test statistics, under the respective null hypotheses, are approximately dis-
tributed as chi-square random variables with 17 − 13 = 4 dof. The resulting p-values, say p(3,2) = 2 ⋅ 10−10, p(4,2) = 0.159,
and p(5,2) = 2 ⋅ 10−9, show that only the null hypothesis H(4)

0 that 𝛼1 and 𝜎0 are unit-specific can not be rejected at any
plausible significance level.

Thus, as further step, the currently accepted hypothesis that only 𝛼1 and 𝜎0 are unit-specific, now referred as H(3)
1 , is

tested against the following null hypotheses:

• H(6)
0 : only 𝛼1 is unit-specific,

• H(7)
0 : only σ0 is unit-specific.

The corresponding estimated log-likelihoods are ̂𝓁(6)0 = −25.48, ̂𝓁(7)0 = −22.50, whereas of course ̂𝓁(3)1 = ̂𝓁(4)0 = −1.58.
The likelihood ratio statistics result in Λ(6,3) = 47.79 and Λ(7,3) = 41.84. Both these test statistics, under the related null
hypotheses, are approximately distributed as chi-square random variables with 13 − 9 = 4 dof. The resulting p-values,
p(6,3) = 1 ⋅ 10−9 and p(7,3) = 2 ⋅ 10−8, show that the null hypotheses H(6)

0 and H(7)
0 must be rejected at any plausible

significance level.
Thus, this preliminary analysis carried out by using the original parameterization (1)–(2), whose results are summa-

rized in Table A2, allows us to conclude that the proposed WP where only the parameters 𝛼1 and 𝜎0 are unit-specific can
be used to describe the observed MOSFET data in Table 1.

To complete this preliminary investigation, we also consider the alternative parameterization (10) of the proposed
WP process. We then apply the model (10) to the whole set of data under the assumption that all the parameters
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T A B L E A3 ML estimates of the parameters 𝜇, 𝛼, 𝛽1, 𝛽2, and 𝜎 of the reparametrized model and their coefficient of variation under
the hypothesis that all parameters are unit-specific

Unit i

1 2 3 4 5 CV

𝜇 0.0918 0.0934 0.1565 0.0506 0.1570 0.42

̂
𝛽1 0.5240 0.4804 0.3978 0.4709 0.3455 0.16

𝛼 36,949 25,168 27,992 25,455 30,383 0.17

̂
𝛽2 20.822 7.437 8.625 9.359 11.067 0.47

𝜎 0.094 0.101 0.118 0.134 0.381 0.73

are unit-specific. The ML estimates of the parameters 𝜇, 𝛼, 𝛽1, 𝛽2, and 𝜎 are reported in Table A3. These estimates
can be readily obtained from the estimates given in Table A1 by using the invariance property of ML estimators. For
the same reason, the estimated log-likelihood under this alternative parameterization coincides with ̂𝓁(1)1 and is equal
to 4.34.

Based on the CV values given in the last column of Table A3, and by following the same semi-heuristic rule used for the
original parameterization, we have applied the likelihood ratio test to check whether the WP where only the parameters
𝜇, 𝛽2, and 𝜎 (i.e., those with the highest CV values) are unit-specific should be preferred to the one that assumes that all
the parameters are unit-specific. The tested hypotheses are then the following:

• null hypothesis H(8)
0 : only 𝜇, 𝛽2, and 𝜎 are unit-specific,

• alternative hypothesis H(4)
1 : all parameters are unit-specific.

Note that, due to the invariance property of the ML estimators, the hypothesis H(4)
1 is equivalent to H(1)

1 . Under the null
hypothesis H(8)

0 , the test statistic Λ(8,4) = −2 ⋅
(
̂𝓁(8)0 − ̂𝓁(4)1

)
is approximately distributed as a chi-square random variable

with 25 − 17 = 8 dof. The model parameters under the null hypothesis H(8)
0 have been estimates and the corresponding

estimated log-likelihood is ̂𝓁(8)0 = 1.55. Of course, ̂𝓁(4)1 = ̂𝓁(1)1 = 4.34, and hence Λ(8,4) = 5.58. Because the corresponding
p-value is p(8,4) = 0.694, the null hypothesis H(8)

0 that only the 𝜇, 𝛽2, and 𝜎 are unit-specific can not be rejected at any
plausible significance level.

Hence, we have applied again the likelihood ratio test for checking the null hypothesis H(8)
0 that only 𝛼1, 𝛽2, and 𝜎 are

unit-specific, now referred to as hypothesis H(5)
1 , against the following null hypotheses:

• H(9)
0 ∶ only 𝜇 and 𝛽2 are unit-specific,

• H(10)
0 : only 𝜇 and 𝜎 are unit-specific,

• H(11)
0 : only 𝛽2 and 𝜎 are unit-specific.

The ML estimates of the corresponding log-likelihoods are ̂𝓁(9)0 = −13.85, ̂𝓁(10)
0 = −7.58, ̂𝓁(11)

0 = −22, 25. Of course,
̂𝓁(8)0 = ̂𝓁(5)1 = 1.55. The corresponding likelihood ratio test statistics are then equal to Λ(9,5) = 30.80, Λ(10,5) = 18.26, and
Λ(11,5) = 47.60, respectively. Under the above null hypotheses the likelihood ratio test statistic is always approximately
distributed as a chi-square random variable with 17 − 13 = 4 dof. The corresponding p-values, say p(9,5) = 3 ⋅ 10−6, p(10,5) =
1 ⋅ 10−3, and p(11,5) = 1 ⋅ 10−9, lead to reject the three null hypotheses at any plausible significance level. The testing results
relative to the alternative parameterization (10) of the proposed WP are summarized in Table A4.

A further comparison between the best model under the original parameterization (1)–(2), that is a WP where only 𝛼1
and 𝜎0 are unit-specific and the best model under the alternative parameterization (10), that is a WP where 𝜇, 𝛽2, and 𝜎 are
unit-specific, is then performed by using the Akaike Information Criterion. On the basis of the estimated log-likelihoods,
the AIC value relative to the best model under the original parametrization (1)–(2) is equal to 29.16, whereas the AIC
value relative to the best model under the alternative parametrization (10) is equal to 30.90.

Thus, according to the results of the likelihood ratio tests and of the Akaike Information Criterion, the model that
will be used to describe the degradation paths of the five MOSFETs is the WP (1) with mean function (2), where the only
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T A B L E A4 Likelihood ratio test results relative to MOSFET data, under the alternative parameterization

Null hypothesis H0 Alternative hypothesis H1 𝚲 dof p-value Decision

Only 𝜇, 𝛽2, and 𝜎 are unit-specific All parameters are unit-specific 5.58 8 0.694 Not reject H0

Only 𝜇 and 𝛽2 are unit-specific 𝜇, 𝛽2, and 𝜎 are unit-specific 30.80 4 3 ⋅ 10−6 Reject H0

Only 𝜇 and 𝜎 are unit-specific 𝜇, 𝛽2, and 𝜎 are unit-specific 18.26 4 1 ⋅ 10−3 Reject H0

Only 𝛽2 and 𝜎 are unit-specific 𝜇, 𝛽2, and 𝜎 are unit-specific 47.60 4 1 ⋅ 10−9 Reject H0

T A B L E A5 ML estimates of the process parameters under the hypothesis that only the values of 𝛼1 and 𝜎0 are unit-specific

Unit i

1 2 3 4 5

𝛼1 (sec) 51.6 114.2 231.7 526.3 739.6

̂
𝛽1 0.4652

𝛼2 (sec) 35,449

̂
𝛽2 8.389

𝜎0 0.342 0.330 0.311 0.601 0.977

F I G U R E A3 Observed degradation data (dots) and ML estimate of E{W(t)} of each unit (solid lines) where only the parameters 𝛼1 and
𝜎0 are unit-specific

parameters that are unit-specific are 𝛼1 and 𝜎0. The corresponding ML estimates of the process parameters are given in
Table A5.

In Figure A3 the observed degradation data are plotted together to the ML estimates of the mean degradation function
E{W(t)} of the five MOSFETs, obtained by computing (unit-by-unit) the function (2) at the ML estimates reported in
Table A5. The plot shows that the proposed WP with common parameters 𝛽1, 𝛼2, and 𝛽2, and only 𝛼1 and 𝜎0 unit-specific,
fits well the observed degradation paths.
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