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Abstract

The aim of this work is to analyze the orbital evolution of the mean eccentricity

given by the Two-Line Elements (TLE) set of the Molniya satellites constella-

tion. The approach is bottom-up, aiming at a synergy between the observed

dynamics and the mathematical modeling. Being the focus the long-term evo-

lution of the eccentricity, the dynamical model adopted is a doubly-averaged

formulation of the third-body perturbation due to Sun and Moon, coupled with

the oblateness effect on the orientation of the satellite. The numerical evolu-

tion of the eccentricity, obtained by a two-degree-of-freedom time dependent

model assuming different orders in the series expansion of the third-body ef-

fect, is compared against the mean evolution given by the TLE. The results

show that, despite being highly elliptical orbits, the second order expansion

catches extremely well the behavior. Also, the lunisolar effect turns out to be

non-negligible for the behavior of the longitude of the ascending node and the

argument of pericenter. Finally, a frequency series analysis is proposed to show
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the main contributions that can be detected from the observational data.

Keywords: Molniya, eccentricity evolution, Highly Elliptical Orbits,

Third-body perturbation, Space Situational Awareness

1. Introduction

Starting in the mid-’60s [25], the Molniya program (the name standing for

the Russian word “Lightning”) inaugurated the innovative concept of “satellite

constellation”. For the first time, indeed, a reliable communication service for

military and civilian applications was set in place by the Soviet Union across

its extensive territory through the coordinated action of a spacecraft network

instead of relying on individual space relays (see, e.g., [40, 38, 41] for recent

formal settlements of the general astrodynamical problem).

This combined strategy is nowadays a fully established way to approach space

servicing worldwide, especially in the Low Earth Orbit regime, in order to enable

a set of short-period spacecraft to provide ground end-users with uninterrupted

and reliable up/downlink as for high-quality telephony and remote-sensing sur-

veys.

The successful performance of the Molniya program also opened to further

applications, especially from the Soviet/Russian side, leading in the early ’70s to

a military constellation of Cosmos spacecraft (the so-called Oko1 system) on a

“Molniya orbit” (so christened after the name of the satellites) for early-warning

detection of hostile ballistic missiles [28]. In addition, since the early 2000s, a

follow-up to the original Molniya program was pursued by Commonwealth of

Independent States (CIS) with the Meridian constellation [44], currently consist-

ing of 8 spacecraft in a similar Highly Eccentric Orbit (HEO), more explicitly

dedicated to military communication. A few cases of Molniya-like satellites

might also be recognized among American satellites for military applications, in

support to the Space-Based Infrared System (SBIRS). Overall, a total of some

1In Russian, meaning “eye”.
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150 objects can be recognized in a Molniya orbital regime from ground surveil-

lance surveys [24, 31], although this might be a crude underestimate of the real

population of orbiting objects once the increasingly important fraction of space

debris could be properly included.

An extensive observing campaign of the full Molniya constellation was carried

out, between 2014 and 2017, by our group at Mexican and Italian telescopes

[5, 6]. The accounted dataset actually included all the 43 satellites still in orbit

in 2014; since then, seven spacecraft have decayed so that, as of this writing,

the survived Molniya constellation consists of only 36 satellites, namely, 35 in

HEO and 1 in geostationary orbit (GEO).2 For all of them we actually deal with

non-cooperative spacecraft.

With this paper, the first of a series, we want to focus our analysis on the

relevant astrodynamical properties of the Molniya satellite constellation in prin-

ciple through a “heuristic” approach to the problem. In other words, the aim is

to infer a relevant dynamical model from the data. The historical records from

the TLE database [15] are used as a reference, restraining our analysis to all the

data available up to January 1, 2019. We therefore rely on the past history of

the survived spacecraft constellation (spanning a four-decades interval as for the

oldest satellites) to set the “ground truth” for an accurate ex-post dynamical

analysis of each object, aimed at singling out the selective action of the differ-

ent physical players (e.g., lunisolar perturbations, geopotential, solar radiation

pressure, atmospheric drag, etc.) that may modulate secular evolution of the

orbit. In this work, we will focus especially on the behavior in eccentricity; the

behavior of the semi-major axis will be treated separately in a following work.

2. The Molniya orbit

From a dynamical point of view, the adopted Molniya orbit offered a fully

appealing alternative to the GEO option (see [29, 9] for a comparative discus-

2Of these, one satellite, namely Molniya 1-S was placed in geostationary orbit and it will

therefore not be considered here.
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Figure 1: An illustrative example of Molniya orbit ground track. Two 12-hr orbits are dis-

played to span a full day. The nominal orbital parameters are assumed, for illustrative scope,

according to the template given in [12]. In particular, for our specific choice, we set the

relevant geometric orientation parameters pi, ωq “ p63.4, 270q deg, with orbit scale length pa-

rameters (in km) pa, hp, haqkm “ p26560, 1000, 39360q. This implies an eccentricity e “ 0.72

and a period P “ 720 min. Note the extremely asymmetric location of the ascending (“AN”)

and descending (“DN”) nodes, due to the high eccentricity of the orbit, and the perigee (“P”),

always placed in the Southern hemisphere. Along the two daily apogees (“A”), the satellite

hovers first Russia and then Canada/US. The visibility horizon (aka the “footprint”) attained

by the Molniya at its apogee over Russia, is above the displayed yellow line.

sion). A series of spacecraft routed along a HEO much “closer” (a „ 26500 km

or equivalently an orbital period P “ 12 hr) than GEO and inclined (i „ 63

deg) orbital path [12], was actually better suited to cover the high-latitude and

wide-longitude extension of the Soviet Union.3

The solution adopted was chosen because satisfying the mandatory require-

ment of being in view of the Soviet territory as long as possible. Such an “ex-

tended permanence” over Russia is eased by a HEO with a convenient choice of

the argument of perigee (a value of ω „ 270 deg appeared to be a best option)

such as to raise the satellite to nearly GEO altitude at its apogee when hovering

Russia. To safely maintain this configuration, however, the orbital plane has to

3The former Union of Soviet Socialist Republics (USSR) (and present CIS) covered over

9600 km from east to west and over 4000 km from north to south, reaching up to 83N deg in

latitude.

4



be twisted such as to counteract the effect of Earth gravitational dipole (the so-

called J2 geopotential term) on the ω drift [21]. To set 9ω „ 0, and thus “freeze”

the line of apsides, one has to incline the orbit by i “ sin´1
`

2{
?

5
˘

„ 63.4 deg

(in the prograde region) [43].

With these conditions, the resulting ground track of the nominal Molniya

orbit looks like in Fig. 1. Note that a (draconic) period of P “ 12 hr allows the

satellite to reach its apogee in the northern hemisphere twice a day, and 180

deg apart in longitude. In addition to the “Russian apogee” (that allowed each

Molniya satellite to be on-sight from the USSR for up to 10 hours, [39]), the

supplementary North-American pass ensured, among others, a double visibility

from the US and USSR and a stable link between Russia and Cuba, indeed a

strategic advantage along the years of the Cold War.

2.1. Current theoretical framework

For its special interest, the Molniya orbit has been the subject of a full

range of studies in the astrodynamical literature, starting from the ’60s. Quite

remarkably, two opposite ways to assess the dynamical problem have been pur-

sued along the years. In fact, the prevailing approach in most of the ’60s papers

is to consider the Molniya satellites as clean gravitational probes to firmly as-

sess the J2 (and higher-order) geopotential term [26], still poorly known at that

time.

On the contrary, the focus reversed in the ’70s, when the Molniya orbit

itself became the subject of investigation by inspecting the different sources of

perturbation, especially dealing with the lunisolar action as a source (together

with J2) of long-term effects in the evolution of orbital parameters and the

intervening effect of the atmospheric drag to severely constrain the satellite

lifetime.

Both these aspects were first reviewed by [17] and [23], leading to estimate

for the Molniya satellites an expected lifetime within 7-13 years, as a reference

figure. The combined physical mechanism at work is correctly envisaged in

the studies, with lunisolar perturbations as a main player to act on orbital
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eccentricity e (leaving untouched, however, the semi-major axis a and therefore

the period P ). As a consequence of a quasi-periodical change in e, the satellite

perigee will decrease until possibly magnifying the effect of atmospheric drag

(especially under a favoring solar activity to “inflate” Earth’s ionosphere). The

drag will then dissipate orbital energy such as to circularize the orbit at lower

a and shorter P , thus enabling the satellite’s fatal re-entry in the atmosphere

as a wild fireball.

The effect of the Earth’s gravitational potential on the Molniya’s period

evolution was carefully considered in the general study presented in [32]. The

role of solar radiation pressure and of the Poynting-Robertson effect on high

area-to-mass satellites were considered in [34] and [20], respectively.

The purpose of this paper is to investigate what reasonable approximation of

the models can “reconstruct” the mean evolution of the orbital eccentricity given

by the observational data. The approach is bottom-up, aiming at a synergy

between the observed dynamics and the mathematical modeling. The results

will support a future analysis based on a dynamical systems theory approach

and a practical contextualization of chaotic dynamics. For this analysis, we will

assume that only natural perturbations act on the spacecraft. Following [42],

the operational lifetime of Molniya satellites may hardly exceed 6 years. We

found further support of this conclusion also from the inspection of figs. 11-4

and 11-5 in [39]. Accordingly, it appears that, for the first 29 satellites, the

operational life was never longer than 3 years.

2.2. Oblateness effect and third-body perturbation

Since the focus is the long-term evolution of the orbital elements of the

satellite, the Lagrange planetary equations [4] are applied to various averaged

perturbing contributions.

The secular J2 Earth’s disturbing potential, R̄J2 , is obtained by averaging

over the mean anomaly M (fast variable), the J2 potential, namely,

R̄J2 “
1

2π

ż 2π

0

RJ2dM, (1)
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where

RJ2 “
J2µCr

2
C

`

3 sin2 φ´ 1
˘

2r3
. (2)

Here r denotes the geocentric distance, φ the geocentric latitude, rC and µC

the mean equatorial radius and gravitational parameter, respectively. The final

expression written in terms of the orbital elements reads [16]

R̄J2 “
J2µCr

2
C

4a3p1´ e2q3{2

`

2´ 3 sin2 i
˘

. (3)

Concerning the third-body disturbing potential, following [7], the solar non-

averaged expression can be written as

R@ “ µ@

8
ÿ

l“2

l
ÿ

m“0

l
ÿ

p“0

l
ÿ

h“0

8
ÿ

q“´8

8
ÿ

j“´8

al

al`1
@

εm
pl ´mq!

pl `mq!
Flmphpi, i@qˆ

HlpqpeqGlhjpe@q cosφlmphqj ,

(4)

where the geocentric orbital elements of the Sun (denoted by the astronomical

symbol @) and the spacecraft are referred to the equatorial plane, i is the

inclination, Flmphpi, i@q is the product of two Kaula’s inclination functions,

Hlpqpeq and Glhjpe@q are Hansen coefficients, and

φlmphqj “ pl ´ 2pqω ` pl ´ 2p` qqM ´ pl ´ 2hqω@ ´ pl ´ 2h` jqM@ `mΩ,

with ω the argument of pericenter and Ω the longitude of the ascending node.

For the Moon, the non-averaged disturbing potential can be written as

RK “ µK

8
ÿ

l“2

l
ÿ

m“0

l
ÿ

p“0

l
ÿ

s“0

l
ÿ

q“0

8
ÿ

j“´8

8
ÿ

r“´8

p´1qm`s
p´1qk1

al

al`1
K

εmεs
pl ´ sq!

2pl `mq!
Flmppiqˆ

FlsqpiKqHlpjpeqGlqrpeKq

´

p´1qk2Ulm´s cosφ`lmpjsqr ` p´1qk3Ulms cosφ´lmpjsqr

¯

,

(5)

where the geocentric orbital elements of the Moon (denoted by the astronomical

symbol K) are referred to the ecliptic plane, and

φ˘lmpjsqr “ pl´2pqω`pl´2p`jqM`mΩ˘pl´2qqωK˘pl´2q`rqMK˘spΩK´π{2q´ysπ.

For further details on the functions F , H,G,U , the coefficients εm, εs, k1, k2,

k3 and ys and on the general expressions above, the reader can refer to [7].
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The singly-averaged equations of motion (i.e., averaged over M), considering

the second order of the third-body series expansion can be found in [8]. In

particular, the approximations
$

’

’

’

&

’

’

’

%

R̄@ “
1

2π

ż 2π

0

R@ dM,

R̄K “
1

2π

ż 2π

0

RK dM,

are obtained by retaining the uplets satisfying the constraints l ´ 2p ` q “ 0

and l ´ 2p ` j “ 0 in the Fourier-like expansions given by Eqs. (4) and (5),

respectively.

A specific analysis for HEO of singly and doubly-averaged equations of mo-

tion was given in [10]. Similarly to the singly-averaged expressions, the doubly-

averaged disturbing functions (i.e., averaged over the mean anomaly M and the

Sun’s and Moon’s anomalies, M@ and MK)
$

’

’

’

&

’

’

’

%

¯̄R@ “
1

2π

ż 2π

0

R̄@ dM@,

¯̄RK “
1

2π

ż 2π

0

R̄K dMK,

are obtained by selecting the uplets satisfying the constraints l´2h` j “ 0 and

l´2p`r “ 0 in the expansions given by Eqs. (4) and (5), besides the constraints

on the uplets imposed by the singly-averaged hypothesis.

In [7], the Molniya 1-81, 1-86 and 1-88 orbits (orbit #32, 35, 36, respectively,

of the convention used in the next section) were analyzed by computing the cor-

responding Fast Lyapunov Indicators (finite time variational chaos indicators)

in the pe, ωq plane focusing on the resonance 2 9ω “ 0, by assuming a second

order expansion (i.e., truncating the expansions in Eqs. (4) and (5) to l “ 2),

averaged over the mean anomaly of the satellite and over the mean anomaly of

the third body. The so-defined doubly-averaged model will be used also in the

analysis of this work, but not limiting ourselves necessarily to the second order

expansion.

With regard to the lunisolar perturbation on Molniya orbits, [17] and [18]

identified in Ω a critical parameter for the long-term evolution of the orbits.

8



This issue was thoughtfully considered also in later studies (especially [3] and

[19]). In particular, by means of numerical investigations, considering special

initial conditions for Ω, these studies showed that the Molniya’s lifetime could

be extended to a very long timespan (of the order of 100-200 years). The

importance of the role of Ω on the satellite’s lifetime was remarked also in

several Medium Earth Orbit studies, including Galileo’s parameters [1, 2, 13].

Finally, [45] and [46] analyzed the TLE sets of the same satellites considered

in this work, focusing on the dynamics associated with the semi-major axis and

on the dynamics associated with the eccentricity, respectively. That is, they

considered the effect of the tesseral harmonics on the one hand, and of the

lunisolar perturbations, on the other hand. For the eccentricity, in particular,

they developed a dynamical model on the basis of the harmonics 2ω, 2ω ` Ω,

´2ω ` Ω.

2.3. Mean evolution given by TLE sets

Table 1 reports the initial conditions in mean orbital elements for the 42 HEO

Molniya satellites of the 2014 actual constellation. In the table, the spacecraft

list is sorted in chronological sequence, according to the launch date and North

American Aerospace Defense Command (NORAD) identification number, as

labelled. The initial conditions displayed correspond to the first epoch (t0 re-

ported in modified Julian Day, MJD) where both the frozen condition 9ωJ2 « 0

and the 2:1 mean motion resonance are satisfied.4 Orbital parameters, in the

table, are reported in the usual notation, being a the semi-major axis (km), e

the eccentricity, i the inclination (deg), Ω the longitude of the ascending node

(deg), ω the argument of pericenter (deg). Finally, a flag in the last column

marks the seven cases of decayed satellites (with the year of the re-entry event).

In Fig. 2, we show the time evolution of the mean semi-major axis, eccentric-

ity and pericenter altitude obtained from the TLE sets by means of the SGP4

4Except for Molniya 1-32, 1-56 and 1-62 (namely entries #7, 20, 21 in the table) for which

the initial semi-major axis a is some 1% larger than the nominal figure.
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Table 1: Initial mean elements for the Molniya satellites considered. # identifies the sequential

number of the orbit analyzed, the second, the third and fourth columns report the official

identification along with the launch date, t0 (MJD) the initial epoch when the orbital elements

are referred to, a is the semi-major axis (km), e the eccentricity, i the inclination (deg), Ω the

longitude of the ascending node (deg), ω the argument of pericenter (deg). On the choice of

these initial conditions, please refer to the text.

# Molniya NORAD Launch date t0 a e i Ω ω re-entry

ID [MJD] [km] [deg] [deg] [deg] (year)

1 2-09 7276 04/26/1974 42600.87 26580.72 0.737 63.40 310.28 282.57 -

2 2-10 7376 07/23/1974 44307.83 26574.82 0.722 64.13 355.47 274.96 -

3 1-29 7780 04/29/1975 42559.52 26579.70 0.743 62.85 318.66 280.43 -

4 2-13 8015 07/08/1975 42748.56 26578.61 0.739 63.08 288.70 281.34 2018

5 2-14 8195 09/09/1975 42674.15 26578.36 0.743 62.94 300.76 280.33 -

6 3-03 8425 11/14/1975 42746.41 26574.90 0.742 62.87 289.39 280.33 2017

7 1-32 8601 01/22/1976 44306.24 26640.38 0.690 63.56 134.46 276.29 -

8 2-17 9829 02/11/1977 43218.70 26579.66 0.741 62.87 310.63 280.30 2020

9 1-36 9880 03/24/1977 43239.65 26574.08 0.742 62.80 307.57 280.11 -

10 3-07 9941 04/28/1977 43283.50 26576.84 0.743 62.87 300.43 280.31 2019

11 3-08 10455 10/28/1977 43476.16 26577.93 0.745 62.83 5.57 280.34 -

12 1-40 10925 06/02/1978 43683.63 26574.82 0.744 62.88 19.94 280.55 -

13 3-10 11057 10/13/1978 43806.87 26571.71 0.744 62.83 49.46 279.94 -

14 1-44 11474 07/31/1979 44109.27 26579.59 0.743 62.85 313.41 280.27 2017

15 3-13 11896 07/18/1980 44457.07 26579.28 0.743 62.85 42.71 280.34 -

16 1-49 12156 01/30/1981 44728.57 26579.77 0.740 62.91 311.83 281.08 -

17 1-52 13012 12/23/1981 44969.94 26577.53 0.741 62.86 322.50 279.82 -

18 1-53 13070 02/26/1982 45043.97 26579.56 0.742 62.85 46.27 280.17 -

19 3-20 13875 03/11/1983 45411.79 26573.94 0.743 62.89 349.73 280.17 -

20 1-56 13890 03/16/1983 46357.98 26646.00 0.711 63.50 257.10 282.29 -

21 1-62 15214 08/24/1984 48000.94 26997.02 0.686 63.81 143.51 272.19 -

22 1-63 15429 12/14/1984 46065.99 26579.59 0.742 62.86 341.38 280.38 -

23 3-24 15738 05/29/1985 46269.33 26579.95 0.740 62.85 303.47 280.63 -

24 3-27 16393 12/24/1985 46443.16 26573.25 0.741 62.87 324.17 280.39 -

25 1-69 17078 11/15/1986 46765.04 26579.50 0.742 62.87 326.26 280.24 -

26 3-31 17328 01/22/1987 46861.22 26579.75 0.742 62.87 306.26 280.46 -

27 1-71 18946 03/11/1988 47238.66 26571.85 0.742 63.06 300.55 280.30 -

28 1-75 19807 02/15/1989 47619.22 26579.98 0.742 63.00 335.96 280.15 -

29 1-80 21118 02/15/1991 48366.38 26575.88 0.742 62.86 314.71 280.84 -

30 3-40 21196 03/22/1991 48494.46 26576.78 0.738 62.92 289.56 281.95 -

31 1-81 21426 06/18/1991 48433.04 26578.37 0.743 62.90 352.12 280.51 -

32 3-41 21706 09/17/1991 48537.95 26579.98 0.742 62.85 243.44 280.31 -

33 3-42 22178 10/14/1992 48929.95 26579.97 0.742 62.86 269.96 280.45 -

34 1-86 22671 05/26/1993 49151.76 26577.28 0.743 62.83 241.84 280.42 -

35 1-87 22949 12/22/1993 49476.39 26575.27 0.741 62.96 329.29 281.60 -

36 1-88 23420 12/14/1994 49718.72 26578.62 0.743 62.80 245.40 280.37 -

37 3-47 23642 08/09/1995 49977.66 26579.35 0.742 62.89 295.99 280.59 -

38 1-90 24960 09/24/1997 50722.56 26579.82 0.743 62.86 275.46 280.28 -

39 1-91 25485 09/28/1998 51092.15 26576.12 0.744 62.86 311.80 280.45 -

40 3-50 25847 07/08/1999 51374.01 26575.06 0.742 62.86 6.20 280.33 -

41 3-51 26867 07/20/2001 52130.26 26571.97 0.743 62.86 248.91 280.46 2016

42 1-93 28163 02/18/2004 53061.85 26559.84 0.736 62.86 202.79 288.20 2016
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Figure 2: Semi-major axis (left; km), eccentricity (middle) and pericenter altitude (right; km)

mean evolution from the TLE data of Molniya 2-09, 2-10, 2-13, 1-36, 3-13, 1-69 (#1, 2, 4, 9,

15, 25 of Tab. 1). On the right, the time is displayed in decimal year for the sake of clarity;

also, the black horizontal line highlights 250 km of altitude.
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model [14] for a selected number of cases. All of them are given in the series

of figures displayed in the “SUPPLEMENTARY MATERIAL 1”. The spurious

effects, that can be noticed in the figures and that we have left for the sake of

completeness, are due to the TLE. For a more complete orbital characteriza-

tion, the eccentricity behavior, which is the main focus of the present analysis,

is usefully supported with the semi-major axis evolution. This is done to show

what kind of data we have at our disposal, and also to show when, in each case,

the assumption, that we will take that the semi-major axis is constant, might

fail.

Note that the chosen initial epoch t0 is usually displaced by about 1 month

with respect to the launch date. The exceptions are Molniya 2-09, 2-10, 1-32,

1-56 and 1-62 (#1, 2, 7, 20, 21) due to a non-uniform behavior in semi-major

axis after the launch, that is clear from Fig. 2 and Fig. 4 displayed in the

“SUPPLEMENTARY MATERIAL 1” for the latter three cases. The case of

Molniya 2-10 will be described in detail in what follows, while for Molniya 2-09,

though not visible from Fig. 2, the semi-major axis decreased almost linearly

up to MJD 42500 and then started to oscillate: we have chosen to consider a

good initial condition a point after this date.

Moreover, we notice clear prodromic signs of an atmospheric re-entry for Mol-

niya 2-13, 3-03, 1-445, 3-51 and 1-93 (i.e., orbits #4, 6, 14, 41, 42); while for

Molniya 2-09, 2-14, 3-10, 1-49, 1-62, 3-24, 3-27, 1-80, 3-40, 3-41, 3-42, 1-86,

1-87, 1-88, 3-47, 1-90, 1-91 (#1, 5, 13, 16, 21, 23, 24, 29, 30, 32-39) a significant

decrease in semi-major axis occurs, but the satellite remains in orbit. In all the

other cases, the pericenter altitude never drops below 250 km, as also noticed

by [46]. As a first estimate, the data shows that the atmospheric drag can be

effective to re-enter if the pericenter altitude lowers down to 210 km. In addition

to these evident variations, we can also notice that the amplitude of oscillation

in a may change during the observed timespan, although in average it seems

that the semi-major axis remains constant. We will see how this feature can

5For a specific analysis on this reentry event, see [27].
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affect the eccentricity evolution.

3. Comparison between observational and numerical data

We start the analysis of the astrodynamics data given by the observations,

by comparing their mean evolution with the evolution that can be obtained

by numerical propagation. The initial conditions in Tab. 1 are propagated

assuming the secular oblateness effect given by Eq. (3) and a doubly-averaged

formulation of the lunisolar perturbation given in Eqs. (4)-(5) under different

approximations.

In particular, following the literature mentioned before, we have tested the

following physical models.

• Model 1 (referred in green in the color plots): for the time evolution of the

eccentricity and the inclination, the third-body perturbation is modeled

using only the secular harmonics ˘2ω, and the long-period ones ˘2ω`Ω

and Ω, associated with the effect of both Sun and Moon; for the time

evolution of Ω and ω, only the oblateness effect is considered. This is, for

e and i, we consider

de

dt
“ ´

?
1´ e2

na2e

BR̃3b

Bω
,

di

dt
“ ´

1

na2
?

1´ e2 sin i

˜

BR̃3b

BΩ
´ cos i

BR̃3b

Bω

¸

,

(6)

with

R̃3b “ R̃K ` R̃@, (7)

where both R̃@ and R̃K are obtained from Eqs. (4) and (5) by taking

the doubly-averaged formulation and keeping the uplets detailed below.

For the solar contribution, the set of index pl,m, p, h, q, jq kept in the
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summation are such that6

l “ 2, m P t0, 1u, p P t0, 1, 2u, h “ 1, q “ 2p´ 2, j “ 0.

In similar way, for the lunar contribution, we are led to consider the set7

l “ 2, m P t0, 1u, p P t0, 1, 2u, s “ 0, q “ 1, j “ 2p´ 2, r “ 0.

Since, for both Sun and Moon, we do not consider the full set of uplets

that can be obtained from Eqs. (4) and (5) by double averaging, we refer to

this choice as a “non-full” quadrupolar model. This is the main difference

of models 1 and 2 with respect to model 3.

For Ω and ω, we assume the following rates

dΩ

dt
» 9ΩJ2 ” ´

3

2

J2r
2
‘n

a2p1´ e2q2
cos i,

dω

dt
» 9ωJ2 ”

3

4

J2r
2
‘n

a2p1´ e2q2

`

5 cos2 i´ 1
˘

.

(8)

• Model 2 (referred in red in the color plots): as in model 1, but the given

lunisolar perturbations are applied also to Ω and ω, namely,

dΩ

dt
“ 9ΩJ2 `

1

na2
?

1´ e2 sin i

BR̃3b

Bi
,

dω

dt
“ 9ωJ2 `

?
1´ e2

na2e

BR̃3b

Be
´

cos i

na2
?

1´ e2 sin i

BR̃3b

Bi
.

• Model 3 (referred in black in the color plots): the disturbing potential

consists of the secular J2 effect and the full quadrupolar (l “ 2) doubly-

averaged model corresponding to both Sun and Moon.

6 The condition h “ 1 is derived from the fact that the doubly-averaged solar potential is

independent of the argument ω@ for l “ 2, leading to the constraint 2 ´ 2h “ 0 in Eq. (4).

We refer to [7], proposition 8, for omitted details.
7 Again see [7], proposition 8, for omitted details.
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• Model 4 (referred in yellow in the color plots): for the time evolution of the

eccentricity and the inclination, we consider the doubly-averaged octupo-

lar (l “ 3) approximation for the Moon, the doubly-averaged quadrupolar

approximation for the Sun; for Ω and ω, instead, we consider the oblate-

ness effect and the quadrupolar doubly-averaged approximation for the

third-body perturbations.

In all the propagations, the numerical integration method is Runge-Kutta 7-

8 and the ephemerides of Sun and Moon are obtained from JPL DE405 [33].

Notice that, although the purpose here is not to develop an efficient propagator

for Molniya orbits, but to see what information we can extract from the available

data, it is important to account for realistic lunisolar ephemerides to ensure that

any discrepancies is not due to them.

Under all the possible hypotheses considered, the semi-major axis a is con-

stant and the problem is a two-degree-of-freedom8 system time dependent. The

different numerical evolutions are compared against the evolution given by the

TLE (in cyan). In Fig. 3, we show some examples of the evolution of the eccen-

tricity obtained as just described: we show three cases where we can reproduce

the long-term evolution accurately and three cases where we cannot. In the fig-

ures shown in the “SUPPLEMENTARY MATERIAL 2”, the orbital evolution

of the eccentricity corresponding to all the satellites is provided.

First, we notice that almost no difference is appreciable between the results of

model 3 (black) and model 4 (yellow). As noticed in [37], this can be explained by

the low eccentricity of the lunar orbit, that makes negligible the corresponding

terms in the eccentricity evolution for the spacecraft. Moreover, the role of

the lunisolar perturbation in Ω and ω plays a central role in catching the real

evolution of the orbit. This is appreciable comparing the cyan, green and red

8More precisely, would the problem have been cast in a canonical framework, the indepen-

dent canonical actions would be related to the eccentricity and inclination (e.g., we can think

of the Delaunay variables G and H and their associated canonical angles g, h. The 2-DoF

refer to the couples pG, gq and pH,hq).
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Figure 3: Eccentricity evolution obtained by assuming different levels of third-body perturba-

tion of e, i,Ω, ω, compared against the TLE evolution for some specific examples. More details

in the text. Top: orbits #1 and #2: middle: #7 and #13; bottom: #15 and #19. All the

other orbits are shown in the “SUPPLEMENTARY MATERIAL 2”. The TLE evolution is

displayed in cyan; the evolution obtained by applying model 1 in green; the evolution obtained

by applying model 2 in red; the evolution obtained by applying model 3 in black; the evolution

obtained by applying model 4 in yellow.
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lines. A further improvement is obtained by adopting model 3, that can match

perfectly the real evolution of the eccentricity in many cases (e.g., Molniya 1-32,

3-13 and 3-20 – orbits #7, 15, 19). In general, it seems sufficient to consider

l “ 2, m “ 0, 1, s “ 0, 1 for the Moon and l “ 2, m “ 0, 1 for the Sun, that is,

not a full quadrupolar approximation.

In Fig. 4 the behavior of Ω and ω, assuming different assumptions for the asso-

ciated dynamical model, is shown for two examples.

We have tested also the following extensions to model 4:

• l “ 3 also for the Sun for the propagation of e, i;

• l “ 4 both for Sun and Moon for the propagation of e, i;

• l “ 3 for the Moon also for the propagation of Ω, ω.

In these cases, we have not found any improvements in the qualitative behavior

of the orbit, in the orbital regime where the atmospheric drag does not affect

the evolution significantly.

Table 2: Initial conditions for the evolution given in Fig. 5.

# Molniya NORAD t0 a e i Ω ω

ID [MJD] [km] [deg] [deg] [deg]

2 2-10 7376 47628.06 26573.53 0.742 62.06 277.27 260.24

23 3-24 15738 48200.85 26576.61 0.712 63.49 65.71 278.18

The cases that cannot be explained with model 3 are Molniya 2-10, 3-10

and 3-24 (i.e., orbits #2, 13, 23). For Molniya 3-10, in particular, this is due

to the significant reduction in semi-major axis that takes place before MJD

50000 (see Fig. 3 in the “SUPPLEMENTARY MATERIAL 1”) and that is due

to the atmospheric drag (the pericenter altitude drops below 250 km). Other

mismatching behaviors, but less evident, can be seen in correspondence of a

significant, but less dramatic decrease in a, for example for Molniya 1-49 (orbit

#16 in Fig. 3 in the “SUPPLEMENTARY MATERIAL 1”). For Molniya 3-24

(orbit #23), from the corresponding eccentricity evolution shown in Fig. 4 in
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Figure 4: Longitude of the ascending node (left) and argument of pericenter evolution (right)

evolution obtained by assuming different levels of third-body perturbation of e, i,Ω, ω, com-

pared against the TLE evolution for some specific examples. More details in the text. Top:

#2; middle: #7; bottom: #15. The TLE evolution is displayed in cyan; the evolution ob-

tained by applying model 1 in green; the evolution obtained by applying model 2 in red; the

evolution obtained by applying model 3 in black.

the “SUPPLEMENTARY MATERIAL 1”, we can notice that the amplitude

of oscillation of a changes at about MJD 48100. A new numerical propagation

starting after this event has been performed assuming model 3: the magenta
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Figure 5: On the left, in cyan the eccentricity evolution of the TLE for Molniya 2-10 (orbit

#2) and the ones obtained by numerical propagation choosing two different initial conditions

(black Tab. 1 and magenta Tab. 2). On the right, a similar experiment performed for Molniya

3-24 (orbit #23).

curve in Fig. 5 now exhibits a perfect agreement with the TLE mean evolution.

Analogous considerations on the role of the initial semi-major axis can be drawn

for other cases, in particular for those that show a change in the amplitude of

oscillation of a (orbits #2, 5, 8, 9, 10, 11, namely Molniya 2-10, 2-14, 2-17, 1-36,

3-07 and 3-08). In Fig. 5, we also show as example the case of Molniya 2-10

(orbit #2). The new initial conditions propagated for Molniya 3-24 and 2-10

are given in Tab. 2. Note that by assuming for Molniya 2-10 an initial epoch

closer to the launch date, e.g., at MJD 42500, we obtain the same evolution

depicted in black in Fig. 5.

As mentioned at the beginning, following [42] (see fig. 12.7, in particular), the

operational life of Molniya satellites was not longer than 6 years, that is, we

cannot associate the change in amplitude to an intentional orbital maneuver.

This is, however, an interesting feature that can be observed in all the cases

just mentioned and that is worth to be investigated in detail in the future work

focused on the semi-major axis.

Assuming that the test above ensures model 3 to be reliable to predict the

eccentricity evolution, barring important semi-major axis reductions, we have

propagated the given initial conditions for a larger timespan – 100 years – to see

for what cases a drop in pericenter altitude below 250 km can be attained. This
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Figure 6: Propagation of 11 neighboring initial conditions, given the same initial epoch and

using model 3. The initial conditions have been taken from the propagation of the initial

condition in Tab. 1 and Tab. 2 for orbit #1 (left) and #2 (right), respectively, by selecting

the points xn “ xptnq, tn “ t0 ` n∆t, n P t´K, . . . ,Ku, ∆t “ 1 day from the nominal

trajectory. Such neighboring initial conditions are not discernible the one from the other.

The divergence among different orbits can be appreciable, but very slightly, only towards of

the end of the interval of propagation of Molniya 2-10 on the right.

is the value highlighted at the beginning for which we can observe a significant

decrease in semi-major axis due to the atmospheric drag. Recall, again, that the

initial conditions have been propagated considering model 3, that is, assuming

a constant. By excluding all the cases where it is already observed a relatively

significant change in a, the cases for which hp lowers down to 250 km are Molniya

1-40 (orbit #12, with possible re-entry in September 2058), Molniya 3-13 (orbit

#15, July 2039), Molniya 1-53 (orbit #18, about April 2042), Molniya 1-69

(orbit #25, about April 2079) and Molniya 3-31 (orbit #26, about August

2053). Since we are assuming a simplified model based on the oblateness effect

and the lunisolar perturbations, these final dates are upper limits for the lifetime

of the satellites just mentioned.

As a further consideration, the dynamics under study is known to evolve in a

rather chaotic way, by which is meant that they possess the property to be sen-

sitive to the initial condition (see, e.g., [7]). To estimate their Lyapunov times9

9Recall that the Lyapunov times correspond to the time needed for two nearby orbits to

diverge by the Euler’s number.
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τL, we have relied on the variational equations derived from to the equations of

motion10 associated to model 3. We have estimated the Lyapunov times based

on a 500 years numerical propagation. For all of them, we have found τL to

be roughly speaking about 10 years. Thus, the 40 years long TLE data arcs at

hands represent about 4τL. Over this timescale, although existing, the sensitiv-

ity to the initial condition does not manifest itself so strongly in eccentricity as

revealed by the following numerical experiment.

From the reconstructed nominal trajectory fitting the TLE data of the oldest

survived satellites Molniya 2-09 and 2-10 (orbit #1 and #2), we have isolated

an ensemble of 2K “ 10 initial conditions for the specific epoch t0 by selecting

the points xn “ xptnq, tn “ t0 ` n∆t, n P t´K, . . . ,Ku, ∆t “ 1 day from the

nominal trajectory (i.e., neighboring points). Here xn denotes the Keplerian

set pa, e, i,Ω, ωq of geometrical elements at time tn. Then, we have propagated

this ensemble of initial conditions forward in time over 200 years, assuming the

same initial epoch (ruling the Earth-Moon configuration) for all of them and

the same dynamical model. The resulting orbits, hardly distinguishable the one

from the other, are shown in Fig. 6. It can be noticed how the divergence among

different orbits can be appreciable, but very slightly, only towards of the end of

the interval of propagation of Molniya 2-10.

Figure 7: Example of the results obtained by applying a Lomb-Scargle procedure to the

eccentricity series. From left to right: Molniya 2-09, 2-10, 1-29 (orbit #1, 2, 3, respectively).

In red, the dominant terms.

10Thus, to estimate the Lyapunov times, we do not use the data time-series themselves

by reconstructing, e.g., the phase space via Takens’ delay (or also called lag) coordinates

embedding theorem [35].
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Table 3: Main periods (years) detected by means of the Lomb-Scargle procedure for each

orbit. ´ means that the given frequency was not detected.

N 2 9ω ` 9ΩK 2 9ω ` 9Ω´ 9ΩK 2 9ω ` 9Ω

1 25.07 10.93 6.55

2 22.83 11.12 7.61

3 24.95 11.46 7.19

4 22.09 10.76 8.23

5 24.80 11.39 7.15

6 24.11 10.51 8.37

7 25.86 11.76 7.92

8 23.92 10.99 7.97

9 27.07 10.98 7.66

10 23.87 10.97 7.96

11 20.75 10.65 7.44

12 20.35 11.05 7.58

13 - - 7.11

14 - - 7.57

15 21.35 - 7.41

16 24.50 11.14 7.50

17 23.99 - 7.66

18 20.39 - 7.37

19 22.93 - 7.64

20 25.30 - 7.65

21 22.41 - 7.47

22 25.17 - 7.98

23 - 10.44 6.87

24 24.88 - 7.19

25 24.67 11.88 7.82

26 24.45 - 7.06

27 23.44 - 7.09

28 22.90 11.03 8.05

29 21.29 - 7.91

30 21.31 - 7.49

31 20.88 - 7.33

32 - - 7.77

33 - - 7.06

34 - - 8.21

35 - - 7.95

36 - - 7.24

37 - - 7.49

38 - 11.14 5.72

39 - - 6.48

40 - - 8.36

41 - - 7.28

42 - - 7.14

22



Finally, the eccentricity series have been processed by means of the Lomb-

Scargle algorithm11 [22, 30] in order to identify the main long-term periods and

compare them with the periods corresponding to the quadrupolar and octupo-

lar doubly-averaged approximations for the third-body perturbations. Three

examples are shown in Fig. 7. The main periods detected are showed in Tab. 3

for all the orbits and are related to the harmonics corresponding to l “ 2 in

Eqs. (4)-(5) (excluding the secular ones). In particular, the periods of about 7.5

years, 11 years and 24 years that stand out correspond to 2ω`Ω, 2ω`Ω´ΩK,

and 2ω ` ΩK, respectively12. The correspondence between the observational

and the analytical approximation is obtained by assuming that the precession

of Ω and ω is due to the oblateness effect and the quadrupolar doubly-averaged

approximation for the third-body perturbation. The oscillations that can be

noticed in the table with respect to the values just reported are due to the

different initial conditions.

4. Conclusions and future directions

In this work, we have analyzed the long-term evolution of the mean eccen-

tricity obtained from TLE sets of the Molniya historical constellation. The

analysis has considered the third-body effect as the major perturbation on the

orbital eccentricity. Different assumptions on a two-degree-of-freedom time de-

pendent dynamical model accounting for the lunisolar perturbations coupled

with the oblateness effect have been compared against the observational data.

The outcome shows that a quadrupolar doubly-averaged formulation represents

a reliable model to depict a realistic evolution. Also, it has emerged the impor-

tance of the role of the lunisolar perturbation in the time evolution of Ω and

ω.

The role of the initial conditions turns out to be important for what concerns

11LombScargle from astropy; given that the data are not equally spaced.
12Note that the corresponding information given in [5] was partially correct and it was

corrected in [6].
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the semi-major axis, not only in case of a significant reduction (as expected),

but also when the amplitude of oscillation varies. The corresponding behavior

and the reason of the change exhibited by several satellites will be faced in a

future work. In the same work, the role of tesseral harmonics [11] and of the

atmospheric drag, along with a detailed analysis of the solar activity, will be

presented.

Preliminary numerical experiments have been performed to understand whether

chaotic phenomena manifest in the timespan considered. The conclusion is that

in the considered time interval the chaotic nature of the problem does not ap-

parently affect so strongly the dynamics of the eccentricity.

Finally, the work [36, 37], just concluded, has analyzed amplitudes and pe-

riods of the lunisolar doubly-averaged expansions up to the octupolar approx-

imation, with the purpose of identifying the major contributions for a proper

phase space description. Such Hamiltonian description has been supported by

the numerical comparison provided here and will be published in a separate

work. From that theoretical description and the phase space analysis, the role

of the initial Ω pointed out in the past will be clarified and a more detailed

analysis on the role of chaos will be carried out.
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